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We study the nonunitary relation between quantum gravitational models defined using different internal
times. We show that, despite the nonunitarity, it is possible to provide a prescription for making
unambiguous, though restricted, physical predictions independent of specific clocks. To illustrate this
result, we employ a model of quantum gravitational waves in a quantum Friedmann universe.
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I. INTRODUCTION

Quantum gravity models suffer from the infamous time
problem [1–4], as the external and absolute time on which
nonrelativistic physics is based is absent in Einstein’s
theory of gravity. Therefore, one has to rely on largely
arbitrary physical variables, known as internal time vari-
ables or internal clocks, to follow changes occurring in
gravitational systems. By virtue of the principle of general
relativity (time-reparametrization invariance), the free
choice of internal time variable has no physical conse-
quence in the classical theory. Upon passing to quantum
theory, however, different choices of internal time variables
are known to produce unitarily inequivalent quantum
models [5–12]. The problem of finding the correct inter-
pretation of these nonequivalent models is commonly
referred to as the time problem.
In this article, we look for the most plausible interpre-

tation of such nonequivalent clocks. Our analysis is based
on the model of primordial gravitational waves propagating
across the Friedmann universe. It is important to note that
similar models were previously used for making predic-
tions for the primordial amplitude spectrum of density
perturbation, which are greatly constrained by observations
(see, e.g., Refs. [13–15]). Remarkably, to the best of our
knowledge, the time problem has never been studied for
such models, so it is important to clarify the role and the
interpretation of internal time variables in their dynamics.
We expect that the ensuing conclusions should equally
apply to all cosmological models.
The fact that the dynamics are unitarily inequivalent in

different clocks is widely known and well documented with
plenty of examples; see, e.g., Refs. [16–18]. In this context,

it is sometimes emphasized that the only measurable
quantities in quantum gravity are gauge-invariant variables
that do not depend on the employed clock [19,20]. They are
constants of motion. However, they are said to encode all
the relational dynamics in spite of being nondynamical
themselves. From this point of view, dynamical quantities
are not fundamental and are ambiguously given by one-
parameter families of gauge-invariant quantities, with each
family representing the motion with respect to a specific
internal time. The differences are seen as natural rather than
inconsistencies that should be worried about. From our
viewpoint, on the other hand, the dynamical variables can
serve as fundamental variables, and the differences in their
dynamics call for a careful interpretation, before allowing
for physical predictions.
The cosmological system examined in this article exhib-

its, as expected, dynamical discrepancies when based on
different clocks. The discrepancies concern both the back-
ground and perturbation variables. This leads us to ask a
fundamental question: what are the dynamical predictions
of quantum cosmological models that do not depend on the
employed time variable?
We address the above question within the reduced phase

space quantization. Namely, we solve the Hamiltonian
constraint and choose the internal time variable prior to
quantization. An alternative approach would be to first
quantize and then solve the constraint quantum mechan-
ically while promoting one of the variables as internal time.
Both approaches lead to the same time problem and,
therefore, using the technically less involved reduced phase
approach is well justified (see, however, Ref. [21] for recent
developments in the alternative approach). Most signifi-
cantly, within the reduced phase space approach, there
exists a theory of clock transformations, which is com-
pletely crucial for the purpose of this work [22]. Thanks to
these precisely defined transformations, we are able to
explore all possible clocks and quantize them with an
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assumption of fixed operator ordering. Hence, any quantum
ambiguities found arise from the differences between
clocks rather than the differences between quantization
prescriptions.
The outline of this article is as follows. In Sec. II, we

make a brief introduction to the theory of clock trans-
formations in the reduced phase space of gravitational
models. We explain how this theory allows one to remove
irrelevant quantization ambiguities when passing to quan-
tum theory based on different clocks and with different
basic dynamical variables. In Sec. III, we formulate the
reduced phase space description of the Friedmann universe
with gravitational waves with respect to a fluid time and
obtain the general clock transformation. In Sec. IV, we
quantize our model and establish a convenient semiclass-
ical approximation. Section V deals with concrete clock
transformations applied to our model and makes compar-
isons between the resulting dynamics. We summarize our
findings, discuss their plausible interpretation, and suggest
some directions to move forward in Sec. VI.

II. CLOCK TRANSFORMATIONS IN TOTALLY
CONSTRAINED SYSTEMS

One crucial characteristic feature of canonical relativity
is the appearance of the Hamiltonian constraint; it is a
consequence of the fact that the dynamics of three surfaces
is generated by infinitesimal timelike diffeomorphisms, and
the latter leave the full four-dimensional spacetime invari-
ant. It by no means makes the dynamics of three surfaces
spurious or redundant. Indeed, the Hamiltonian constraint
dynamics is a feature of any canonical relativistic theory of
gravity, be it Einstein’s or any modified gravity theory,
though their dynamics are different. The correct interpre-
tation of canonical relativity assumes the lack of an
absolute, external time in which three surfaces evolve,
and replaces it with internal variables that serve as clocks in
which the dynamics of three surfaces takes place. None of
the internal clocks can play a privileged role as the principle
of relativity states. This picture is certainly self-consistent
in the classical theory. At the quantum level, no spacetime
exists and, as we will see later, the principle of relativity
takes a somewhat altered form. In order to study it, we need
to extend the canonical formalism by including clock
transformations that transform a canonical description from
one internal clock to another; only then can we move to the
quantum level where these new transformations become a
key to unlock the principle of quantum relativity.
Let us consider a system consisting of a set of N þ 1

canonical variables fqα; pαgα¼0;…;N and assume a
Hamiltonian constraint taking the form

Cðqα; pαÞ ≈ 0;

where “≈” is the weak equality in the Dirac sense [23].
Suppose that one of the positions, say q0, varies

monotonically with the evolution generated by the con-
straint, i.e., ∀ q0; fq0; CgPB ≠ 0. It is then possible to
assign to q0 the role of an internal clock in which the
evolution of the remaining variables occurs. This evolution
is then governed by a Hamiltonian that is not a constraint. At
this stage, itmay seem that the timevariable is fixed once and
for all, which would contradict the principle of relativity; we
discuss below in what sense this is not the case.
The reduced Hamiltonian formalism is obtained from the

initial symplectic form Σ ¼ dqα ∧ dpα (Einstein conven-
tion assumed), evaluated on the constraining surface,
namely,

