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In this article, we examine T dualization in the double space formalism of type II superstring theory in
pure spinor formulation. All background fields are constant except the Ramond-Ramond field, which
depends infinitesimally on bosonic coordinates xμ. In double space, T dual transformations are represented
as permutations of the starting xμ and dual coordinates yμ. Combining these two sets of coordinates into the
double coordinate ZM ¼ ðxμ; yμÞ, while demanding that the T dual double coordinate has the same T dual
transformation law as the initial ones, we obtain how background fields transform under T duality.
Comparing these results with ones obtained using the Buscher T dualization procedure, we conclude that
these two approaches are equivalent for the considered choice of the background fields.
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I. INTRODUCTION

One of the most peculiar properties of superstring theory
is a net of dualities connecting all different types of
superstrings [1–4]. Spanned by two types of duality trans-
formations, called T duality and S duality, this network hints
at existence of one unique theory lurking underneath it, M
theory. While it is not yet exactly known what shape M
theory will take, it is certain that by exploring properties of
the string theory dualities, we will be able to gain some
insights into this underlying theory. In this paper, we will
focus just on exploring properties of T duality.
T duality is a phenomenon which does not appear in any

form in the theories that deal with one-dimensional par-
ticles. This phenomenon is only experienced by extended
objects, strings [3–8], and it connects theories which have
radii of compactification R with ones where radii are ∝ 1

R.
The basic mathematical framework for implementing T
duality is given by the Buscher procedure [5,9], which relies
on existence of the underlying global isometries in the
theory under consideration. In short, in order to obtain T
dual theory, we localize global isometry, usually the trans-
lational isometry, by introducing covariant derivatives.
Covariant derivatives introduce the gauge fields into the
theory. In order to keep the number of degrees of freedom
during the T dualization procedure, we need to eliminate all
the newly introduced degrees of freedom with Lagrange

multipliers. By using the gauge freedom, we are able to fix
starting coordinates, which leaves us with a theory only
dependent on the gauge fields and Lagrange multipliers.
Finding equations of motion for the gauge fields and
inserting their solutions back into the theory, we obtain
the T dual theory. While this procedure is applicable for
many models, it breaks down when we have coordinate
dependent background fields. In cases where background
fields at least infinitesimally depend on coordinates, it is
possible to generalize the Buscher procedure [10–13] by
introducing invariant coordinates given as a line integral of
covariant derivatives.
Even though the Buscher T dualization procedure can

be considered as the definition of T duality, in order to gain
a deeper understanding of duality, it is useful to consider
alternative formulations. One of these alternative repre-
sentations, called the double space formulation, casts T
duality as a permutation of coordinates in space spanned
by the initial coordinates and T dual ones. Double space
formulation was first considered in papers [14–18].
Recently, this formalism has been related with OðD;DÞ
transformations [19–23], while in papers [14,24–30] T
dualization along some directions has been represented as
a permutation of these coordinates with the corresponding
T dual ones.
In articles [27,28], it was shown that for a type II

superstring theory, the Buscher procedure and double space
formalism are equivalent. Analysis was conducted on a
type II superstring in a pure spinor formulation where all
background fields were constant. Here, we would like to
repeat the procedure outlined in the aforementioned articles
while allowing the Ramond-Ramond (R-R) field to be
linearly dependent on bosonic coordinates.
The first reason why we chose such background fields

is the assumption presented in the papers [31,32] that if we
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take the linearly coordinate dependent RR field strength,
then we will get the anti-Poisson bracket of the fermionic
coordinates proportional to the bosonic coordinates. Our
intention in [33] was to check that conjecture using the
generalized T dualization procedure. We showed that
using this procedure and choosing a constant background
with the exception of RR field strength, we could not
prove that conjecture. The second reason was a completely
practical one—model with such background fields we
could treat analytically using the generalized T duality
procedure.
In this article, we will begin by showing how we

