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We propose the stringy description of the system consisting of two heavy and four light quarks in the
case of two light flavors of equal mass. As an application, we consider the three low-lying Born-
Oppenheimer potentials as a function of the heavy quark separation. Our analysis shows that the ground
state potential is described in terms of both hadroquarkonia and hadronic molecules. A connected string
configuration makes the dominant contribution to the potential of an excited state at small separations, and
for separations larger than 0.1 fm, it exhibits the diquark-diquark-diquark structure ½Qq�½Qq�½qq�. For better
understanding the quark organization inside the system, we introduce several critical separations related to
the processes of string reconnection, breaking and junction annihilation. We also discuss the simplest string
configurations including the five-string junctions and their implications for the system, in particular the
emergence of composite quark objects different from diquarks and the process of junction fusion.
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I. INTRODUCTION

Since the proposal of the quark model by Gell-Mann [1]
andZweig [2],many exotic hadronshave beendiscovered [3].
But the longstanding question of how quarks are organized
within such hadrons remains remarkably unresolved.
Certainly, the sector of doubly heavy hadrons has

been the focus of experimental activity, in particular for
the Ξþþ

cc baryon [4] and the Tþ
cc tetraquark [5]. Although the

deuteron is the only known dibaryon so far, representing a
bound state of six quarks, there could also exist doubly
heavy hexaquark states of type QQqqqq.
To handle doubly heavy quark systems, one approach is as

follows. Given the significant difference in quark masses, it
seems reasonable to apply the Born-Oppenheimer (B-O)
approximation, originally developed for use in atomic and
molecular physics [6].1 Within this framework, the corre-
sponding B-O potentials are defined as the energies of
stationary configurations of the gluon and light quark fields
in the presence of static heavy quark sources. The hadron
spectrum is then determined by solving the Schrödinger
equation with these potentials.

Lattice gauge theory is a well-established tool for
investigating non-perturbative QCD. However, its capabil-
ities and limitations concerning the doubly heavy hexa-
quark systems are yet to be fully explored. In the interim,
gauge/string duality provides a robust approach for gaining
valuable insights into this issue.2 Nevertheless, the existing
literature notably lacks a comprehensive discussion on the
nature of doubly heavy hexaquarks within this framework.
Bridging this gap constitutes one of the primary objectives
of this paper.
The paper continues our study [9–13] on the doubly

heavy quark systems. It is organized as follows. In Sec. II,
we briefly recapitulate some preliminary results and estab-
lish the framework for the convenience of the reader.
Then in Sec. III, we construct and analyze several string
configurations in five dimensions that provide a dual
description of the low-lying B-O potentials in the heavy
quark limit. Here, we also introduce length scales that
characterize transitions between different configurations.
These length scales are, in fact, related to various types of
string interactions, including string reconnection, breaking,
and junction annihilation. Moving on to Sec. IV, we discuss
a way to make the effective string model more realistic and
examine the three low-lying B-O potential of the system.
In Sec. V, we consider some aspects of gluonic excitations,
with a particular focus on generalized baryon vertices and
their implications for the hexaquark system of interest. We
conclude in Sec. VI by making a few comments on the
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consequences of our findings and discussing directions for
future work. Appendix A contains notation and definitions.
Additionally, to ensure the paper is self-contained, we
include the necessary results on the QQq and Q̄qqqq
systems in Appendices B and C. Finally, in Appendix D,
we discuss some other connected string configurations.

II. PRELIMINARIES

A. General procedure

In studying the doubly heavy hexaquark system, our aim
is to use and further develop the lattice QCD approach to
the B-O potentials in the presence of light quarks.3 In this
approach, a mixing analysis based on a correlation matrix is
required. The diagonal elements of the matrix are deter-
mined by the energies of stationary configurations, while
the off-diagonal elements describe transitions between
those configurations. The potentials are determined by
the eigenvalues of the matrix.
We start with string configurations in four dimensions,

where the string picture has been known for a while [15].
We specialize to the case of Nf ¼ 2, two dynamical flavors
of equal mass, but the extension to Nf ¼ 2þ 1 is straight-
forward. First, let us look at the simplest disconnected
configurations including only the valence quarks. These are
the basic configurations shown in Fig. 1. Each of these
consists of the valence quarks connected by the strings and
looks like a pair of noninteracting baryons. The strings may
join at a point known as the string junction [16].

To pursue this further, we assume that other configura-
tions are constructed by adding additional pairs of string
junction-antijunction and light quark-antiquark to the basic
configurations. Intuitively, such a procedure will result in
configurations of higher energy. Therefore, to some extent,
the junctions and light quarks can be thought of as types
of elementary excitations. For our purposes here, we are
interested in relatively simple configurations. So, adding
one junction-antijunction pair to the basic configurations
leads to the connected configurations shown in Fig. 2.4

On the other hand, adding one virtual qq̄ pair leads
to the disconnected configurations shown in Fig. 3.
Configurations (d) and (e) is a simple modification of
the basic configurations. Configuration (f) is obtained from
those by quark exchange (string interaction). It is worth
noting that what we list is not the complete set of possible
excitations. We have more to say about this in Sec. V.
The transitions between the configurations arise due to

string interactions. In Fig. 4, we sketch four different types
of interactions which will be discussed in the following
sections. This is only a small part of the broader picture of
QCD strings. Later on, we will introduce the notion of a
critical separation between the heavy quarks, which char-
acterizes each interaction. This is helpful for gaining a
deeper understanding of the physics of QCD strings, the
structure of B-O potentials, and importantly the nature of
multiquark states.

B. A short account of the five-dimensional string model

We will use gauge/string duality to study the QQqqqq
system. In fact, such a formalism stems from the original
paper by Maldacena [17], who suggested a way to calculate
rectangular Wilson loops in 4 dimensional gauge theories
via string models in 5 and 10 dimensions. The basic tools
for this are a 5-dimensional (10-dimensional) background
geometry, Nambu-Goto strings, and baryon vertices.5

Specifically, we use the string model recently developed
in [18]. Although this is one of the simplest models, the

FIG. 1. Basic string configurations. Here and later, nonexcited strings are denoted by straight lines.

FIG. 2. Hexaquark configurations.

3See [14] for standard explanations in the case of the QQ̄
system.

4Since they describe the genuine six-body interactions of quarks,
we refer to them as the hexaquark configurations. As wewill see in
Secs. III–IV, such configurationsmake the dominant contribution to
the low-lying B-O potentials at small heavy quark separations.
Because of this, we will add the word “compact” as a prefix.

5Note that unlike gauge/gravity duality, the string parameter α0
is kept nonzero.
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so-called soft wall model, the calculations can be extended
to any model of AdS/QCD.
For the purposes of this paper, we consider a five-

dimensional Euclidean space with a metric

ds2 ¼ esr
2 R2

r2
ðdt2 þ ðdxiÞ2 þ dr2Þ; ð2:1Þ

where r is the fifth dimension of the space. Such a space
represents a deformation of the Euclidean AdS5 space of
radius R, with a deformation parameter s. The boundary is
at r ¼ 0, and the so-called soft wall at r ¼ 1=

ffiffiffi
s

p
. This

geometry is particularly appealing due to its relative
computational simplicity and its potential for phenomeno-
logical applications. At this point, let us mention that in the
case of the heavy quark-antiquark potential the model
of [19] using (2.1) provides a good fit to the lattice data
which is better than those achieved by models employing
more complicated deformations such as ek1r

2þk2r4 and
ek1r

2þk2r4þk3r6 [20].6

To construct the string configurations of Figs. 1–3 in five
dimensions, we need certain building blocks. The first is a
Nambu-Goto string governed by the action

SNG ¼ 1

2πα0

Z
d2ξ

ffiffiffiffiffiffiffi
γð2Þ

q
: ð2:2Þ

Here γ is an induced metric, α0 is a string parameter, and ξi

are world-sheet coordinates.
The second is a high-dimensional counterpart of the

string junction, known as the baryon vertex.7 In the
AdS=CFT correspondence, this vertex is supposed to be
a dynamic object which is a five brane wrapped on an
internal space X [22], and correspondingly the antibaryon
vertex is an antibrane. Both objects look pointlike in five
dimensions. In [21] it was observed that the action for the
baryon vertex, written in the static gauge,

Svert ¼ τv

Z
dt

e−2sr
2

r
ð2:3Þ

FIG. 3. String configurations with one virtual quark pair.

FIG. 4. Some examples of string interactions: (a) reconnection, (b) breaking, (c) junction annihilation, (d) junction fusion.

6See also [21] for another good example: the 3Q heavy quark
potential.

7Wewill use this terminology, referring to the string junction in
four dimensions and to the vertex in five dimensions.
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yields very satisfactory results, when compared to the
lattice calculations of the three-quark potential. Note that
Svert represents the world volume of the brane if
τv ¼ T 5RvolðXÞ, with T 5 the brane tension. Unlike
AdS=CFT, we treat τv as a free parameter to account for
α0-corrections as well as the possible impact of other
background fields.8 In the case of zero baryon chemical
potential, it is natural to suggest the same action for the
antibaryon vertex, such that Svert ¼ Svert.
To model the two light quarks of equal mass, we

introduce a world sheet scalar field TðrÞ, proposed in
the space-time context in [23]. This scalar field couples to
the world sheet boundary as an open string tachyon
Sq ¼

R
dτeT, where τ is a coordinate on the boundary

and e is a boundary metric (an einbein field). Thus, the light
quarks are at string endpoints in the interior of five-
dimensional space. For our purposes, we only consider a
constant field T0 and world sheets with straight-line
boundaries in the t-direction. In this case, the action written
in the static gauge can be expressed as

Sq ¼ T0R
Z

dt
e
1
2
sr2

r
ð2:4Þ

and recognized as the action of a point particle of mass T0

at rest.9 Clearly, at zero baryon chemical potential the same
action also describes the light antiquarks, and thus Sq̄ ¼ Sq.
It is worth noting the visual analogy between tree level

Feynman diagrams and static string configurations. In the
language of Feynman diagrams, the building blocks men-
tioned above respectively play the roles of propagators,
vertices, and tadpoles.

III. THE STRINGY CONFIGURATIONS
IN FIVE DIMENSIONS

Our starting point is as follows. To see how a configu-
ration looks like in five dimensions, we place it on the
boundary of five-dimensional space. A gravitational force
pulls the light quarks and strings into the interior, while the
heavy (static) quarks remain at rest. This helps in many
ways, though there are some exceptions. We will see
shortly that the shape of various configurations changes
with the heavy quark separation, adding complexity to the
problem. In our analysis we think of the light quarks/
antiquarks as clouds. Consequently, it is meaningful to
speak about their average positions or, equivalently, the
centers of the clouds.

A. The disconnect configurations (a) and (b)

Consider configuration (a). It can be interpreted as a
pair of noninteracting hadrons: a doubly heavy baryon
and a nucleon. If they are infinitely far apart, the total
energy is just the sum of their rest energies. Interestingly,
such a factorization approximately holds at finite separa-
tion between hadrons if one averages over the pion (cloud)
position [26]. For what follows, we assume the factori-
zation and average over all possible positions of light
hadrons.10

In five dimensions, the configuration is that sketched in
Fig. 5(a). If the nucleon is not far from the doubly heavy
baryon, such a configuration can be interpreted as a hadro-
quarkonium state: the doubly heavy baryon in the nucleon
cloud. The total energy is then

EðaÞ ¼ EQQq þ E3q: ð3:1Þ
EQQq was computed in [9]11 and E3q in [12]. Explicitly,

E3q ¼ 3g
ffiffiffiffiffi
s
q3

r
ðke−2q3 þ ne

1
2
q3Þ; ð3:2Þ

where g ¼ R2

2πα0, k ¼ τv
3g, and n ¼ T0R

g . The radial position of
the nucleon is determined from the force balance equation

kð1þ 4q3Þ þ nð1 − q3Þe52q3 ¼ 0: ð3:3Þ
This equation can be derived by varying the action
S ¼ Sv þ 3Sq with respect to r3q. Here, q3 ¼ sr23q, and
correspondingly, q3 represents a solution of the equation in
the interval [0, 1].
For completeness, let us discuss the behavior of EðaÞ

for small and large l. These can be inferred from the
corresponding formulas of Appendix B. For l → 0, we
obtain

EðaÞðlÞ ¼ EQQðlÞ þ EðaÞ
Q̄qqqq þ oðlÞ; ð3:4Þ

where EQQ is defined by Eq. (B9) and EðaÞ
Q̄qqqq by Eq. (C1).

