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We consider vacuum transitions by bubble nucleation among 4D vacua with different values and signs of
the cosmological constant Λ, including both up and down tunnelings. Following the Hamiltonian
formalism, we explicitly compute the transition probabilities for all possible combinations of initial and
final values of Λ and find that up tunneling is allowed starting not only from dS spacetime but also from
AdS and Minkowski spacetimes. We trace the difference with the Euclidean approach, where these
transitions are found to be forbidden, to the difference of treating the latter spacetimes as pure (vacuum)
states rather than mixed states with correspondingly vanishing or infinite entropy. We point out that these
transitions are best understood as limits of the corresponding transitions with black holes in the zero mass
limit M → 0. We find that detailed balance is satisfied provided we use the Hartle-Hawking sign of the
wave function for nucleating spacetimes. In the formal limit Λ → −∞, the transition rates for anti–de Sitter
(AdS) to dS agree with both the Hartle-Hawking and Vilenkin amplitudes for the creation of dS from
nothing. This is consistent with a proposal of Brown and Dahlen to define “nothing” as AdS in this limit.
For M ≠ 0, the detailed balance is satisfied only in a range of mass values. We compute the bubble
trajectory after nucleation and find that, contrary to the M ¼ 0 case, the trajectory does not correspond to
the open universe slicing of dS. We briefly discuss the relevance of our results to the string landscape.
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I. INTRODUCTION

Understanding the vacuum state of our Universe is of
paramount importance. The vacuum energy determines in
great part the geometry of spacetime once gravity is
considered. Quantum transitions between states of different
vacuum energies should provide fundamental information
on how to understand the vacuum states in a fully fledged
theory of quantum gravity. In particular it should help us to
better understand the string theory landscape.1

Most of the progress in this direction has been made by
using semiclassical techniques. In particular, the Euclidean
approach pioneered by Coleman and collaborators [5]
borrows results from nongravitational field theories [6,7]
and makes a concrete proposal for the transition rate per

unit volume of such a quantum transition. For the simplest
setup of a scalar field theory with a potential energy with
two minima A and B with different values of the vacuum
energy VA > VB the Coleman–De Luccia (CDL) prescrip-
tion [5] for the transition rate is

PA→B ∝ e−½SðbounceÞ−SðAÞ�=ℏ; ð1:1Þ

where SðbounceÞ refers to the Euclidean action evaluated at
the instanton solution (bounce) that mediates between the
two vacua, and SðAÞ is the Euclidean action evaluated at
the background spacetime A. The process amounts to the
creation of a bubble of vacuum B in the background of
vacuum Amediated by the bounce. The explicit calculation
boils down to determining the bounce as a solution of the
Euclidean equations and plugging it into Eq. (1.1). We
emphasize that Eq. (1.1) is only a proposal and lacks an
explicit derivation.
In principle the same instanton can mediate the up-

tunneling transition, from B to A [8],

PB→A ∝ e−½SðbounceÞ−SðBÞ�=ℏ; ð1:2Þ
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1See [1] for a recent review of string cosmology including
attempts to obtain de Sitter space in string theory. For alternatives
such as quintessence see for instance [2–4].
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and cancel in the ratio of transitions

PB→A

PA→B
∝ e½SðBÞ−SðAÞ�=ℏ: ð1:3Þ

However, it has been argued that only in the case in which
both vacuum energies are positive [de Sitter (dS) to
de Sitter, i.e., dS → dS transition] is up-tunneling allowed
since otherwise the background contribution SðBÞ is
negative and infinite, implying PB→A → 0 [8]. In the
allowed case

PB→A

PA→B
∝ e½SðBÞ−SðAÞ�=ℏ ∝ e−½SB−SA�=ℏ; ð1:4Þ

where SA ¼ π=H2
A, SB ¼ π=H2

B are the entropies of the
two de Sitter spaces and H2 ¼ Λ=3 determines the horizon
radius RdS ¼ 1=H for a dS space [9]. Equation (1.4) is the
statement of detailed balance: the ratio of probabilities is
determined by the corresponding number of available states
that is measured by the exponential of the entropies.
From this perspective, the fact that there are no up-

tunneling vacuum transitions starting from Minkowski M
or anti–de Sitter (AdS) spacetimes corresponds to the fact
that, contrary to the case of de Sitter space, the volumes of
both AdS and M are infinite. This implies that the cor-
responding background actions SðBÞ diverge SðBÞ → −∞
and the transition rate vanishes.2

Note that, following the dS analogy, this is consistent
with assigning an infinite entropy to both M and AdS.3

However, Eq. (1.1) is only the result of an educated guess
and it is not derived from a well-defined prescription in
quantum gravity4; therefore we should be open to the
possibility that it may not fully capture the relevant
physics.
Note also that, contrary to dS, Minkowski and AdS do

not have horizons and therefore assigning an entropy in
terms of an area is not an option. In counting states, we
know that the Hilbert space H in both cases is infinite
which could indicate an infinite entropy. However, as
vacuum states both cases would be pure states with

vanishing entropies.5 Therefore, thinking in terms of
entropies we may ask two different questions: what is
the transition rate between maximally mixed states in the
Hilbert space or what is the transition rate only from the
vacuum state (a pure state). In the latter, the entropy
vanishes and the corresponding up-tunneling amplitude
is allowed. We will see that this is what is obtained once we
use the Hamiltonian approach rather than the Euclidean
approach to compute vacuum transitions.
In the Hamiltonian approach developed by Fischler,

Morgan, and Polchinski (FMP)6 [17,18] (see also [16,19]),
vacuum transitions are defined as generalizations of the
standard WKB method in quantum mechanics. This method
has the advantage that the transition rate is actually computed
(not guessed) following the standard WKB approach. No
Wick rotations to Euclidean spaces are needed, nor any
assumption about the dominant instanton contribution needs
to be made.
On the other hand, the Hamiltonian approach so far has

not been developed beyond the brane/thin wall case. For
example the more general setup in terms of a potential with
two minima, studied by CDL, has not yet been addressed in
this formalism. The Hamiltonian approach has only been
developed for the simplest setup of two spacetimes of
different cosmological constants ΛA, ΛB separated by a
wall of tension κ that determines the bubble.
In any case, this is enough for our purposes in this paper.

Precisely this simple setup is what allows the calculations
to be explicit and reliable. This is because after solving the
energy and momentum constraints the problem reduces to a
quantum mechanics problem with a single degree of
freedom: the location of the wall R̂. The resulting equation

of motion is simple: ˙̂R
2 þ VðR̂Þ ¼ −1, where VðR̂Þ is a

calculable function of R̂ determined from the parameters of
the metric and the wall tension [20]. Then the standard
quantum mechanics rules apply in terms of a transition
through a barrier for a potential energy VðR̂Þ.
We should emphasize at this point that in quantum

gravity there is no a priori notion of time and it is not
possible to discuss a transition rate as such. What we can do
instead is to calculate the ratio or squares of wave functions
for different configurations and interpret this relative
probability as s transition probability. So in this approach2Note that assuming that the partition function is approximated

by one dS spacetime, the Euclidean action is SE ¼ βF ¼ βE − S.
If E ¼ 0 then SE ¼ −S.

3It should be noted however that assigning infinite Euclidean
action to Minkowski and AdS is a consequence of ignoring the
infrared regulator that Gibbons and Hawking [9,10] included in
their calculation of black hole entropy. To get the well-known
formula for black hole entropy [in Minkowski (M) or AdS space]
one needs this regulator which effectively implies that the
Euclidean action and hence the entropy of empty M or AdS space
is zero. For a recent review of these entropy calculations aswell as a
Hamiltonian version which gives the same result see [11].

4Also the assumption that the bounce solution in gravity
inherits the Oð4Þ symmetry that was derived for flat space field
theory is not justified.

5In principle we can assign vanishing entropy to a full dS
spacetime also; however in practice we are interested in the
regions that are accessible to a given observer which has no
access to the region beyond the horizon. Tracing out the states
beyond the horizon gives rise to a nonvanishing entropy.

6The FMP calculation was an attempt to understand from first
principles in the Hamiltonian framework the singular instanton
calculation of Farhi, Guth, and Guven (FGG) [12] whose validity
was questioned even by the original authors. Further concerns
about the validity of both FMP and FGG have been raised over
the years [13–15]. See [16] for addressing the concerns in [13].
We will address the points raised by [15] in Sec. III D.

CÉSPEDES, DE ALWIS, MUIA, and QUEVEDO PHYS. REV. D 109, 105027 (2024)

105027-2



the transition probability from a state A to B is defined as
the ratio of the two squares of the corresponding wave
functions:

PA→B ¼ jΨðR̂2Þj2
jΨðR̂1Þj2

; ð1:5Þ

where R̂1 and R̂2 are the two turning points that are
determined from the potential barrier VðR̂Þ, see the left
panel of Fig. 1. The classical picture is that the brane, which
contains inside it spacetime B, is nucleated with R̂ ¼ 0 in
spacetime A, grows to a radius R̂1, is reflected back and
collapses back to zero. There is also a classical trajectory
where the brane comes in from infinity with infinite size (at
least in a noncompact space such as a black hole space) hits
the barrier at R̂2 and is reflected back. Quantum mechan-
ically the brane can tunnel between these two classical
configurations. The wave functions can be written in terms
of the WKB approximation as in standard quantum
mechanics

ΨðR̂Þ ¼ aeI þ be−I; ð1:6Þ

where I ¼ iS is i times the action evaluated at R̂. For the
case when one of the two exponentials dominate, the
transition rate can be written in terms of a difference
between two actions, similar to Eq. (1.1) but as we will see
they differ in important ways.
In the next sections we will provide a short summary of

this prescription and its application to explicitly compute
the transition probabilities between vacuum states, we will
also include transitions between spacetimes with black
holes, and in the case that the true vacuum is de Sitter we
will study its geometry.

At this point it behooves us to clarify a point which may
cause some confusion. Some of our results pertaining to
empty spaces (i.e., with no black hole) are obtained by
starting from spaces which have a black hole and taking the
limit of the black hole massM going to zero. The reason for
this is that an initial classical region exists only when the
black hole mass is nonzero (see the left panel of Fig. 1).
When the black hole mass is zero the initial classical region
disappears as in the right panel of that figure. Thus it is only
for a nonzero mass that the correspondence with standard
quantum mechanical tunneling arguments apply. This limit
is taken in well-defined expressions for the WKB factor (in
the nonzero mass case) and there is no singularity anywhere
in that function, so that the limit is well defined. There is no
breakdown of the EFT since the expressions in question
involve values of R̂ that are far from the horizon. One might
be concerned that the horizon curvature for small Planck
sized black holes is at the Planck scale, since for the validity
of the EFT R…:R…: ∼ ðGMÞ2=R6 ∼ R2

s=R6 < 1=l4P or R
6 >

l4PR
2
s (where Rs is the horizon radius). The values of R̂ (the

positions of the brane at the turning points) that enter into
the expressions for the tunneling exponent B in the black
hole space times certainly satisfies this inequality and
hence the limit M ∼ Rs → 0 is well defined.
Another point that needs some clarification is the mean-

ing of nothing as used in this paper. We have followed [21]
in identifying this as the limit of AdS space when the
cosmological constant goes to negative infinity. In that
reference however the spacetime is regarded as four-
dimensional AdS times a compact space. Our discussion
on the other hand is strictly in four dimensions so nothing
for us is still four-dimensional spacetime but with no
geometry. This is in fact the concept of nothing used in
the original works on universe creation [22–26]. Of course
our ultimate goal in this series of studies is to extend this
work to full string theory in which case clearly we would

FIG. 1. Two realizations of the potential for the bubble wall R̂. On the left, a bubble is materialized in region A and grows until it
reaches the turning point R̂1 and classically bounces but quantum mechanically can tunnel to region B at the second turning point to
continue expanding. The WKB approximation can be used in all the regions of the potential outside and inside the barrier. This is a
typical situation for black hole geometries. On the right there is only one turning point (the first turning point has moved to zero) and the
bubble materializes directly in state B. This is a typical potential for pure dS or AdS that can be obtained by setting the black hole mass to
zero from the black hole geometry.
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have to generalize our definition of nothing. Indeed without
actually giving some restrictions on nothing it would not be
possible to give a meaningful definition of (relative)
probabilities for the creation of a Universe such as ours.
Let us summarize the main results of this article:
(1) We explicitly compute the rates for transitions be-

tween any of dS and AdS states including both up and
down tunneling and provide explicit expressions for
each of the transition rates. The cases corresponding
to up tunneling from AdS are new results whereas the
others are known and wherever the nonvanishing
result is known we agree with the previous results in
the literature (see for instance [16,19]).

(2) We consider Minkowski spacetime M in three differ-
ent limits. First, starting from pure dS with curvature
Λ > 0 and taking the limit Λ → 0: in this case we
obtain vanishing up-tunneling transition as in the
Euclidean case, as computed already in [16,19].
Second, we start with an AdS spacetime with curva-
ture Λ < 0 and take the limit Λ → 0. In this case we
get a finite transition amplitude. We interpret the
results by noticing that in the dS limit case, the entropy
S ∝ 1=

ffiffiffiffi
Λ

p
→ ∞ whereas in the AdS limit case the

background contribution vanishes. This corresponds
to a vanishing entropy for AdS that is inherited in the
Minkowski limit. The third limit is the one taken by
FMP corresponding to the M → 0 of Schwarzschild
spacetime. This coincides with the AdS limit and
gives the same finite transition rate.