ΣjC¼0 ¼ ðdqI ∧ dpI þ dq0 ∧ dp0ÞjC¼0

¼ dqI ∧ dpI − dt ∧ dH; ð1Þ

where I ¼ 1;…; N, and H ¼ Hðq0; qI; pIÞ is the non-
vanishing reduced Hamiltonian such that p0 þH ≈ 0.
Note that both q0 (denoted by t from now on to emphasize
its role as a time variable) and p0 are removed from the
phase space and the remaining dynamical variables are no
longer constrained. Indeed, their dynamics reads

dqI
dt

¼ ∂H
∂pI and

dpI

dt
¼ −

∂H
∂qI

;

which is entirely solved once an arbitrary initial condition
ðqiniI ; pI

ini; q
ini
0 Þ is provided.

In order to restore the principle of relativity, we need to
allow for any clock, denoted by t̃, which monotonically
varies with the evolution generated by the constraint
ft̃; CgPB ≠ 0. This new clock must be a function of the
old clock and the old canonical variables, t̃ ¼ t̃ðqI; pI; tÞ.
Thus, it must satisfy

dt̃
dt

¼ ∂t̃
∂t

þ ∂t̃
∂qI

∂H
∂pI −

∂t̃
∂pI

∂H
∂qI|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

ft̃;HgPB

≠ 0: ð2Þ

The original symplectic form induced on the constraint
surface C ¼ 0 must read in some new canonical variables,

ΣjC¼0 ¼ dq̃I ∧ dp̃I − dt̃ ∧ dH̃;

so that the new reduced formalism is still canonical. This
implies that there must exist an invertible map between the
old and the new variables,

t̃¼ t̃ðqI;pI; tÞ; q̃I ¼ q̃IðqJ;pJ;tÞ; p̃I ¼ p̃IðqJ;pJ; tÞ;
ð3Þ

and the natural question to ask is whether these trans-
formations are canonical. In principle, and in all the
relevant cases, they most certainly are not. It can be shown
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that clock transformations form a group of generally
noncanonical transformations with canonical transforma-
tions as its normal subgroup [16]; finding them is, in
general, a difficult task. However, for an integrable
dynamical system, the problem can be reduced to that of
solving a set of algebraic equations.
If a dynamical system is integrable, then we may find a

complete set of canonical constants of motion, denoted by
DI . Let them be functions of the old internal time and old
canonical variables, DI ¼ DIðqJ; pJ; tÞ. Note that substi-
tuting back t → q0, they must commute with the original
constraint, fDI; Cðqα; pαÞgPB ¼ 0. They are therefore
genuine Dirac observables in the constrained system.
The new internal time t̃ ¼ t̃ðqI; pI; tÞ and new canonical
variables can then be found according to the algebraic
relations

t̃ ¼ t̃ðqI; pI; tÞ; DIðqJ; pJ; tÞ ¼ DIðq̃J; p̃J; t̃Þ; ð4Þ

where we formally substitute the canonical variables in the
expressions for Dirac observables DI , i.e., we assume the
same functional dependence of DI in both sets of
variables. The number of DI is equal to the number of
the new canonical variables q̃J and p̃J, and thus, leaving
aside singular cases, the above relations determine q̃J
and p̃J completely. The result is a new canonical formal-
ism based on a new internal clock. Let us note that,
by virtue of Eq. (4), if a solution to the dynamics is known
in one clock, i.e., t → ½qIðDJ; tÞ; pIðDJ; tÞ�, then it is
readily known for all other clocks and reads t̃ →
½q̃I ¼ qIðDJ; t̃Þ; p̃I ¼ pIðDJ; t̃Þ�. This makes the choice
of the new canonical variables q̃I and p̃I via Eq. (4) very
convenient: the formal description of the system is the
same in all clocks; only the physical meaning of the clock
and basic variables changes, which is emphasized by the
use of a tilde (e) over the variable names.
The use of Dirac observables in the derivation of clock

transformations gives an invaluable advantage when pass-
ing to quantum theory. Our goal is to make a comparison
between quantum theories based on different internal
clocks of a single physical system. Therefore, it is of
uttermost importance to make sure that the theories are
different only insofar as their clocks differ and not due to
other quantization ambiguities, such as the well-known
factor ordering. This state of affairs can be achieved by
fixing a quantum representation of the Dirac observables
and then defining basic and compound observables as
functions of the quantum Dirac observables, both in the
original

q̂I ¼ qIðD̂J; tÞ; p̂I ¼ pIðD̂J; tÞ;

and the new variables

ˆ̃qI ¼ qIðD̂J; t̃Þ; ˆ̃pI ¼ pIðD̂J; t̃Þ:

These definitions imply that qI and pI are promoted to the
same operators as q̃I and p̃I , respectively. We invert this
reasoning and start by assuming the same operators for qI
and q̃I as well as pI and p̃I. This implies that the Dirac
observables being the same functions in both sets of basic
variables are promoted to the same operators irrespective of
the choice of clock. Hence, the quantum descriptions in
different clocks are formally the same; only the physical
meaning of the basic operators changes from one clock to
another, which is emphasized by the use of tilde.
Obviously, a unique ordering prescription has to be used
in all the above formulas. In principle, after this step, any
physically interesting aspect of the quantum theories can be
compared. In the following section, we introduce the model
on which we discuss such comparisons.