The latter represents the energy of the disconnected
configuration shown in Fig. 27(a). This result aligns
precisely with the expected behavior from quark-diquark
symmetry [27]. Similarly, for l → ∞ we get

EðaÞðlÞ ¼ σl − 2g
ffiffiffi
s

p
IðaÞ þ 2cþ oð1Þ; with σ ¼ egs;

IðaÞ ¼ IQQq − 3
ke−2q3 þ ne

1
2
q3

2
ffiffiffiffiffi
q3

p : ð3:5Þ
8Similar to AdS=CFT, there is an expectation of the presence

of an analogue of the Ramond-Ramond fields on X.
9The masses of the light quarks can be determined by fitting

the string breaking distance for the QQ̄ system to the lattice data
of [24], which yields mu=d ¼ 46.6 MeV [25] for the parameter
values used in this paper. Note that in [24] the pion mass is twice
the physical one.

10As discussed in Sec. IV, in the formulation we are using the
binding energy is encoded within off-diagonal elements of a
model Hamiltonian.

11For convenience, a brief summary of the results is provided
in Appendix B.
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Here σ is the string tension [19], c is the normalization
constant, and IQQq is defined in (B11).
Let us now discuss configuration (b) which can be

interpreted as a pair of heavy-light baryons (hadronic
molecule). Its five-dimensional counterpart is sketched in
Fig. 5(b). Once again, the total energy is simply the sum of
the rest energies

EðbÞ ¼ 2EQqq: ð3:6Þ

Here EQqq is the rest energy of a heavy-light baryon, given
by the expression [18]

EQqq ¼ g
ffiffiffi
s

p
 
2QðqÞ −QðvÞ þ 3k

e−2vffiffiffi
v

p þ 2n
e
1
2
qffiffiffi
q

p
!
þ c;

ð3:7Þ

where the function Q is defined in Appendix A. q and v
determine the positions of the light quarks and the vertex.
They are solutions to the following equations

nðq − 1Þ þ e
q
2 ¼ 0 ð3:8Þ

and

1þ 3kð1þ 4vÞe−3v ¼ 0 ð3:9Þ

in the interval [0, 1]. These equations are nothing else
but the force balance equations in the r-direction, derived
by first varying the action S ¼ 3SNG þ 2Sq þ Svert with
respect to rq and rv, and then defining q ¼ sr2q and
v ¼ sr2v.
We finish our discussion of the basic configurations with

some comments. First, it was shown in [9] that in the
interval [0, 1], Eq. (3.9) has solutions only if k is within
the range of − e3

15
< k ≤ − 1

4
e
1
4. Specifically, there is a single

solution v ¼ 1
12

at k ¼ − 1
4
e
1
4. Second, the analysis of

configuration (b) assumes that v is less than or equal to
q. This is not true for all possible parameter values, but it is
true for those we employ in making predictions. Finally, the
solutions q and v are linked to the light quarks and baryon
vertices, and thus, they are unaffected by the separation
between the heavy quarks.

B. The hexaquark configurations

Now let us discuss the hexaquark string configurations in
five dimensions. We start with configuration (c). That will
make the discussion simpler.

1. Configuration (c)

Following the procedure outlined earlier in this section,
we arrive at the configuration shown in Fig. 6. Here, the
three vertices collapse into a single point. The reason is that

FIG. 5. The basic configurations in five dimensions. Here and below, the heavy quarks are placed on the boundary at r ¼ 0 and
separated by distance l. The light quarks, baryon vertices, and nucleon are at r ¼ rq, r ¼ rv, and r ¼ r3q, respectively. Generically, the
shape of configuration (a) changes with l. Sketched here is the configuration for intermediate separations [see Fig. 23(b)].

FIG. 6. The hexaquark configuration for small l. The light
quarks and baryon vertices are on the r-axis at r ¼ rq, r ¼ rv, and
r ¼ rv̄. Here and later, α denotes the tangent angle at the endpoint
of string (1), and the bold lines denote sets of strings.
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all the force balance equations at these vertices reduce to
the form of Eq. (3.9) which has the unique solution v ¼ 1

12

at k ¼ − 1
4
e
1
4. Thus rv̄ ¼

ffiffiffiffiffiffiffiffi
v=s

p
, and strings (4)–(7) are

stretched between the vertices and light quarks. The action
is then the sum of the Nambu-Goto actions plus the actions
for the vertices and light quarks

S ¼
X7
i¼1

SðiÞNG þ 4Svert þ 4Sq: ð3:10Þ

As usual for the Nambu-Goto strings, it proves convenient
to pick the static gauge ξ1 ¼ t and ξ2 ¼ r and consider the
xðiÞ’s as a function of r. These satisfy Dirichlet boundary
conditions

xð1;2Þð0Þ ¼∓1

2
l;

xð1−3ÞðrvÞ ¼ xð3−7Þðrv̄Þ ¼ xð4−7ÞðrqÞ ¼ 0: ð3:11Þ

With this, the action takes the form12

S ¼ gT
�
2

Z
rv

0

dr
r2

esr
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂rxÞ2

q
þ
Z

rv̄

rv

dr
r2

esr
2

þ 4

Z
rq

rv̄

dr
r2

esr
2 þ 3k

e−2sr
2
v

rv
þ 9k

e−2sr
2
v̄

rv̄
þ 4n

e
1
2
sr2q

rq

�
:

ð3:12Þ

Here ∂rx ¼ ∂x
∂r and x

ð3–7Þ ¼ const. The integrals account for
the contributions of the strings, while the remaining terms
come from the vertices and light quarks.
To find a stable configuration, we have to extremize

the action with respect to xðrÞ describing the profiles of
strings (1) and (2), and with respect to rv and rq specifying
the positions of the single vertex and light quarks. As
elaborated in Appendix B of [25], the result for the strings
can be expressed parametrically as

l ¼ 2ffiffiffi
s

p Lþðα; vÞ; Eð1;2Þ ¼ g
ffiffiffi
s

p
Eþðα; vÞ þ c; ð3:13Þ

where the functions Lþ and Eþ are defined in Appendix A.
We use v ¼ sr2v as a parameter. When we vary rv, this
results in the force balance equation at the vertex. Explicitly

sin α ¼ 1

2
ð1þ 3kð1þ 4vÞe−3vÞ: ð3:14Þ

On the other hand, varying the action with respect to rq
leads to Eq. (3.8), and therefore rq ¼

ffiffiffiffiffiffiffiffi
q=s

p
. Upon per-

forming the integrals over r, we arrive at

EðcÞ ¼ EQQqqqq

¼ g
ffiffiffi
s

p �
2Eþðα; vÞ þQðqÞ−QðvÞ þ 3k

e−2vffiffiffi
v

p þ n
e
1
2
qffiffiffi
q

p
�

þ 3E0 þ 2c;

E0 ¼ g
ffiffiffi
s

p �
QðqÞ−QðvÞ þ 3k

e−2vffiffiffi
v

p þ n
e
1
2
qffiffiffi
q

p
�
: ð3:15Þ

We have used the fact that
R
b
a

dx
x2 e

cx2 ¼ ffiffiffi
c

p ðQðcb2Þ−
Qðca2ÞÞ. The parameter v takes values in the interval
½0; v�, with the upper bound stemming from a configuration
where string (3) collapses to a point, as shown in Fig. 7 on
the left.
If we proceed further with this configuration, the argu-

ments of Appendix D show that it exists only for heavy
quark separations slightly surpassing lðvÞ. To address this
issue, consider another configuration in which the vertices
are spatially separated as shown in the figure on the right.
It is governed by the action

S ¼
X8
i¼1

SðiÞNG þ 4Svert þ 4Sq; ð3:16Þ

accompanied by the boundary conditions

xð1;2Þð0Þ¼∓1

2
l; xð1;3;4;2;7;8ÞðrvÞ¼∓xv;

xð3;5;6;8Þðrv̄Þ¼xð5−6ÞðrqÞ¼0; xð4;7ÞðrqÞ¼∓xv: ð3:17Þ

In the static gauge the action reads

S ¼ gT
�Z

rv

0

dr
r2

esr
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂rxÞ2

q
þ
Z

rq

rv

dr
r2

esr
2

þ
Z

rv̄

rv

dr
r2

esr
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂rxÞ2

q
þ 3k

e−2sr
2
v

rv
þ n

e
1
2
sr2q

rq

�

þ ðx → −xÞ

þ 2gT
�Z

rq

rv̄

dr
r2

esr
2 þ 3k

e−2sr
2
v̄

rv̄
þ n

e
1
2
sr2q

rq

�
: ð3:18Þ

Here we set xð4–7Þ ¼ const. The integrals represent the
contributions of the strings and the remaining terms are due
to the vertices and light quarks.
It proves somewhat more convenient to first extremize

the action with respect to xv and rv, describing the baryon
vertices away from the r-axis. The result can be written in a
vector form as

e1 þ e3 þ e4 þ fv ¼ 0; ð3:19Þ

where e1 ¼ gwðrvÞð− cos α;− sin αÞ, e3 ¼ gwðrvÞðcos α3;
sin α3Þ, e4 ¼ gwðrvÞð0; 1Þ, and fv ¼ ð0;−3gk∂rv e−2sr

2
v

rv
Þ,12The subscript (i) is omitted when unnecessary.
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with 0 < αi ≤ π
2
. The sum on the left-hand side represents

the net force acting on the vertex, depicted in Fig. 7 on the
right. Its x-component yields

cos α − cos α3 ¼ 0: ð3:20Þ

This equation has a trivial solution α3 ¼ α. It implies a
smooth merge of strings (1) and (3), amalgamating them
into a single string denoted as (1). The same is also true for
strings (2) and (8). If so, then the r-component immediately
reduces to Eq. (3.9) and, as a consequence, rv ¼

ffiffiffiffiffiffiffiffi
v=s

p
.

With this in mind, we can rewrite the action as

S¼2gT
�Z

rv̄

0

dr
r2
esr

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð∂rxÞ2

q
þ
Z

rq

rv

dr
r2
esr

2

þ3k
e−2sr

2
v

rv
þ2n

e
1
2
sr2q

rq
þ
Z

rq

rv̄

dr
r2
esr

2 þ3k
e−2sr

2
v̄

rv̄

�
: ð3:21Þ

Here the first integral represents the contribution of strings
(1) and (2). Varying the action with respect to rq results

in Eq. (3.8) so that rq ¼
ffiffiffiffiffiffiffiffi
q=s

p
. Meanwhile, varying with

respect to rv̄ leads to

sin α ¼ 1þ 3kð1þ 4v̄Þe−3v̄; ð3:22Þ

with v̄ ¼ sr2v̄.
Using essentially the same reasoning as before, the

contributions from strings (1) and (2) can be expressed
as (3.13), but with v replaced by v̄, and the energy as

EðcÞ ¼ 2g
ffiffiffi
s

p �
Eþðα; v̄Þ þQðqÞ−Qðv̄Þ þ 3k

e−2v̄ffiffiffī
v

p þ n
e
1
2
qffiffiffi
q

p
�

þ 2E0 þ 2c: ð3:23Þ

Here the term 2E0 represents the contribution of strings (4)
and (7) together with the attached vertices and light quarks.
The parameter v̄ ranges within the interval ½v; q�. From the
viewpoint of four dimensions, an important feature of
this configuration is its diquark-diquark-diquark structure
½Qq�½Qq�½qq�.13 We will see shortly that this feature
remains valid even for larger heavy quark separations
too. Furthermore, the separation between Q and q in the
x direction decreases as l increases (see Fig. 8).