(3) Having computed up-tunneling transitions from AdS
we also compute the limit Λ → −∞. In this case up
tunneling to dS gives the well-known Vilenkin7 and
Hartle-Hawking [22–26] transitions from nothing to
dS. This Λ → −∞ limit is consistent with the
proposal of Brown and Dahlen [21] for a field
theoretic definition of “nothing” precisely as AdS
with infinite curvature, motivated by an interpreta-
tion of the bubble of nothing transition.8 Therefore
we find consistency between the two definitions of
nothing (the decay to the bubble of nothing and the
creation of dS from nothing). Furthermore we also
explicitly compute transitions from nothing to AdS
and M, which were previously thought not to be
allowed.

(4) A nontrivial check of our results is that we obtain
detailed balance in all the transitions as long as
M → 0.

(5) A further nontrivial check of our results is to
generalize the transitions to include mass M black

hole backgrounds, which are the most general
solutions with spherical symmetry which is the
symmetry of the bubble/wall system. In this case
we can compute the transitions and reproduce our
previous results in the limit of M → 0.

(6) In general, the black hole transitions depend on three
regions for the values of M. Generalizing FMP we
compute the bulk contribution to the transitions in all
regimes. Contrary to the M ¼ 0 limit some transi-
tions are not allowed. However the Schwarzschild–
de Sitter (SdS) transition SdS → SdS is allowed and
reproduces previous proposals. In particular it is
consistent with detailed balance for small black
holes (to be defined below). This point has been
recently questioned in [15]. A detailed discussion
of the issues raised in this reference is given in
Sec. III D.

(7) When the true vacuum is de Sitter we compute the
trajectory of the wall. We will see that in the case
when M ≠ 0, contrary to that when M ¼ 0, we find
that it does not follow a geodesic that favors open
universe slicing.

The order of the presentation is as expressed in the table
of contents. In the next chapter we review the Hamiltonian
approach to vacuum transitions of FMP and the well known
dS to dS and AdS transitions. We then consider in detail
transitions from AdS and Minkowski considering the
different limits of obtaining Minkowski from Λ → 0
starting from dS or AdS and discuss the differences.
Finally, we consider the jΛj → ∞ limit of AdS transitions
and discuss the interpretation in terms of bubbles of nothing
where we reproduce the Hartle-Hawking and Vilenkin
wave functions. Chapter 3 extends the results to the general
case in which the geometry of the bubble is a black hole.
All the different transitions are discussed in this case. The
SdS → SdS case is technically more complicated due to the
different horizons. It is done in full detail and in order to
facilitate reading, we have moved it to an Appendix that
includes all technical details.
In general, our results imply that populating the string

landscape is straightforward and provide some hints on
how this population may happen. In particular it incorpo-
rates the creation from nothing on the same footing as the
other transitions.

II. HAMILTONIAN APPROACH
TO VACUUM TRANSITIONS

Let us begin by reviewing vacuum transitions from the
Hamiltonian approach as initiated by FMP [18]. Starting
with the spherically symmetric metric

ds2 ¼ −N2
t dt2 þ Lðr; tÞ2ðdrþ NrdtÞ2

þ Rðr; tÞ2dΩ2
2; ð2:1Þ

7Also known as tunneling or Vilenkin-Linde wave function.
8However, they argued that the up-tunneling transition is

forbidden and questioned the validity of the Hartle-Hawking
and Vilenkin setups. Our conclusion in this work is that not only
are these transitions allowed but that they reproduce exactly the
same results as Hartle-Hawking and Vilenkin wave functions.
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in order to address the vacuum transition problem FMP
considered the bulk-brane system with the brane (or wall) at
r ¼ r̂ separating two regions with different cosmological
constants Λ� and the following action:

S ¼ Sbulk þ Sbrane

−
Z

d4x
ffiffiffiffiffiffi
−g

p �
ΛþΘðr − r̂Þ þ Λ−Θðr̂ − rÞ�; ð2:2Þ

with standard Einstein-Hilbert Sbulk and brane action Sbrane,
respectively, and with Θ the step function.
FMP reduced the vacuum transition problem to solv-

ing for the quantum mechanics of the brane (assumed
spherically symmetric) with a wave function ΨðR̂Þ that
solves the Wheeler-DeWitt equation. In the leading WKB
approximation this implies solving the momentum and
Hamiltonian constraints while satisfying the matching
conditions at the brane [20]

R0ðr̂� ϵÞ
L̂

¼ 1

2κR̂
ðÂI − ÂOÞ ∓ κ

2
R̂: ð2:3Þ

Here κ ¼ 4πGσ, where σ is the tension of the wall
and ÂI;O are the static metric functions evaluated at
r ¼ r̂. The indices I, O refer to interior and exterior of
the wall:

Aα ¼ 1 −
2GMα

R
∓ H2

αR2; α ¼ I;O; ð2:4Þ

where �H2
α ¼ 8πG

3
Λα, with upper sign corresponding to

de Sitter and the lower one to anti–de Sitter, and Mα is the
standard integration constant corresponding to a black hole
mass. Using the explicit expression for πL (in the gauge
Nr ¼ 0) one can write the (first integral of the) equation of
motion for the brane:

˙̂R
2 þ V ¼ −1; ð2:5Þ

V ¼ −
1

ð2κR̂Þ2 ððÂI − ÂOÞ − κ2R̂2Þ2 þ ðÂO − 1Þ; ð2:6Þ

¼ −
1

ð2κR̂Þ2 ððÂI − ÂOÞ þ κ2R̂2Þ2 þ ðÂI − 1Þ; ð2:7Þ

which is unbounded from below with a local maximum and
one or two turning points at V ¼ −1 depending on the
parameters Hα, Mα. So the equation V ¼ −1 gives the
(two) turning points for R̂, R1 < R2 for the classical motion
of the brane. At a turning point we see from Eq. (2.6) that
ÂO > 0 and from Eq. (2.7) that ÂI > 0.

The classical turning points of the geometry correspond
to vanishing conjugate momenta for L (πL ¼ 0, which also
implies πR ¼ 0) [17], which gives

R02

L2
¼ AðRÞ ¼ 1 −

2MG
R

∓ H2R2: ð2:8Þ

For r ¼ r̂ these correspond to the turning points of the
potential (i.e., the solutions of V ¼ −1).
The sign of R0ðr̂Þ plays an important role since R0 is

proportional to the extrinsic curvature K̂ and indicates if the
wall at r ¼ r̂ is bent towards the interior or exterior regions.
The transition probability9 from the initial state B to the

nucleated state N (including the two spacetimes and the
wall) can be written as

PðB → N Þ ¼ kΨðN Þk2
kΨðBÞk2 ; ð2:9Þ

where the numerator can be identified as the squared wave
function at the turning point R2 and the denominator with
that at R1, as in the previous section. These can be written in
the WKB approximation as

Ψ ¼ aeI þ be−I; ð2:10Þ

where I ¼ iS. For the numerator we will have a bulk
contribution IB and a boundary contribution IW, which take
the form

IB ¼ η

G

Z
r̂−ϵ

0

drR

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AIL2 − R02

q
− R0cos−1

�
R0

L
ffiffiffiffiffi
AI

p
��

þ
Z

rmax

r̂þϵ
dr½I → O�; ð2:11Þ

IW ¼ η

G

Z
δR̂ R̂ cos−1

�
R0

L
ffiffiffiffî
A

p
�				r̂þϵ

r̂−ϵ
: ð2:12Þ

Using Eq. (2.3) we can write explicitly

9Note that the Wheeler-DeWitt equation is like a time-
independent Schrodinger equation in that there is no notion of
time evolution. Consequently there is no obvious way to discuss
the rate/lifetime of a state. In the case of nongravitational field
theory too, in order to discuss a rate one needs to construct a wave
packet. For a discussion of this and for a critique of the standard
Coleman approach to tunneling in field theory, see [27,28].
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IW ¼ −
η

G

Z
dRRcos−1

�2G
R ðMO −MIÞ þ R2ð�H2

O ∓ H2
I − κ2Þ

2κR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GMO

R ∓ H2
OR

2

q �

þ η

G

Z
dRRcos−1

�2G
R ðMO −MIÞ þ R2ð�H2

O ∓ H2
I þ κ2Þ

2κR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GMI

R ∓ H2
IR

2

q �
: ð2:13Þ

The total action is given by10

Itot ¼ IB þ IW; ð2:14Þ

Note that at the turning points R02 ¼ L2A and therefore
the term in the expression for IB the square root term
vanishes and the argument of cos−1 is �1. So the only
nonvanishing contribution corresponds to R0=L¼−

ffiffiffiffi
A

p
≤0.

This is a very strong constraint on the allowed values of the
extrinsic curvatures. On the turning point geometry πL ¼ 0
the first term vanishes and the second term is nonzero only
when the argument of the inverse cosine is −1. This means
that the bulk integral is given by

SB ¼ iηπ
G

�Z
r̂

0

dr
dR
dr

Rθð−R0Þ þ
Z

rmax

r̂
dr

dR
dr

Rθð−R0Þ
�
;

ð2:15Þ

¼ iηπ
2G

½ðR̂2−R2ð0ÞÞθð−R̂0
−ÞþðR2ðrmaxÞ− R̂2Þθð−R̂0þÞ�:

ð2:16Þ

Note that the sign of R0 in the first line is determined by
continuity and the sign of R̂0

�, which is determined by the
matching conditions and fixed by the geometry on either
side of r̂. It should also be noted that if the geometry on
either or both sides has horizons then Rð0Þ may have to be
replaced by the solution of AI ¼ 0 (i.e., the smallest
horizon) and RðRmaxÞ by the solution of AO ¼ 0 since at
a horizon the sign of R0 will change and will no longer
contribute to the integral.
A further condition is to guarantee that the bubble radius

at the turning points is real. Both conditions play a role in
the concrete cases we will study next.

A. dS to dS transitions

The simplest transitions to study are dS to dS for which
both down and up tunneling are allowed. This correspond

to the particular cases in which both black hole masses
vanish, MI ¼ MO ¼ 0. In the case of an initial dS (with
H ¼ HO) to a final dS (with H ¼ HI) we are in the limit
MO;I → 0 had only one turning point so R1 → 0; R2 ≡ R0

with

R2
0 ¼

4κ2

ðH2
O −H2

I Þ2 þ 2κ2ðH2
O þH2

I Þ þ κ4
: ð2:17Þ

Also

AO ¼ 1 −H2
OR

2; AI ¼ 1 −H2
IR

2; ð2:18Þ

V¼−
1

4κ2
R̂2½ðH2

O−H2
I Þ2þ2κ2ðH2

OþH2
I Þþ κ4�; ð2:19Þ

and there is no initial turning point. Also the matching
conditions are now

R̂0
�
L

¼ 1

2κR̂
ðH2

O −H2
I ∓ κ2ÞR̂2 ≡ c�R̂: ð2:20Þ

In this case we were able to evaluate explicitly the wall term
as well as the bulk term. For a general value of R̂ the latter
can be directly evaluated from Eq. (2.15) and gives

IBðR̂Þ≡iSBuðR̂Þ
¼ ηπ

2G
½ðθð−R̂0þÞ−θð−R̂0

−ÞR̂2þθð−R̂0
−ÞH−2

I �; ð2:21Þ

where the subscript Bu refers to the bulk component. To get
the tunneling factor we need to find the difference between
the actions evaluated at the two turning points. However
in the dS to dS case there is no initial turning point—so in
effect it becomes R̂ ¼ 0. To make these WKB tunneling
calculations well defined in the absence of an explicit
parametrization as in [16], one should really consider this
as the limit of the case with an initial turning point before
which there is a classical region. In other words this should
be regarded as coming from the M → 0 limit of the
corresponding case with a black hole (see the Appendix)
where we do have two turning points—R1, R2, with
R1 < R< < R> < R2, where R<, R> are given in
Eq. (A13). In the limit where the black hole masses go
to zero R1 < R< → 0. Furthermore (see Fig. 5) we see that
R̂0
− at R̂ ¼ R1 is positive (and so is R̂

0þ). Hence at this point

10Unfortunately it is possible to evaluate these integrals
analytically only in the dS to dS case, as was done in our
previous work [16]. In the general (or even in the black hole to dS
case as in FMP) only the turning point integrals can be evaluated.
It would be interesting to study these integrals numerically in the
general case and we leave this to future work.
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θð−R̂0
�Þ are both zero. Hence with this definition of the

initial turning point in the limit where the black hole masses
are zero we have from Eq. (2.21), IBðR̂ ¼ R1 → 0Þ ¼ 0.
Thus defining the difference of the two turning point
actions I as IðR2Þ − IðR1Þ≡ IðR2 − R1Þ, we have (with
R2 ¼ R0; R1 ¼ 0)

IBðR0 − 0Þ≡ iSBuðR0 − 0Þ
¼ ηπ

2G
½ðθð−R̂0þÞ − θð−R̂0

−ÞR̂2 þ θð−R̂0
−ÞH−2

I �:
ð2:22Þ

Equation (2.21) is however not symmetrical between the
outside and the inside of the spherical brane. This sym-
metry is a property of the full bulk (and wall) integrals [see
Eq. A 6 in the Appendix] before imposing any turning point
conditions. If we do impose this symmetry even at the
turning point geometry ðwhereR0=LÞ ¼ � ffiffiffiffi

A
p Þ) then the

above becomes

IBðR̂Þ≡ iSBuðR̂Þ
¼ ηπ

2G
½ðθð−R̂0þÞ − θð−R̂0

−ÞR̂2 þ θð−R̂0
−ÞH−2

I

þ θðR̂0þÞH−2
O �: ð2:23Þ

This formula explicitly displays the symmetry underO↔I
which implies R̂� ↔ −R̂∓. This was also the result was
obtained in [16] where an explicit parametrization was used
to compute the action at a general point (i.e., neither the
geometry nor the brane were at a turning point)11 and hence
it automatically had this symmetry. Since we will not have
the luxury of such a parametrization in the subsequent
analysis it behoves us to understand the results in terms of
general properties of the integrals.
To find the bulk action at the initial point we have to put

R̂ ¼ 0 in Eq. (2.23): However as argued below Eq. (2.21),
θð−R̂0

−Þ → 0 and θð−R̂0þÞ → 0, when R̂ ¼ R1 → 0.