III. CANONICAL COSMOLOGICAL MODEL

We consider a flat Friedmann-Lemaître-Robertson-
Walker (FLRW) universe filled with radiation and per-
turbed by gravitational waves; the line element of the model
reads (in units such that c ¼ 1)

ds2 ¼ −N2ðtÞdt2 þ a2ðtÞ½δij þ hijðx; tÞ�dxidxj;

where hij represent the gravitational waves (tensor pertur-
bations); it satisfies hijδij ¼ 0 and ∂

jhij ¼ 0. Finally, we
assume a toroidal spatial topology with each comoving
coordinate xi ∈ ½0; 1Þ. Setting N → a means one considers
the conformal time; we shall henceforth denote it by η to
agree with most of the cosmology literature.

A. Perturbative Hamiltonian

Let us now build the canonical description of these
gravitational waves in an FLRW universe. The relevant
canonical variables are the scale factor a and its conjugate
momentum pa to describe the background, while the tensor
perturbations are represented by the gravitational wave
amplitude μðλÞ ¼ ahðλÞ and its conjugate momentum πðλÞ,
with λ∈ fþ;×g and hij ¼

P
λ h

ðλÞεijðλÞ (see, e.g.,
Refs. [24,25] for details on the helicity expansion).
The matter component is assumed to be a radiation fluid

with energy density p0 conjugate to a timelike variable q0.
The gravitational constraint is expanded to second order
through

Htot ¼ HðbÞ þ
X
k

HðpÞ
k

(recall the spatial sections are compact), with the back-
ground Hamiltonian given by

HðbÞ ¼ −
1

2
p2
a − p0: ð5Þ
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At this stage, one can identify the internal time q0 with the
conformal time η as it reduces the zeroth-order Hamiltonian
into

ΣjHð0Þ¼0 ¼ ðda ∧ dpa þ dq0 ∧ dp0ÞjHðbÞ¼0

¼ da ∧ dpa − dη ∧ d

�
1

2
p2
a

�
; ð6Þ

leading to the physical zeroth-order Hamiltonian

Hð0Þ ¼ 1

2
p2
a; ð7Þ

while preserving the form of the perturbation Hamiltonian

HðpÞ
k . The latter reads, at second order,

HðpÞ
k → Hð2Þ

k ¼ −
X
λ¼þ;×

Hð2Þ
k;λ ð8Þ

with

Hð2Þ
k;λ ¼

1

2

���πðλÞk

���2 þ 1

2

�
k2 −

a00

a

����μðλÞk

���2; ð9Þ

where a prime stands for a derivative with respect to the
conformal time. Since the tensor perturbations are real, one

has μðλÞ�k ¼ μðλÞ−k . Moreover, since the background is iso-
tropic, one can restrict attention to upward directed wave

vectors k by merely canceling the factor 1
2
in Hð2Þ

k;λ . This
permits one to write the final second-order Hamiltonian as

Hð2Þ
k;λ ¼ πðλÞk πðλÞ−k þ

�
k2 −

a00

a

�
μðλÞk μðλÞ−k: ð10Þ

Note that, for the radiation fluid we are concerned with
here, the Hamiltonian (7) yields as equations of motion
pa ¼ a0 and p0

a ¼ 0, thus leading to a00 ¼ 0: the potential
for producing gravitational waves is indeed classically
vanishing if the universe is radiation dominated.
Determining the solution to the dynamics of gravita-

tional waves is straightforward in the radiation case. While
it is possible to consider a general fluid with an arbitrary
barotropic index w (this case can be solved analytically in
terms of Bessel functions, see, e.g., [26]), such a consid-
eration is not relevant to the objectives of this work. We
expect that the clock effects obtained below are not specific
to any matter content but must be present whenever
quantum uncertainties in the background geometry are
taken into account. In fact, it can be argued that, since
gravitational waves are affected by the choice of the
equation of state only insofar as the background time
development depends on it through Eq. (10), our results
should qualitatively hold, if not quantitatively, for all
physically relevant choices of w.

B. Dirac observables

Now we shall find the constants of motion that form
canonical pairs. To this end, we need to solve the partial
differential equations

dD
dη

¼ ∂D
∂η

þ fD;Hð0Þ þHð2ÞgPB ¼ 0: ð11Þ

At zeroth order, this is

∂D
∂η

þ pa
∂D
∂a

¼ 0;

with solutions

D1 ¼ a − paη and D2 ¼ pa: ð12Þ

At first order, Eq. (11) reads

∂δD
∂η

þ pa
∂δD
∂a

¼ πðλÞk
∂δD

∂μðλÞk

− k2μðλÞk
∂δD

∂πðλÞk

;

where we considered the classical solution a00 ¼ 0. Since
we are considering only first-order perturbations, we
demand that δD be linear in the perturbation variables

μðλÞk and πðλÞk . The lhs of the above equation is greatly
simplified if δD depends only on the variable
y ¼ ηþ a=pa, so we look for a solution of the form

δDðλÞ ¼ μðλÞk αðyÞ þ πðλÞk βðyÞ, leading to

2
dα
dy

μðλÞk þ 2
dβ
dy

πðλÞk ¼ απðλÞk − k2βμðλÞk :

Assuming independent variations of μðλÞk and πðλÞk , one gets
2dα=dy ¼ −k2β and 2dβ=dy ¼ α, and finally 4d2α=dy2 ¼
−k2α, so that, setting

Ωk ¼
k
2

�
ηþ a

pa

�
;

one gets two independent solutions for each polarization or,
in other words, four first-order constants, reading

δDðλÞ
1;k ¼

ffiffiffi
k

p
sinΩkμ

ðλÞ
k −

cosΩkffiffiffi
k

p πðλÞk ;

δDðλÞ
2;k ¼

ffiffiffi
k

p
cosΩkμ

ðλÞ
k þ sinΩkffiffiffi

k
p πðλÞk : ð13Þ

In Eq. (13), the normalization has been chosen so as to
ensure that all these Dirac observables indeed form
canonical pairs, namely,

fD1; D2gPB ¼ 1 and fδDðλÞ
1;k; δD

ðλ̄Þ
2;kgPB ¼ δλλ̄:
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From now on, we drop the index λ and consider just a single
polarization mode ðμk; πkÞ.