obtained our action and background fields from a general
one. By integrating out fermionic momenta, we will obtain
a theory which has a R-R field coupled with derivatives of
bosonic coordinates. If this step was omitted, then the
theory would have a R-R field coupled only to the
fermionic degrees of freedom, which will not be dualized
here. After obtaining the starting action, we will also give
a short preview of the results obtained by the Buscher T
dualization procedure. Transcribing T dual transformation
laws in terms of the double coordinates, generalized
metric, and generalized current, demanding that T duality
does not alter the form of the transformation laws, we will
be able to obtain the T dual generalized metric and T dual
generalized current. By equating components of the
starting and dual generalized metric and generalized
current, we are able to show how background fields
transform under T duality. Comparing these results with
ones obtained from the Buscher procedure, we are able to
see if these two approaches are consistent in the case of the
coordinate dependent R-R field strength.

II. TYPE II SUPERSTRING THEORY
WITH COORDINATE DEPENDENT R-R FIELD

AND ITS T DUAL

In this section, our goal is to introduce action for a type
II superstring in pure spinor formulation [34–37]. We will
work with a theory whose all background fields are
constant, except the Ramond-Ramond field. The
Ramond-Ramond field depends only on the bosonic
coordinates, where the tensor multiplying space-time
coordinates is infinitesimal. Furthermore, we will also
demand that R-R field is antisymmetric. Both constraints
are necessary for practical (mathematical) reasons.
After the introduction of a type II superstring, we

will present a theory, which is its T dual. This theory will
have new background fields, and it has been showed that
this theory is both a noncommutative and nonassociative
one [33,38,39].
At the end of this section, we will transcribe both

theories in the form that is more suitable for the double
space formulation.

A. Type II superstring in pure spinor formulation

Action that describes the propagation of a type II
superstring, in its most general form [31], is given as

S ¼ S0 þ VSG; ð2:1Þ

where the first term denotes action of the free superstring,

S0 ¼
Z
Σ
d2ξ

�
k
2
ημν∂mxμ∂nxνηmn − πα∂−θ

α þ ∂þθ̄απ̄α

�
þ Sλ þ Sλ̄: ð2:2Þ

Here, integration is done on a world sheet Σ, parametrized
by coordinates ξm, where the parameter m takes the values
m ¼ 0, 1 (ξ0 ¼ τ, ξ1 ¼ σ). We will work in the light cone
coordinates, which are given by ξ� ¼ 1

2
ðτ � σÞ, while the

light cone partial derivatives are given by ∂� ¼ ∂τ � ∂σ.
Superspace is spanned by 10 bosonic coordinates xμ

(μ ¼ 0; 1;…; 9) and fermionic ones θα and θ̄α, with 16
independent real components each (α ¼ 1; 2;…; 16).
Variables πα and π̄α denote canonically conjugated
momenta of fermionic coordinates. Terms Sλ and Sλ̄ denote
actions for pure spinors, λα and λ̄α, and their canonically
conjugated momenta, ωα and ω̄α, where pure spinors
satisfy pure spinor constraints,

λαðΓμÞαβλβ ¼ λ̄αðΓμÞαβλ̄β ¼ 0: ð2:3Þ

The second term in Eq. (2.1) denotes all perturbations to
the flat background. These perturbations are given by the
integrated vertex operator for massless type II super-
gravity,

VSG ¼
Z
Σ
d2ξðXTÞMAMNX̄N: ð2:4Þ

In the general case matrix, AMN contains fields dependent
on both bosonic and fermionic coordinates. We will work
with following background fields:

AMN ¼

2
6666664

0 0 0 0

0 k
�

1
2
gμν þBμν

�
Ψ̄β

μ 0

0 −Ψα
ν

2
k ðfαβ þCαβ

ρ xρÞ 0

0 0 0 0

3
7777775
; ð2:5Þ

where gμν is the symmetric tensor, Bμν is Kalb-Ramond
antisymmetric tensor, Ψα

μ and Ψ̄α
μ are Majorana-Weyl

gravitino fields, and 2
k ðfαβ þ Cαβ

ρ xρÞ ¼ 2
k F

αβ is the
Ramond-Ramond field. The Ramond-Ramond field is
composed of constant antisymmetric tensors fαβ and Cαβ