IBðR̂ ¼ 0Þ ¼ ηπ

2G
H−2

O ; ð2:24Þ

In this case we have

IBðR0 − 0Þ≡ iSBðR0 − 0Þ
¼ ηπ

2G
½ðθð−R̂0þÞ − θð−R̂0

−ÞR̂2 þ θð−R̂0
−ÞH−2

I

− θð−R̂0þÞH−2
O �: ð2:25Þ

The expressions in Eqs. (2.22) and (2.25) differ when R̂0þ
is negative.12 As explained in detail in the Appendix this
difference comes from the fact that the explicit paramet-
rization used in [16] automatically includes the possibility
of the brane being created behind the horizon (of an
observer at R ¼ 0) in the outside dS space.
Also, following [16], the integrals appearing in the

expression for IW in Eq. (2.13) can be done analytically,
which we reproduce here for further use:

IWjtp¼−
η

G

Z
R0

0

δR̂R̂

�
cos−1

�
R̂0þ

L
ffiffiffiffiffiffi
ÂO

q �
−cos−1

�
R̂0
−

L
ffiffiffiffiffi
ÂI

p ��
;

¼−
ηπ

4G
R2
0

�
ϵðR̂0þÞ

1þjcþjR0

−
ϵðR̂0

−Þ
1þjc−jR0

þ2ðθð−R̂0þÞ−θðR̂0
−ÞÞ

�
; ð2:26Þ

where ϵðR̂0
�Þ refer to the sign of R̂0

�.
Therefore, for general dS (and AdS) transitions the brane

contribution being local is finite and can be computed
explicitly:

IWðR0 − 0Þ ¼ η

G

�
π

2
R2
0ðΘð−R̂0

−Þ − Θð−R̂0þÞÞ

þ π

4H2
I
ϵðR̂0

−Þ −
π

4H2
O
ϵðR̂0þÞ

þ −π
ðH2

O −H2
I Þ2 þ κ2ðH2

O þH2
I Þ

8κH2
OH

2
I

R0

�
:

ð2:27Þ

The total turning point action difference between the turning
pointR0 and 0 is then given by addingEqs. (2.25) and (2.27).
The transition probability is then determined by P ∝ eB

with B ¼ 2ð½IB þ IW�ðR0 − 0ÞÞ, giving

B ¼ −
ηπ

G


fðH2
O −H2

I Þ2 þ κ2ðH2
O þH2

I ÞgR0

4κH2
OH

2
I

−
1

2
ðH−2

I −H−2
O Þ

�
: ð2:28Þ

Note that R0 and IB and IW are symmetric under the
exchange HI ↔ HO even though the transition probability

11In fact with the explicit parametrization used in that paper
putting the geometry at a turning point implied that the brane was
also at a turning point. In other words the equation above is valid
only at the turning points. This is a consequence of the relation

1 −H2
I;Oa

2 ¼ 1−R̂2=R2
0

1−c2−;þR̂
2 (with the c constants), which shows that

when the geometry is at a turning point a ¼ H−1 then so is the
brane, i.e., R̂ ¼ R0. Furthermore it shows that at R̂ ¼ 0 a ¼ 0,
which is allowed since under the barrier dS space is a Euclidean
four space.

12Note however that if R̂0þ is negative then the last term of
Eq. (2.23) is zero and the difference of the turning point actions is
the same as before.
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e−B is not symmetric. Therefore the only difference
between up and down tunneling comes from the action
at R̂ ¼ 0, which is equal to the corresponding (η times the)
entropy. Hence (choosing η ¼ þ1)

Pup ¼ eðSfv−StvÞPdown; ð2:29Þ

where Sfv and Stv refer to the entropies of the false vacuum
(higher Λ) and true vacuum (smaller Λ), respectively
[where the entropy for dS space is taken to be
S ¼ π=ðGH2Þ]. So this is the statement of detailed balance
and corresponds to the choice of Hartle-Hawking (HH)
boundary conditions as discussed in [16]. If on the other
hand we had used the tunneling boundary conditions of
Vilenkin and Linde η ¼ −1, we would have had to put
(effectively) the coefficient a in Eq. (2.10) to zero. In this
case we would have had the inverse of detailed balance.
This is essentially because the wave function for tunneling
to a dS space from nothing is e−S=2 rather than eþS=2 as we
observed earlier. We speculate that this difference is due to
the fact that the HH wave function is a superposition of
outgoing and incoming waves, so it is more appropriate for
analysis in terms of equilibrium thermodynamics than the
tunneling wave function which is purely outgoing. For
more details see [16].

B. dS to Minkowski

For a dS to dS transition corresponding to horizons HO
and HI, respectively, we can take the limit of HI → 0 to
obtain the dS to Minkowski transition. Expanding in
powers of ε ¼ HI=HO the turning point radius from
Eq. (2.17) is

R0 ≃
2κ

H2
O þ κ2

�
1þH2

OðH2
O − κ2Þ

ðH2
O þ κ2Þ2 ε2

�
: ð2:30Þ

Plugging this into the equation for B, Eq. (2.28), and
setting the limit ε → 0 we get

B ¼ −
ηπ

2GH2
O

�
κ4

ðH2
O þ κ2Þ2

�
; ð2:31Þ

which is the well-known dS to Minkowski result
[5,16,18,19]. Note however that this result is non-trivial
since it required a cancellation between two divergent terms
proportional to 1=ε2. In the up-tunneling case this cancel-
lation does not occur and it can be seen as the source of the
general belief that up tunneling from Minkowski is for-
bidden. We will identify the source of this divergence and
challenge this belief later on.

C. dS to AdS

Transitions among AdS spaces have been studied in less
detail in the Hamiltonian approach. They can be treated in a

similar way as the dS transitions changing appropriately the
signs of H2 in the original Eqs. (2.17)–(2.20). Here we will
study them in more detail with the goal of writing explicit
expressions for the transition rates. Let us start with dS to
AdS transitions.
Let us get back to the general formulas for dS to dS

tunneling, Eq. (2.11), that were derived using the FMP
formalism in De Alwis-Muia-Pasquarella-Quevedo (see
also [19]).
On the turning point geometry πL ¼ 0 the first term

vanishes and the second term is nonzero only when the
argument of the inverse cosine is −1. This means that the
bulk integral is given by

SB ¼ iηπ
G

�Z
r̂

0

dr
dR
dr

Rθð−R0Þ þ
Z

rmax

r̂
dr

dR
dr

Rθð−R0Þ
�
;

ð2:32Þ

¼ iηπ
2G

½ðR̂2 − R2ðbÞÞθð−R̂0
−Þ þ ðR2ðcÞ − R̂2Þθð−R̂0þÞ�:

ð2:33Þ

Here we have defined r ¼ b to be the lowest value of the
parameter for which R0 is negative and c is the highest value
of the parameter for which R0 is negative. Note that the sign
of R0 in the first line (and hence its parametrization) is
determined by continuity and the sign of R̂0

�, which is
determined by the matching conditions and fixed by the
geometry on either side of r̂. It should be also be noted that
if the geometry on either or both sides has horizons then
RðbÞ should be replaced by the solution (horizon) to AI ¼ 0
and RðcÞ by the solution to AO ¼ 0.
In the current case dS has a horizonR2

D ¼ H−2
dS while AdS

has no horizon. Let us consider the transitionA → BwhereA
is de Sitter and B is AdS. Thus (recall that H2 ≡ 8πGΛ

3
is

positive for dS and negative for AdS), AO ¼ 1 −H2
AR

2 and
AI¼1−H2

BR
2¼1þjH2

BjR2 and R̂�¼ 1
2κðH2

AþjHBj2∓κ2ÞR̂.
The last equation implies that R̂0

−=L > 0. Thus the first term
in Eq. (2.16) is zero. Also the step function in the integral
requires R to be a decreasing function of r to contribute, and
there is internal horizon in empty dS (no black hole)
RðrmaxÞ ¼ 0. The latter region of course gives no contribu-
tion to the integral. Hence we have [note that from Eq. 4, R̂0þ
is negative and remains negative in the limit M → 0 for all
R ≥ 0]

SBðR̂Þ ¼
iηπ
2G

ð0 − R̂2Þ; SBð0Þ ¼
iηπ
2G

ð0Þ: ð2:34Þ

Note that a potential divergence (since AdS is non-
compact) is averted since the step function in the first term of
Eq. (2.16) is zero. Subtracting the second equation from the
first and adding the wall contribution we thus get
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BdS→AdS ¼ ηπ

G


fðH2
A þ jH2

BjÞ2 þ κ2ðH2
A − jH2

BjÞgRo

4κH2
AjH2

Bj
−
1

2
ðH−2

A þ jH−2
B jÞ

�
; ð2:35Þ

with R0 given by Eq. (2.17) with the above substitution
H2

B → −jH2
Bj. Also in this case there is no constraint on the

tension κ. Note that this formula is in agreement with that
calculated by Brown and Tetelboim [29] using Euclidean
methods. It is in fact exactly the same as the dS to dS formula
with H2

B → −jH2
Bj.

As in the case of dS to dS the configuration after the
transition is actually the patching together of the original dS
with an AdS space separated by a wall. The latter will
however collapse if any matter is introduced as argued
in [5]. After the collapse we will be left with a segment of
dS space bounded by an end of the world brane. On the
other side of the brane there is no geometry left and is
equivalent to Witten’s bubble of nothing [30].

D. AdS to AdS

The AdS to AdS transitions can be analyzed similarly to
the previous ones. However for transitions between AdS
states there is a constraint that needs to be satisfied to
guarantee that the turning point radius R0 is real. In this
case H2

I ¼ −jHIj2 < 0, H2
O ¼ −jHOj2 < 0. Now we have,

from Eq. (2.17),

1

4

�
1

κ
ð−jH2

Oj þ jH2
I jÞ − κ

�
2

> jH2
Oj;

i.e.,

κ<
			 ffiffiffiffiffiffiffiffiffi

jH2
I j

q
−

ffiffiffiffiffiffiffiffiffiffi
jH2

Oj
q 			 or κ>

			 ffiffiffiffiffiffiffiffiffi
jH2

I j
q

þ
ffiffiffiffiffiffiffiffiffiffi
jH2

Oj
q 			: ð2:36Þ

In this case,

SB½R̂� ¼
ηπ

2G
½ðR̂2−R2ð0ÞÞθð−R̂0

−ÞþðR2ð∞Þ− R̂2Þθð−R̂0þÞ�:
ð2:37Þ

Also from Eq. (2.20) (with H2 → −jH2j) we see that for
down tunneling jHIj2 > HOj2, R̂0

− and R̂0þ are both positive
for small κ, so we get SB½R̂� ¼ SB½0� and therefore the bulk
contribution vanishes and the total rate comes from the wall
contribution: Itot ¼ IW.
For down tunneling we then have B ¼ 2IW:

B ¼ −
ηπ

2G

�ðjH2
I j − jH2

OjÞ2 − κ2ðjH2
I j þ jH2

OjÞ
2κjH2

I jjH2
Oj

R0

−
�

1

jH2
Oj

−
1

jH2
I j
��

: ð2:38Þ

Even though this looks very similar to the dS to dS
transition case note that the sign differences and the fact

that the bulk contribution vanishes make a major difference.
In particular note that for the up tunneling we have to
change jcþj to jc−j in Eq. (2.27) but also the signs of R̂0

� are
interchanged and therefore the amplitude does not change.
This means that

PAdS→AdS
up ¼ PAdS→AdS

down : ð2:39Þ

This is a new result and this relation is still trivially
consistent with detailed balance if we assign zero entropy
to AdS.