C. Clock transformations

Having set the full model, and before moving on to its
quantum counterpart, let us first consider a general clock
transformation

η → η̃ ¼ ηþ Δða; pa; ηÞ; ð14Þ

where Δ is a delay function that, in general, varies between
the trajectories as well as along them. At the background
level, implementing the recipe given by Eq. (3), i.e.,
D1;2ða; pa; ηÞ ¼ D1;2ðã; p̃a; η̃Þ, to the transformation (14)
yields

a − paη ¼ ã − p̃aη̃ and pa ¼ p̃a;

leading to

ã ¼ aþ paΔ and pa ¼ p̃a: ð15Þ
In order that the clock transformation (14) actually defines
a new and physically acceptable clock, the delay functionΔ
must be subject to two conditions. First, the new clock must
run forward, that is,

dη̃
dη

¼ 1þ dΔ
dη

¼ 1þ ∂Δ
∂η

þ pa
∂Δ
∂a

> 0; ð16Þ

where in the second equality we used the zeroth-order
Hamiltonian Hð0Þ given by Eq. (7) and the associated
equations of motion.
The second condition that a clock transformation must

satisfy is that the ranges of the basic variables a and pa must
be preserved, thereby preventing the appearance of non-
trivial ranges that may induce new and potentially unsolv-
able quantization issues. This second condition implies

lim
pa→�∞

p̃aða; pa; ηÞ ¼ �∞; ð17aÞ

ãða; pa; ηÞja¼0 ¼ 0: ð17bÞ
The first equality (17a) is trivially satisfied in the present
case because of (15). For Δ ¼ Δða; paÞ, to which we shall
restrict attention in what follows, the second equality (17b)
is identical to demanding that the delay function at vanishing
scale factor should also vanish, Δð0; paÞ ¼ 0. This con-
dition also ensures that the slow-gauge clock is transformed
into another slow-gauge clock, that is, the boundary is
reachedwithin a finite amount of time (seeRef. [17]). Such a
condition (17b), although irrelevant in the classical theory, is
crucial for the existence of a bounce at the quantum level,
where the clock must smoothly connect contracting and
expanding trajectories. Were (17) violated, the clock trans-
formations would break the bouncing trajectories.

It turns out that the condition (16) is equivalent to the
existence of a one-to-one map between the reduced phase
spaces ða; paÞ and ðã; p̃aÞ, i.e., the determinant

∂ðã; p̃aÞ
∂ða; paÞ

¼
�����
∂ã
∂a

∂ã
∂pa

∂p̃a
∂a

∂p̃a
∂pa

����� > 0; ð18Þ

which is indeed Eq. (16) when ∂Δ=∂η ¼ 0.
At first order, one must solve

δD1ða; pa; μk; πkÞ ¼ δD1ðã; p̃a; μ̃k; π̃kÞ

and

δD2ða; pa; μk; πkÞ ¼ δD2ðã; p̃a; μ̃k; π̃kÞ

in order to determine the clock-transformed perturbation
variables. Explicitly, using (13), one gets

ffiffiffi
k

p
sinΩkμk −

cosΩkffiffiffi
k

p πk ¼
ffiffiffi
k

p
sin Ω̃kμ̃k −

cos Ω̃kffiffiffi
k

p π̃k;

ffiffiffi
k

p
cosΩkμk þ

sinΩkffiffiffi
k

p πk ¼
ffiffiffi
k

p
cos Ω̃kμ̃k þ

sin Ω̃kffiffiffi
k

p π̃k;

ð19Þ

where Ω̃k ¼ 1
2
kðη̃þ ã=p̃aÞ ¼ Ωk þ kΔ. The above alge-

braic equations (19) can easily be inverted to yield the new
canonical perturbation variables, namely,

�
μ̃k
π̃k
k

�
¼

�
cos kΔ − sin kΔ
sin kΔ cos kΔ

��
μk
π̃k
k

�
: ð20Þ

It is important to note that the above are classical relations
between canonical variables belonging to distinct canonical
frameworks based on distinct internal clocks. Although
they are canonically inequivalent, these two frameworks
generate the same physical dynamics of the system, which
is required by the principle of relativity.
In general, clock transformations involve modifying

temporal relationships between events belonging also to
different spacetimes. This aspect of clock transformations
is not reflected in the lapse function Ñ of the new clock,
which expresses the temporal relationship between points
within a single spacetime. The clock transformations
described in our framework, however, do preserve the
foliation of cosmological spacetimes consisting of homo-
geneous spatial leaves with small perturbations. Given that
the initial clock η corresponds to the conformal time, the
new lapse function of the background foliation implied by
the new clock η̃ reads

Ñ ¼ a
1þ pa

∂Δ
∂a

> 0;
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where ∂Δ=∂η ¼ 0 was assumed. Note that considering a
delay function satisfying 1þ pa∂Δ=∂a ¼ a, one recovers
the cosmic time with Ñ ¼ 1.

IV. QUANTIZATION

Having completed the classical treatment of our system,
we nowmove to the investigation of the possible differences
between the respective quantumdynamics obtained from the
quantization of these two different frameworks.

A. Semiclassical background

Since, by definition, the scale factor is positive definite
(a > 0), one needs to quantize our previous system on the
half line. Although the position operator Q̂ ¼ a is self-
adjoint on the half line, this is not the case for the
momentum operator P̂ ¼ iℏ∂a, so we use instead the
symmetric dilation operator,

D̂ ¼ fP̂; Q̂g ¼ 1

2
ðP̂ Q̂þQ̂ P̂Þ ¼ 1

2
iℏða∂a þ ∂aaÞ:

Classically the dilation variable is d ¼ apa, so that the
Hamiltonian, expressed in terms of d, is Hð0Þ ¼ 1

2
p2
a ¼

1
2
d2=a2, and one can define its quantum counterpart as a

symmetric ordering of 1
2
Q̂−2D̂2. Expanding on the basis

(Q̂; P̂), this yields

Ĥð0Þ ¼ −
1

2

∂
2

∂a2
þ ℏ2K

a2
;

where the value of K > 0 depends on the ordering; fixing
one ordering such that K > 3