FIG. 7. The hexaquark configurations for larger l. In the right configuration, the arrows denote the forces acting on the vertex.

FIG. 8. The hexaquark configurations for intermediate (left) and large (right) heavy quark separations. The horizontal line denotes the
soft wall.

13Here and below, square, round, and curly brackets denote
correspondingly states in the color antitriplet, triplet, and adjoint
representations.

DOUBLY HEAVY DIBARYONS AS SEEN BY STRING THEORY PHYS. REV. D 109, 106001 (2024)

106001-7



With the above formulas, it is straightforward to see that
lðqÞ is finite. In fact, the reason for finiteness is that the
strings maintain a distance from the soft wall. To get closer
to the wall, we need to consider the configuration shown
in Fig. 8 on the left. It arises from the previous one by
contracting the two strings: (5) and (6). In this case the
action (3.21) just becomes

S¼2gT
�Z

rv̄

0

dr
r2
esr

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð∂rxÞ2

q
þ
Z

rq

rv

dr
r2
esr

2

þ3k
e−2sr

2
v

rv
þn

e
1
2
sr2q

rq
þ 1

rv̄
ð3ke−2sr2v̄ þne

1
2
sr2v̄Þ
�

ð3:24Þ

Varying it with respect to rq and rv leads to Eqs. (3.8)
and (3.9), as before. But if one varies with respect to rv̄,
one gets

sin α ¼ 3kð1þ 4v̄Þe−3v̄ þ nð1 − v̄Þe−1
2
v̄: ð3:25Þ

The formula (3.13) for l remains valid under the
assumption of a non-negative tangent angle. On the other
hand, the formula (3.23) for EðcÞ is replaced by

EðcÞ ¼2g
ffiffiffi
s

p �
Eþðα; v̄Þþ 1ffiffiffī

v
p ð3ke−2v̄þne

1
2
v̄Þ
�
þ2E0þ2c:

ð3:26Þ

For the parameter values we will consider later, α is a
decreasing function of v̄. It has zero at v̄ ¼ v̄0, which is a
solution to the equation sin α ¼ 0, or equivalently the
equation

3kð1þ 4v̄Þ þ nð1 − v̄Þe52v̄ ¼ 0: ð3:27Þ

This sets the upper bound on v̄, thus allowing the parameter
to range from q to v̄0.
However, this is not the whole story as l is still finite at

v̄ ¼ v̄0. What saves the day is the following. The tangent
angle changes the sign from positive to negative, rendering
the configuration profile convex at x ¼ 0, as seen from
Fig. 8 on the right. The strings extend profoundly until they
ultimately reach the soft wall that corresponds to infinite
separation between the heavy quarks.
Deriving the corresponding formulas is straightforward.

We replace Lþ and Eþ with L− and E−, as explained in
Appendix B of [25]. So

l¼ 2ffiffiffi
s

p L−ðλ; v̄Þ;

EðcÞ ¼2g
ffiffiffi
s

p �
E−ðλ; v̄Þþ 1ffiffiffī

v
p ð3ke−2v̄þne

1
2
v̄Þ
�
þ2E0þ2c;

ð3:28Þ

where the functions L− and E− are given in Appendix A.
The dimensionless parameter λ is defined as λ ¼ sr002,
with r00 ¼ max rðxÞ (see Fig. 8). Importantly, λ can be
expressed in terms of v̄ as14

λ ¼ −ProductLog½−v̄e−v̄ð1 − ð3kð1þ 4v̄Þe−3v̄
þ nð1 − v̄Þe−1

2
v̄Þ2Þ−1

2�; ð3:29Þ

with ProductLogðzÞ the principal solution for w in z ¼ wew

[28]. The upper bound on v̄ is determined by solving the
equation λðvÞ ¼ 1, or equivalently the equation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v̄2e2ð1−v̄Þ

p
þ 3kð1þ 4v̄Þe−3v̄ þ nð1 − v̄Þe−1

2
v̄ ¼ 0

ð3:30Þ

within the interval [0, 1]. At this value of λ the function L−

becomes singular, indicating an infinite separation between
the heavy quarks. We denote the solution as v̄1. Hence, the
parameter takes values in the interval ½v̄0; v̄1�.
To summarize, in five dimensions EðcÞ is a piecewise

function of l. The different pieces correspond to the
different string configurations. From the four dimensional
perspective, for l > lðvÞ its structure resembles that of an
antibaryon, namely ½Qq�½qq�½Qq�.

2. The limiting cases

To accurately estimate critical separations, we need to
know how EðcÞ behaves for both small and large l. This
also helps to see some of the main features of the model.
We start with the case of small l. The configuration in

question is that of Fig. 6. It then follows from Eqs. (3.15)
and (B2) that EðcÞðlÞ ¼ EQQqðlÞ þ 3E0 as l → 0. Using
the small-l expansion (B8) of EQQq, we finally arrive at

EðcÞðlÞ ¼ EQQðlÞ þ EðcÞ
Q̄qqqq þ oðlÞ: ð3:31Þ

Here EQQðlÞ and EðcÞ
Q̄qqqq are given by Eqs. (B9) and (C3).

Notably, this result is precisely in line with what one
expects from heavy quark-diquark symmetry [27].
We can analyze the case of large l along the lines of [9].

The strings of the configuration shown in Fig. 8 on the right
become infinitely long as λ approaches 1. The singularities
are associated to the functions L− and E−, as follows from
Eqs. (A4) and (A8). With this in mind, we get

lðλÞ ¼ −
2ffiffiffi
s

p lnð1 − λÞ þOð1Þ;

EðcÞðλÞ ¼ −2g
ffiffiffi
s

p
lnð1 − λÞ þOð1Þ ð3:32Þ

that immediately leads to

14Note that λ ¼ −ProductLogð−v̄e−v̄= cos αÞ [21].
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EðcÞ ¼ σlþOð1Þ: ð3:33Þ

As before, σ is the string tension. This provides one more
example of the universality of the string tension in
the model we are exploring, which is the same in all the

known cases of connected string configurations (for exam-
ple, see [9,12,13,19]).
To find the next-to-leading term, consider the difference

between EðcÞ and σl. Using the formulas of Appendix A,
we find

EðcÞ − σl ¼ 2g

ffiffiffi
s
λ

r �Z
1

0

du
u2

ðeλu2 ½1 − λu4e1þλð1−2u2Þ�½1 − u4e2λð1−u2Þ�−1
2 − 1 − u2Þ

þ
Z

1ffiffī
v
λ

p
du
u2

eλu
2 ½1 − λu4e1þλð1−2u2Þ�½1 − u4e2λð1−u2Þ�−1

2 þ
ffiffiffi
λ

v̄

r
ð3ke−2v̄ þ ne

1
2
v̄Þ þ

ffiffiffi
λ

s

r
E0

g

�
þ 2c: ð3:34Þ

In the limit v̄ → v̄1 (λ → 1), the difference is finite and given by

2g
ffiffiffi
s

p �Z
1

0

du
u2

ðeu2 ½1 − u4e2ð1−u2Þ�12 − 1 − u2Þ þ
Z

1ffiffiffiffi
v̄1

p
du
u2

eu
2 ½1 − u4e2ð1−u2Þ�−1

2 þ 3ke−2v̄1 þ ne
1
2
v̄1ffiffiffiffiffi

v̄1
p þ E0

g
ffiffiffi
s

p
�
þ 2c: ð3:35Þ

Thus

EðcÞ ¼ σl − 2g
ffiffiffi
s

p
IðcÞ þ 2cþ oð1Þ; with IðcÞ ¼ Iðv̄1Þ −

3ke−2v̄1 þ ne
1
2
v̄1ffiffiffiffiffi

v̄1
p −

E0

g
ffiffiffi
s

p : ð3:36Þ

Here the function I is defined in Appendix A.

3. Configuration (c’)

Using the same procedure as before, it is easy to guess the five-dimensional counterpart of configuration (c’). It is that
sketched in Fig. 9. Formally, this configuration is also governed by the action (3.10), but with the boundary conditions
replaced by

xð1;2Þð0Þ ¼∓ 1

2
l; xð1−5Þðrv̄Þ ¼ xð3;6;7ÞðrvÞ ¼ xð4−7ÞðrqÞ ¼ 0: ð3:37Þ

So the action now takes the form

S ¼ gT
�
2

Z
rv̄

0

dr
r2

esr
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂rxÞ2

q
þ
Z

rv

rv̄

dr
r2

esr
2 þ 2

Z
rq

rv̄

dr
r2

esr
2 þ 2

Z
rq

rv

dr
r2

esr
2 þ 9k

e−2sr
2
v̄

rv̄
þ 3k

e−2sr
2
v

rv
þ 4n

e
1
2
sr2q

rq

�
:

ð3:38Þ

Here we set xð3–7Þ ¼ const. The integrals represent the
contributions of the strings, while the remaining terms the
contributions of the vertices and light quarks.
From here we proceed as in our study of configuration

(c). First, we conclude that extremizing the action with
respect to x gives us the formula (3.13), with v replace by v̄.
Then we vary rv̄ to obtain the force balance equation at
r ¼ rv̄, which is

sin α ¼ 3

2
ð1þ 3kð1þ 4v̄Þe−3v̄Þ: ð3:39Þ

If we do so with respect to rq and rv, this leads,
respectively, to Eqs. (3.8) and (3.9). Finally, we find that
the energy of the configuration can be written as

Eðc’Þ ¼3g
ffiffiffi
s

p �
2

3
Eþðα; v̄ÞþQðqÞ−Qðv̄Þþ3k

e−2v̄ffiffiffī
v

p þn
e
1
2
qffiffiffi
q

p
�

þE0þ2c: ð3:40Þ

The parameter v̄ takes values in the interval ½0; v�. The
upper bound corresponds to the situation in which the
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configuration reduces to that shown in Fig. 7 on the left.
Since such a configuration only exists for separations
slightly surpassing lðvÞ, we have no choice but to follow
the same direction as in Sec. I. Thus, for l > lðvÞ there is a
single hexaquark configuration in five dimensions.
At this point it makes sense to ask which connected

configuration would be energetically favored at small
separations. However, before addressing this question,
we need to specify the model parameters. In what follows,
we will employ one of the two parameter sets suggested
in [18] which is mainly resulted from fitting the lattice
QCD data to the string model. First, the value of s is fixed
from the slope of the Regge trajectory of ρðnÞ mesons in
the soft wall model with the geometry (2.1). This yields
s ¼ 0.45 GeV2 [29]. Then, we obtain g ¼ 0.176 by fitting
the value of the string tension σ [see Eq. (3.5)] to its value
in [24], The parameter n is adjusted to reproduce the lattice
result for the string breaking distance in the QQ̄ system.
With lQQ̄ ¼ 1.22 fm for the u and d quarks [24], we get
n ¼ 3.057 [18]. In principle, the value of k could be
adjusted to fit the lattice data for the three-quark potential,
as done in [21] for pure SUð3Þ gauge theory. However, no
lattice data are available for QCD with two light quarks.
There are still two special options: k ¼ −0.102motivated by
phenomenology15 and k ¼ −0.087 obtained from the lattice
data for puregauge theory [21]. Both values are outside of the
range of allowed values for k as follows from the analysis of
Eq. (3.9). Hence, it is reasonable to choose k ¼ − 1

4
e
1
4, which

is the closest to those values.
First of all, let us estimate the separation distance lðvÞ.