E. Minkowski to AdS

First let us look at the expression for the bubble radius
Eq. (2.17). Taking the limit H0 → 0 we get after putting
H2

I → −jH2
I j

R0 ¼
2κ

j − jH2
I j þ κ2j

�
1 −

H2
0ðκ2 þ jH2

I jÞ
ð−jH2

I j þ κ2Þ þOðH4
0Þ
�
:

Now since R0 ≥ 0 one should take R0 ¼
2κ=jκ2 − jHIj2j þOðH2

0Þ, but FMP ruled out the case
κ > jHIj (in this case it turns out that in the limit H0 → 0
the tunneling exponent B diverges), so let us focus on the
case jHIj > κ. Taking the limit H0 ¼ HA → 0 in (2.35)
with jHBj2 ¼ jHIj2 we get for the tunneling exponent,

B ¼ 2ðItotjtp − ĪÞ ¼ −
ηπ

2GjHIj2
�

2κ4

ðjHIj2 − κ2Þ2
�
; ð2:40Þ

in agreement with [5,18].
Let us look at this in stages, separating the bulk and

boundary (wall) terms. First we note that, for jHIj2 > κ2,
R̂0
� > 0. Thus we have IB ¼ ηπ

2G
1
H2

0

and Ī ¼ ηπ
2G

1
H2

0

so that

IB − Ī ¼ 0, hence the bulk contribution vanishes after
background subtraction and the transition probability is
fully determined by the wall contribution IW which in this
limit is

1

2
B ¼ IW ¼ −

ηπ

4GjHIj2
�

2κ4

ðjHIj2 − κ2Þ2
�
; ð2:41Þ

in agreement with Eq. (2.40) as expected.
Let us note the following issue regarding these transition

probabilities. We have that PðM → AdSÞ ∼ e−jBj. This is
the fact that the relative probability appears to tend to
unity the deeper the AdS minimum is, i.e., in the limit
jHIj2 → ∞. Of course the effective field theory breaks
down before this, i.e., for jΛj1=4 ≲MP (or the string or
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Kaluza-Klein scale if the theory is compactified string
theory). However given our previous result for up and down
tunneling between AdS spaces, and taking the initial AdS
space to be in the Minkowski limit, there is still a dynamic
equilibrium between Minkowski and AdS spaces, since
the up-tunneling probability is still equal to the down-
tunneling one.

F. AdS to dS/M

In order to avoid potential problems with the para-
metrization in this case, one needs to consider it as up-
tunneling to dS (A) from an AdS black hole in the limit
M → 0 (B). The latter is essentially the same as that studied
by FMP. Since both Minkowski and AdS have no horizon
the calculation in the Appendix (which is a reproduction of
the FMP one) for the small mass case (iii) applies and so
from Eq. (A4) (setting R1 ¼ Rs ¼ M ¼ 0),

SBuðR2 ¼ R0Þ − SBuðR1 ¼ 0Þ ¼ −
iηπ
G

ðH−2
A Þ: ð2:42Þ

In this case there is no constraint on the tension κ and
adding the wall term we get

BAdS→dS ¼ ηπ

G


fðjH2
Bj þH2

AÞ2 þ κ2ð−jH2
Bj þH2

AÞgRo

4κjH2
BjH2

A

þ 1

2

�
1

H2
A
−

1

jH2
Bj
��

; ð2:43Þ

with R0 again given by Eq. (2.17) with the substitution
H2

B → −jH2
Bj.

For jH2
Bj > jHAj2 and small κ the factor in parentheses in

the expression above for B is positive, so choosing η ¼ −1
we get an exponentially suppressed tunneling probability
and hence an exponentially enhanced lifetime and so
gravitational collapse is exponentially more likely than
tunneling to dS. However this depended on the choice of
η ¼ −1 which is not what one chose for the dS to dS case,
where the issue was settled (as discussed in Sec. 3 of [16]),
by arguing that this choice (which corresponds to the HH
wave function rather than the tunneling one), gives the
dominant contribution to the wave function (and indeed
was consistent with detailed balance). Here we cannot
make the same argument since that calculation depended
crucially on the compactness of the spatial sections of dS.
On the other hand detailed balance holds (see below) as

in the dS to dS case for the η ¼ 1 case. In this case this
quantum transition is exponentially more probable than the
gravitational collapse of AdS. Then we have a situation
where the AdS can tunnel to a configuration of AdS
separated by a wall/brane from a dS space with the AdS
eventually collapsing leaving behind a dS bounded by a
end of the world brane.

However it should be noted that the “Minkowski” limit
HA → 0 is in fact divergent BAdS→dS → ηπ

2G
1
H2

A
→ �∞. This

is to be expected since the limit is taken from the amplitude
for transition to a dS space whose horizon and hence
entropy diverges as the dS radius goes to infinity. This is in
contrast to the corresponding up tunneling from AdS to a
Minkowski space that is the limit of the AdS radius going to
infinity. Note that this limit has the same topology as M in
contrast to the infinite radius limit of dS which still has the
topology of a sphere.

G. From nothing and back?

In an interesting article, based on concrete cases of flux
compactifications in 6D, Brown and Dahlen [21] have
suggested interpreting “nothing” as the infinitely curved
AdS space (to which their flux compactified 6D theory
decays to). The argument is very intuitive and explicit since
they consider how the minimum of the scalar potential gets
reduced by reducing the quantized fluxes and the correspond-
ing geometry gets closer and closer to the bubble of nothing
geometry of Witten [30] until it reaches it in the limit of −∞
cosmological constant. This interpretation is very appealing
since it unifies the two concepts of nothing (the bubble of
nothing and the creation from nothing). Also from the
AdS/CFT interpretation, an infinite AdS curvature corre-
sponds to a vanishing central chargewhich would imply zero
degrees of freedom and fits well with the concept of nothing.
This interpretation is actually consistent with the min-

isuperspace “nothing” that was the starting point for the
“no-boundary” wave function HH or the tunneling wave
function of Vilenkin and Linde tunneling from nothing.
However their argument that up tunneling from AdS to dS/
M is prohibited (based on the noncompactness of the spatial
sections of AdS)13 is not necessarily valid since as we saw
earlier the FMP bulk contribution is zero at the turning
points so that the tunneling amplitude is actually finite. To
see this let us take the limit jH2

Bj → ∞ first in Eq. (2.17)
(with H2

O → −jH2
Bj, which gives R0 → 2κ=jH2

Bj) and then
substituting in Eq. (2.43) we get

BAdS→dS →
ηπ

G


fðjH2
BjÞ2g2κ=jH2

Bj
4κjH2

BjH2
A

þ 1

2

�
1

H2
A
þ 0

��
¼ ηπ

2G
1

H2
A
:

That is if we define as nothing the limit of AdS with
jHBj → ∞. We get

BNothing→dS ¼ ηπ

2G
1

H2
A
: ð2:44Þ

13In any case the argument depended on not including the
Gibbons-Hawking regulator term as in the Euclidean arguments
mentioned earlier.
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This is precisely the (log of the) Hartle-Hawking (for
η ¼ þ1) or the Vilenkin-Linde (for η ¼ −1) tunneling
factor for creating a universe from nothing.
Thus, we agreewith the proposal of [21] to identify the two

definitions of nothing, the limit of infinite curvature AdS as
representing the bubble of nothing and the nothing ofVilenkin
or Hartle-Hawking regarding the wave function of the
Universe interpretation as creation fromnothing. But contrary
to the claim of [21] in which creation from nothing does not
happen, we can reproduce the tunneling from nothing picture
by interpreting nothing as deep AdS as they did. It is
interesting to note that even though the bubble radius goes
to zero in this limit (which normally would have been
interpreted as signalling the absence of tunneling) the singu-
larity inB=2 cancels resulting in a finite tunneling probability.
Wemayquestion thevalidity of taking the limit jHBj → ∞

since the EFT is only valid up to energies smaller than the
Planck mass. But we can reproduce this result as the leading
term in an expansion in powers of ε2 ¼ H2

A=jHBj2 and δ2 ¼
κ2=jHBj2 with ε, δ ≪ 1 but still keeping jHBj ≤ MP.

1. Detailed balance in dS/AdS transitions

The results of the above subsections shows that detailed
balance holds for dS to and from AdS transitions provided
we assign zero entropy to empty anti–de Sitter space (as
one should expect given that empty AdS has no horizon). In
this case we have

PAdS→dS

PdS→AdS ¼
eB

AdS→dS

eB
dS→AdS ¼

exp
�
ηπ
2G

1
H2

A



exp

�
− ηπ

2G
1
H2

A



¼ eηðSdS−ðSAdS¼0ÞÞ; ð2:45Þ

which is the statement of detailed balance (taking η ¼ þ1).
Note that the result holds also in the limit HB → 0 which is
the Minkowski limit of AdS so that detailed balance holds
for transitions between dS and Minkowski spacetimes
provided of course that we assign zero entropy to empty
Minkowski space.

2. Comparison to Euclidean methods

In the Euclidean calculations (Cdl and BT) it appears that
up tunneling from AdS (or M) to dS is forbidden. However
that is because in those calculations the background action
is taken to be proportional to the volume of AdS space—
which is infinite. However as we see from Eq. (2.43) in the
WKB calculation the initial point is R̂ ¼ 0 so we had
SBð0Þ ¼ 0 rather than infinity. This is also consistent with
taking the limit of the black hole mass to zero in the
Schwarzchild anti-de Sitter (SAdS) to dS calculation of
Appendix A 2.
The difference in fact corresponds to the different

assignments of entropy to AdS space. Our calculations
(both the direct AdS to dS and the SAdS to dS) effectively
assigned zero entropy to empty AdS space. The Euclidean

calculation on the other hand effectively assigned infinite
entropy to empty AdS.

III. TRANSITIONS FROM BLACK HOLE
BACKGROUNDS

Let us now consider the most general situation allowed by
spherical symmetry, namely that the solution to Einstein’s
equations include a mass parameter M that appears as an
integration constant in the solution of the Hamiltonian
constraints that corresponds to a black hole mass. Since
the Schwarzschild solution implies the existence of a horizon
considering M ≠ 0 makes an important difference.14

A. SdS to SdS

As discussed above, the classical turning points for the
geometry occur at πL ¼ 0, i.e.,

R02

L2
¼ AðRÞ ¼ 1 −

2MG
R

−H2R2:

When r ¼ r̂ these are the turning points for the brane, i.e.,
the solutions of V ¼ −1. For 3

ffiffiffi
3

p
GM < H−1 the geometry

has two horizons Rb < Rc. We may identify Rs as the black
hole (Schwarzschild) horizon (becoming 2GM when
H → 0) while Rc is the cosmological horizon (becoming
H−1 when M → 0). We have

A ¼ −
H
R
ðR − R−ÞðR − RbÞðR − RcÞ;

R− < 0 < 2GM < Rb < 3GM < Rc:

We also see from the turning point equation V ¼ −1 that

RS < R1 < R2 < RD: ð3:1Þ

For the turning point geometries the bulk action SB
simplifies with the first term in Eq. (2.11) giving zero
and the second term contributes only when ϵðR0Þ ¼ −1,
i.e., whenever cos−1ð R0

L
ffiffiffiffiffiffi
AI;O

p Þ ¼ π. Thus we have

iSBðR̂Þ¼−
ηπ

G

�Z
r̂

0

drR0Rθð−R0
−Þþ

Z
rmax

r̂
drR0Rθð−R0þÞ

�
;

¼ ηπ

G

�Z
R̂

0

dRRθð−R0
−Þþ

Z
RðrmaxÞ

R̂
dRRθð−R0þÞ

�
:

ð3:2Þ

The general dS-black hole case is complicated. It is
discussed in detail in the Appendix—see Appendix A 2.

14Note that in following theHamiltonian approach, which at this
point is amenable to computation only in the extreme thin wall
(brane) approximation,we havenothing to add to the current debate
regarding the impact of black holes in Higgs decay [31–34].
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For the small black hole case the direct calculation in a
static patch between the two horizons gives

IBu½R̂� ¼
ηπ

2G
½ðθð−R̂0þÞ − θð−R̂0

−ÞR̂2 þ θð−R̂0
−ÞðR2

I;DÞ
− θð−R̂0þÞðR2

O;SÞ�: ð3:3Þ

Hence we get after adding the wall contribution [see
Eq. (A15)]

IAB½R2−R1� ¼
ηπ

2G
½ðRB

DÞ2− ðRA
SÞ2�þ IABW ½R2−R1�: ð3:4Þ

Let us now consider the transitionsA → B (withSA > SB)
that we may call up tunneling and B → A) we call down
tunneling. Noting that thewall action IW is symmetric under
the interchange of A and B.15 Hence we get

P↑

P↓
¼ e

π
G½ðR2

B;D−R
2
A;SÞ−ðR2

A;D−R
2
B;SÞ� ¼ eSB−SA : ð3:5Þ

Defining the total entropy of SdS space as S≡
π
G ðR2

D þ R2
SÞ (i.e., the sum of the cosmological and black

hole horizon entropies). Thus we have nontrivially obtained
detailed balance again.
In the limit RA;BS → 0 we recover the earlier results for

dS to dS transitions. One may think that to get FMP/FGG
we need to take RA;S → ∞. This would give P↑ → 0 in
agreement with the corresponding limit in the dS to dS
case. The FMP/FGG case however corresponds to sub-
tracting the infinity in the horizon area term of dS/SdS
when the dS radius goes to infinity to get the entropy of the
black hole in asymptotically Minkowski space to be just the
black hole entropy.
The difference comes from the fact that in the asymp-

totically Minkowski case Gibbons and Hawking [9] added
a term (to the boundary term that is necessitated by
Dirichlet boundary conditions) evaluated in flat space
which cancels the otherwise infinite contribution of the
Gibbons-Hawking-York (GHY) term in the asymptotic
limit. This infrared subtraction is what gives the entropy
of the black hole to be πr2s and the entropy (as well as the
Arnowitt-Deser-Misner energy) of flat Minkowski space to
be zero.16 This is a physical requirement. In other words the

infinite radius limit of dS space is not flat Minkowski space
any more than a topological three sphere of arbitrarily large
radius is the same as R3. The topology of dS is R × S3
and however large its radius, is not R4. Thus the above
formulas—although valid for SdS spaces of arbitrary radii,
do not imply [from the vanishing of Eq. (3.5)] that they
forbid up tunneling from asymptotically Minkowski space.
In fact it has been argued by many authors (perhaps the

earliest were [17,36,37]) that the horizon entropy of dS
space is the maximum entropy that this space can hold.
With this interpretation then, in the limit of the horizon
radius going infinity, the ensuing infinite entropy of
Minkowski space, should also be interpreted as the maxi-
mum entropy that this space can contain, which of course is
reasonable. It is not therefore the entropy of the Minkowski
vacuum, which should indeed be zero.
As we will discuss soon, the same is true of SAdS to

SdS (or dS) since the entropy of SAdS is simply the
entropy of the black hole since AdS has no cosmological
horizon.
However for large and intermediate black hole masses

(as defined in Appendix A 2) we do not have detailed
balance. This is also the situation for the FMP case
reviewed in the Appendix.