ρ ,
where Cαβ

ρ is infinitesimal. We chose to work with an
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antisymmetric Fαβ tensor in order to obtain transformation
laws that can be easily recast in double space formulation. A
dilaton field Φ is assumed to be constant, where the factor
eΦ has been incorporated into fαβ and Cαβ

ρ . Since we are
only interested in classical analysis, wewill not calculate the
dilaton shift under T duality transformations. In the liter-
ature [31,32], it is assumed that this choice of background
fields would produce anti-Poisson brackets between fer-
mionic coordinates that are proportional to bosonic coor-
dinates. This result would give credence to the assumption
that our space-time could be obtained from some fermionic
structure which lies underneath it. This choice of fields is
accompanied with following constraints:

γμαβC
βγ
μ ¼ 0; γμαβC

γβ
μ ¼ 0: ð2:6Þ

In general, vectors XM and X̄M are given as columns
containing partial derivatives of both fermionic and bosonic
coordinates as well as containing fermionic momenta and
pure spinor contribution. In order to simplify calculations,
we will neglect all terms that are nonlinear in fermionic
coordinates θα and θ̄α. This means the vectors XM and X̄M

have the following form:

XM ¼

0
BBBBB@

∂þθα

∂þxμ

πα
1
2
Nμν

þ

1
CCCCCA; X̄M ¼

0
BBBBB@

∂−θ̄
β

∂−xμ

π̄β
1
2
N̄μν

−

1
CCCCCA: ð2:7Þ

Pure spinor contribution are given as

Nμν
þ ¼ 1

2
ωαðΓ½μν�Þαβλβ; N̄μν

− ¼ 1

2
ω̄αðΓ½μν�Þαβλ̄β: ð2:8Þ

From this point on, since pure spinors are decoupled from
the rest of the action, we will be omitting them.
With these assumptions, we have that action (2.1) takes

the following form:

S ¼ k
Z
Σ
d2ξ

�
Πþμν∂þxμ∂−xν þ

1

2
ð∂þθ̄α þ ∂þxμΨ̄α

μÞ

× ðF−1ðxÞÞαβð∂−θβ þ Ψβ
ν∂−xνÞ

�
; ð2:9Þ

where we have integrated out fermionic momenta πα and π̄α
as well as introduced the following tensors:

Π�μν ¼ Bμν �
1

2
Gμν; ð2:10Þ

FαβðxÞ ¼ fαβ þ Cαβ
μ xμ;

ðF−1ðxÞÞαβ ¼ ðf−1Þαβ − ðf−1Þαα1C
α1β1
ρ xρðf−1Þβ1β: ð2:11Þ

Tensor ðF−1ðxÞÞαβ has inherited both properties of a
Ramond-Ramond tensor, that is this new tensor is anti-
symmetric and the coordinate dependence is only tied to the
infinitesimal tensor.

B. T dual theory

The T dualization procedure for the model presented
above is detailed and described in papers [33,38,39]. Here,
we mention just the final results and give a brief description
of the T dualization procedure.
The procedure for obtaining a T dual theory is based on

the extension of the standard Buscher procedure [5,9,11].
This procedure entails that dualization is to be carried out
only along the isometry directions. Since we have that the
Ramond-Ramond field is antisymmetric, we have that the
action (2.9) is invariant to the translations along bosonic
coordinates. The next step in the procedure is to localize this
symmetry. This is accomplished by substituting partial
derivatives with covariant ones. Because we are working
with a theory that has coordinate dependent background
fields, it is also required to introduce the invariant coor-
dinates. The invariant coordinates are given as line integrals
of the covariant derivatives. These substitutions bring into
play the new gauge fields, which add the new degrees of
freedom. In order to keep the number of the degrees of
freedom in the T dual theory, we must introduce Lagrange
multipliers. Utilizing gauge freedom, we can also fix the
starting bosonic coordinates, which leaves us with theory
that is described by only gauge fields and Lagrange multi-
pliers. Finding equations of motion for the gauge field and
inserting them into the gauge fixed action, we are left with T
dual theory. Implementing the Buscher procedure, we
obtain the following T dual action:

bS ¼ k
2

Z
Σ
d2ξ

�
1

2
Θ̄μν

− ∂þyμ∂−yν þ ∂þθ̄αðbF−1ðVð0ÞÞÞαβ∂−θβ

þ ∂þyμbΨ̄μαðbF−1ðVð0ÞÞÞαβ∂−θβ þ ∂þθ̄αðbF−1ðVð0ÞÞÞαβbΨνβ
∂−yν

�
: ð2:12Þ

Here, yμ are dual coordinates, the left superscript b denotes bosonic T-duality, and V0 represents the following integral:
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ΔVð0Þρ ¼ 1

2

Z
P
dξþΘ̆ρ1ρ

−

h
∂þyρ1 − ∂þθ̄αðf−1ÞαβΨβ

ρ1

i

−
1

2

Z
P
dξ−Θ̆ρρ1

−

h
∂−yρ1 þ Ψ̄α

ρ1ðf−1Þαβ∂−θβ
i
: ð2:13Þ

T dual tensors that appear in action have the following
interpretation: Θ̄μν∓ is the inverse tensor of Π̄�μν ¼
Π�μν þ 1

2
Ψ̄α

μðF−1ðxÞÞαβΨβ
ν ¼ Π̆�μν − 1

2
Ψ̄α

μðf−1Þαα1C
α1β1
ρ xρ

ðf−1Þβ1βΨ
β
ν , defined as

Θ̄μν∓ Π̄�νρ ¼ δμρ; ð2:14Þ

where

Θ̄μν∓ ¼ Θ̆μν∓ þ 1

2
Θ̆μμ1∓ Ψ̄α

μ1ðf−1Þαα1C
α1β1
ρ Vð0Þρðf−1Þβ1βΨ

β
ν1Θ̆

ν1ν∓ ;

ð2:15Þ

Θ̆μν∓ Π̆�νρ ¼ δμρ; Θ̆μν∓ ¼ Θμν∓ −
1

2
Θμμ1∓ Ψ̄α

μ1ðf̄−1ÞαβΨβ
ν1Θ

ν1ν∓

ð2:16Þ

f̄αβ ¼ fαβ þ 1

2
Ψα

μΘμν
− Ψ̄β

ν ; ð2:17Þ

Θμν∓Π�νρ ¼ δμρ; Θμν∓ ¼ −4ðG−1
E Π∓G−1Þμν; ð2:18Þ

GEμν ¼ Gμν − 4ðBG−1BÞμν; ð2:19Þ

Πþμν¼−Π−νμ; Π̆þμν¼−Π̆−νμ; Π̄þμν¼−Π̄−νμ; ð2:20Þ

Θμν
þ ¼ −Θνμ

− ; Θ̆μν
þ ¼ −Θ̆νμ

− ; Θ̄μν
þ ¼ −Θ̄νμ

− : ð2:21Þ

Tensor ðbF−1ðVð0ÞÞÞαβ is T dual to ðF−1ðxÞÞαβ, and it is
given as

ðbF−1ðVð0ÞÞÞαβ ¼ ðF−1ðVð0ÞÞÞαβ −
1

2
ðF−1ðVð0ÞÞÞαα1

×Ψα1
μ Θ̄μν

− Ψ̄β1
ν ðF−1ðVð0ÞÞÞβ1β: ð2:22Þ

Finally, bΨ̄μα and bΨνβ are T-dual gravitino fields, given as

bΨ̄μα ¼ 1

2
Θμν

− Ψ̄α
ν ; bΨνβ ¼ −

1

2
Ψβ

μΘμν
− : ð2:23Þ

Transformation laws that connect starting and T-dual
coordinates are

Π̄þμν∂−xν ¼ −
1

2
∂−yμ −

1

2
Ψ̄α

μðF−1ðxÞÞαβ∂−θβ − βþμ ðxÞ;
ð2:24Þ

Π̄þνμ∂þxν¼
1

2
∂þyμ−

1

2
∂þθ̄αðF−1ðxÞÞαβΨβ

μ−β−μ ðxÞ; ð2:25Þ

where βþμ and β−μ functions, which are obtained during the
T dualization procedure from varying gauge fixed action
with respect to gauge fields, are given as

