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Despite remarkable success in describing supergravity reductions and backgrounds, generalized
geometry and exceptional field theory are still lacking a fundamental object of differential geometry,
the Riemann tensor. We show that to construct it, a hierarchy of connections is required. They complement
the spin connection with higher representations known from the tensor hierarchy. This approach allows to
define generalized homogeneous spaces which underlie generalized U-duality, admit consistent truncations
and provide a huge class of new flux backgrounds with nontrivial structure groups.
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I. INTRODUCTION

Generalized geometry has evolved to a pivotal tool in
dimensional reductions of supergravity with nonvanishing
fluxes. Many of its key results have their root in differential
geometry adapted to an extended tangent space incorpo-
rating forms in addition to a vector. We drop the prefix
“generalized” in the following and assume it by default.
Most mileage is gained when supersymmetry is at least
partially preserved. Prominent examples include Scherk-
Schwarz reductions to maximal gauged supergravities in
two or more dimensions and special structure manifolds
that provide the analogs of Calabi-Yau, Kähler, and hyper-
Kähler manifolds in flux compactifications.
Despite all success, a central concept of differential

geometry, Riemann curvature, is still lacking a complete
understanding in generalized geometry. It is possible to
define metric compatible connections, but imposing van-
ishing torsion does not fix all their components [1–4].
Moreover, the familiar expression for the Riemann tensor is
not covariant anymore and has to be modified and projected
[1–7]. Although sufficient to capture supergravity at the
leading two-derivative level, the current construction is not
completely satisfying. Therefore, we present a novel

perspective on curvature in generalized geometry based
on two key ideas:
(a) Torsion and curvature tensors have to transform

covariantly under generalized diffeomorphisms and
a structure group GS.

(b) Reconciling internal and external diffeomorphisms for
dimensional reductions is a crucial step in the con-
struction of gauged supergravities, resulting in a hier-
archy of gauge fields known as tensor hierarchy [8].

Both combined suggest to embed the d-dimensional space
Md, for which curvatures should be obtained, together with
its structure group GS into a larger space, called the
megaspace Mp with p ¼ dþ n and n ¼ dimGS. By
construction, this new space is parallelizable and thus
equipped with a globally defined frame which gives rise
to a unique, curvature-free connection. Similar to Cartan
geometry, its torsion decomposes into torsion and curvature
on Md. This approach can be understood as a direct
construction of the tensor hierarchy where a tower of
connection and their curvatures arises onMd. At its bottom,
we recover all quantities relevant for two-derivative super-
gravity. Beyond, we find new covariant tensors with more
than two derivatives. In addition to conceptual insights, our
approach provides an explicit construction for a new, large
class of consistent truncations of supergravity and the
intriguing web of dualities that relates them.

II. LEVEL DECOMPOSITION

Our starting point is a pair of two Lie groups GD ¼ EdðdÞ
with d ≤ 6, governing generalized diffeomorphisms onMd,
and GLðnÞ, in which the structure group GS ⊂ GD is
embedded. They will not be studied separately but rather
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are unified in GM ¼ EpðpÞ which governs diffeomorphisms
onMp. There are two different perspectives one can take on
this setting: First, start with GM and remove the dth root in
its Dynkin diagram

ð1Þ

to obtain the algebras GD and GLðnÞ ⊃ GS. Taking any
irreducible representation (irrep) of GM and branching it
accordingly, results in a sum of irreps ofGD × GLðnÞ. They
can be organized according to a grading called level. For
our purpose, this top-down approach is not ideal because
GM and the megaspace Mp are only book keeping tools.
The protagonist is Md which is controlled by GD and GS.
Therefore, it is better to start with them and only step by
step recover GM.
Their generators will be called Ka and Kβ

α for GLðnÞ
with α; β;…∈ f1;…; ng and a valued in the adjoint
representation of GD. They satisfy the nontrivial commu-
tation relations

½Ka; Kb� ¼ fabcKc;

½Kβ
α; Kδ

γ � ¼ δδαK
β
γ − δβγKδ

α: ð2Þ

This completes all level zero contributions in the decom-
position of GM ’s adjoint representation. To proceed to
levels ∓ 1, consider RA