A simple estimate yields lðvÞ ¼ 0.106 fm. This estimate

implies that the configurations (c) and (c’) differ only at

relatively small values of l. Then, in Fig. 10 we plot EðcÞ

and Eðc’Þ as a function of l. We see that configuration (c) is
energetically favorable, but the gap between them is quite
small. For l≳ 0.06 fm it becomes insignificant. The
conclusion is that in five dimensions there is a single
hexaquark configuration. Strictly speaking, it does not
make a lot of sense to consider heavy quark separations
below 0.06 fm, where the string model may be unreliable.
In addition to the energies EðcÞ and Eðc’Þ, let us check that

v < q < v̄0 < v̄1. This condition is significant because it
ensures that our construction of the string configurations
exists in five dimensions. From Eqs. (3.8), (3.9), (3.27),
and (3.30), we find that q ¼ 0.566, v ¼ 1=12, v̄0 ¼ 0.829,
and v̄1 ¼ 0.930. Obviously, this fulfills the desired
requirement.

C. The disconnected configurations (d)–(f)
We begin with configuration (d), which is obtained from

configuration (a) by adding a qq̄ pair (pion). In five
dimensions the resulting configuration is sketched in
Fig. 11(d). Here, we place the pion at r ¼ r2q and assume
that averaging over its position (coordinates x, y, and z)
results in an energy increase by Eqq̄. Consequently, the
configuration energy is the sum of the rest energies

EðdÞ ¼ EðaÞ þ Eqq̄ ¼ EQQq þ E3q þ Eqq̄: ð3:41Þ

The first two terms come from configuration (a). The third
was computed in [11], with the result

Eqq̄ ¼ 2n
ffiffiffiffiffiffi
gσ

p
: ð3:42Þ

It is worth mentioning that for r2q, this computation yields
r2q ¼ 1=

ffiffiffi
s

p
, implying that the virtual pair resides on the

soft wall.

FIG. 10. The energies EðcÞ (solid) and Eðc’Þ (dashed) vs l. In
this and subsequent figures, we set c ¼ 0.623 GeV.FIG. 9. Configuration (c’) in five dimensions. String (3) is

stretched between the baryon vertices, while all the others are
between the vertices and quarks.

15Note that k ¼ −0.102 is a solution to the equation
αQQðkÞ ¼ 1

2
αQQ̄, which follows from the phenomenological rule

EQQðlÞ ¼ 1
2
EQQ̄ðlÞ in the limit l → 0.
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Similarly, configuration (e) is obtained from configura-
tion (b). The resulting configuration in five dimensions is
sketched in Fig. 11(e). Following the same reasoning
applied to configuration (d), the configuration energy
can be expressed in terms of the rest energies as

EðeÞ ¼ EðbÞ þ Eqq̄ ¼ 2EQqq þ Eqq̄: ð3:43Þ

This configuration can be interpreted as a pair of heavy-
light baryons embedded within a pion cloud.
Formally, configuration (f) can be obtained by replacing

one of the heavy-light baryons and the pion in configura-
tion (e) with a heavy-light meson and a nucleon. So it can
be interpreted as a meson-baryon pair in a nucleon cloud.
As before, we assume averaging over a nucleon position
and therefore expect that

EðfÞ ¼ EQqq þ EQq̄ þ E3q: ð3:44Þ

In the heavy quark limit, the rest energy of the heavy-light
meson was computed in [18]. The result can be written in
the form

EQq̄ ¼ g
ffiffiffi
s

p �
QðqÞ þ n

e
1
2
qffiffiffi
q

p
�
þ c: ð3:45Þ

D. All together

Having understood the string configurations, we can
now explore which ones contribute to the low lying B-O
potentials. In Fig. 12, we plot the configuration energies for
our parameter values. First, as seen from this figure, all the
pieces of the function EQQqqqq are smoothly glued together.
Second, the narrowness of the two gaps between the
energies is notable. We will see shortly that this is primarily
because the values of Eqq̄ and E3q surpass those utilized in

FIG. 11. Configurations (d)–(f) in five dimensions.

FIG. 12. Various E vs l plots. Here we use the physical
notations for the energies to make them easier to identify.
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lattice calculations. Third, the three low lying B-O poten-
tials are determined by the following: V0 ¼ minfEQQqþ
E3q; 2EQqqg, V1¼minfEQQqqqq;2EQqq;EQQqþE3q;EQqqþ
EQq̄þE3qg, and V2 ¼ minfEQQq þ E3q þ Eqq̄; 2EQqq;
EQQqqqq; EQqq þ EQq̄ þ E3q; EQQq þ E3q; 2EQqq þ Eqq̄g.
The essential feature discernible in Fig. 12 is the

emergence of length scales that distinguish different con-
figurations, or equivalently, different descriptions. It is
worth discussing at least some of these scales here. This
helps us to better understand how the quarks are organized
within the QQqqqq system. Importantly, all these scales
are independent of the normalization constant c, as needed
to be physically meaningful.
The first scale is related to the process of string

reconnection: QQqþ 3q → 2Qqq for V0, and vice versa
for V1. Hence the system can be thought of as a hadro-
quarkonium state at small quark separations and as a pair
of heavy-light baryons at larger separations. We define a
critical separation distance by equating the corresponding
energies

EQQqðlQqÞ þ E3q ¼ 2EQqq: ð3:46Þ

Because lQq is small,16 one can approximately solve this
equation by using the asymptotic formula (B8) for EQQq. So

lQq≈
1

2σQQ
ð2EQqq−EQq̄−E3q−cÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αQQ
σQQ

þ 1

4σ2QQ
ð2EQqq−EQq̄−E3q−cÞ2

s
: ð3:47Þ

A simple estimate yields17

lQq ≈ 0.221 fm; ð3:48Þ

as expected.
The second scale is associated with the process of string

junction (baryon vertex) annihilation which goes like this:
QQqqqq → 2Qqq. We now define the critical separation
distance by

EQQqqqqðlQQqqqqÞ ¼ 2EQqq: ð3:49Þ

This scale, with a value of about 0.2 fm, distinguishes the
descriptions in terms of a compact hexaquark state and
a hadronic molecule. Since lQQqqqq is small, the equation
can be solved approximately by using the asymptotic
formula (3.31). We find that

lQQqqqq≈
1

2σQQ

�
2EQqq−EðcÞ

Q̄qqqq−c
�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αQQ
σQQ

þ 1

4σ2QQ
ð2EQqq−EðcÞ

Q̄qqqq−cÞ2
s

: ð3:50Þ

Then, a straightforward calculation gives

lQQqqqq ≈ 0.184 fm ð3:51Þ

which is smaller than the value of lQq.
The third scale emerges from the process of string

breaking: QQqþ 3q → QqqþQq̄þ 3q in which one
of the strings attached to a heavy quark in the QQq system
breaks. If we assume negligible nucleon effect on this
process, the string breaking distance can be determined
from Eq. (B15), with the result lQQq ≈ 1.257 fm.
So far we have discussed the length scales relevant for V0

and V1. Additionally, three new scales emerge from the
string configurations involved in our construction of V2.
Let us also discuss them.
One new scale is associated with the transition:

QQqþ 3qþ qq̄ → 2Qqq. This transition can be decom-
posed into two elementary processes: the annihilation
of a light quark pair and string reconnection. As before,
we define the critical separation distance by equating the
corresponding energies

EQQqðl−QqÞ þ E3q þ Eqq̄ ¼ 2EQqq: ð3:52Þ

Here and below, the plus or minus subscript refers,
respectively, to the creation or annihilation of a light quark
pair. For small l−Qq, its solution can be easily obtained
from (3.47) by replacing E3q with E3q þ Eqq̄. This gives

l−Qq ≈
1

2σQQ
ð2EQqq − EQq̄ − E3q − Eqq̄ − cÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αQQ
σQQ

þ 1

4σ2QQ
ð2EQqq − EQq̄ − E3q − Eqq̄ − cÞ2

s
:

ð3:53Þ

Then a simple estimate shows that

l−Qq ≈ 0.040 fm: ð3:54Þ

This value is smaller than the value of lQQqqqq, as expected
from Fig. 12. However, a caveat should be noted: it may be
too small to be justified within our string model.
The next is the length scale associated with the transition:

QQqqqq→QqqþQq̄þ3q. This transition involves two
elementary processes: the process of string junction annihi-
lationQQqqqq → QQqþ 3q and that of string breaking in

16It is about 0.25 fm, as seem from Fig. 12.
17We use our parameter values to make estimates in this

subsection.
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the QQq subsystem QQq → QqqþQq̄.18 We define the
critical separation distance as

EQQqqqqðlQQqqqqÞ ¼ EQqq þ EQq̄ þ E3q: ð3:55Þ

We have used a slightly different notation for the critical
distance here than in Eq. (3.49) to distinguish between the
two. Due to the large value of lQQqqqq, we can solve the

equation approximately by using Eq. (3.36). A short
computation gives

lQQqqqq≈
1

σ
ðEQqqþEQq̄þE3qþ2g

ffiffiffi
s

p
IðcÞ−2cÞ: ð3:56Þ

From this, we immediately find that

lQQqqqq ≈ 1.215 fm: ð3:57Þ

The last scale emerges from the transition:QQqþ 3q →
2Qqqþ qq̄. It also involves two elementary processes: the
process of string reconnection and the creation of a light
quark pair. As usual, we define the critical separation
distance by equating the energies

EQQqðlþQqÞ þ E3q ¼ 2EQqq þ Eqq̄: ð3:58Þ

For large lþQq, using the asymptotic expression (B11)
leads to

lþQq ≈
1

σ
ð2EQqq þ Eqq̄ − E3q þ 2g

ffiffiffi
s

p
IQQq − 2cÞ: ð3:59Þ

Finally, we get

lþQq ≈ 1.294 fm: ð3:60Þ

Our estimates show that the inequality lQQqqqq < lQQq <

lþQq holds, as expected from Fig. 12.

IV. LOW-LYING BORN-OPPENHEIMER
POTENTIALS

In the previous section we did not examine the B-O
potentials in detail. This is because the rest energies of the
nucleon and pion calculated from the expressions [30]
and (3.42) are E3q ¼ 1.769 GeV and Eqq̄ ¼ 1.190 GeV.
These values are significantly larger than the values of
1.060 GeV and 280 MeV in the lattice calculations [24].19

The issue arises because the five-dimensional string model
in its current form was originally developed for applications
involving heavy quarks (static limit) and thus does not
accurately describe light hadrons. This means that in
practice, at least one quark must be infinitely massive
and positioned on the boundary of five-dimensional space.
A partial way to address this issue is to treat Eqq̄ and E3q

as model parameters [11,12]. It is natural then to set their
values to those on the lattice, namely Eqq̄ ¼ 280 MeV and
E3q ¼ 1.060 GeV. If so, then the general pattern of the
curves shown in Fig. 12 is replaced by that shown in Fig. 13
on the left. The main conclusions that can be drawn from
this result are as follows: (i) The basic configurations (a)
and (b) retain their status as the lowest-energy configura-
tions, and, therefore, the structure of the ground state
potential V0 remains unchanged. (ii) The graphs corre-
sponding to configurations (c) and (d) switch places. Thus,
the hexaquark configuration (c) now has a higher energy

FIG. 13. Left: the E’s vs l. Right: the three low-lying B-O potentials of the QQqqqq system. The dashed lines denote the E’s.

18Note that the channel QQqqqq→2Qqq→QqqþQq̄þ3q
is forbidden. The reason for this is because in our model the decay
Qqq → Qq̄þ 3q is not possible in the static limit as follows from
EQqq < EQq̄ þ E3q.

19Note that for two flavors, E3q ¼ 1.060 GeV at Eqq̄ ¼
285 MeV [30].