B. Schwarzschild (A)dS to Schwarzschild
(A)dS transitions

Let us now consider the generic case in which the mass
parameters MO and MI are nonvanishing. We will then
reconsider the forbidden uplifting configurations and illus-
trate that in the case MO ≠ 0 some forbidden transitions
become possible. The main reason for this change is the
existence of a horizon and the fact that there are two rather
than one turning points.

1. Black hole to dS—the FGG transition

We will start reviewing the original up-tunneling pro-
posal of FGG [12] and reconsidered in [18] in which
the background is asymptotically flat Schwarzschild
black hole.
The brane tunnels through the potential and the prob-

ability of transition from the black hole state to the one with
a dS space is given essentially by the relative probability for
being at the turning point R2 to that of being at the turning
point R1, i.e.,

PðBH → N Þ ¼ jΨðR2Þj2
jΨðR1Þj2

; ð3:6Þ

with R2;1 being the right and left turning points.
In the FGG/FMP process we have a transition from a

Schwarzschild black hole to a de Sitter space (adjoined to
the hole with a brane at the junction). The integrals in
Eq. (2.13) for HO ¼ 0, but MO ≠ 0 cannot be done
analytically but we can approximate them for a small

15While the bulk action is symmetric only for a general point
and loses this symmetry at the turning points R1;2 the wall action
clearly has this symmetry even at these points as is seen from
Eq. (A40).

16In [35], page 283, it is stated the GHY term for Minkowski is
negative infinity and is zero in the absence of the GHY term.
However it should be noted that the GHY term consists of two
pieces and the second piece is explicitly included to make the
Minkowski vacuum action (and hence its entropy) zero. A similar
term should be included if the AdS vacuum is to be assigned zero
entropy since it has no horizons. This means that the entropy of
both a Minkowski black hole and an AdS black hole is just the
horizon entropy of the black holes.
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black hole mass. The important point is that now the
background contribution is determined not by the entropy
of dS but by the black hole entropy:

Ī ¼ SBH ¼ πR2
S

G
¼ 4πM2

O: ð3:7Þ

Therefore for a small mass black hole MO < MD ≡
H2−κ2
2GH3 ≃

M2
P

H , we can neglect the MO dependence in the
integrals in Eq. (2.13) and with the background Ī given as
above we have

PðBH→ dSÞ≃ e
π
GðR2

dS−R
2
SchwarzchildÞþ2Ibrane ≃ eSdS−SBH ≃ eSdS ≠ 0:

ð3:8Þ

The important point is that, contrary to the limit HO ¼ 0
for up tunneling dS to dS, which has a vanishing transition
rate, now the transition rate from Schwarzschild black hole
to dS is nonvanishing even for small values of MO.
Note here the entropy of the final state is much higher

than the black hole entropy, so this is consistent with
increasing entropy.
Let us contrast the situation here with that obtained

earlier of dS to dS transitions. In [16] we have argued that
the FGG/FMP starting configuration is a state with a
definite energy (that of the black hole) and that the
thermodynamic entropy of the initial state should be
identified with the log of the degeneracy of the Hilbert
space of the black hole and the background flat space being
treated as the Minkowski vacuum identified as a unique
state. In contrast to this in the dS case it has been argued
that its entropy is maximal and indeed is supposed to
correspond to the dimension of the Hilbert space that can be
accommodated on the horizon. The latter obviously goes to
infinity at infinite radius but this should not be confused
with the entropy of empty Minkowski space.

C. Schwarzschild AdS to dS

For Schwarzschild AdS to dS we follow the same steps
as FMP did for Schwarzschild to dS. The two turning
points R1, R2 for which V ¼ −1 are in between the dS
radius RdS ¼ 1=HI and the Schwarzschild radius RS that is
determined by solving the cubic equation:

H2
OR

3
S þ RS − 2GM ¼ 0; ð3:9Þ

namely

RS ≤ R1 < R2 ≤ RdS: ð3:10Þ

This can be easily seen by the conditions coming
from the expression of the potential at the turning
points ÂI ¼ 1 −H2

IR
2 > 0 implying R2;1 ≤ RdS and

ÂO ¼ 1–2GM=RþH2
OR

2 > 0, which by looking at the
coefficients determining the single root of the cubic, it can
seen that it implies RS ≤ R1;2.
Also to define the domains for the integration parameter

M we compute it first for the case R0þ ¼ 0; V ¼ −1, which
implies gives the value for M:

M¼MS ¼
H2

OþH2
I þ κ2

2GðH2
I þ κ2Þ3=2 ; for R0þ ¼ 0;V¼−1: ð3:11Þ

For the case R0
− ¼ 0; V ¼ −1 we get

M¼MD ¼H2
OþH2

I − κ2

2GH3
I

; for R0
−¼ 0;V¼−1: ð3:12Þ

Note that for HO ¼ 0 this reduces to the FMP results as it
should. It is also easy to prove that, as in the FMP case,
MD ≤ MS.
Therefore we have the same situation as in the

Schwarzschild to dS transition in which the bulk contri-
bution to the transition rate is determined by

IBjtp≡ IBjR2

R1
¼

8>><>>:
ηπ
2GðR2

2−R2
1Þ; M >MS

ηπ
2GðR2

2−R2
SÞ; MS >M>MD

ηπ
2GðR2

dS−R2
SÞ MD >M

: ð3:13Þ

The relevant figure for this is the same as in the FMP
case, i.e., Eq. 4 in the Appendix, since both Minkowski and
AdS have no cosmological horizons.
As in FMP we are interested in the latest case MD > M

to take the small M limit. As in there we may take the
limit M → 0.17

So we have explicitly a nonzero transition rate from AdS
black hole to dS, which is interesting by itself. The
interesting questions to ask is how the whole transition
rate depends on the values of the parameters M;HI; HO; κ.
In particular if it prefers transitions to smaller or higher
values of HI for a fixed HO or vice versa. Also to analyze
the transition rate in the extreme cases Hm⃗I;O → Mp from
below and M → Mp from above. This should be done
numerically combining the bulk and the wall contributions
to the transition rate.

D. Vacuum transitions in quantum gravity
and thermodynamics

In this subsection we address the interesting points made
in [15] regarding the viability of the FGG/FMP process.
Susskind argues that the FGG/FMP process should be
forbidden since it violates what he calls the central dogma

17This limit is well defined as long as we stay away from the
horizon. The squared curvature tensor is ∝ðGMÞ2=R6, which
goes to zero as M → 0 unless R ¼ 2GM.
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of gravitational systems with horizons—specifically to
de Sitter–like geometries.
As seen from a causal patch a cosmological spacetime

can be described in terms of an isolated quantum system
with Area=4G degrees of freedom, which evolves unitarily
under time evolution.
In the next paragraph of that paper the author assumes

that an observer in a causal patch sees a world of finite
entropy satisfying the second law of thermodynamics.
Now, while unitarity of the Smatrix can be shown to lead

to the second law for nongravitational systems (for a proof
see for instance [38], chapter 3) it is far from clear (and
interesting to explore) how to extend this to gravitational
systems particularly transitions where spacetime itself
changes. Furthermore there is the notorious problem of
time in quantum gravity. So even though the first statement
above holds referring to black holes in asymptotically
flat spacetime (where the notion of a S matrix may be
formulated) it is far from clear how these statements apply
for say dS space or SdS space.
Nevertheless Susskind proceeds to conjecture that they do.

Indeed as he says “The black hole version of this dogma is,
with good reasons, widely accepted. Less is known about
cosmological horizons, so we should consider the cosmo-
logical version to be a conjecture.” Furthermore referring to
the FGGprocess “Because this example involves following a
causal patch as it falls behind a black hole horizon, theremay
be reasons to be less certain about the application of the
cosmological dogma, but I will assume it is valid.”
Unlike FGG/FMP, who discuss an eternal black hole

spacetime that nucleates a spherical wall/brane whose
inside is a portion of a dS space, Susskind’s version, as
presented in Sec. IV, assumes a background dS space in
which a black hole (of mass M) is nucleated as a thermal
fluctuation with (Boltzmann) probability Pbh ∝ e−M=TA ¼
e−2πMRA . Here TA ¼ 1=2πRA is the horizon temperature of
the background dS space. So Susskind’s interpretation of
FGG is that they predict an up-tunneling rate for the
transition A → B [where B is a dS space with smaller
horizon radius (RB < RA) and hence smaller entropy]

Γ̄up ¼ e−2πMRAΓFGG: ð3:14Þ

On the other hand (according to Susskind) detailed balance
requires the up-tunneling rate to be

Γup ¼ eSB−SAΓCDL; ð3:15Þ

where ΓCDL is the Coleman-DeLuccia down-tunneling rate
and SA ¼ πR2

A=G, SB ¼ πR2
B=G. Since M;SB;ΓFGG, and

ΓCDL are all independent of RA for RA → ∞ it was argued
that in this regime

Γ̄up

Γup
≈

ΓFGG

ΓCDLeSB
eSA ∼ eSA ; ð3:16Þ

in violent disagreement with detailed balance.
Several comments are in order:
(1) The Hamiltonian calculation of dSA → dSB using the

FMP [18] formulation gives exactly Eq. (3.15) [16] so
this quantummechanical calculation is not in conflict
with detailed balance. In this sense we address the
main criticism of Susskind for the process to occur.

(2) In the presence of a black hole the issue is more
complicated. The original calculation of FGG and
FMP discussed the nucleation of a brane with a dS
space inside it and an asymptotically flat Schwarzs-
child space outside. Here there are three cases [18]18

as discussed in detail in the Appendix. The first two
cases [see Eqs. (A2), (A3)] clearly do not satisfy
detailed balance, but the third case M < MD < MS

gives Eq. (3.15) provided we identify SA ¼ πR2
S=G,

i.e. the entropy of a black hole in flat space as the
entropy of the initial state. All this assuming also
that down tunneling is given by CDL, which is only
true in the limit where the black hole mass tends
to zero.

(3) Actually the relevant comparison to the FMP type
calculation that should be made is to an SdS to SdS
transition as discussed in detail in the Appendix.
Here there are also three cases with the case of
small black holes giving Eq. (3.15) with SA;B ¼
π
G ðR2

A;B þ ðRBH
A;BÞ2Þ with the down tunneling rate

modified from CDL to incorporate the black holes.
In the limit where the black hole masses go to zero
this is exactly Eq. (3.15).

(4) On the other hand as in the asymptotically flat
case there are two other cases (see the Appendix)
corresponding to different ranges of black hole
masses, which do not seem to satisfy detailed
balance. The interpretation of these regimes is not
clear to us.

To summarize: the Hamiltonian calculation shows that
transitions between spacetimes with horizons such as dS
to dS, and SdS to SdS with small mass black holes, do
satisfy detailed balance and may not be in conflict with
Susskind’s reasoning. However there are also cases with
large or intermediate mass black holes (as defined in the
Appendix), that do not satisfy Susskind’s central dogma.
Since the dogma in the case of tunneling of spacetimes
through barriers, as he himself says, may not apply, this
should not be surprising. A proper understanding of the

18Actually there is a discrepancy between FMP and FGG
here. The relevant equation in the latter [12] is Eq. (5.34) which
is not quite the same as the Eqs. (48) plus (49) of [18]. In
particular for M > MS FGG gives I ¼ IW whereas FMP give
I ¼ IW þ π

2G ðR2
2 − R2

1Þ. See the Appendix for notation.
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difference of the mass ranges regarding detailed balance
would be interesting.
A last comment: from holography it is expected that the

empty AdS has zero entropy. To see this let us consider the
eternal AdS black hole [39]. Empty AdS can be obtained by
taking the mass of the black hole to zero. On doing this the
radius, the area and the entropy of the black hole vanish. If
there is a conformal field theory (CFT), as in the eternal
AdS case, measuring the number of degrees of freedom, of
the system, then these will also decrease up to the point
when there is no black hole and only one state is left which
means vanishing entropy. It will be interesting to further
explore this issue.