α , with the index A transforming in
the R1 representation of GD, and its dual R̃β

B. Their
commutation relation with all Ks are easily fixed by
representation theory. More complicated is the commutator

½R̃α
A; R

B
β � ¼ δBAðβδβαL − Kα

βÞ þ αδαβðtaÞBAKa; ð3Þ

where ðtaÞCB denotes the generators of GD in the R1

representation. Note that we raise and lower adjoint indices
with the Killing metric of the duality group GD. Moreover,
L ¼ Kα

α is distinguished because its eigenvalues are the
levels of the decomposition. Finally, we use the constants α
and β from the definition of GD generalized diffeomor-
phisms [9] whose values are listed in the Appendix. By a
rescaling of R̃α

A and RB
β , it is always possible to fix the

coefficient in front of Kβ
α to minus one. The other two

coefficients have to be as given to define the level 2
generators by

½RA
α ; RB

β � ¼ ηABC̄RαβC̄ and

½R̃α
A; R̃

β
B� ¼ ηABC̄R̃

αβC̄ ð4Þ

with the η-tensors representing the “square root” of GD ’s
Y-tensor

YAB
CD ¼ ηABĒηCDĒ ¼ −αðtaÞADðtaÞBC þ βδADδ

B
C þ δACδ

B
D: ð5Þ

This implies that the bared indices label the R2 represen-
tation of GD. All other new commutators at this level arise
through the Jacobi identity from the lower levels. One can
repeat this procedure level by level to obtain generators in
higher representations of the tensor hierarchy algebra.
However, already at level 2 one sees all relevant features
of the construction. Therefore, we stop here and refer to
appendix for level 3 or the companion article [10] for
technical details.
For these generators, we introduce a representation

building on the highest weight states jαi. They are annihi-
lated by all R̃ generators and by Ka, while Kβ

α acts as

Kβ
αjγi ¼ δγαjβi þ β0δβαjγi; ð6Þ

where β0 is now taken with respect to GM instead of GD.
Acting with any R generator(s) produces descendants. For
our purpose, only

jAi ¼ 1

n
RA
α jαi; ð7Þ

and the dual states defined by

hαjβi ¼ δβα; hAjBi ¼ δBA ð8Þ

are needed. Using the commutator (3), one can easily show
that

hAj ¼ −
1

n
hαjR̃α

A ð9Þ

has exactly the desired properties.

III. EXCEPTIONAL POLÁČEK-SIEGEL FORM

Next, we fix the form of the frame onMp to compute the
torsion of the flat derivative it induces. Because the lowest
levels will be sufficient, it is convenient to suppress
GM-indices and instead just use the index-free form

Ê ¼ M̃NṼ ð10Þ

of the frame. Its splitting is inspired by results for the duality
group Oðd; dÞ [11] and will be motivated in the following.
Finally, we need the generalized Lie derivative [12]

LhUjhVj ¼ hUj∂VihVj þ hVjhUjZj∂Ui ð11Þ

that governs generalized diffeomorphisms on the megaspace
Mp with p ≤ 7 through the Z-tensor
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Z ¼ −αKa ⊗ Ka þ βL ⊗ Lþ β01 ⊗ 1 − Kβ
α ⊗ Kα

β

þ RA
α ⊗ R̃α

A þ 1

2
Rα1α2Ā ⊗ R̃α1α2Ā þ � � � þ ðR ↔ R̃Þ:

ð12Þ

With …, we denote suppressed levels higher than two.
Our index-free notation in (11) assumes that ∂V is the
partial derivative acting on hVj and the convention
hU1jhU2jA ⊗ BjV2ijV1i ¼ hU2jBjV2ihU1jAjV1i.
The megaspace’s torsion is twisted by M̃−1 to get rid of

any dependence on the auxiliary coordinates that GS
introduces, resulting in

XA ¼ hAjNjBiΘB þ hAjΘBZNjBi ð13Þ

with XA ¼ ðXα XAÞ and the corresponding Maurer-Cartan
form

ΘA ¼ −M̃−1DAÊÊ
−1M̃ where Ṽj∂i ¼ jAiDA: ð14Þ

To recover the tensor hierarchy, we require that Ê is only
generated by generators with zero or negative levels. This
renders it an element of a parabolic subgroup of GM. M̃ is
not further constrained, whileN is unipotent and Ṽ has only
level 0 contributions. To see how to choose M̃ and Ṽ, we
first single out the n generators [13]