4
ensures Ĥð0Þ is self-adjoint on

the half line [27].
We can find some approximate solutions to the

Schrödinger equation with a family of coherent states
(see, e.g., Refs. [28–30] for the specific case under study
here). We choose the coherent states to read

jaðηÞ; paðηÞi ¼ eipaðηÞQ̂=ℏe−i ln½aðηÞ�D̂=ℏjξi; ð21Þ

where jξi is such that the expectation values of Q̂ and P̂ in
jaðηÞ; paðηÞi are, respectively, aðηÞ and paðηÞ and other-
wise arbitrary (see, however, Ref. [31]).
The dynamics confined to the coherent states can be

deduced from the quantum action

SQ ¼
Z

fa0ðηÞpaðηÞ −Hsem½aðηÞ; paðηÞ�gdη; ð22Þ

with the semiclassical Hamiltonian given by

Hsem ¼ ha; pajĤð0Þja; pai; ð23Þ

from which one derives the ordinary Hamilton equations,

a0 ¼ ∂Hsem

∂pa
and p0

a ¼ −
∂Hsem

∂a
: ð24Þ

We find that the semiclassical background Hamiltonian
reads [30]

Hsem ¼ 1

2

�
p2
a þ

ℏ2K
a2

�
; ð25Þ

where the new constant K is positive (K > 0). Its specific
value is related with both K and the fiducial state jξi. We
find the solution to (24) to read a2ðηÞ ¼ a0 þ a1ηþ a2η2,
with a0a2 − a21=4 ¼ ℏ2K > 0, so that the equation aðηÞ ¼
0 has no longer any real solution; the singularity is indeed
quantum mechanically avoided. Choosing the origin of
time such that a0 ¼ 0 for η ¼ 0 permits us to rewrite this
solution in full generality as

aðηÞ ¼ aB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðωηÞ2

q
; ð26aÞ

paðηÞ ¼
aBω

2ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðωηÞ2

p ; ð26bÞ

where a4Bω2 ¼ ℏ2K, which in turn implies Hsem ¼
1
2
a2Bω2 ¼ 1

2
ℏ

ffiffiffiffiffi
K

p
ω ¼ ℏ2K=ð2a2BÞ; it is clear that the model

contains one and only one free parameter, namelyK. From
now on, we assume that the background evolution is given
by Eq. (26): this means the semiclassical potential

Vsem ¼ a00

a
¼ ℏ2K

a4
¼

�
ω

1þ ðωηÞ2
�
2

; ð27Þ

shown in Fig. 1, never vanishes except in the large scale
factor limit (a ≫ 1 ⇒ η ≫ ω−1). This is appropriate as this

FIG. 1. The semiclassical potential Vsem given by Eq. (27) as a
function of the conformal time η for various values of the inverse
bounce duration ω. The potential has to be compared with the
relevant value of k2 (k ¼ 0.01), indicated as a straight line. The
corresponding scale factor time evolution is shown in the inset.
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is also the classical limit for which a00 → 0. A classical
radiation-dominated universe begins or ends with a singu-
larity and produces no gravitational waves, whereas our
quantum radiation-dominated universe naturally connects
the contracting and expanding phases through a bounce,
which is subsequently responsible for a nonvacuum spec-
trum of tensor perturbations, to which we now turn.

B. Quantum perturbations

For a given mode k, the Hamiltonian Hð2Þ
k , given by

Eq. (10), is easily quantized using the usual prescriptions.
We assume that the background follows the semiclassical
approximation described above, so that the potential for the
perturbation is given by Vsem [Eq. (27)]. The basic variables
are replaced by a set of operators

μk ↦ μ̂k ¼
ffiffiffi
ℏ
2

r
½âkμ�kðηÞ þ â†−kμkðηÞ�;

πk ↦ π̂k ¼
ffiffiffi
ℏ
2

r
½âkμ�0k ðηÞ þ â†−kμ

0
kðηÞ�; ð28Þ

where we assume the Wronskian normalization
condition μ0kμ

�
k − μkμ

�0
k ¼ 2i for the complex mode func-

tions μk. The creation â†k and annihilation âk operators
satisfy the commutation relations ½âk; â†p� ¼ δk;p stemming
from the canonical ones between the field opera-
tors ½μ̂k; π̂−p� ¼ iℏδk;p.
In the Heisenberg picture, the equations of motion take

the form

iℏ
dμ̂k
dη

¼ ½Hð2Þ
k ; μ̂k� and iℏ

dπ̂k
dη

¼ ½Hð2Þ
k ; π̂k�;

which imply that the mode function μkðηÞ satisfies

d2μk
dη2

þ
�
k2 −

ℏ2K
a4

�
μk ¼ 0; ð29Þ

where aðηÞ is given by the semiclassical solution (26a).
Using (27), this transforms into

d2μk
dη2

þ
	
k2 −

�
ω

1þ ðωηÞ2
�
2


μk ¼ 0; ð30Þ

which can be integrated numerically if initial conditions
are provided: we assume that, far in the contracting
branch, with ηini < 0 and VsemðηiniÞ ≪ k2, there was no
gravitational wave, so the field was in a vacuum state. This
implies the mode function satisfies μkðηiniÞ ¼ e−ikηini=

ffiffiffiffiffi
2k

p

and μ0kðηiniÞ ¼ −i
ffiffiffiffiffiffiffiffi
k=2

p
e−ikηini .