E. Brane trajectory after nucleation

In this section we will study the trajectory of the brane
after the nucleation. We will focus on transitions where the
true vacuum is dS. Following [20] the geometry of the
brane can be studied by solving the equations for the brane
position R̂. For the readers’ convenience we repeat the
formulas for the brane motion. The metric on the brane is

ds2 ¼ −dt2 þ R̂2ðtÞdΩ2: ð3:17Þ

the first (energy) integral of the equation of motion for the
brane is (from now on we will drop the hat on R in this
section since we are just discussing the brane motion),

Ṙ2 þ V ¼ −1; ð3:18Þ

where the potential may be written as

V ¼ −
1

ð2κRÞ2 ððAI − AOÞ þ κ2R2Þ þ AI − 1: ð3:19Þ

In the case of interest (i.e., AdS black hole to dS),

AI ¼ 1 −H2
IR

2; AO ¼ 1 −
2GM
R

þH2
OR

2;

whereHI is the inverse of the de Sitter radius andHO is the
inverse of the AdS radius. Substituting these into Eq. (3.19)
we get

V ¼ −
R2

R�2 þ
α

R
−

β

R4
; ð3:20Þ

where

α¼ 4ðH2
OþH2

I −κ2Þ GMð2κÞ2 ; β¼ð2GMÞ2
ð2κÞ2 > 0; ð3:21Þ

and

1

R�2 ¼
ðH2

O þH2
I Þ2 þ 2κ2ðH2

I −H2
OÞ þ κ4

ð2κÞ2 : ð3:22Þ

Note that the equation dV=dR ¼ 0 has only one real root
and that V → −∞ for both R → 0 and R → ∞, so the
potential rises from negative infinity to a maximum below
zero (recall that V < 0 for all R) and then falls back to
negative infinity just as in the Blau-Guendelman-Guth
(BGG) case [20]. Depending on the value of M we have
the three cases discussed earlier.
To compute the motion of the brane in (say) the dS

metric inside the bubble we choose (conformal) global
coordinates

ds2 ¼ 1

H2
I cos

2T
ð−dT2 þ dr2 þ sin2rdΩ2Þ;

T0 ≤ T <
π

2
; r0 ≤ r <

π

2
; ð3:23Þ

where T0, r0 are the coordinate time and radius at which the
bubble is nucleated. Embedding the brane metric Eq. (3.17)
in the above we get (denoting Ẋ ≡ dX

dt X
0 ¼ dX

dr),

T ¼ TðtÞ; r ¼ rðtÞ; R ¼ sin2r
H2

I cos
2T

; ð3:24Þ

Ṫ ¼ HI cosTffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r02

p ; ṙ ¼ HI cosTffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r02

p r0: ð3:25Þ

We also have

Ṙ¼ ∂R
dT

Ṫ þ ∂R
dr

ṙ¼ Ṫ
HI

�
tanT secT sin rþ dr

dT
secT cosr

�
;

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− r02

p ðtanT sinrþ r0 cosrÞ:

Hence using Eqs. (3.18), (3.20), and (3.24) we have

1ffiffiffiffiffiffiffiffiffiffiffiffi
1− r02

p ðsinT sinrþ r0 cosrcosTÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2r
H2

IR
�2−αHI

cos3T
sinr

þβH4
I
cos6T
sin4r

− cos2T

s
: ð3:26Þ

The small black hole regime may be defined as αHI ≪ 1,
βH4

I ≪ 1. In the limit M → 0 this obviously tends to the
formal AdS to dS result.
Note that as T → π=2 (i.e., in the infinite future) we getffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r02

p
¼ HIR� ≠ 0; i.e., the brane speed does not reach

the speed of light, as in the BGG case.
As is now well known [40], in the case of dS/dS

transition, the wall after nucleation follows a geodesic in
SOð3; 1Þ. This has been to argued that the spacetime after
the foliation is open since it fits naturally with the picture of
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the wall never crossing the horizon. The argument for the
wall trajectory relied heavily in the fact that the tangent
acceleration in the dS/dS case is always constant. Here we
show that adding a mass to the exterior vacuum changes
this pictures allowing for different trajectories of the wall.
First, let us note that the acceleration of the wall can be
computed from the junction conditions to be [20]

Kττ ¼ −
R̈ −H2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −H2R2 þ Ṙ2
p ; ð3:27Þ

whose value can be inferred by solving the potential
equation for the junction conditions in Eq. (2.5). In the
case of dS/dS, the solution can be obtained analytically,
R ¼ R0 coshðt=R0Þ and the acceleration is constant. In
general when there is a mass this does not hold, and we find
that the acceleration is given by

−Kττ ¼
ð1−H2

0
R2�Þ

R2
0

− α
2RðτÞ3 −

2β
RðτÞ6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1−H2
0
R2�Þ

R2
0

− α
RðτÞ3 −

β
RðτÞ6

r ; ð3:28Þ

where we have used the equation of motion. Ṙ2 þ V ¼ −1,
Expanding for small αHI and βH4

I , we can write the lhs as

R̈−H2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−H2R2þ Ṙ2

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−H2

0R
2�

p
R�

−
R�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−H0R2�
p �

α

R3
−
5

2

β

R6
þOðR3

0α
2=R6Þ

�
:

ð3:29Þ

From this we see that for small radius the wall initially
accelerates/decelerates until RðτÞ grows large enough such
that the acceleration asymptotes to a constant. Notice that in

the case that the mass in the outer region is zero both α and
β are zero in which case the acceleration is always constant
as we anticipated. Another feature is that this results do not
depend on the outer region being SdS or AdS and hence
this is a feature of the outside region having a mass.
One of the consequences of the change of acceleration is

that the wall can now enter into the comoving horizon of an
observer on one of the hemispheres.
This was shown by writing the radius of the wall in

global coordinates RðTÞ ¼ aðTÞ sinðrðTÞ as above. We
plot the solutions to Eq. (3.26), where we can see that for
certain values of α the wall indeed crosses the light cone
r ¼ T as can be seen from Fig. 2. Clearly this is due to the
fact that the worldsheet of the trajectory only has Oð3Þ
symmetry and hence it is not so restricted as in the dS/dS
case. This implies that there might well be other trajectories
which cross the horizon from the other hemisphere. Using
Euclidean arguments [5] it was suggested that the interior
region had an open de Sitter geometry. Even though it can
be argued in the dS/dS case that this holds naturally since
such foliation never crosses the horizon and thus the wall
remains outside the light cone, we see that when including
the mass this argument does not hold. From Lorentzian
arguments there is no preferred foliation as the whole
computation only assumes Oð3Þ symmetry (see also
[40,41]). Thus in order to determine the curvature of the
nucleated spacetime one would have to work out the
consequences having a wall, for instance, the effects of
a wall induced anisotropy.
A possible probe of the wall would be to compute the

maximum correlation function that lies within the interior
de Sitter spacetime. The correlation function on de Sitter
for a massless field evaluated at equal times but at two
different points ðρ1;Ω1; ρ2;Ω2Þ is given by [42]

Gðρ1;Ω1; ρ2;Ω2Þ ∼H2

�
1

1 − Z
− logð1 − ZÞ

�
; ð3:30Þ

where Z is the geodesic length between two points,
Z ¼ H2ηabXaðr;ΩÞXbðr0;Ω0Þ. Since we are interested in
correlation functions with Oð3Þ symmetry we have that
Ω ¼ Ω0, and we get that

1 − Z ¼ secðTÞ2ð1 − cosðr − r0ÞÞ: ð3:31Þ

From this we see that the log dominates over the first
term in the correlation function. Now, when the wall lies
behind the light cone the maximum value of 1 − Z is when
ρ − ρ0 ¼ π=2 in which case the correlation function
becomes

GðrÞ ∼H2 logðsecðTÞÞ ∼H3t; ð3:32Þ

where in the last line we have used that secðTÞ ¼
coshðHtÞ ∼ eHt. Of course this is the usual covariance of

FIG. 2. Penrose diagram of the wall trajectory. The green line is
the solution in the case of α ¼ :11H, β ¼ 0.0014H4, R� ¼
0.55H. The black line corresponds to the case where M ¼ 0
and R� ¼ 0.55H. Note that the green line crosses the dotted line
meaning that the wall crosses the horizon of the de Sitter
observer.

CÉSPEDES, DE ALWIS, MUIA, and QUEVEDO PHYS. REV. D 109, 105027 (2024)

105027-16



a massless field that grows linearly with time until the end
of inflation te. Now in the presence of the wall, if we write
r − r0 ¼ π=2 − Δr for α small we get that the correlation
function behaves as

GðrÞ ∼H2 logðsecðTÞð1 − cos rÞÞ
∼H2ðHtþ Δr=2þOðα2ÞÞ; ð3:33Þ

which means however that any effect of the wall is washed
away by the expansion. Still, since inflation is not eternal
there is a lower bound on which scales can be access by an
observer without noticing the wall. For instance the largest
distance on the cosmic microwave background can be
estimated from the comoving distance to the cosmic micro-
wave background dipole to be χL ∼ :46. This would put a
lower bound on the maximum size of ρ without detecting a
wall. Notice that there could still be effects from higher order
correlation functions and/or on the analytical properties of
the correlation function that we leave for future study.
On the other end we have the case when the false vacuum

jH0j → ∞. This, we have identified as having the same
transition rate that Hartle-Hawking (or Vilenkin-Linde) in
Eq. (2.44). We can see from Eq. (3.22) that this limit
corresponds to the turningpoint radiusR� → 0. This happens
because when jH0j grows the potential moves towards the
origin becoming and narrower around R ¼ 0 so that the
barrier becomes infinitely thin in the limit. This explainswhy
there is no exponential suppression in this limit.
We mentioned before that the up-tunneling transition rate

is similar to tunneling from nothing. However, from the
previous discussion we can see that there is a key differ-
ence. As indicated in Fig. 3 the nucleated spacetime is not
the whole de Sitter but only a portion that includes the
whole causal light cone of an observer on the hemisphere of
the true vacuum. There is also another small region outside
the light cone where the spacetime ends. This starts at
r ¼ MUV, where r is the radial direction in global coor-
dinates andMUV is the cutoff of the theory. The reason why
the spacetime starts there is because we are still demanding
the spacetime to be a solution of the junction conditions,

then in the limit we are considering, the trajectory has to
satisfy the geodesic equation cosðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2

0R
2
0

p
cosT.

Notice that when R0 ¼ 0 the equations are singular. This is
addressed by noticing that R0 becomes asymptotically
small but we still require that R0 ≥ 1=MUV in order for
the EFT to still be valid.
This solution is actually similar to the Hawking-Turok

instanton [43], which is an Euclidean solution that gives
rise to an open universe (see however [44]), and whose
wave function is the same as in Hartle-Hawking.19

Notice however that our solutions differ. Our method is
Lorentzian and then we do not need to consider singular
instantons, moreover the solution (which does not favor
one or other slicing and so admits closed slicing too) can
also be interpreted as the Vilenkin-Linde wave function,
although in that case, as opposed to Hartle-Hawking, it
does not satisfy detailed balance.

IV. CONCLUSIONS

In this paper we have continued our program (see
[16,40,46]) of reformulating vacuum transitions in the
Hamiltonian framework generalizing the seminal work
of FMP [18]. FMP considered Schwarzschild to dS
transitions in the limit M → 0. The dS to dS transition
was studied in detail in [16,19]. Here we have extended
these works by including explicit expressions for the
transition rates in all values and signs of the cosmological
constants ΛA, ΛB and all values of the black hole mass M.
Notice that the cosmological constants are input parameters
of the theory whereas the black hole mass appears as an
integration constant which should be included in gravita-
tional configurations with spherical symmetry.
We find that for generic values of these parameters the

transition rates are nonvanishing, including up tunneling
from AdS to dS spacetimes. These nonvanishing transition
rates can give rise to a huge network of vacua connected by
quantum transitions among each other. This is relevant for
understanding the structure and population of the string
landscape.
In the general case, the contributions to the transition rate

coming from the wall is only written in terms of integrals
that are only possible to solve analytically in special limits
(likeM → 0). However the ratio of up to down tunneling is
such that these contributions cancel and it gives a very
simple result. This ratio allows us to verify that detailed
balance is satisfied in many of the cases. In particular, due
to the nature of the Hamiltonian prescription, the transition
rates do not determine the sign η ¼ �1. By comparison
with the standard wave function of the Universe, we claim
that this sign arbitrariness corresponds to the same sign

FIG. 3. Penrose diagram for the up-tunneling solution when
jH0j → ∞. The light green region is the spacetime nucleated. The
red line is the boundary of the space. Outside the red line there is
nothing.