tα ¼ −Xαβ
γKβ

γ − Xα
bKb ð15Þ

(with constant coefficients Xαβ
γ ¼ X½αβ�γ and Xα

b) of the
parabolic subgroup and impose

Xα ¼ −tα: ð16Þ

This requires at least hαjΘB ¼ 0. Additionally, we restrict
the discussion to the special case Xαβ

β ¼ 0 for the sake of
brevity and find that (16) further requires

Θα ¼ Xα −
1

2
ðXαβ

γ þ SðαβÞγÞNKβ
γN−1: ð17Þ

The symmetric SðαβÞγ will not contribute to XA and leaves
an antisymmetric Xαβ

γ . For DαN ¼ 0 and DAM̃ ¼ 0 it is
possible to choose M̃, N and Ṽ such that this relation
follows from (14). In this case, we identify

M̃−1DαM̃ ¼ tα and

DαṼṼ−1 ¼ 1

2
ðXαβ

γ þ SðαβÞγÞKβ
γ : ð18Þ

In principle one could try to make other identifications. But
these two are distinguished because they can be integrated,
if (and only if)

½tα; tβ� ¼ Xαβ
γtγ ð19Þ

holds. An immediate consequence is that all tα generate an
n-dimensional Lie group, the structure group GS. For
consistency, we also verify that GS’s coordinates satisfy
the section condition on the megaspace,

YjαijβiDα ·Dβ· ¼ 0; ð20Þ

where Y ¼ Z þ σ and σjV2ijV1i ¼ jV1ijV2i.
To completely fix Ê, we parametrize the unipotent part N

in the decomposition (10) by [14]

N ¼ � � � exp
�
1

3!
ραβγ

¯̄DRαβγ ¯̄D

�
exp

�
1

2
ραβC̄RαβC̄

�

× exp ðΩα
AR

A
αÞ; ð21Þ

where ¯̄D is for the R3 representation, and impose

DAṼṼ−1 ¼ EA
I
∂IEE−1 ¼ −WA ð22Þ

which implies with (18) that Ṽ decomposes into
E∈GD ×Rþ, the frame on Md, and the left-invariant
vector fields ṽ on GS. The last two equations contain only
fields restricted to Md and thereby do not depend on the
additional coordinates ofMp introduced by GS. A frame of
a similar form was first introduced in [15] for Oðd; dÞ and
later further refined to arbitrary structure groups [16].
Therefore, we refer to it as the exceptional Poláček-
Siegel form.

IV. TORSIONS AND CURVATURES

In order to find covariant torsion and curvature tensors,
we compute all contributions to XA at levels less or equal to
zero. First, we obtain

TAB
C ¼ hBjXAjCi ¼ ðW þ ΩÞABC þ ZCE

BDðW þΩÞEAD;
ð23Þ

after defining

WAB
C ¼ hBjWAjCi and ΩAB

C ¼ Ωα
AXαB

C ð24Þ

with XαB
C ¼ Xα

bðtbÞBC. One can easily check that this is
the torsion for the covariant derivative

∇AEB
I ¼EA

J
∂JEB

I −ΩAB
CEC

IþEA
JΓJK

IEB
K ¼ 0: ð25Þ

Rewritten in curved indices,

TIJ
K ¼ ΓIJ

K þ ZKM
JL ΓMI

L; ð26Þ

it reproduces the known expression (3.5) in [6].
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For contributions from negative levels, we schematically
write

XA ¼ …þ Xβ
ABR

B
β þ 1

2
Xβ1β2B̄
A Rβ1β2B̄ þ…: ð27Þ

First, consider the −1 part, Xβ
AB: From the Jacobi identity

(19), it follows that the constants XαB
C have to form a

representation of the Lie algebra gS on the generalized
tangent space of Md. We impose that this representation is
faithful, because otherwise it is not possible to interpret GS
as the structure group on Md. Therefore, the tensor