DOUBLY HEAVY DIBARYONS AS SEEN BY STRING THEORY PHYS. REV. D 109, 106001 (2024)

106001-13



than configuration (d).20 (iii) A similar exchange also takes
place between the graphs of configurations (e) and (f). All
this leads to a revised structure of the potentials V1 and V2

and consequently a new hierarchy of emerging scales.
In the case of the ground state potential, the most

noticeable effect is that string reconnection occurs at a
significantly larger separation distance, about 0.8 fm.
In this instance, we can approximately solve Eq. (3.46)
by using the large-l expansion of EQQq. With the help
of (B11), we find that

lQq ≈
1

σ
ð2EQqq − E3q þ 2g

ffiffiffi
s

p
IQQq − 2cÞ ð4:1Þ

and as a consequence21

lQq ≈ 0.854 fm: ð4:2Þ

This represents a substantial increase from (3.48).
The first excited potential is now defined by V1 ¼

minfEQQq þ E3q þ Eqq̄; 2EQqq; EQQq þ E3q; 2EQqq þ Eqq̄g.
Here the smallest scale is l−Qq, which is about 0.6 fm.
Therefore, we can try to solve Eq. (3.52) approximately by
using the large-l expansion (B11). This results in

l−Qq ≈
1

σ
ð2EQqq − E3q − Eqq̄ þ 2g

ffiffiffi
s

p
IQQq − 2cÞ: ð4:3Þ

A numerical estimate shows that

l−Qq ≈ 0.597 fm ð4:4Þ

that is consistent with the expectation from Fig. 13.
The remaining two scales are lQq, discussed previously,
and lþQq approximated by the formula (3.59). For the latter,
we now have

lþQq ≈ 1.110 fm: ð4:5Þ

To get further, let us briefly discuss the second excited
potential. It is described in terms of the energies of six
string configurations: V2 ¼ minfEQQqqqq; 2EQqq; EQQqþ
E3q þ Eqq̄; 2EQqq þ Eqq̄; EQQq þ E3q; EQqq þ EQq̄ þ E3qg.
Here, the first scale is lQQqqqq, and its value is given
by (3.51), as before. The next coincides with the scale l−Qq
discussed above. If we make the assumption that a pion
cloud has a negligible impact on string reconnection, the
third scale is lQq with the value given by (4.2). The fourth
scale is the scale lþQq. Its value is given by (4.5). The last is
associated with the process of string breaking in the
presence of a nucleon cloud: QQqþ3q→QqqþQq̄þ3q.
It reduces to the string breaking distance (B16) under the
assumption of a negligible effect from the nucleon cloud.
Having understood the string configurations, we can

gain insight into the three low-lying B-O potentials. Like in
lattice QCD, one way to proceed is to consider a model
Hamiltonian, which in this case is a 6 × 6 matrix

HðlÞ¼

0
BBBBBBBBBB@

EQQqðlÞþE3q

2EQqq

EQQqðlÞþE3qþEqq̄ Θij

2EQqqþEqq̄

Θij EQQqqqqðlÞ
EQqqþEQq̄þE3q

1
CCCCCCCCCCA
: ð4:6Þ

Here the off-diagonal elements describe the strength of
mixing between the six distinct states (string configura-
tions). The three low-lying B-O potentials are given by the
three smallest eigenvalues of the matrix H.
While the Hamiltonian can, in principle, be determined

from a correlation matrix in lattice QCD, it remains a
challenge to compute the off-diagonal elements within the

effective string model. As a result, it is impossible to
precisely visualize the form of the potentials. However,
we can still gain some valuable insight based on our
experiences with other quark systems, particularly in
terms of the approximate magnitudes of the Θ values
near the transition points.22 This leads us to the overall
picture sketched in Fig. 13 on the right. One important
conclusion that can be drawn from this result is that the
hexaquark string configuration provides a dominant con-
tribution to the second excited B-O potential at small20Motivated by phenomenological models [31], this can be

attributed to the fact that adding a pion results in an energy cost of
145 MeV, while adding two string junctions incurs an energy cost
of 330 MeV.

21In this subsection, we use the improved values of Eqq̄ and E3q
to make estimates.

22For instance, we can assume that the Θ’s are approximately
constant, with values around 47 MeVas found in the QQ̄ system
on the lattice [24].
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separations. This suggests that, if the hexaquark states
exist for V2, they are likely compact.

V. MORE DETAIL ON OTHER ELEMENTARY
EXCITATIONS

A. Preliminaries

The goal of this section is to gain insights into excita-
tions that are not directly related to adding the string
junctions and the virtual quark-antiquark pairs. We are
particularly interested in gluonic excitations.
Of course, in the context of string models, it is entirely

justified to consider excited strings such as the one depicted
in Fig. 14(a). These strings represent a type of gluonic
excitations that has been studied in lattice QCD, though
only within the QQ̄ system [32], and then modeled in [33]
within the current string model. Glueballs must also be
considered as a type of gluonic excitations. Two of the
simplest stringy examples of such color-singlet states are
sketched in Figs. 14(b) and 14(b’). The first is a closed
string, and the second is a pair of string junctions linked by
three open strings. These types of gluonic excitations are
natural from the perspective of string theory in four
dimensions [15]. However, an interesting novelty arises
in ten dimensions. It is related to the description of the
baryon vertex as a five-brane [22], which implies that one
must consider brane excitations. This immediately gives
rise to a family of excited baryon vertices that represents a
type of gluonic excitations. The simplest example of that is
shown in Fig. 14(c), where the excitation is caused by an
open string with both endpoints residing on the brane.
The excited vertices, in turn, give rise to a family of

generalized vertices (string junctions) where more than
three strings may meet.23 The simplest generalized vertex is
shown in Fig. 15 on the left. Notably, if a string (a
chromoelectric flux tube) goes from a quark to an anti-
quark, then the difference between the numbers of in- and
out-strings must equal 3, which is precisely the number
of colors in QCD. This provides the example of the vertex
Vð1Þ with four in- and one out-strings. It is straightforward
to suggest a vertex VðNÞ with N þ 3 in-strings and N

out-strings, as sketched in Fig. 15 on the right. In this
notation, the standard baryon vertex corresponds to Vð0Þ.

B. String configurations with a single five-string vertex

The number of string configurations grows substantially
as the number of vertices increases. For our purposes in this
paper, what we need to know is the impact of these on the
low-lying B-O potentials. For this, it is natural to begin with
the vertex Vð1Þ since adding such a vertex results in a
smaller energy increase compared to the other vertices.24

We will now discuss this issue in the context of the doubly
heavy hexaquark system, following its recent analysis in
the pentaquark systems [13,34].
In four dimensions, it is easy to guess the simplest

generalized string configurations. We sketch three such
configurations, each including a single five-string junction,
in Fig. 16. They are connected, hence we refer to them as
generalized hexaquark configurations.

1. The configuration QQðqqqqÞ
In five dimensions, the number of the configurations

reduces to only two. Let us first describe the configuration
shown in Fig. 17. From a four-dimensional perspective, its
structure is similar to that of a baryon with a light quark
cluster ðqqqqÞ in a color triplet.
In this paper, we will assume that the action for the

vertex Vð1Þ is also given by the five-brane world volume

action (2.3), specifically Sð1Þvert ¼ Svert. From this starting
point, the further analysis proceeds in an obvious manner.
However, a quicker way to proceed is to utilize the formulas
from Appendix B. Due to the baryon structure of both

FIG. 14. Some types of gluonic excitations.

FIG. 15. Generalized baryon vertices: a five-string vertex Vð1Þ

(left) and a multistring vertex VðNÞ (right).

23It is noteworthy that a QCD analog of this might be a new
type of Wilson loops. One example of such loops is provided
in [13], and another in the next section. 24The key factor here is the number of strings.

DOUBLY HEAVY DIBARYONS AS SEEN BY STRING THEORY PHYS. REV. D 109, 106001 (2024)

106001-15



configurations, we can replace k and n in Eq. (B3) with 2k
and 4n to get

l ¼ 2ffiffiffi
s

p Lþðα; v1Þ;

EQQðqqqqÞ ¼ 2g
ffiffiffi
s

p �
Eþðα; v1Þ þ

3ke−2v1 þ 2ne
1
2
v1ffiffiffiffiffi

v1
p

�
þ 2c

ð5:1Þ
for configuration shown in the figure on the left. Here
v1 ¼ sr2v1 . Similarly, for the force balance equation,
we have

sin α ¼ 3kð1þ 4v1Þe−3v1 þ 2nð1 − v1Þe−1
2
v1 : ð5:2Þ

The parameter v1 varies from v̌ to v̌0, where v̌ is a solution
to the equation sin α ¼ 1 and v̌0 to sin α ¼ 0. Noteworthy,
the important difference with the configuration of
Fig. 23(b) is that at the lower bound lðv̌Þ ¼ 0, and hence
the entire configuration becomes folded, but otherwise the
configurations look similar.
We can also extend this argument to Eq. (B5) and

show that

l ¼ 2ffiffiffi
s

p L−ðλ; v1Þ;

EQQðqqqqÞ ¼ 2g
ffiffiffi
s

p �
E−ðλ; v1Þ þ

3ke−2v1 þ 2ne
1
2
v1ffiffiffiffiffi

v1
p

�
þ 2c

ð5:3Þ

for the configuration shown on the right. Here λ is a
function of v1 given by

λ ¼ −ProductLog½−v1e−v1ð1 − ð3kð1þ 4v1Þe−3v1
þ 2nð1 − v1Þe−1

2
v1Þ2Þ−1

2�: ð5:4Þ

The parameter takes values in the interval ½v̌0; v̌1�, where v̌1
is a solution to the equation λ ¼ 1.25

Thus, EQQðqqqqÞðlÞ is a piecewise-defined function
whose two pieces are described by the string configurations
shown in Fig. 17. The pieces join together smoothly, as we
will see momentarily. A notable feature of this configura-
tion is the emergence of the composite object ðqqqqÞwhich
transforms as a color triplet. This is due to the five-string
vertex Vð1Þ.
It is insightful to examine an asymptotic behavior of

EQQðqqqqÞ for both small and large l. The behavior for small
l can be find by letting v1 approach v̌ in Eq. (5.1). To
leading order, we obtain

EQQðqqqqÞ ¼ 2g
ffiffiffi
s

p �
Qðv̌Þ þ 3ke−2v̌ þ 2ne

1
2
v̌ffiffiffǐ

v
p

�
þ 2cþ oð1Þ:

ð5:5Þ

FIG. 16. The simplest generalized hexaquark configurations.

FIG. 17. A generalized hexaquark configuration in five dimensions, for small to intermediate (left) and large (right) heavy quark
separations.

25The v̌’s can be found numerically. As a result, v̌ ≈ 0.662,
v̌0 ≈ 0.927, and v̌1 ≈ 0.944.
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The leading term here is not a Coulomb term but a constant.
This simple but important observation suggests that the
standard hexaquark configuration is more energetically
favorable than the generalized one.
The behavior for large l can derived from Eq. (B11) by

rescaling k and n. So

EQQðqqqqÞ ¼ σl − 2g
ffiffiffi
s

p
IQQðqqqqÞ þ 2cþ oð1Þ; with

IQQðqqqqÞ ¼ Iðv̌1Þ −
3ke−2v̌1 þ 2ne

1
2
v̌1ffiffiffiffiffi

v̌1
p : ð5:6Þ

2. The configuration Q½Qq�fqqqg
There is one more generalized hexaquark configuration

in five dimensions, as shown in Fig. 18. In this case, a light
quark cluster fqqqg transforms according to the adjoint
representation of color SUð3Þ. To some extent, its structure
resembles that found for one of the excited states of theQQ̄
system [33] with the light quark cluster playing the role of a
defect. This configuration only exists when the generalized
vertex is farther from the boundary than the standard one,
i.e., rv1 > rv.
By analyzing the force balance equation at the vertex V

in a way similar to what is explained in Eq. (3.19), it can be
shown that the vertex has no impact on string (2) and
rv ¼

ffiffiffiffiffiffiffiffi
v=s

p
. Moreover, the single light quark is located at

rq ¼
ffiffiffiffiffiffiffiffi
q=s

p
. With this, one obtains that string (3) together

with the attached vertex and quark contributes an amount
of energy equal E0. The remaining contribution can be
obtained from Eq. (B3) by rescaling n → 3n. Putting all
together, we get

l ¼ 2ffiffiffi
s

p Lþðα; v1Þ;

EQ½Qq�fqqqg ¼ g
ffiffiffi
s

p �
2Eþðα; v1Þ þ

3ffiffiffiffiffi
v1

p ðke−2v1 þ ne
1
2
v1Þ
�

þ E0 þ 2c: ð5:7Þ

for the configuration shown in the figure on the left. In
addition, the same rescaling argument applied to ’’ shows
that the tangent angle is given by

sin α ¼ 3

2
ðkð1þ 4v1Þe−3v1 þ nð1 − v1Þe−1

2
v1Þ: ð5:8Þ

For this configuration, the parameter v1 varies from ṽ to ṽ0,
where ṽ is a solution to the equation sinα ¼ 1, and ṽ0 to
sin α ¼ 0. At the lower bound lðṽÞ ¼ 0, and therefore the
entire configuration gets folded. This is precisely analogous
to what happens with the previous generalized hexaquark
configuration.
A similar derivation for the configuration shown in

this figure on the right proceeds in essentially the same
way and gives

l ¼ 2ffiffiffi
s

p L−ðλ; v1Þ;

EQ½Qq�fqqqg ¼ g
ffiffiffi
s

p �
2E−ðλ; v1Þ þ

3ffiffiffiffiffi
v1

p ðke−2v1 þ ne
1
2
v1Þ
�

þ E0 þ 2c; ð5:9Þ

with

λ ¼ −ProductLog
�
−v1e−v1

�
1 −

9

4
ðkð1þ 4v1Þe−3v1

þ nð1 − v1Þe−1
2
v1Þ2
�

−1
2

�
: ð5:10Þ

The parameter v1 now takes values in the range of ṽ0 to ṽ1,
where ṽ1 is a solution to the equation λ ¼ 1.26

Thus, the function EQ½Qq�fqqqgðlÞ consists of two pieces
which are related to the string configurations shown in

FIG. 18. Another generalized hexaquark configuration in five dimensions, for small to intermediate (left) and large (right) heavy quark
separations.