βþμ ðxÞ ¼ −
1

2
ðθ̄α þ xν1Ψ̄α

ν1Þðf−1Þαα1C
α1β1
μ ðf−1Þβ1β

× ð∂−θβ þ ∂−xν2Ψ
β
ν2Þ; ð2:26Þ

β−μ ðxÞ ¼ −
1

2
ð∂þθ̄α þ ∂þxν1Ψ̄α

ν1Þðf−1Þαα1
× Cα1β1

μ ðf−1Þβ1βðθβ þ xν2Ψβ
ν2Þ: ð2:27Þ

Having introduced starting and T dual theory, we can now
focus on combining them with double space formalism.

III. T DUALIZATION IN DOUBLE SPACE

The focus of this section is to show how the bosonic T
duality of superstring with the coordinate dependent
Ramond-Ramond field can be represented as permutation
of coordinates in space that is spanned by both starting and
T dual coordinates. Work done here mirrors work done in
papers [27,28], where the same model was examined only
with the constant background fields. While our trans-
formation laws contain both bosonic and fermionic coor-
dinates, it will be possible to separate the fermionic
contributions into objects called “double currents”.

A. T dual transformation laws in double
space formulation

In order to show how permutations of coordinates can be
interpreted as T dual transformations, we need to tran-
scribe T dual transformation laws introducing more
suitable notation. We begin by introducing the following
substitutions:

Ψα
μ ¼Ψαþμ; Ψ̄α

μ ¼Ψα
−μ; θα ¼ θαþ; θ̄α ¼ θα−; ð3:1Þ

ðF−1ðxÞÞαβ ¼ ðF−1þ ðxÞÞαβ; ðF−1ðxÞÞβα ¼ ðF−1
− ðxÞÞαβ;

ð3:2Þ

ðF−1þ ðxÞÞαβ ¼ −ðF−1
− ðxÞÞαβ; ð3:3Þ

ðf−1Þαα1C
α1β1
μ ðf−1Þβ1β ¼ Cþμαβ;

ðf−1Þββ1C
β1α1
μ ðf−1Þα1α ¼ C−μαβ; ð3:4Þ

Cþμαβ ¼ −C−μαβ: ð3:5Þ

With this new notation, the transformation law and its
inverse one take the following form:
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∂∓xν ¼ −
1

2
Θ̂νμ∓ ∂∓yμ −

1

2
Θ̂νμ∓
h
Ψα∓μðF−1

� ðVð0ÞÞÞαβ
− ðθα∓ þ Vð0Þν1Ψα∓ν1ÞC�μαβ

i
∂∓θβ�; ð3:6Þ

∂∓yμ ¼ −2Π̂�μν∂∓xν −
h
Ψα∓μðF−1

� ðxÞÞαβ
− ðθα∓ þ xν1Ψα∓ν1ÞC�μαβ

i
∂∓θβ�; ð3:7Þ

where β�μ functions have been expanded and separated into
two parts, one containing the partial derivative of a bosonic
coordinate and the other containing the partial derivative of
a fermionic coordinate. The first part has been incorporated
into two newly introduced tensors Π̂�μν and Θ̂νμ∓ ,

Π̂�μν ¼ Π̄�μν −
1

2
ðθα∓ þ xν1Ψα∓ν1ÞC�μαβΨ

β
�ν; ð3:8Þ

Θ̂νμ∓ ¼ Θ̄νμ1∓
�
δμμ1 þ

1

2
ðθα∓ þ Vð0Þν1Ψα∓ν1ÞC�μ1αβΨ

β
�ν2

Θ̆ν2μ∓
�
:

ð3:9Þ

These two newly introduced tensors are inverse to one
another, Π̂�μνΘ̂

νρ∓ ¼ δρμ, and they can be decomposed in the
following way:

Π̂�μν ¼ B̂μν�
1

2
Ĝμν; Θ̂μν∓ ¼−4ðĜ−1

E Π̂∓Ĝ−1Þμν; ð3:10Þ

ĜEμν ¼ Ĝμν − 4B̂μμ1Ĝ
μ1ν1B̂ν1ν; ð3:11Þ

Θ̂νμ
� ¼ −4Ĝνν1

E B̂ν1μ1Ĝ
μ1μ ∓ 2ðĜ−1

E Þνμ: ð3:12Þ

Interpretation of these components is the following: B̂μν

and Ĝμν are antisymmetric and symmetric parts of tensor
Π̂�μν called the “improved Kalb-Ramond field” and the
“improved metric tensor”, respectively. Both improved
tensors now have the additional bilinear form in NS-R
fields Ψα

μ and Ψ̄α
μ. Tensor ĜEμν is called the “improved

effective metric”. These decompositions allow us to rewrite
transformation laws as

�∂�xμ ¼ ðĜ−1Þμν∂�yν þ 2ðĜ−1Þμν1B̂ν1ν∂�x
ν

þ ðĜ−1Þμν
h
Ψα

�νðF−1∓ ðxÞÞαβ
− ðθα� þ xν1Ψα

�ν1
ÞC∓ναβ

i
∂�θ

β∓; ð3:13Þ

�∂�yμ ¼ ĜEμν∂�xν − 2B̂μμ1Ĝ
μ1ν∂�yν

þ 1

2
ĜEμνΘ̂

νμ1
�
h
Ψα

�μ1
ðF−1∓ ðVð0ÞÞÞαβ

− ðθα� þ Vð0Þν1Ψα
�ν1

ÞC∓μ1αβ

i
∂�θ

β∓: ð3:14Þ

It should be noted that all tensors in Eq. (3.13) are functions
of bosonic coordinates xμ. On the other hand, all tensors
in (3.14) are functions of the line integral Vð0Þ, which has
been defined in (2.13).
Having transcribed transformation laws in a new nota-

tion, we are now free to introduce the double coordinates,

Zμ ¼
�
xμ

yμ

�
: ð3:15Þ

By utilizing double coordinates, transformation laws take a
surprisingly simple form,

�ΩMN∂�ZN ¼ H̆MN∂�ZN þ J̆�M; ð3:16Þ

where the generalized metric is given as

H̆MN ¼
 

ĜEμνðVÞ −2B̂μμ1ðĜ−1Þμ1νðVÞ
2ðĜ−1Þμν1B̂ν1νðxÞ ðĜ−1ÞμνðxÞ

!
;

ð3:17Þ

and the double current is

J̆�M ¼
� 1

2
Ĝμν1Θ̂

ν1ν
� ðVÞ

ðĜ−1ÞμνðxÞ

�
J�ν;

J�ν ¼
h
Ψα

�νðF−1∓ ðxÞÞαβ − ðθα� þ xν1Ψα
�ν1

ÞC∓ναβ

i
∂�θ

β∓:

ð3:18Þ

It should be noted that upper components all depend on the
variable Vð0Þ, while lower components all depend on x.
The matrix,

ΩMN ¼
 

0 ID
ID 0

!
; ð3:19Þ

is an invariant SOðD;DÞ metric where ID denotes a unity
matrix in D dimensions.
Since the generalized metric contains both an improved

Kalb-Ramond field and improved metric tensor, it does not
come in the standard form. However, it still satisfies the
following relations:

H̆TΩH̆¼ Ω; ðΩH̆Þ2 ¼ I; Ω2 ¼ I; detðH̆Þ ¼ 1;

ð3:20Þ

which means that H̆∈ SOðD;DÞ [14,19].