RABC
D ≔ −Xβ

ABXβC
D ð28Þ

captures Xα
AB completely. Evaluating the latter gives rise to

RABC
D¼ 2D½AΩB�CD−2Ω½AjCEΩjB�ED−ρEDAC;BE

−
�
2Ω½AB�Eþ

1

2
YFE
BGΩFA

G−TAB
E

�
ΩEC

D ð29Þ

with

ρABCD;EF ¼ ραβC̄XαC
AXβD

BηEFC̄: ð30Þ

This is the natural Riemann tensor in generalized geometry.
Projecting it, such that ρEDAC;BE drops out, reproduce the
existing results in the literature. Depending on the R2

representation, there are two different common projection:
(i) R2 ¼ 1: GD has an invariant metric, ηAB, which is

applied to lower the last index of RABC
D. After

symmetrized with respect to ðABÞ ↔ ðCDÞ, the
generalized Riemann tensor of double field theory
[3,4] arises.

(ii) Otherwise: The indices B and D are contracted and
the remaining indices are symmetrizes. Rewriting
the result in curved indices with the affine con-
nection recovers Eq. (5.16) of [7] or (5.4) of [6].

There is however no need for any projection because
RABC

D transforms covariantly under GD and GS after
taking into account the correct transformation of ρ in
(41). A similar pattern already holds at the level of the
torsion (23). With only the frame, it is not covariant unless
one introduces the spin-connection ΩAB

C that transforms
accordingly. Still, there are projections of TAB

C where the
latter drops out. They give rise to the intrinsic torsion [17],
used for example in consistent truncations. Here this pattern
repeats after the substitutions E → Ω → ρ.
Next, we need a field strength for ρABCD;EF. It follows from

(27) along the same lines as (28), namely

RA
BC
DE;FG ¼ −Xβ1β2B̄

A Xβ1D
BXβ2E

CηFGB̄; ð31Þ

and evaluates to [18]

RA
BC
DE;FG ¼ DAρ

BC
DE;FG − ρHBC

ADE;FGH þ 2½TAðFjH −ΩAðFjH�
× ρBCDE;jGÞH − 2ΩAD

HρBCHE;FG þ 2ΩAH
BρHC

DE;FG

þ YHI
FG

�
RAHE

C − ρCJEA;HJ −DHΩAE
C

þ 1

3
ΩHA

JΩJE
C

�
ΩID

B þ 1

6
YHI
JKY

JL
FGΩIA

K

×ΩHD
BΩLE

C − ðBD↔C
EÞ: ð32Þ

Here, we encounter the level 3 connection

ρABCDEF;GHI ¼ ραβγ
¯̄DXαD

AXβE
BXγF

CηGHI ¯̄D; ð33Þ

which is required to render this new curvature covariant.

V. GAUGE TRANSFORMATIONS

To eventually prove covariance of the derived new
torsion/curvatures, we need the transformation of the
various connections under GD-diffeomorphisms and GS.
They arise from distinguished GM-diffeomorphisms, medi-
ated by Lhξ̂jÊ, which preserves the Poláček-Siegel form. We
twist infinitesimal variations of the frame by

δE ≔ N−1M̃−1ðδÊÞṼ−1 ¼ δEE−1 þ N−1δN: ð34Þ

In this way, the right-hand side only contains contribution
to the megaspace frame that can change without breaking
the exceptional Poláček-Siegel form. Next, consider mega-
space diffeomorphisms which are parametrized by

hξ̂j ¼ ξαhαjṼ þ ξAhAjṼ: ð35Þ

Note that both, ξα and ξA, are chosen such that they do not
depend on the auxiliary coordinates of Mp to find the shift
of the frame

δE ¼ ξAðN−1M̃−1DAM̃N þ N−1DAN þDAṼṼ−1Þ
þ hξjDAṼṼ−1ZjAi þDAξ

BhBjZjAi: ð36Þ

By comparing the left-hand side (lhs) of (36) with the
second line of (34), we read off