26A simple estimate gives the following values: ṽ ≈ 0.625,
ṽ0 ≈ 0.953, and ṽ1 ≈ 0.966. Thus, ṽ > v, as required by
construction.
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Fig. 18. We will see shortly that the pieces are connected
smoothly. Interestingly, the five dimensional construction
reveals the emergent object fqqqg transforming in the
adjoint representation of the color group SUð3Þ.
For future reference, let us briefly discuss the behavior of

EQ½Qq�fqqqg for both small and large l. This may be done
along the lines of the previous subsection. Taking the limit
v1 → ṽ in (5.7), we find that for small l

EQ½Qq�fqqqg ¼ g
ffiffiffi
s

p �
2QðṽÞ þ 3ffiffiffĩ

v
p ðke−2ṽ þ ne

1
2
ṽÞ
�

þ E0 þ 2cþ oð1Þ: ð5:11Þ

The leading term in this expansion is not a Coulomb term
but a constant, just like in (5.5).
The large-l expansion can be obtained from Eq. (5.9) by

taking the limit v1 → ṽ1. Alternatively, it can be obtained
from Eq. (B11) by making the rescaling and then taking
account of E0. As a result, we obtain

EQ½Qq�fqqqg ¼ σl − 2g
ffiffiffi
s

p
IQ½Qq�fqqqg þ 2cþ oð1Þ; with

IQ½Qq�fqqqg ¼ Iðṽ1Þ −
3

2

ke−2ṽ1 þ ne
1
2
ṽ1ffiffiffiffiffi

ṽ1
p −

E0

2g
ffiffiffi
s

p : ð5:12Þ

3. Comparison of the three hexaquark configurations

A natural question to ask at this point is the following:
Which hexaquark configuration is energetically favorable?
We are now in a position to answer this question. In Fig. 19
we plot the corresponding energies as a function of heavy
quark separation, based on the parameter values outlined in
Sec. III. As evident from the figure, the standard configu-
ration is favorable at small separations. This is the expected
result stemming from the fact that only EQQqqqq features the
Coulomb term in its small-l expansion. However, the
transition between the string configurations occurs at

approximately 0.227 fm and as a consequence, the gener-
alized configuration QQ(qqqq) emerges as the preferred
choice for larger separations. In ten dimensions, this
transition can be understood as D-brane fusion: VV̄V →
Vð1Þ [13,35]. In accordance with our terminology, it seems
natural to call it junction fusion in four dimensions.
By employing the large-l expansions, it is straightfor-

ward to estimate the maximum value of the energy gap. We
find that

EQQqqqq − EQQðqqqqÞ ¼ 2g
ffiffiffi
s

p ðIQQðqqqqÞ − IQQqqqqÞ
≈ 46 MeV: ð5:13Þ

The energy of configuration Q½Qq�fqqqg is larger than the
energy of QQðqqqqÞ. Both energy plots appear similar
and a relative shift between them is compatible with the
gap (5.13). The latter makes an intersection between
EQ½Qq�fqqqg and EQQqqqq near 0.679 fm almost impercep-
tible. As above, it is simple to estimate the energy gap
value, which is

EQQqqqq − EQ½Qq�fqqqg ¼ 2g
ffiffiffi
s

p ðIQ½Qq�fqqqg − IQQqqqqÞ
≈ 5 MeV: ð5:14Þ

To summarize, while at large separations the generalized
hexaquark configurations have lower energy than the
standard one, at small separations the situation reverses.
Importantly, this does not affect the results of Sec. IVat all,
and the plots of Fig. 13 remain unchanged.

C. Comments on other configurations

We can treat the hexaquark configurations with two Vð1Þ
vertices in the same way. To do this, we start from four
dimensions, where the configurations of interest are as in
Fig. 20. The corresponding analysis in five dimensions
shows that there is only one configuration. It can be
obtained from configuration QQ½qqqq� by replacing V

with Vð1Þ, as follows from our assumption that Sð1Þv ¼ Sv.
27

As a result, the energy EQQðqqqqÞ is doubly degenerate.

FIG. 19. The energies of the hexaquark configurations: EQQqqqq
(solid), EQQðqqqqÞ (dashed), and EQ½Qq�fqqqg (dotted).

FIG. 20. Hexaquark string configurations with two five-string
junctions. Each bold line represents a pair of strings.

27Note that this replacement is not allowed for configuration
Q½Qq�fqqqg.
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We will not address this issue as it is irrelevant to the
present paper.
It is noteworthy that there are more generalized hex-

aquark configurations, but they do not exist for our
parameter values. For completeness, some of their dis-
cussion is included in Appendix D.

VI. CONCLUDING COMMENTS

(i) Having explored the various doubly heavy multi-
quark systems,28 we can draw some general con-
clusions about the question with which we began:
How quarks are organized within doubly heavy
multiquark hadrons? First, all the ground state
B-O potentials are described in terms of both
hadroquarkonia and hadronic molecules. The excep-
tional case in which this is not true is the QQq̄ q̄
system. Second, from the string point of view, the
transition between these two descriptions can be
interpreted via string reconnection. Third, all the
results show the universality of the string tension
and factorization at small separations expected from
heavy quark-diquark symmetry. Finally, the struc-
ture of the leading connected string configurations
is actually much simpler than one would expect.
The point is that, for some unclear reason, the
valence quarks bind into diquarks, specifically
QQ½q̄ q̄�, ½Qq�½Q̄ q̄�, ½Qq�½Qq�q̄, ½Qq�Q̄½qq�, and

½Qq�½Qq�½qq�. At larger heavy quark separations,
these configurations become disconnected. This
occurs because of string junction annihilation. The
critical separation distance is the same for all but the
QQ̄qq̄ system.

(ii) Since the generalized string junctions are related to
gluonic degrees of freedom, a simpler way to
examine them within lattice QCD is to explore
Wilson loops in pure SUð3Þ gauge theory. For
example, the energy of a fully heavy hexaquark
state can be extracted from the exponential decay
with T of the expectation value of the Wilson loop

Wð1Þ
6Q ¼ Pabcd

e Ue
fε

fghUa0
a Ub0

b U
c0
c Ud0

d U
g0
g Uh0

h P
e0
a0b0c0d0U

f0
e0 εf0g0h0 ; ð6:1Þ

with U’s being the path-ordered exponents along the
lines shown in Fig. 21. The tensor P is a combination
of the ε and δ tensors. For example, Pabcd

e ¼ δaeε
bcd

or Pabcd
e ¼ δaeε

bcd − δbeε
acd.

(iii) In hadronic phenomenology, the issue of diquarks
has been discussed for quite a while [36]. We have
already mentioned that the valence quarks form the
diquarks, leading to simplifications in the structure
of the connected string configurations. Roughly
speaking, a pair of quarks closely approaches a
string junction, forming a composite object. Its
analog in QCD is schematically ½qq�a ¼ εabcqaqb.
One novelty of our study is that a similar phenome-
non occurs when the quarks approach a five-string
junction. In this case, two composite objects emerge:
one is a color triplet, and the another is in the
color adjoint representation. Their QCD analogs
are schematically ðqqqqÞe ¼ Pabcd

e qaqbqcqd and
fqqqgae ¼ Pabcd

e qbqcqd.

(iv) The doubly heavy quark systems have a rich com-
plexity of physics and a number of unanswered,
pressing questions. Making further progress in
theoretical understanding and applications to hadron
phenomenology will require a joint effort by the
QCD community. We hope our study paves the way
for future research using string theory, lattice QCD,
and effective field theories.
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APPENDIX A: NOTATION AND DEFINITIONS

This appendix summarizes the notation and formulas
that we use in our calculations.
Throughout the paper, we denote heavy and light quarks

(antiquarks) by QðQ̄Þ and qðq̄Þ respectively, and baryon

FIG. 21. AWilson loop Wð1Þ
6Q. A fully heavy hexaquark state is

generated at t ¼ 0 and is annihilated at t ¼ T.

28See [10–13] for more details on the QQq̄q̄, QQ̄qq̄, QQqqq̄,
and QQ̄qqq systems.
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(antibaryon) vertices by VðV̄Þ. We locate light quarks
(antiquarks) at r ¼ rqðrq̄Þ, and vertices at r ¼ rvðrv̄Þ unless
otherwise specified. For convenience, we define dimen-
sionless variables: q ¼ sr2q, q̄ ¼ sr2q̄, v ¼ sr2v, v̄ ¼ sr2v̄,
and v1 ¼ sr2v1 . These variables range from 0 to 1 and
indicate the proximity of the objects to the soft-wall, which
is located at 1 in such units. We use the notation l for (a), l
for (b), and l for (c) to denote the critical separations
related to the string interactions sketched in Fig. 4.
To express the resulting formulas in a compact form, we

make use of the set of basic functions [25]:

Lþðα;xÞ¼cosα
ffiffiffi
x

p Z
1

0

duu2exð1−u2Þ½1−cos2αu4e2xð1−u2Þ�−1
2;

0≤α≤
π

2
; 0≤x≤1: ðA1Þ

Lþ is a non-negative function which vanishes if α ¼ π
2
or

x ¼ 0, and has a singular point at (0,1). Assuming that α is
a function of x such that cos αðxÞ ¼ cos αþ cos0 αxþ oðxÞ
as x → 0, the small-x behavior of Lþ is

Lþðα; xÞ ¼ ffiffiffi
x

p ðLþ
0 þ Lþ

1 xþ oðxÞÞ; ðA2Þ

where

Lþ
0 ¼ 1

4
cos−

1
2αB

�
cos2α;

3

4
;
1

2

�
;

Lþ
1 ¼ 1

4
cos−

3
2α

�
ðcos αþ cos0αÞB

�
cos2α;

3

4
;−

1

2

�

− B

�
cos2α;

5

4
;−

1

2

��
;

and Bðz; a; bÞ is the incomplete beta function;

L−ðy; xÞ ¼ ffiffiffi
y

p �Z
1

0

du u2 eyð1−u2Þ½1 − u4e2yð1−u2Þ�−1
2

þ
Z

1ffiffi
x
y

p du u2eyð1−u2Þ½1 − u4e2yð1−u2Þ�−1
2

�
;

0 ≤ x ≤ y ≤ 1: ðA3Þ

This function is non-negative and equals zero at the origin.
It is singular at y ¼ 1, where