V. QUANTUM “CLOCKS”

In what follows, we study the effect of clocks on the
quantum and semiclassical dynamics of selected dynamical
variables. First, we obtain the dynamical trajectories in the
reduced phase space ða; p; μk; πkÞ that is associated with
the initial clock η; note that, from that point on, since there
is no risk of confusion, we shall replace what was
previously denoted as pa simply by p. Next, we choose
a set of delay functions Δða; pÞ to define new clocks η̃ and
obtain the new reduced phase spaces ðã; p̃; μ̃k; π̃kÞ asso-
ciated with the new clocks. Then, we make use of Eqs. (14),
(15), and (20) to transport the dynamical trajectories to
these new phase spaces. We assume that the latter admit a
unique physical interpretation, and so the trajectories can
be meaningfully compared in these new variables. In other
words, there are many clocks denoted by η and only one
denoted by η̃. Note that for Δ ¼ 0 the clocks η and η̃
coincide. For this case, we assume that η and ða; p; μk; πkÞ
are the variables of Sec. II, which sets the physical meaning
of the phase space ðã; p̃; μ̃k; π̃kÞ and the clock η̃.

A. Clock choices and background

In order to illustrate the clock choice issue, we consider a
family of delay functions, namely,

Δða; pÞ ¼ A
aB

ðaþ CÞD
sinðEpÞ

p
; ð31Þ

where A, B, C, D, and E are arbitrary coefficients, whose
values are limited to ensure that the conditions presented in
Sec. III C hold. In the Appendix, we consider another set of
acceptable delay functions to show that our conclusions are
not restricted to the choice (31).
A few clocks corresponding to the delay function

Δða; pÞ are represented along a semiclassical dynamical
trajectory for different choices of the free parameters in
Fig. 2. It shows that, contrary to the classical case where the
condition (16) holds, the new clocks, in general, are no
longer monotonic due to quantum corrections.
Applying the clock transformation of Fig. 2 to the

background solution (26) yields Fig. 3 once mapped into
the reduced phase space, with the original trajectory
superimposed for comparison.
All the trajectories originate in the same classical regime

at large ã and negative p̃, i.e., at a time at which the
universe is large and contracting. Close to the ã ¼ 0
boundary, where the quantum behavior dominates, they
all somehow bounce in the variables ã and p̃, diverging
from one another and providing different accounts of the
bounce. Finally, they reach the region of large ã and
positive p̃where they converge again to the unique classical
behavior representing a large and expanding universe.
Possible differences between the trajectories include the

values of ã and p̃ at which the bounce occurs, the level of
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asymmetry between contracting and expanding branches,
or even the number of bounces. These semiclassical
trajectories illustrate the nonunitary relation between differ-
ent clocks. Nevertheless, they all originate from a unique

contracting classical universe and end toward a similarly
unique expanding classical universe. Therefore, the semi-
classical trajectories in different clocks yield the same
outcome for large and classical universes. Notice that the
trajectories’ convergence before and after the bounce can
be delayed as much as one wants by making use of
appropriate delay functions, such as that discussed in the
Appendix, i.e., Eq. (A1), whose effects on both background
and perturbation trajectories can be seen in the Appendix.

FIG. 2. The new time η̃ as a function of the original one η for
three different shapes of delay functions Δ1, Δ2, and Δ3 defined
through Eq. (31) along the original fixed bouncing trajectory
(26). The parameters are chosen as A ¼ B ¼ D ¼ 1, C ¼ 4, and
E ¼ 2 for Δ1, while we set A ¼ 2, B ¼ 0.2, C ¼ 0.5, D ¼ 3, and
E ¼ 4 for Δ2, and finally the set A ¼ −1, B ¼ C ¼ 1, D ¼ 0.5,
and E ¼ 3 defines Δ3.

FIG. 3. Semiclassical trajectories obtained in different clocks
and mapped into the initial reduced phase space ðã; p̃Þ
to compare with the original trajectory represented by the full
black line.

FIG. 4. Evolution of the primordial gravity waveReðμ̃Þ for two
different wave numbers, k ¼ 0.1 (top) and k ¼ 0.5 (bottom), and
for different clocks based on the first class of delay function, Δ1,
Δ2, and Δ3, represented by the dotted blue line, dashed red line,
and dash-dotted green line, respectively. The original trajectory is
represented by the full black line. In Fig. 9, the same plot for the
second class of delay function is depicted to show how the choice
of delay function affects the time of convergence.
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Let us now move to the perturbation of these homo-
geneous solutions and compare the different evolution that
can result from using different clocks.

B. Clocks and perturbations

In Fig. 4, we plot the dynamics of the real part of the
perturbation variable μ̃k against the delayed time η̃ for the
three different functions of Eq. (31) displayed in Fig. 2 and
for two values of the comoving wave number k. The figure
illustrates our general finding that the absolute clock effect
is more or less equally strong and lasting roughly equally
long for all wavelength perturbations. This is shown more
convincingly in Fig. 5, in which the evolution of four
different modes is shown as a close-up in the quantum-
dominated bouncing region. This means that the larger the
wavelength of the perturbation, the larger the relative clock
effect, and the longer it lasts in units of its oscillation
period. Thus, the clock effect is more important for
phenomena occurring at small timescales and over short
distances.
Moreover, the evolving amplitude μ̃k, in general, is not a

function of the clock η̃ due to quantum effects that disrupt
the monotonicity relation between quantized clocks.
Given that both the background and the perturbation

modes evolve in such a way as to reach a unique
configuration, the primordial gravity-wave amplitude
μ̃k=ã, which is the quantity one expects to measure in
practice [25], also converges to a unique solution, making
the model predictive.

All the plots above illustrate the nonunitary relation
between different clocks, as well as the spoiling of the clock
monotonicity at the quantum level, which is illustrated in
Fig. 2. Nevertheless, similar to the semiclassical back-
ground trajectories, the perturbation variableReðμ̃Þ visibly
converges to a unique classical solution from a well-defined
asymptotic past initial condition to the asymptotic future.
Therefore, one can safely extend the background conclu-
sion to the perturbations: the time development of the mode
Reðμ̃Þ using different clocks yields the same predictions in
the large and classical universe regime. The delay of the
convergence due to different choices of delay functions can
be seen in Fig. 5.
As a final illustration of the perturbation behavior

through the quantum bounce, we find it useful to inspect
the phase space trajectories in the plane ½Reðμ̃kÞ;Imðμ̃kÞ�
as is displayed in Fig. 6. The initial vacuum state is
represented by a circle that is squeezed into an ellipse
during the contraction and bounce, squeezing that repre-
sents the amplification of the amplitude of the perturba-
tion. From the point of view of the time problem, the
initial circle and the final ellipse, respectively, represent
the asymptotic past and future of the amplitude: from the
point of view of physical prediction, the indeterminacy
occurring near the bounce, as may develop through
various different times, disappears in the asymptotic
regimes, so that the existence of a classical approximation
in our trajectory approach ensures the standard procedure
of treating the perturbations leads to physically mean-
ingful predictions.