δEA
I ¼ LξEA

I þ ξA
BEB

I: ð37Þ

Here, the Lie derivative is restricted to MD and has the
parameter ξI ¼ ξAEA

I. For this transformation, we recog-
nize ξA as the parameter ofGD-diffeomorphisms and ξBC ¼
ξαðtαÞBC as generator ofGS-transformations. Any covariant
tensor should transform in the same way. We therefore
define the anomalous part of the transformation as

Δξ ¼ δ − Lξ − ξ·; ð38Þ
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where we understand the last contribution as the action of
ξA

B on each index of the tensor under consideration.
In contrast to the frame, all other connections do not

transform covariantly. Instead, we find

ΔξΩAB
C ¼ DAξB

C ð39Þ

after taking into account δXαB
C ¼ 0. Again this result is in

perfect agreement with the literature, because it implies
(remember ½Δξ;∇A� ¼ 0)

ΔξΓIJ
K ¼ −ZKL

MJ∂I∂Lξ
M ð40Þ

and thus matches (3.4) of [6]. On the next level, we obtain

Δξρ
AB
CD;EF ¼ YGH

EFΩGC
ADHξD

B − ðAC↔B
DÞ: ð41Þ

One can now check that the expression for the Riemann
tensor in (29) satisfies ΔξRABCD ¼ 0 and therewith is
covariant. In the same vein, one finds that the curvature
of ρABCD;EF in general is only covariant after introducing the
level 3 curvature in (32). This pattern continues until the
level decomposition of GM ’s adjoint has reached the “top”
curvature that is covariant on its own.
A central element in the construction is the megaspace

Lie derivative (11) that requires p ≤ 7. Remarkably, one
still finds that with the transformations given here the
derived expression from above transform covariantly with-
out any restrictions on p.

VI. EQUIVARIANT FRAMES

It is instructive to flip the perspective and ask: What are
the constraints on an arbitrary megaspace frame to admit a
Poláček-Siegel form after an appropriate transformation?
Clearly, it has to contain n vectors hkαj, that generate the Lie
algebra gS through

Lhkαjhkβj ¼ −Xαβ
γhkγj: ð42Þ

Furthermore, the section condition has to be satisfied on the
megaspace. It introduces a second level decomposition
with respect to the pth root in (1) and break EpðpÞ further
down to GLðdð−1ÞÞ × GLðnÞ for M-theory (type IIB). We
denote indices enumerating the fundamental of the first
group in this product by lowercase Latin letters and the
grading follows directly from their position: Each up/down
index contributes with þ1= − 1. Considering this grading,
a natural parametrization of the megaspace frame is

Ê ¼ LẼU: ð43Þ

All negative elements produce the matrix L, followed by a
diagonal Ẽ that originates from all level 0 generators and
finally an upper-triangular matrix U from the rest. Either L

or U can be removed by acting with the maximal compact
subgroup of GM from the left. In the context of super-
gravity, usually L is eliminated while U captures all form-
fields and Ẽ the frame on Mp.
For frames in Poláček-Siegel form any contributions

from positive level generators [with respect to the decom-
position (1)] have to vanish. L is not affected by them and
stays unconstrained. The frame e that governs Ẽ has the
components eαμ, eαi, eaμ, and eai, but to avoid R̃α

a-
contributions, eαi ¼ 0 has to hold. A consequence is that
eαμ is invertible. Finally, U has to satisfy

hαjU ¼ 0: ð44Þ

In the M-theory section, U is parametrized in terms of a
three-form Cð3Þ and a six-form Cð6Þ on Mp. Here (44) for
example implies

ιαCð3Þ ¼ 0 and ιαCð6Þ ¼ 0; ð45Þ

where ια denotes the interior product with respect to
the vector field eαμ∂μ. This situation can be always
achieved by an appropriate coordinate change and a
form-field gauge transformations if (42) holds, resulting
in hkαj ¼ hαjÊ ¼ hαjẼ. Last but not least, one has to verify
that the action of hkαj extends to the full frame by

LhkαjÊÊ
−1 ¼ tα ð46Þ

with a constant right-hand side. We call frames with this
property equivariant frames.