L−ðy;xÞ ¼− lnð1− yÞþOð1Þ; with xkept fixed: ðA4Þ

The L functions are related as Lþð0; xÞ ¼ L−ðx; xÞ;

Eþðα;xÞ¼ 1ffiffiffi
x

p
Z

1

0

du
u2

ðexu2 ½1−cos2αu4e2xð1−u2Þ�−1
2−1−u2Þ;

0≤α≤
π

2
; 0≤x≤1: ðA5Þ

Eþ is singular at x ¼ 0 and (0,1). If cos αðxÞ ¼ cos αþ
cos0 αxþ oðxÞ as x → 0, then the small-x behavior of Eþ is

Eþðα; xÞ ¼ 1ffiffiffi
x

p ðEþ
0 þ Eþ

1 xþ oðxÞÞ; ðA6Þ

where

Eþ
0 ¼ 1

4
cos

1
2αB

�
cos2α;−

1

4
;
1

2

�
;

Eþ
1 ¼ 1

4
cos−

1
2α

�
ðcos αþ cos0αÞB

�
cos2α;

3

4
;−

1

2

�

− 3B

�
cos2α;

5

4
;−

1

2

�
þ 4

cos
1
2α

sin α

�
;

E−ðy; xÞ ¼ 1ffiffiffi
y

p
�Z

1

0

du
u2

ðeyu2 ½1 − u4e2yð1−u2Þ�−1
2 − 1 − u2Þ

þ
Z

1ffiffi
x
y

p
du
u2

eyu
2 ½1 − u4e2yð1−u2Þ�−1

2

�
;

0 ≤ x ≤ y ≤ 1: ðA7Þ
E− is singular at (0,0) and at y ¼ 1. More specifically, near
y ¼ 1, with x kept fixed, it behaves as

E−ðy; xÞ ¼ −e lnð1 − yÞ þOð1Þ: ðA8Þ
The E functions are related as Eþð0; xÞ ¼ E−ðx; xÞ;

QðxÞ ¼ ffiffiffi
π

p
erfið ffiffiffi

x
p Þ − exffiffiffi

x
p : ðA9Þ

Here erfiðxÞ is the imaginary error function. This is a
special case of Eþ with α ¼ π

2
. A useful fact is that its small-

x behavior is given by

QðxÞ ¼ −
1ffiffiffi
x

p þ ffiffiffi
x

p þOðx3
2Þ; ðA10Þ

IðxÞ ¼ I0−
Z

1ffiffi
x

p
du
u2

eu
2 ½1−u4e2ð1−u2Þ�12; with

I0 ¼
Z

1

0

du
u2

ð1þu2− eu
2 ½1−u4e2ð1−u2Þ�12Þ; 0< x≤ 1:

ðA11Þ

Notice that I0 can be evaluated numerically, with the
result 0.751.

APPENDIX B: A NOTE ON THE QQq QUARK
SYSTEM

This appendix provides a brief description of some facts
about the stringy construction for the QQq quark system
proposed in [9], using their conventions. We limit ourselves
here to the ground state B-O potential V0.

OLEG ANDREEV PHYS. REV. D 109, 106001 (2024)

106001-20



From the perspective of four dimensional string
models [15], the only relevant string configurations are
those shown in Fig. 22. The first configuration consists of
the valence quarks joined by strings. The strings meet at a
string junction. This is a typical string representation of
baryons. The second configuration, obtained by adding a
virtual pair qq̄ to the first one, describes a pair of non-
interacting hadrons: Qqq and Qq̄.29 This configuration
does contribute to the ground state because for large heavy
quark separations l its energy is of order 1, whereas the
energy of the first configuration is of order l. The transition
between the two regimes corresponds to the baryon decay

QQq → QqqþQq̄: ðB1Þ

In the language of string theory, such a decay can be
interpreted as the process of string breaking in which one of
the strings attached to the heavy quarks breaks down.
Consider these configurations within the five-

dimensional framework. We begin with the connected
configuration of Fig. 22(a). What is important here is the
alteration in the configuration’s shape as the heavy quark
separation distance increases. Consequently, the single-
string configuration in four dimensions is replaced by
three distinct configurations in five dimensions, as
depicted in Fig. 23.
For small l the corresponding configuration is shown in

Fig. 23(a). In this case, the total action is the sum of the
Nambu-Goto actions for the three fundamental strings plus
the actions for the baryon vertex and light quark. The
relation between the energy and heavy quark separation is
written in parametric form

l ¼ 2ffiffiffi
s

p Lþðα; vÞ;

EQQq ¼ g
ffiffiffi
s

p �
2Eþðα; vÞ þQðqÞ −QðvÞ

þ 3k
e−2vffiffiffi
v

p þ n
e
1
2
qffiffiffi
q

p
�
þ 2c: ðB2Þ

Here the parameter v varies from 0 to q, with q a solution to
Eq. (3.8) in the interval [0, 1]. The functions Lþ and Eþ are
as defined in Appendix A, and c is the normalization
constant. The tangent angle α can be expressed in terms of
the parameter v by employing the force balance equation at
r ¼ rv. The result is given by Eq. (3.14).
Since l is an increasing function of v, an increase in l

results in the vertex reaching the position of the light quark.
In this case the configuration looks like that of Fig. 23(b).
It differs from configuration (a) only due to the absence of
the string stretched between the vertex and light quark,
allowing the quark to sit directly atop the vertex. The
distance l is expressed in terms of v and α as before, albeit
for a different parameter range. But the energy is expressed
in the form

EQQq ¼ g
ffiffiffi
s

p �
2Eþðα; vÞ þ 1ffiffiffi

v
p ð3ke−2v þ ne

1
2
vÞ
�
þ 2c:

ðB3Þ
Notably, this expression can be derived from (B2) by
formally setting q ¼ v. In this case, the tangent angle is
given by

sin α ¼ 1

2
ð3kð1þ 4vÞe−3v þ nð1 − vÞe−1

2
vÞ: ðB4Þ

By construction, it must be non-negative. This condition
enables the determination of a range for v. It is given by
½q; v0�, where v0 is a solution to the equation sinα ¼ 0.
The latter means that there is no cusp at x ¼ 0 and, as a
consequence, the two strings smoothly join together.
Upon a simple numerical analysis, it becomes evident

that l remains finite at v ¼ v0. The pivotal question arises:
how can larger values of l be attained? The solution lies in
considering negative values of α. In that case, the configu-
ration profile becomes convex in the vicinity of x ¼ 0, as
shown in Fig. 23(c). The resulting formulas are obtained
from the previous ones by replacing Lþ and Eþ with L−

and E−. So,

l ¼ 2ffiffiffi
s

p L−ðλ; vÞ;

EQQq ¼ g
ffiffiffi
s

p �
2E−ðλ; vÞ þ 1ffiffiffi

v
p ð3ke−2v þ ne

1
2
vÞ
�
þ 2c:

ðB5Þ

Here λ ¼ sr20, with r0 ¼ max r. Importantly, λ is the
function of v given by

λ ¼ −ProductLog
�
−ve−v

�
1 −

1

4
ð3kð1þ 4vÞe−3v

þ nð1 − vÞe−1
2
vÞ2
�

−1
2

�
: ðB6Þ

FIG. 22. The string configurations contributing to the ground
state potential of the QQq system.

29Another disconnected configuration consisting of QQq and
qq̄ does not matter for the ground state.
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The parameter v goes from v0 to v1, where v1 is a solution
to the equation λðvÞ ¼ 1 or, equivalently,

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−v2e2ð1−vÞ

p
þ3kð1þ4vÞe−3vþnð1−vÞe−1

2
v¼0 ðB7Þ

in the interval [0, 1]. The strings approach the soft wall as
λ → 1 that places the upper bound on v.
A summary of the above discussion is as follows. The

energy of the connected configuration as a function of
the heavy quark separation is given in parametric form by
the two piecewise functions EQQq¼EQQqðvÞ and l ¼ lðvÞ.
To complete the picture, it is necessary to mention another
connected configuration characterized by a quark-diquark
structure denoted as Q½Qq�.30 The point is that it is not
energetically favorable to contribute to the ground state
potential V0.
For future reference, it is also worth mentioning the

behavior of EQQqðlÞ for both small and large values of l.
For l → 0, EQQq behaves as

EQQqðlÞ ¼ EQQðlÞ þ EqQ̄ þ oðlÞ; ðB8Þ

where EqQ̄ ¼ EQq̄, with EQq̄ given by (3.45), and

EQQ ¼ −
αQQ
l

þ cþ σQQl: ðB9Þ

The coefficients are given by

αQQq ¼ −l0E0g; σQQq ¼
1

l0

�
E1 þ

l1
l0
E0

�
gs; ðB10Þ

with l0 ¼ 1
2
ξ−

1
2Bðξ2; 3

4
; 1
2
Þ, l1 ¼ 1

2
ξ−

3
2½ð2ξþ 3

4
k−1
ξ ÞBðξ2; 3

4
;

− 1
2
Þ − Bðξ2; 5

4
;− 1

2
Þ�, E0 ¼ 1þ 3kþ 1

2
ξ
1
2Bðξ2;− 1

4
; 1
2
Þ, and

E1 ¼ ξl1 − 1 − 6kþ 1
2
ξ−

1
2Bðξ2; 1

4
; 1
2
Þ. Here ξ ¼

ffiffi
3

p
2
ð1 − 2k−

3k2Þ12. Thus the model we are considering has the desired

property of factorization, expected from heavy quark-
diquark symmetry [27].
On the other hand, as l → ∞, EQQq behaves as

EQQq ¼ σl − 2g
ffiffiffi
s

p
IQQq þ 2cþ oð1Þ; with

IQQq ¼ Iðv1Þ −
3ke−2v1 þ ne

1
2
v1

2
ffiffiffiffiffi
v1

p : ðB11Þ

Here σ is the string tension and the function I is defined in
Appendix A.
A five-dimensional counterpart of the disconnected

string configuration is shown in Fig. 24. It describes a
pair of noninteracting hadrons and, therefore, the total
energy is the sum of the rest energies of these hadrons.
Explicitly,

Edis ¼ EQqq þ EQq̄; ðB12Þ

where EQqq and EQq̄ are given by Eqs. (3.7) and (3.45),
respectively.
The ground state potential is defined by V0 ¼

minfEQQq; EQqq þ EQq̄g. Like in lattice QCD, it is useful
to consider the model Hamiltonian

FIG. 23. Three types of connected configurations for theQQq system in five dimensions. α denotes the tangent angle of the left string.
In (c) the horizontal line represents the soft wall.

FIG. 24. The disconnected configuration of Fig. 22(b) in five
dimensions. At zero baryon chemical potential, the light anti-
quark q̄ is also at r ¼ rq.

30For further details on this configuration and related aspects,
see Sec. III of [9].
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HðlÞ ¼
�
EQQqðlÞ ΘQQq

ΘQQq EQqq þ EQq̄

�
; ðB13Þ

with ΘQQq describing the mixing between the two states.
The pertinent potential is the smallest eigenvalue of the
matrix. So,

V0 ¼
1

2
ðEQQq þ EQqq þ EQq̄Þ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðEQQq − EQqq − EQq̄Þ2 þ Θ2

QQq

r
: ðB14Þ

It is instructive to give an explicit example of V0.
With the parameter values as in Sec. III, the potential
takes the specific form shown in Fig. 25. As expected, it
asymptotically approaches EQQq as l tends to zero
and EQqq þ EQq̄ as l tends to infinity. The transition
between these two regimes, interpreted as the baryon decay
[see (B1)], occurs approximately at l ¼ 1.3 fm. A more
precise determination involves defining the string breaking
distance by equating the diagonal elements of H

EQQqðlQQqÞ ¼ EQqq þ EQq̄: ðB15Þ

At large l, the equation significantly simplifies, as EQQqðlÞ
is well approximated by a linear function. Combining
(B11) with (3.7) and (3.45) yields

lQQq ¼
3

e
ffiffiffi
s

p
�
QðqÞ − 1

3
QðvÞ þ k

e−2vffiffiffi
v

p þ n
e
1
2
qffiffiffi
q

p þ 2

3
IQQq

�
:

ðB16Þ

A simple estimation then gives lQQq ¼ 1.257 fm.