VI. DISCUSSION AND PERSPECTIVES

In this work, we explored the time problem in the
framework of quantum fields on quantum spacetimes.

FIG. 5. Evolution of the primordial gravity wave Reðμ̃kÞ
plotted for four different wave number k values. For each fixed
k we changed the clock considering the family of delay functions
Δ, whose value is the same as in Fig. 3.

FIG. 6. Evolution of the real versus imaginary part of μ̃k for a
wave number k ¼ 0.5 and a bounce parameter ω ¼ 1. The initial
circle represents the initial vacuum state of the perturbation, while
the ellipse shows the final squeezed state, which happens, in the
case at hand, to have a slight phase shift with respect to the real
axis. The transition between these two asymptotic cases differs
for the different delay functions Δ1, Δ2, and Δ3, whose
trajectories are represented by the dotted blue line, dashed red
line, and dash-dotted green line, respectively, the original
trajectory being represented by the full black line.
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We considered the specific example of primordial gravi-
tational waves propagating through a bouncing quantum
Friedmann universe. We pointed to several features that we
believe to be universal for such models.
First, we showed that the dynamical variables, such as

the scale factor or the amplitude of a gravitational
wave, obtained from different internal clocks, evolve
differently when compared in a clock-independent
manner. Second, these expectation values (background
evolution) and mode functions of operators (perturba-
tions), irrespective of the clock chosen, converge to a
unique evolution for large classically behaving universes.
This is the phase space domain in which unambiguous
predictions can be made. Third, for different clocks,
the dynamics converges to the classical behavior at
different times. In principle, there is no restriction on
how far from the bounce the system must be in order to
display the classical behavior. In practice, however, all the
clocks considered were found to converge very quickly,
allowing for unambiguous predictions shortly after the
bounce.
Based on the above findings, we postulate that the

physical predictions are only those predictions provided
by any clock, which are not altered upon the clock’s
transformation. The fact that for large universes the semi-
classical background dynamics and the quantum perturba-
tion dynamics do not depend on the clock implies the
following: Despite the fact that the dynamical variables are
not Dirac observables, they provide physical predictions for
large universes, which is precisely the regime in which we
observe the actual Universe.
Note, however, that the word “large” is never precisely

defined. One could expect that, at least in principle,
some clocks require times larger than the present
age of the Universe to converge to the classical
behavior. This, however, poses no problem to our
interpretation, as we simply exclude such clocks and
retain only those that behave classically in the domain for
which we make predictions. This may seem arbitrary and
unjustified. We must, however, remember that, as a
matter of fact, any semiclassical description of ordinary
quantum mechanics is necessarily restricted to a limited
set of observables, usually the simple ones, while more
compound observables often display classically incom-
patible behavior (e.g., hxi2 ≠ hx2i). For similar reasons,
we are allowed to choose only those clocks in which
the dynamics of the relevant observables is classically
consistent.
On the one hand, we proved that the evolution of the

expectation values of some observables constitute physical
predictions of quantum cosmological models. On the other
hand, the expectation values are not all that is measured in
the large Universe. In other words, not all objects are
classical in the large Universe. For instance, the position of
an electron is a dynamical variable that can be measured in

a laboratory. So, could the outcomes of such a measurement
also be unambiguously predicted by a quantum cosmo-
logical model? The answer is affirmative. Note that the
mode function μk, whose dynamics becomes unambiguous
in a large universe, determines the evolution of the operator
μ̂k via Eq. (28). This implies that the Heisenberg equation
of motion encoded in Eq. (30) becomes unambiguous too.
Obviously, the evolution of perturbation in the Schrödinger
picture must consequently become unique as well. Hence,
ordinary quantum mechanics of perturbation modes is
recovered in a large universe. These conclusions must also
apply to electrons and, in general, to all nongravitational
degrees of freedom.
To better understand the origin of the emergence of

ordinary quantum mechanics, notice that any clock trans-
formation (14) involves, by definition, only background
variables. If the latter behave classically, the clock trans-
formation is completely classical and amounts to a mere (in
general, nonlinear) change of units of time. In Ref. [11], it
was demonstrated that the relational dynamics of a quan-
tum variable in a classical clock is unambiguous in the
sense that switching to another classical clock does not
induce any clock effect.
Let us put to test our approach and our result by

addressing a set of questions that were proposed in
Ref. [2] for assessing the completeness of any potential
solution to the time problem.
(1) How should the notion of time be reintroduced into

the quantum theory of gravity?
Our approach relies on evolving internal variables

called clocks. We express the dynamics of the
dynamical variables in terms of these clocks.

(2) In particular, should attempts to identify time be
made at the classical level, i.e., before quantization,
or should the theory be quantized first?
In our approach, we first reduce the Hamiltonian

formalism based on a selected clock, then we
quantize the reduced formalism as if the clock
was an external and absolute time. However,
it is neither external nor absolute. The instanta-
neous value of the clock determines the instanta-
neous physical state of the system. Switching to
another clock entails a change in the physical
interpretation of the clock and the entire state of
the system.

(3) Can “time” still be regarded as a fundamental
concept in a quantum theory of gravity, or is its
status purely phenomenological?
In our approach, there is no fundamental time.