B. T duality in double space

To obtain full T duality let us introduce a permutation
matrix,
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TM
N ¼

�
0 ID
ID 0

�
: ð3:21Þ

Now we can define the T dual double coordinate as

bZM ¼ TM
NZN: ð3:22Þ

Transformation laws (3.16) must have the same form for
both the dual and starting coordinates, that is

�ΩMN∂�bZN ¼b H̆MN∂�bZN þ bJ�M: ð3:23Þ

From (3.16) and (3.23), we can deduce how both a
generalized metric and double current transform under
permutations,

bH̆MN ¼ TM
PH̆PQTQ

N;
bJ̆�M ¼ TM

NJ̆�N: ð3:24Þ

Expanding the first equation, we get

bH̆MN ¼
 

b Ĝμν
E ðVÞ −2bB̂μμ1ðbĜ−1Þμ1νðVÞ

2ðbĜ−1Þμν1bB̂ν1νðxÞ ðbĜ−1ÞμνðxÞ

!

ð3:25Þ

¼
 

ðĜ−1ÞμνðxÞ 2ðĜ−1Þμν1B̂ν1νðxÞ
−2B̂μμ1ðĜ−1Þμ1νðVÞ ĜEμνðVÞ

!
: ð3:26Þ

Let us notice that the variables Vð0Þ and x also exchange
places.
Equating block components (2, 2) and (2, 1), we obtain

the following equations:

ðbĜ−1ÞμνðxÞ ¼ ĜEμνðVÞ;→ bĜμνðxÞ ¼ ðĜ−1
E ÞμνðVÞ; ð3:27Þ

ðbĜ−1Þμν1bB̂ν1νðxÞ ¼ −B̂μμ1ðĜ−1Þμ1νðVÞ;→ bB̂μνðxÞ
¼ −ðĜ−1

E Þμν1B̂ν1μ1ðĜ−1Þμ1νðVÞ: ð3:28Þ

Using these two results, we obtain

bΠ̂�μνðxÞ ¼ bB̂μνðxÞ �
1

2
bĜμνðxÞ ¼

1

4
Θ̂∓μν: ð3:29Þ

This result coincides with the result obtained from the
Buscher procedure. Equating the other two components of
the matrix, we obtain the same information.
Expanding equation for dual current, we obtain

bJ̆�M¼
 

1
2
bĜμν1

bΘ̂ν1ν
� ðVÞ

ðbĜ−1ÞμνðxÞ

!
J�ν¼

 
ðĜ−1ÞμνðxÞ

1
2
Ĝμν1Θ̂

ν1ν
� ðVÞ

!
J�ν;

ð3:30Þ

where T dual current has the same factor J�ν, while the
vector components are switched.
Comparing our results to ones obtained in the paper [28],

we notice that the generalized metric, double current, and
double space transformation laws have the same form.
However, all fields that emerge in the formalism are now
modified. These modifications all stem from the fact that
the starting theory had a coordinate dependent RR field.

IV. CONCLUSION

The aim of this article was to investigate alternative
method for obtaining T dual theories, namely the double
space method. This investigation was carried out on a type
II superstring theory with a specific choice of background
fields. Our choice of the model was motivated by the fact
that this exact model and its T dual was examined in great
detail in papers [33,38,39], where T duality was obtained
with the Buscher procedure. This work provided us with
the reference point on which we can compare our results.
At the beginning of our examination, we described how

we obtained our action from a more general one. This was
done by demanding that all background fields, except the
Ramond-Ramond field, are constant. The Ramond-
Ramond field was chosen to have an infinitesimal linear
dependence on the bosonic coordinates xμ. Furthermore,
we also demanded that the RR field is totally antisym-
metric. Terms that were nonlinear in fermionic coordinates
have been neglected, and all fermionic momenta have been
integrated out of the action. These assumptions were
necessary in order to obtain simple transformation laws
between starting and dual coordinates (for the case where
RR field is not antisymmetric. See Ref. [38]). After this.
we presented T dual theory, T dual fields, and T dual
transformation laws, which were obtained with the
Buscher procedure. While the starting theory is assumed
to be commutative, the T dual theory exhibits both non-
commutative and nonassociative properties. These proper-
ties are a consequence of β�μ functions that show up in
transformation laws.
Section III was dedicated to the double space formulation