19The fact that up tunneling from an infinite AdS potential
corresponds to the Turok-Hawking instanton has been discussed
before, e.g., [21,45], although [21] concluded that this up-
tunneling transition was not possible unlike our findings here.
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arbitrariness that differentiates the Hartle-Hawking and
Vilenkin probability amplitudes. In this sense we find
detailed balance to work for the Hartle-Hawking but not
Vilenkin. This may not be surprising since the initial
conditions for the Vilenkin wave function select the
expanding Universe branch of the wave function of the
Universe that is clearly not and equilibrium situation so it is
no surprise that detailed balance is not satisfied.
Having computed the general transition rates we were

able to consider different limits for ΛA, ΛB, andM. We find
some interesting results. In particular for studying a tran-
sition from Minkowski spacetime we may describe
Minkowski starting from several directions. First, by setting
ΛA ¼ 0 to start with and taking the transition probability in
theM → 0 limit as FMP did. This gives the finite transition
rate obtained in FMP. Second, we may start withM ¼ 0 and
consider the dS to dS transition and then take the limit
ΛA → 0. This gives a zero transition probability e−3=ΛA → 0.
Third, we can start with the AdS to dS transition and take the
limit ΛA → 0, which in this case reproduces the nonvanish-
ing FMP result, which is reassuring.
We argued that the ΛA → 0 limit is the correct definition

of the Minkowski vacuum, if we start from AdS rather than
from dS. In some sense AdS is closer to Minkowski since
both are noncompact and horizonless. Actually the SdS to
SdS transitions require a more detailed analysis as dis-
cussed in the Appendix, precisely because of the richer
horizon structure. We offered several explanations for the
difference among the limits. One is related to entropy: the
dS entropy still needs to be better understood but it may be
interpreted in terms of the fact that from the perspective of
an observer dS is not a pure state since there are degrees of
freedom that are inaccessible to the observer. On taking the
ΛA → 0 limit the horizon moves to the surface at infinity.
So it seems that taking the limit the two entangled static
patches of dS then give rise to two disconnected but
entangled “Minkowski” spacetimes (though they are
actually the infinite radius limit of the two causal patches
of dS), and therefore the apparent infinite entropy. Clearly
this subject needs a better understanding.
Another interesting limit is the ΛA → −∞. In this case

our general expression for AdS to dS gives us a transition
rate that is exactly the Hartle-Hawking and Vilenkin
probabilities for the creation of dS from nothing. This
result fits nicely with the Brown-Dahlen proposal for
understanding nothing (of the bubble of nothing) in terms
of this AdS limit. However they had concluded that the
transition was not allowed and therefore questioned the
Hartle-Hawking and Vilenkin results. Here we actually find
perfect agreement between two independent calculations
and provide then a strong case for this interpretation. We
find this result remarkable. In general the limit ΛA → −∞
should not be trusted since it takes us beyond the validity of
effective field theory. The proper limit to take is to compare
ΛA with the other scales of the system, like the brane

tension κ and the dS cosmological constant ΛB and
consider the regime jΛAj ≫ ΛB; κ2;M2. In this case we
obtain again the Hartle-Hawking/Vilenkin probability at
leading order plus corrections of order ΛB=jΛAj ≪ 1,
M2=jΛAj ≪ 1 and κ2=jΛAj ≪ 1.
Note, however that our identification of the nucleated

spacetime fits with the Hawking-Turok instanton (but not
necessarily with their open universe interpretation) rather
than the creation of a full closed spacetime as in the Hartle-
Hawking and Vilenkin cases. Since the transition rate in
both cases is the same, we may conjecture that also for
these cases there is a nonvanishing probability to create
AdS and Minkowski spacetimes if we assign vanishing
entropies to these spaces. Clearly this needs to be better
understood.
Finally we may consider the regime in which the black

hole mass dominates (M ≫ ΛA;ΛB). This is a much less
understood limit that may need further study. In particular,
unlike the small mass limit, the ratio of up and down
transition rates does not give exponential of the entropies.
Instead of entropies we find differences of areas that do
not correspond to horizon areas. It may be tempting
to speculate these are some generalized entropies but we
do not yet have a proper interpretation.
Regarding the trajectory of the wall for the genericM≠0

case, we find it interesting that it does not correspond to a
geodesic that favors the open slicing of dS, contrary to the
M ¼ 0 case. This leaves open the question if an open
universe is a general implication of the bubble nucleation
process.
Some approaches to the address the cosmological con-

stant problem envisage the landscape transitions to
Minkowski or near Minkowski (with positive but tiny
cosmological constants) and with AdS being a terminal
spacetime (for recent discussions see [47–49]). It would be
interesting to explore what will be the implications that up
tunneling from AdS could have to those proposals. There
are many questions still open. Extending the Hamiltonian
approach to include scalar field potentials is a totally open
question. An AdS/CFT interpretation of our results may be
interesting, following the lines of [50] that interpreted
the CDL Minkowski to AdS transition holographically.
Furthermore [46] proposed interesting holographic inter-
pretations for the 2D transitions. Extensions of these ideas
to the 4D systems considered here may be worth exploring.
Clearly our results leave plenty of issues still to be

understood. But we hope that our work and the questions
we raised may guide future progress in this area.
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APPENDIX: SCHWARZSCHILD BLACK HOLE
TO DE SITTER

In this section we will give the details of the bulk term
FMP calculation and extend it to the SdS case. FMP discuss
the case studied by BGG-FGG [12,20], i.e., the nucleation
of a dS space by tunneling from a Schwarzschild black
hole. In this case, AI ¼ 1–2GM=R and AO ¼ 1 −H2R2. As
in the discussion after Eq. (2.5), at the turning point V ¼
−1 ÂO > 0; ÂI > 0, but there are now two turning points
R1 < R2 such that Rb < R1;2 < Rc, where Rb ¼ 2GM is
the black hole horizon (in this case the same as the
Schwarzschild) while RD ¼ H−1 is the cosmological hori-
zon (in this case the same as the dS).
R̂0þ vanishes at R̂3 ¼ Rb

H2þκ2
≡ R3

< and R̂0
− vanishes at

R̂3 ¼ Rb
H2−κ2 ≡ R3

>. Note that if M (which is an integration
constant) is such that M ¼ Mb ≡ 1

2G
ffiffiffiffiffiffiffiffiffiffi
H2þκ2

p the turning

point R1 ¼ R< ¼ RS and if M ¼ Mc ¼ H2−κ2
2GH3 (note that

Mb > Mc), the turning point R2 ¼ R> ¼ RD.
From the matching condition it follows that R0

− is
negative for R̂ > R>, i.e., to the right of the point where
R0
− vanishes while R0þ is negative for R̂ > R<. Thus

we have for the bulk contribution at the turning point
geometry,

SBu ¼
iηπ
G

�Z
r̂

0

dr
dR
dr

Rθð−R0Þ þ
Z

rmax

r̂
dr

dR
dr

Rθð−R0Þ
�

¼ iηπ
2G

½ðR̂2 − R2
DÞθðR̂ − R>Þ þ ðR2

S − R̂2ÞθðR̂ − R<Þ�:
ðA1Þ

The wall contribution cannot be calculated analytically
and FMP did not do so. All that matters for our present
purposes is that it is finite. We also note that in the limit
M → 0 it was calculated in [16,19].
There are three cases to consider:
Case (i): For large black hole mass M > Mb > Mc,
R<<R1<R2<R>, we have SBuðR2Þ ¼ iηπ

2G ðR2
S − R2

2Þ
since R2 > R< and SBuðR1Þ ¼ iηπ

2G ðR2
S − R2

1Þ. Hence

SBuðR2Þ − SBuðR1Þ ¼ −
iηπ
G

ðR2
2 − R2

1Þ: ðA2Þ

Case (ii): The second case is for Mb > M > Mc. Now
R1<R<<R2<R> and we get SBðR2Þ¼ iηπ

2GðR2
S−R2

2Þ
and SBðR1Þ ¼ 0. Hence

SBuðR2Þ − SBuðR1Þ ¼ −
iηπ
G

ðR2
2 − R2

SÞ: ðA3Þ

Case (iii): The third case is for small black holes M <
Mc < Mb so that RS < R1 < R2 < RD. Here we have
SBuðR2Þ ¼ iηπ

2G ðR2
S − R2

DÞ and SBðR1Þ ¼ 0 so that

FIG. 4. The potential VðRÞ for the Schwarzschild black hole to de Sitter transition. There are two regions outside the barrier and one
below the barrier for VðRÞ ¼ −1. The different regions separated by the values of R̂0 are shown as well as the location of the turning
points R̂1; R̂2 and the cosmological and black hole horizons RD, RS, respectively.
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SBuðR2Þ − SBuðR1Þ ¼ −
iηπ
G

ðR2
D − R2

SÞ: ðA4Þ

Thus we have given, for the reader’s convenience, the
derivation of Eq. (48) of FMP.

1. de Sitter to Schwarzschild black hole

In the down tunneling from dS to a Schwarzschild black
hole, AI ¼ 1–2GM=R and AO ¼ 1 −H2R2. The matching
condition gives

R̂0
�
L

¼ 1

2κR̂
½−2GM þ ðH2 ∓ κ2ÞR̂3�: ðA5Þ

Note that ifM ¼ 0 R̂0
− > 0 for all R. If one goes back for

a moment to the dS to dS transitions for the bulk integral
contribution we had a term θð−R0

−ÞH−2
I , and in this case

since we have Minkowski inside HI → 0 and this term is
potentially divergent. However as we have just observed
R̂0
− > 0 so that θð−R0

−Þ ¼ 0 and the potential divergence is
avoided. This is why one gets a finite answer for down
tunneling from dS to Minkowski even though there is no
horizon to cut off the integral in Minkowski.
However in the present case as we see from

Eq. (A5) there is a regime, namely R̂3 < 2GM
H2þκ2

≡ R3
< where

θð−R̂0
−Þ ¼ 1. So let us consider the same three cases that

we analyzed in the previous subsection. It should be noted
now that the region where R̂0

� is negative is to the right of
(respectively) R< and R>.
So for general R̂ Inside the barrier, we have for the bulk

integral

SdownBu ðR̂Þ ¼ iηπ
2G

½ðR̂2 − R2
DÞθðR< − R̂Þ

þ ðR2ðrmaxÞ − R̂2ÞθðR> − R̂Þ�: ðA6Þ
Note that here we have introduced a cutoff in the first
term Rc in the first term (which corresponds to the black
hole region r < r̂), which would have been there in the
SdS case but for FMP case which corresponds to a
asymptotically Minkowski black hole, must be sent to
infinity. This however will make this transition ill
defined in the last two cases as we will see below.
For case (i), i.e., M>Mb>Mc, R<<R1<R2<R>, we
have SdownBu ðR2Þ ¼ iηπ

2G ðR2ðrmaxÞ − R2
2Þ and SdownBu ðR1Þ ¼

iηπ
2G ðR2ðrmaxÞ − R2

1Þ. So the total contribution20 is

SdownTotal ðR2−R1Þ¼−
iηπ
2G

ðR2
2−R2

1ÞþSWðR2−R1Þ; ðA7Þ

which is exactly the same as the total up-tunneling action
difference, see Eq. (A2). This implies that the up- and

down-transition rates from large black holes to dS is the same
in the leading WKB approximation. In the other two cases
however we have an ill-defined results for down tunneling.
In case (ii), i.e., Mb > M > Mc; R1 < R< < R2 < R>,

we have SdownBu ðR2Þ ¼ iηπ
2G ðR2ðrmaxÞ − R2

2Þ and SdownBu ðR1Þ ¼
iηπ
2G ð−R2

D þ R2ðrmaxÞÞ. Hence we have

SdownTotal ðR2−R1Þ¼−
iηπ
2G

ðR2
2−R2

DÞþSWðR2−R1Þ: ðA8Þ

Finally for case (iii), i.e., M<Mc<Mb, R1<R<<R><
R2, we have SdownBu ðR2Þ ¼ 0 and SdownBu ðR1Þ ¼ iηπ

2G ð−R2
DÞÞ.

So the total down tunneling amplitude is

SdownTotal ðR2 − R1Þ ¼ −
iηπ
2G

ð−R2
cÞ þ SWðR2 − R1Þ: ðA9Þ

The classical actions in these last two down-tunneling
cases is ill defined since for a Minkowskian black hole
RD → ∞. The problem in Eqs. (A8) and (A9) lies in the
fact that in cases (ii) and (iii) the junction condition in
Eq. (A5) dictates that R0 < 0 in the spacetime inside the
bubble. Hence RD corresponds to the maximum value of R
for the Schwarzschild spacetime, which is infinity since
there is no cosmologial horizon.21 What is well defined for
both up and down transitions involving black hole space
times are transitions between SdS spaces. This we discuss
in the next section.

2. Schwarzschild–de Sitter to
Schwarzschild–de Sitter

Finally we observe that in none of these cases is detailed
balance satisfied. Next we will follow these arguments to
derive the corresponding equations for the rather more
complicated case of transitions from SdS to SdS. In the
general case,

A ¼ 1 −
2GM
R

−H2R2

¼ −
H2

R
ðR − R−ÞðR − RSÞðR − RDÞ: ðA10Þ

The parameters are taken to be such that 3
ffiffiffi
3

p
GM < H−1 in

which case there is one negative real root and two positive
real roots that satisfy

R− < 0 < 2GM < RS < 3GM < RD: ðA11Þ
The smaller positive root Rb is identified with the horizon
of the black hole and the larger one RD with the cosmo-
logical horizon. We consider transitions from one SdS to
another with parameters inside the bubble being denoted
with the subscript I and those outside with O. Writing

20As before we just focus on one value of η in the numerator
and denominator of the ratio of wave functions.