VII. EXCEPTIONAL GENERALIZED COSETS

An important class of these frames arise from general-
ized parallelizations [19]. The latter are constructed on a
coset Mp ¼ GnH [20] and play a crucial role in the
construction of maximally gauged supergravities by con-
sistent truncations. In order to solve the section condition,
H has to be a co-isotropic subgroup of G. By choosing a
second isotropic subgroup GS ⊂ G, one obtains the sce-
nario discussed above withMd ¼ GSnG=H being a double
coset. Furthermore, the embedding tensor on the mega-
space XA is constant and invariant under the action of GS.
Hence, all torsions and curvatures, we computed are
covariantly constant with respect to ∇A.
According to Ambrose and Singer, structure compatible

connections with covariantly constant torsion and curvature
are in one-to-one correspondence with homogenous spaces
[21]. Here, we encounter the lift of this idea to generalized
geometry and thus call the cosets Md ¼ GSnG=H excep-
tional generalized homogenous spaces. They come with
some remarkable properties:
(a) The GS-action can have fixed points which result in

singularities onMd. They might hint toward additional
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localized objects which are well known in the context
of supergravity as branes and monopoles.

(b) In general, there are different admissible co-isotropic
subgroups H. While each of them leads to a different
space and frame, they share the same torsion and
curvatures. For the duality group Oðd; dÞ this phe-
nomena is known as generalized T-duality [22]. Here it
becomes generalized U-duality.

(c) Their intrinsic torsion is constant and a singlet under
the action of GS. Therefore, they admit consistent
truncations according to theorem 2 of [23].

(d) Because the frame on the megaspace is completely
fixed by its embedding tensor, all components of the
connections are determined. At the same time, all
higher-level curvatures are in general nontrivial.

Items (a)–(c) makes them perfectly suited as backgrounds
for dimensional reductions with various applications in flux
compactifications and gauged supergravities. While (d)
provides an ideal testing ground to address still open
challenges in generalized geometry, like undetermined
connection/curvature components and higher-derivative
corrections. Later arise naturally in our framework at levels
beyond two. For example, in the curvature (32) each term
contains three derivatives. It is know that admissible
higher-derivative corrections to supergravity are severely
restricted by dualities (see for example [24] for a recent
review). We leave it to future studies to see if these
corrections can be captured in a geometric way similar
to the two-derivative action, by using the presented con-
struction or, most likely, an appropriate modification of it.
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APPENDIX: REMAINING COMMUTATORS
FOR LEVELS ≤ 3

For the reader’s convenience Table I summarizes impor-
tant constants and representation for duality groups relevant
to this letter. Moreover, we provide for completeness all
commutators that are required to compute the torsion and
curvatures in the main text explicitly.

Lets start with the level �3 generators

½½RA
α ; RB

β �; RC
γ � ¼ ηABC

¯̄DRαβγ ¯̄D and

½½R̃α
A; R̃

β
B�; R̃γ

C� ¼ ηABC ¯̄DR̃
αβγ ¯̄D ðA1Þ

with double bared indices in the R3 representation. Taking
into account the antisymmetry with respect to the indices α,

β and γ, the Jacobi identity implies ηðABÞC
¯̄D ¼ ηABC

¯̄D and

ηðABCÞ
¯̄D ¼ 0. Of course the same holds for the version with

lowered indices. For d ≤ 5 this observation is sufficient to

completely fix ηABC
¯̄D up to a factor because ðR1 ⊗ R2Þ ∩

ðR⊗3
1 Þsym ¼ R3 [9]. Finally the normalization is fixed by

defining

YABC
DEF ¼ ηABC

¯̄DηDEF ¯̄D ¼ ðYAB
DEδ

C
F − YAB

GFY
GC
DEÞ: ðA2Þ

The action of all level-zero generators follows directly from
the representation theory of GD and GLðnÞ. It reads for the
levels �1

½Ka; RB
β � ¼ ðtaÞBCRC

β ; ½Kβ
α; RC

γ � ¼ −δβγRC
α ;

½Ka; R̃
β
B� ¼ −ðtaÞCBR̃β

C; ½Kβ
α; R̃

γ
C� ¼ δγαR̃

β
C; ðA3Þ

for the levels �2,

½Ka; Rβ1β2B̄� ¼ −ðtaÞC̄B̄Rβ1β2C̄;

½Ka; R̃β1β2B̄� ¼ ðtaÞB̄C̄R̃β1β2C̄;

½Kβ
α; Rγ1γ2C̄� ¼ 2δβ½γ1Rγ2�αC̄;

½Kβ
α; R̃γ1γ2C̄� ¼ −2δ½γ1α R̃γ2�βC̄; ðA4Þ

and for the levels �3,

TABLE I. Relevant representations and constants.