of T duality. We began by transcribing the T dual trans-
formation laws and background fields in a more suitable
notation. By splitting and recasting old background fields
into “improved” fields, we were able to gain a more clearer
picture of underlying connections between starting and dual
coordinates. Combining the space of the starting theory,
spanned by xμ, with the space of the T dual theory, spanned
with yμ, we obtain the double space formulation. Double
space is now spanned by coordinates ZM ¼ ðxμ; yμÞ.
Rewriting the T dual transformation laws into double space
coordinates, we define two new objects, the generalized
metric H̆MN and double current J̆�M. Their components are
expressed through an improved Kalb-Ramond field,
improved metric tensor, and improved effective metric,
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containing additional terms bilinear in a NS-R background
Ψα

μ and Ψ̄α
μ. Furthermore, it should be noted that these

components are not constant; the upper row depends on the
coordinate xμ and the lower row on its T dual image Vμ.
In the context of double space formalism, T duality is

given by a simple permutation of coordinates. By demand-
ing that the double space coordinates ZM and T dual
coordinates bZM ¼ TM

NZN possess the same transforma-
tion laws, we are able to find a T dual generalized metric
bH̆MN and T dual double current bJ̆�M. Since a T dual
generalized metric has the same form as the starting one, by
comparing components, we are able to deduce expressions
for T dual background fields as functions of starting fields.
It should also be noted that the permutation of coordinates
also permutes arguments of background fields. This means
that a T dual generalized metric and T dual double current
now have an upper row that depends on Vμ and a lower row
that depends on xμ. Doing the same analysis for the T dual
double current, we obtain relations that connect its com-
ponents to background fields of starting theory.
Comparing results obtained for T dual fields by means of

double space coordinate permutation with ones obtained
with the Buscher procedure, it is evident that both methods
produce the same result. Additionally, it should be noted
that comparing results from this paper with results from
[28], where all background fields were constant, we notice
that double space transformation laws have the same form,
but individual components of a generalized metric and
double current are now coordinate dependents.
At the end, we should give a comparison between our

work and work done in papers [40–45]. In the given papers,
the double space formulation of string theory as well as the
T dual transformation laws for fields were obtained by
starting from a double field formulation of the NS-NS
sector, which was invariant toOðD;DÞ group. Utilizing the
fact that in this case, we can locally define two set of
vielbeins, we can construct a pair of Lorentz groups

spinð1; 9Þ × spinð9; 1Þ. These two Lorentz frames are
associated with left-moving and right-moving sectors of
the world sheet. All fermions as well as the RR field lie in a
spinor representation of OðD;DÞ group, and their trans-
formations are governed by a spinð1; 9Þ × spinð9; 1Þ group.
Finding a Hermitian element of a spinð1; 9Þ × spinð9; 1Þ
group whose projection to OðD;DÞ produces generalized
metric, we can construct action that contains both IIA and
IIB theories, where different types of type II theories are
given as solutions to this action. Comparing this approach
with ours, we can note that, while the method for obtaining
double space theory and transformation laws in these
papers is more general, it requires of us to a priori start
with a NS-NS sector already given in double space
formulation. Our approach starts from either type IIA or
type IIB theory, and then we find its dual and combine
transformation laws to obtain a generalized metric tensor,
the same metric tensor that is given in preceding papers for
the NS-NS sector. Since we are focused only on the bosonic
T duality, we did not have any need for the introduction of
spin representation of OðD;DÞ group. All our field trans-
formations were obtained from the Buscher T dualization
procedure, and we only arranged them into one encom-
passing formalism, eliminating any need for examining
how certain fields transform under certain groups.
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