The fundamental concept is “change” or “evolu-
tion,” meaning we merely need to assume that the
3þ 1 split of the underlying geometry imposes an
ordered set of hypersurfaces. As we showed in this
paper, extracting dynamical predictions from such a
formalism is a subtle issue. The clocks serve as tools
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for deriving the predictions. Once a class of clocks
converges to a unique dynamics, any one of them
can be treated analogously and deserve the qualifi-
cation of time, and any quantum dynamical variable
becomes described in them by a unique Schrödinger
equation. This is how ordinary quantum mechanics
emerges.

(4) If time is only an approximate concept, how reliable
is the rest of the quantum-mechanical formalism in
those regimes where the normal notion of time is not
applicable? In particular, how closely tied to the
concept of time is the idea of probability?
The quantum-mechanical description in the re-

gime where different clocks exhibit different dy-
namics is an essential part of our theory. It describes
the deterministic evolution of the system. However,
this regime does not seem to allow for any mean-
ingful dynamical interpretation in terms of relational
change. Although we have not explicitly addressed
this question in the present work, our approach
permits one to do it.

To conclude, one can mention that the chosen clock
degrees of freedom, although perfectly acceptable as such
in the classical framework of general relativity, are arguably
not in the quantum regime. They do not qualify as actual
clocks since, along the quantum trajectory, they yield a
nonmonotonic change of time variable; in other words, they
provide different hypersurface orderings. This might be
cured by adding to the classical clock transformation (14) a
quantum term that needs be identified. One may also argue
that we are insisting upon using a trajectory to define the
background evolution, while some might insist upon the
fact that there is no such thing as a trajectory in quantum
mechanics.
In any case, it is interesting to note that, whichever of the

possibilities above happens to be valid, the critical point that
is made here is that, even though the quantum-dominated
phase is indeed ill-defined both at the background and
perturbation levels from the point of view of time develop-
ment, the asymptotic regimes end up being unique. As a
result, setting well-motivated initial conditions in the
classical past, one gets unambiguous physical predictions
for the classical future in which we happen to perform the
ensuing measurements. In other words, we have shown that
the lack of predictability in the quantum regime does not
exclude the fact that the theory permits meaningful physical
predictions that can be tested with observations.
Finally, it is worth noting that there are alternative

approaches that do not involve promoting internal var-
iables to clock status, effectively avoiding the time
problem. For instance, in Ref. [32], the Wentzel-
Kramers-Brillouin approximation to the background
wave function is made, and the resultant trajectory
provides a well-defined cosmological background on
which perturbations propagate, without ever introducing

the physical inner product at the background level.
An approach similar in spirit can be found in
Ref. [33], which is based on coarse graining of the
background wave function, thereby removing short
timescale oscillations in the scale factor. The end result
is similar to the previous case and allows for an
unambiguous effective trajectory in the background var-
iables along which the evolution of the perturbations
occur. Although the time problem discussed in the present
work is absent in these approaches, the cost is that of a
limited physical interpretation of the background
wave function, for which no notion of unitary dynamics
is ever introduced. Consequently, the quantum uncertain-
ties in the physical background variables are not well
defined and thus their influence on the dynamics of
the perturbations is assumed negligible. Choosing an
internal time entails a prescription for calculating such
uncertainties and permits one to incorporate them in the
dynamics of perturbations. The resulting clock depend-
ence of such a prescription leads to the questions
addressed here.
A unitary approach to quantum cosmology that aims at

a gauge-independent formulation was described in
Ref. [34]. This interesting proposal offers important
insights into the relation between the reduced phase space
quantization and the Dirac-Wheeler-DeWitt superspace
formalism. The author shows that, at least for some
choices of internal clocks, both approaches are equivalent
in a very well-defined sense. Specifically, the author
discusses in detail the relation between physical and
superspace propagators and inner products. However,
the step of constructing real observables in a gauge-
independent way is left out. It is not clear whether such a
program can actually be achieved, which is the reason for
the time problem studied here; a simple and general
argument in favor of this position was given in
Ref. [35]. Finally, another alternative approach would
involve arguing in favor of a preferred clock. We are not
aware of any widely recognized proposal of this type.
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APPENDIX

In this appendix, we consider the alternative choice of a
family of two-parameter delay functions, namely,

Δ0ða; pÞ ¼ aAeBp; ðA1Þ

which define a new set of clocks plotted in Fig. 7 for a few
relevant values of the parameters A and B. Figure 8
depicts the trajectories with different clocks obtained
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FIG. 8. Semiclassical trajectories mapped into the initial
reduced phase space ða; pÞ for the second class of delay function
(A1), with the same parameters as in Fig. 7.

FIG. 9. Evolution of the real part of the primordial gravity wave
Reðμ̃Þ for two different wave numbers, k ¼ 0.1 and k ¼ 0.5, and
for different clocks for the second class of delay functions, Δ0

1,
Δ0

2, and Δ0
3, respectively, represented by the dotted blue line,

dashed red line, and dash-dotted green line. The original
trajectory is represented by the full black line.

FIG. 7. Changes in the time variable η for the second family of
delay functions Δ0

1, Δ0
2, and Δ0

3 given by Eq. (A1) along a fixed
bouncing trajectory, with parameters chosen such that
Δ1 ¼ aepa , Δ2 ¼ ae3pa=2, and Δ3 ¼ ae2pa .
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from Δ0ða; pÞ for which the convergence happens much
later than in the case discussed in the core of this paper, as
can be seen by comparing with Fig. 3. The extent to
which this delay can be increased, and how the matter
content of the Universe can affect this limit, is not dealt
with in the present article and will be the subject of a
future work.
One can note that the delay functions (A1) tend to

diverge in time from one another, all of them growing
exponentially with the momentum; the phase space
trajectories, however, do converge to the undelayed
one, but at scales that are increasingly larger with the
amplitude of the exponential behavior of the relevant
delay function.
Moving to the perturbations, we performed the

same analysis as in the core of this paper and
show the time development of the real part of the mode
function for different values of the wave number in
Fig. 9, with a special emphasis at the near-bounce
regime in Fig. 10. As for the other family of delay
functions, we find that, whenever the classical approxi-
mation for the background holds, one recovers a unique
prediction.
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