APPENDIX C: A QUICK LOOK INTO THE Q̄qqqq
QUARK SYSTEM

In Sec. III, while examining the small-l behavior of
string configurations, we relied on some facts regarding the

Q̄qqqq system. Our goal in this appendix is to briefly
explain those.
In four dimensions, the configurations of interest are

shown in Fig. 26. They solely consist of the valence quarks.
Configuration (c) can be obtained from configuration (a) by
adding two more string junctions.
The counterparts of these configurations in five dimen-

sions are shown in Fig. 27. We start with the disconnected
configuration, which can be interpreted as a heavy-light
meson in a nucleon cloud. As discussed in Sec. III, we
average over the cloud position and assume that the total
energy is just the sum of rest energies of the involved
hadrons. Thus,

EðaÞ
Q̄qqqq ¼ EqQ̄ þ E3q: ðC1Þ

Here E3q is defined by [30], and EqQ̄ by (3.45).
To find a five-dimensional counterpart of the connected

configuration (c), it is helpful to place it on the boundary of
five-dimensional space. Then a gravitational force pulls the
light quarks and strings toward the interior. A straightfor-
ward analysis shows that all the baryon vertices converge at
the same point, with the radial coordinate determined by
Eq. (3.9) so that rv ¼

ffiffiffiffiffiffiffiffi
v=s

p
. As a result, the configuration

FIG. 26. Some string configurations for the Q̄qqqq system.
Their labeling adheres to the conventions of Sec. III.

FIG. 27. The configurations of Fig. 26 in five dimensions. In
(c), the bold line represents a set of four strings stretched between
the light quarks and baryon vertices.

FIG. 25. The potential V0. Here ΘQQq ¼ 47 MeV.
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takes the form shown in Fig. 27(c). It is governed by
the action

S¼ gT
�Z

rv

0

dr
r2

esr
2 þ 4

Z
rq

rv

dr
r2

esr
2 þ 9k

e−2sr
2
v

rv
þ 4n

e
1
2
sr2q

rq

�
:

ðC2Þ

Varying it with respect to rq leads to Eq. (3.8) and then to

rq ¼
ffiffiffiffiffiffiffiffi
q=s

p
. The first integral is divergent. This is

addressed by imposing a cutoff and subsequently sub-
tracting a linear divergency. Upon evaluating the remaining
integrals, we arrived at

EðcÞ
Q̄qqqq ¼ EqQ̄ þ 3E0; ðC3Þ

with E0 given by (3.15). For the parameter values set in

Sec. III, a simple estimate gives EðcÞ
Q̄qqqq−EðaÞ

Q̄qqqq¼88MeV.
This is consistent with what one would expect from the
formulas (3.4) and (3.31), as well as the plots in Fig. 12.

APPENDIX D: MORE HEXAQUARK
CONFIGURATIONS

In addition to the configurations discussed in Secs. III
and V, there are other configurations worth discussing
as well. In this appendix we will briefly describe these
configurations. In what follows, we use the same parameter
values as in Sec. III.

1. Another standard configuration

Here we explore in more detail the configuration
depicted in Fig. 7 on the left. To get to the specific issues
of interest here as quickly as possible, we use the fact
that the governing action for this configuration follows
from (3.10), with the collapse of string (3) to a point. Thus,
it takes the following form

S ¼ 4gT
�
1

2

Z
rv̄

0

dr
r2

esr
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂rxÞ2

q
þ
Z

rq

rv̄

dr
r2

esr
2

þ 3k
e−2sr

2
v̄

rv̄
þ n

e
1
2
sr2q

rq

�
: ðD1Þ

By varying the action with respect to rq, we arrive at
Eq. (3.8). On the other hand, variation with respect to rv̄
leads to

sin α ¼ 2ð1þ 3kð1þ 4v̄Þe−3v̄Þ; ðD2Þ

with v̄ ¼ sr2v̄. This equation differs from Eq. (3.14) due to a
crucial factor of 2 which holds significance for our
subsequent analysis. The expression for the separation
distance is once again given by Eq. (3.13), while the
energy can be obtained from (3.15) by formally setting
v ¼ v̄ and v ¼ v̄. So, we have

E0
QQqqqq ¼ 4g

ffiffiffi
s

p �
1

2
Eþðα; v̄Þ þQðqÞ −Qðv̄Þ

þ 3k
e−2v̄ffiffiffī
v

p þ n
e
1
2
qffiffiffi
q

p
�
þ 2c: ðD3Þ

Here the parameter v̄ goes from v to q, with the upper
bound corresponding to the situation in which the vertices
collide with the light quarks.
Having derived the expressions for the tangent angle

and energy, a numerical analysis follows straightforwardly.
Figure 28 illustrates the behavior of lðv̄Þ and E0

QQqqqqðlÞ. It
is apparent that the function lðv̄Þ does not monotonically
increase in the interval ½v; q�. Instead, it exhibits a local
maximum near v̄ ¼ 0.31. Consequently, the function
E0
QQqqqqðlÞ is double-valued and does not support separa-

tion distances longer than 0.178 fm.

2. Configurations with one Vð1Þ vertex

If we place the configuration of Fig. 16(a) on the
boundary of five-dimensional space, gravity will cause it

FIG. 28. Left: l as a function of v̄. Right: E0
QQqqqq as a function of l.
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to assume the form shown in Fig. 29(a). Here string (3) is
stretched between the vertices, and strings (4)–(7) between
the vertices and light quarks. We take v1 ¼ sr2v1 as a
parameter. As in the case of theQqq system [see Fig. 5(b)],
the force balance equation at r ¼ rv is given by Eq. (3.9),
and therefore rv ¼

ffiffiffiffiffiffiffiffi
v=s

p
. This makes a restriction on the

upper bound for the parameter range so that v1 takes values
in ½0; v�. The force balance equation at r ¼ rv1 is given by

sin α ¼ 3

2
ð1þ kð1þ 4v1Þe−3v1Þ: ðD4Þ

A simple way to obtain it is to replace k in Eq. (3.39) with
k=3, effectively reducing the number of vertices to one. A
short calculation shows that the equation has the unique
solution αðvÞ ¼ π=2 in the interval ½0; v�. This solution
corresponds to zero separation between the heavy quarks.
Since we are not interested in cases, where the string model
is not reliable, we excluded this configuration from our
analysis in Sec. V.
At the upper bound, the position of Vð1Þ coincides with

that of V, and the configuration becomes as shown in

Fig. 29(b), with string (3) shrunk to a point. This configu-
ration remains unchanged as long as v1 is smaller than q.
Now the force balance equation at r ¼ rv1 takes the form

sin α ¼ 2þ 3kð1þ 4v1Þe−3v1 ; ðD5Þ

as follows from Eq. (D2), with k replaced by k=2. This
rescaling reduces the number of vertices to two. One can
easily see that in the interval ½v; q� there are no solutions
except the solution αðvÞ ¼ π=2 already mentioned above.
For completeness, note that the same is also true for the
larger interval ½0; v�.
In addition to the configuration of Fig. 18, there is a

similar configuration containing a diquark ½Qq�, as shown
in Fig. 29(c). The difference, however, is that the parameter
now takes values in the interval ½v; q�. Clearly, the force
balance equation at r ¼ rv1 is given by (D4). It has no
solutions in the specified interval, and therefore the
configuration does not exist.
The configuration shown in Fig. 29(d) is obtained by

exchanging the V and Vð1Þ vertices. By arguments similar
to those we have given for configuration (c) in Sec. III,

FIG. 29. Some hexaquark configurations with one generalized vertex.
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string (2) is smooth, and the force balance equation at the
generalized vertex reduces to its r-component

1þ kð1þ 4v1Þe−3v1 ¼ 0: ðD6Þ

However, for k ¼ − 1
4
e
1
4 the equation has no solutions

within the interval [0, 1]. Because of this, it does not
matter for us.
One more configuration is presented in Fig. 30. In five

dimensions it emerges as a consequence of placing
configuration of Fig. 16(c) on the boundary of five-
dimensional space. The force balance equation at r ¼ rv1
is again given by Eq. (D6). Thus, this configuration does
not exist.

3. Configurations with two Vð1Þ vertices

If we place the configuration of Fig. 20(a) on the
boundary of five-dimensional space, gravity will cause it
to take the shape shown in Fig. 31(a). In this case, strings
(3) and (4) are stretched between the vertices, while strings
(5)–(8) between the vertices and light quarks. We choose
v1 ¼ sr2v1 as a parameter. The force balance equation at
r ¼ rv1 is given by Eq. (D4) and that at r ¼ r0v1 by Eq. (3.9)
with v replaced by v01. The latter imposes a constraint on the
upper bound of the parameter range, reducing it to ½0; v�.

FIG. 31. Some hexaquark configurations with two generalized vertices. In (c) and (d), the α’s are positive definite.

FIG. 30. A hexaquark configuration with one generalized
vertex.
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We exclude this configuration by virtue of the same
reasoning as explained below Eq. (D4) in the previous
subsection.
Formally, the configuration in Fig. 31(b) is obtained

from that in Fig. 29(b) by replacing V with Vð1Þ. So, we can
analyze it in a similar manner and arrive at the same
conclusion.
Consider the configuration shown in Fig. 31(c). Here, the

parameter v1 varies from 0 to q. The force balance equation
at r ¼ rv1 can be easily derived from Eq. (3.19) by noting
that in the present case the contributions of strings (3) and
(4) are doubled. This gives

e1 þ 2e3 þ 2e5 þ fv ¼ 0 ðD7Þ

or, in component form

cos α ¼ 2 cos α5;

sin α ¼ 2 sin α5 þ 2þ 3kð1þ 4v1Þe−3v1 : ðD8Þ

The above equations have the solution

sin α ¼ ð2þ 3kð1þ 4v1Þe−3v1Þ2 − 3

2ð2þ 3kð1þ 4v1Þe−3v1Þ
;

sin α5 ¼ −
ð2þ 3kð1þ 4v1Þe−3v1Þ2 þ 3

4ð2þ 3kð1þ 4v1Þe−3v1Þ
: ðD9Þ

However, the tangent angles turn out to be negative for
the entire parameter range, making this configuration
unacceptable.

The configuration shown in Fig. 31(d) is the result of
going beyond the upper bound of the parameter range. For
v1 ≥ q the positions of the vertices and light quarks
coincide, and all the vertical strings shrink to points.
Because of this, Eq. (D7) becomes

e1 þ 2e5 þ fv þ 2fq ¼ 0; ðD10Þ

with fq ¼ ð0;−gn∂rv1 e
1
2
sr2v1

rv1
Þ. When this equation is written

in component form, it gives

cos α ¼ 2 cos α5;

sin α ¼ 2 sin α5 þ 3kð1þ 4v1Þe−3v1 þ 2nð1 − v1Þe−1
2
v1 :

ðD11Þ

The solution to these equations is

sin α ¼ ð3kð1þ 4v1Þe−3v1 þ 2nð1 − v1Þe−1
2
v1Þ2 − 3

2ð3kð1þ 4v1Þe−3v1 þ 2nð1 − v1Þe−1
2
v1Þ ;

sin α5 ¼ −
ð3kð1þ 4v1Þe−3v1 þ 2nð1 − v1Þe−1

2
v1Þ2 þ 3

4ð3kð1þ 4v1Þe−3v1 þ 2nð1 − v1Þe−1
2
v1Þ :

ðD12Þ

Note that the right-hand sides become singular at v1 ¼ vs,
where vs ≈ 0.927 numerically. For v1 < vs the negative
tangent angles make this configuration unacceptable, just
as above. For vs < v1 < 1, there are no allowed values for
the tangent angles as the right hand sides are larger than 1.
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