Oðd; dÞ SL(5) Spin(5, 5) E6ð6Þ E7ð7Þ

α 2 3 4 6 12
β 0 1=5 1=4 1=3 1=2
γ 2d 6 8 10 —
r (rank) d 4 5 6 7
adj dð2d − 1Þ 24 45 78 133
R1 2d 10 16c 27 56
R2 1 5 10 27 133
R3 – 5̄ 16s 78 912
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½Ka; Rβ1β2β3
¯̄B� ¼ −ðtaÞ ¯̄C¯̄BRβ1β2β3

¯̄C

½Ka; R̃β1β2β3
¯̄B� ¼ ðtaÞ ¯̄B¯̄CR̃β1β2β3

¯̄C;

½Kβ
α; Rγ1γ2γ3

¯̄C� ¼ −3δβ½γ1Rγ2γ3�α ¯̄C;

½Kβ
α; R̃γ1γ2γ3

¯̄C� ¼ 3δ½γ1α R̃γ2γ3�β ¯̄C: ðA5Þ

In particular, ðtaÞCB denotes the generators of the former in

the R1 representation, whereas ðtaÞC̄B̄ and ðtaÞ ¯̄C¯̄B acts on the
R2 and R3 representation respectively. They satisfy

ðtaÞC̄D̄ηABD̄ þ 2ðtaÞðAD ηBÞDC̄ ¼ 0;

ðtaÞ ¯̄D¯̄EηABC
¯̄E þ 2ðtaÞðAE ηBÞEC

¯̄D þ ðtaÞCEηABE
¯̄D ¼ 0: ðA6Þ

One also needs the commutators between positive and
negative level generators resulting in level �1 and �2
contributions. First, the levels �2 give rise to

½R̃α
A; Rβ1β2β3

¯̄B� ¼ −3δα½β1Rβ2β3�C̄ZA
C̄
¯̄B;

½R̃α1α2α3
¯̄A; RB

β � ¼ 3δ½α1β R̃α2α3�C̄ZB
C̄
¯̄A: ðA7Þ

where we defined the intertwiners

ZA
B̄
¯̄C ¼ 1

γ
ηDEA ¯̄Cη

DEB̄ and

ZA
B̄
¯̄C ¼ 1

γ
ηDEA ¯̄CηDEB̄: ðA8Þ

For the levels �1, we obtain

½R̃α1α2Ā; Rβ1β2β3
¯̄B� ¼ 6δα1½β1δ

α2
β2
RC
β3�ZC

Ā
¯̄B;

½R̃α1α2α3
¯̄A; Rβ1β2B̄� ¼ −6δ½α1β1

δα2β2 R̃
α3�
C ZC

B̄
¯̄A;

½R̃α
A; Rβ1β2B̄� ¼ −2δα½β1R

C
β2�ηCAB̄;

½R̃α1α2Ā; RB
β � ¼ 2δ½α1β R̃α2�

C ηCBĀ; ðA9Þ

and finally at level 0,

½R̃α1α2α3
¯̄A; Rβ1β2β3

¯̄B� ¼ −6αδα1α2α3β1β2β3
ðtaÞ ¯̄A¯̄BKa

þ 18
�
βδα1α2α3β1β2β3

L − δ½α1½β1δ
α2
β2
Kα3�

β3�
�
δ
¯̄A
¯̄B

ðA10Þ

and

½R̃α1α2Ā; Rβ1β2B̄� ¼ −2αδα1α2β1β2
ðtaÞĀB̄Ka

þ 4ðβδα1α2β1β2
L − δ½α1½β1K

α2�
β2�ÞδĀB̄: ðA11Þ

All of them arise from already known commutators by the
Jacobi identity.
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