21Note that RðrmaxÞ correspond to the minimum value (as
R0 < 0) of R for the dS spacetime, which is 0.
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ΔM≡MO −MI and ΔH2 ≡H2
O −H2

I , we have the
matching condition

R̂�
L

¼ 1

2κR̂
½2GΔM þ ðΔH2 ∓ κ2ÞR̂3�: ðA12Þ

Let us simplify the discussion by choosing κ2 < jΔH2j so
that the sign of the second term in square brackets is
determined by the sign of ΔH2. Now as in the FMP/BGG
discussion the sign of R̂� changes at a zero but unlike in
that case if ΔM and ΔH2 have the same sign then R̂�
does not vanish anywhere. To remain close to the FMP
discussion let us first choose these signs to be opposite,
i.e., ϵðΔMÞ¼−ϵðΔH2ÞwithΔM > 0

22 so that R̂þ vanishes
at R< and R̂− vanishes at R>, where

R3
< ¼ 2GΔM

jΔH2j þ κ2
; R3

> ¼ 2GΔM
jΔH2j − κ2

: ðA13Þ

These points coincide with the turning points R1.2 when the
masses (which we recall are integration constants), are such
that R< ¼ RS and R> ¼ RD.
So let us consider the tunneling A → B so that we

put O ¼ A and I ¼ B. We will be interested mainly in what
corresponds to case (iii) of FMP, i.e., the small black
hole case.23 Then we have R1 < R< < R> < R2. For the
bulk action we have [see first line of Eq. (A1) and Fig. 5]

SBuðR̂Þ ¼
iηπ
2G

½ðR̂2 − ðRI;DÞ2ÞθðR̂ − R>Þ
þ ððRO;SÞ2 − R̂2ÞθðR̂ − R<Þ�: ðA14Þ

So at the turning points we have

SBuðcR2Þ ¼
iηπ
2G

½ðR̂2
2 − ðRB

DÞ2ÞθðR̂2 − R>Þ
þ ððRA

SÞ2 − R̂2
2ÞθðR̂2 − R<Þ�

¼ iηπ
2G

½−ðRB
DÞ þ ðRA

SÞ2�;

SBuðcR1Þ ¼
iηπ
2G

½ðR̂2
1 − ðRB

DÞ2ÞθðR̂1 − R>Þ
þ ððRA

SÞ2 − R̂2
1ÞθðR̂1 − R<Þ�

¼ 0:

Defining F½R2 − R1�≡ F½R2� − F½R1� we have for (i) times
the total action (including the wall term)

IAB½R2−R1� ¼
ηπ

2G
½ðRB

DÞ2− ðRA
SÞ2�þ IABW ½R2−R1�: ðA15Þ

Note that this is the same as FMP case (iii). Interchanging A
and B we have

IBA½R2−R1� ¼
ηπ

2G
½ðRA

DÞ2− ðRB
S Þ2�þ IBAW ½R2−R1�: ðA16Þ

The wall term is clearly symmetric under the inter-
change, i.e., IABW ¼ IBAW . Hence we have for the ratio of the
probabilities of going from A to B to the reverse,

PAB

PBA ¼
expfηπG ½ðRB

DÞ2 − ðRA
SÞ2� þ 2IABW ½R2 −R1�g

expfηπG ½ðRA
DÞ2 − ðRB

S Þ2� þ 2IBAW ½R2 −R1�g
¼ eS

B−SA :

ðA17Þ

Here we have defined SB ¼ ηπ
G ½ðRB

DÞ2 þ ðRB
S Þ2� and SA ¼

ηπ
G ½ðRA

DÞ2 þ ðRA
SÞ2�, which are the sum of the horizon

entropies of each SdS space. If we can interpret this
sum as the total entropy of SdS space (we know of no
direct demonstration of this), then indeed the relation
Eq. (A17) is the statement of detailed balance.

3. Graphic display of the computation

We can give an intuitive understanding of the previous
computations as described in this subsection.
First, note that the constraint in Eq. (2.8) dictates the sign

of R0, which can only changes at the horizons, i.e., where
R0 ¼ 0. In a compound state with two spacetimes separated
by a wall at r̂, the sign of R0 in the vicinity of the wall is
determined by the junction conditions in Eq. (2.3). As can
be observed in Fig. 5, the junction conditions imply that
there are only three possible combinations of the signs of
R̂0
�, namely

R0
� ¼ fðþ;þÞ; ðþ;−Þ; ð−;−Þg: ðA18Þ

The three options in Eq. (A18) can be visualized as in
Figs. 6–8.We consider the compound state to be given by the
region of spacetime connected to the wall; i.e., it extends up
to the closest horizon both in the inside and the outside
spacetime regions. For instance, in Fig. 8 the dotted line is not
part of the spacetime, as the closest horizon to thewall in the
inside region is reached the cosmological horizon at rmin.
The three cases (i), (ii), and (iii) in the previous section

correspond to transitions between pairs of compound states
like those displayed in Fig. 6–8. In particular

Case ðiÞ ⇔ ðþ;−Þ → ðþ;−Þ;
Case ðiiÞ ⇔ ðþ;þÞ → ðþ;−Þ;
Case ðiiiÞ ⇔ ðþ;þÞ → ð−;−Þ:

For each configuration, it is easy to evaluate the con-
tribution to the bulk integral: from Eq. (2.15) it is clear
that only the regions where R0 < 0 contribute with a factor
R2 evaluated at the extrema of these regions. For instance,
for the configuration R0

� ¼ ð−;−Þ in Fig. 8, the non-
vanishing contribution comes from the region between
the cosmological horizon of the interior spacetime at rmin

22This choice goes over to the FMP case when MI → 0
and HO → 0.

23This is because ultimately we would like to send the black
masses to zero.
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and the black hole horizon of the exterior spacetime at rmax.
The value of the action would then be

SB ¼ iηπ
G

�Z
r̂

rmin

drR0Rθð−R0
−Þ þ

Z
rmax

r̂
drR0Rθð−R0þÞ

�
ðA19Þ

¼ iηπ
G

½ðR2
O;S − R̂2Þ þ ðR̂2 − R2

O;DÞ�

¼ iηπ
G

ðR2
O;S − R2

O;DÞ: ðA20Þ

Therefore, defining as in FMP

FI½R̂� ¼
iηπ
G

Z
Rðr̂Þ

RðrminÞ
dRRθð−R0

−Þ;

FO½R̂� ¼
iηπ
G

Z
RðrmaxÞ

Rðr̂Þ
dRRθð−R0þÞ; ðA21Þ

FIG. 6. Configuration with R0
� ¼ ðþ;þÞ.

FIG. 5. The potential VðRÞ for the Schwarzschild–de Sitter to Schwarzschild–de Sitter transition. The turning points, location of
horizons and regions for different signs of R̂0 are shown.

FIG. 7. Configuration with R0
� ¼ ðþ;−Þ. FIG. 8. Configuration with R0

� ¼ ð−;−Þ.
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we can compute the bulk action case by case as in the
previous section, using that

SB ≡ F½R̂2 − R̂1�≡ FI½R̂2 − R̂1� þ FO½R̂2 − R̂1�; ðA22Þ
and Fi½R̂2−R̂1�¼F½R̂2�−F½R̂1� for i ¼ 1; 2. Note that R̂1;2

are the turning points defined in the previous subsection.
(i) Case (i): In this case, both R̂1 and R̂2 fall in a region

where R̂0
� ¼ ðþ;−Þ, corresponding to Fig. 7. Then

FI½R̂2 − R̂1� ¼ 0;

FO½R̂2 − R̂1� ¼
iηπ
2G

ðR̂2
2 − R̂2

1Þ; ðA23Þ

where FI gives zero contribution because in the
interior spacetime R0 is always positive. This implies

SB ¼ iηπ
2G

ðR̂2
2 − R̂2

1Þ: ðA24Þ

Case (ii): In this case, R̂1 is in a region where R̂0
� ¼

ðþ;þÞ, while R̂2 is in a region where R̂0
� ¼ ðþ;−Þ

corresponding to Figs. 6 and 7, respectively. Then

FI½R̂2 − R̂1� ¼ 0;

FO½R̂2 − R̂1� ¼
iηπ
2G

ðR2
O;S − R̂2

2Þ; ðA25Þ

where FI gives zero contribution because in the
interior spacetime R0 is always positive. This implies

SB ¼ iηπ
2G

ðR2
O;S − R̂2

2Þ: ðA26Þ

We observe that these two cases give exactly the
same result as in FMP, i.e., (A2) and (A3).

Case (iii): In this case R̂1 is in the region with R0
� ¼

ðþ;þÞ, while R̂2 is in the region R̂� ¼ ð−;−Þ,
corresponding to Figs. 6 and 8, respectively. Then

FI½R̂2 − R̂1� ¼
iηπ
2G

ðR̂2
2 − R2

I;DÞ;

FO½R̂2 − R̂1� ¼
iηπ
2G

ðR2
O;S − R̂2

2Þ; ðA27Þ

which implies

SB ¼ iηπ
2G

ðR2
O;S − R2

I;DÞ; ðA28Þ

which coincides with the result found in the last
subsection. The contributionof Fig. 6 however is clearly
a disconnected term of sort discussed in the next
subsection and cancels between the two turning points.

4. Disconnected terms

Here we derive a general formula for the bulk contri-
bution to the action for transitions from and to space times

with two horizons. The formula seems to have been first
written down in [19] [see Eq. (3.37)] but without a detailed
derivation. Here for the readers convenience we include
these details and also highlight some differences with
Bachlechner’s discussion [19].
For the turning point geometries the bulk action SB

simplifies with the first term in square brackets in (2.11)
giving zero and the second term contributes only when
ϵðR0Þ ¼ −1, i.e., whenever cos−1ð R0

L
ffiffiffiffiffiffi
AI;O

p Þ ¼ π. Thus we

have24

iSBuðR̂rÞ¼−
ηπ

G

�Z
r̂

0

drR0Rθð−R0
−Þþ

Z
∞

r̂
drR0Rθð−R0þÞ

�
:

ðA29Þ
Let us focus on the second integral.Z

∞

r̂
drR0Rθð−R0þÞ ¼

Z
∞

r̂
dr

1

2

�
dR2

dr

�
θð−R0þÞ;

¼
Z

∞

r̂
dr

1

2

�
d
dr

R2θð−R0þÞ
�

−
Z

∞

r̂
dr

1

2
R2

d
dr

θð−R0þÞ: ðA30Þ

Let us first consider the first integral above. Observe that at
the turning points for the geometry R0=L ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi

AOðRÞ
p

(with L > 0) so the integrand becomes just a function of R.
Also in the SdS case

AOðRÞ ¼ −
H2

O

R
ðR − R−ÞðR − RS

0ÞðR − RD
0 Þ; ðA31Þ

where R−<0;RS
0<RD

0 , and AO is positive for RS
0<R<RD

0 .
Now working within one panel of the infinite strip of
Penrose panels the one which contains the wall, the
parametrization R ¼ RðrÞ is one valued we have for the
first integral in (A30)Z

∞

r̂
dr

1

2

�
d
dr

R2θð−R0þÞ
�

¼ 1

2

Z
R∞

R̂
d
�
R2θð

ffiffiffiffiffiffiffiffiffiffiffi
AOðR

p
ÞÞ



¼ 1

2
ðRS2

0 − R̂2Þθð−R̂0þÞ:

In the last step we have used the fact that R must decrease
as one goes from the lower limit to the upper limit and
that the integral gets cut off at the first zero of AO as R
decreases—i.e., at RS

0 , and the step function is the statement
that in this regime the sign of R0 must match the sign of R̂0þ.
The second term in (A30) gives a delta function and

so is disconnected from the wall. Let us evaluate it
explicitly:

24We have taken the integration in r all the way up to infinity
even though in practice it may be cut off at some finite value.
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−
Z

∞

r̂
dr

1

2
R2

d
dr

θð−R0þÞ ¼ −NO

Z
R∞

R̂
dR

1

2
R2

d
dR

θð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AOðRÞ

p
Þ ¼ −NO

Z
R∞

R̂
dR

1

2
R2

d
ffiffiffiffiffiffi
AO

p
dR

δð
ffiffiffiffiffiffi
AO

p
Þ;

¼ −NO

Z
R∞

R̂
dR

1

2
R2

dAO

dR

X
i¼s;c

1

jAOðRiÞj
δðR − RiÞ;

¼ −NO

Z
R∞

R̂
dR

1

2
R2

X
i¼S;D

ϵ

�
dAO

dR

				
Ri
0

�
δðR − Ri

0Þ: ðA32Þ

Here NO is the number of panels included in the r integral. Using (A31) we have

dAO

dR

				
RD
0

¼ −
H2

O

RD
0

ðRD
0 − RS

0Þ < 0;
dAO

dR

				
RS
0

¼ −
H2

O

RD
0

ðRS
0 − RD

0 Þ > 0:

Hence we have

−
Z

∞

r̂
dr

1

2
R2

d
dr

θð−R0þÞ ¼ −NO

X
i¼S;D

ϵ

�
dAO

dR

				
Ri
0

�
1

2
Ri2
0 fθðR∞ − R̂ÞθðRi

h − R̂Þ þ θðR̂ − R∞ÞθðRi
h − R̂Þg;

¼ NO½RD2
0 θðRD

0 − R̂Þ − RS2
0 θðRS

0 − R̂Þ�θðR∞ − R̂Þ
þ NO½RD2

0 θðR̂ − RD
0 Þ − RS2

0 θðR̂ − RS
0Þ�θðR̂ − R∞Þ:

For R̂ ¼ R2, since RS
0 < R2 < RD

0 , the above gives

NOfðRD2
0 − 0ÞθðR∞ − R̂Þ þ ð0 − RS2

0 ÞθðR̂ − R∞Þg;

while for R̂ ¼ R1, since RS
0 < R1 < RD

0 we get exactly the
same result since NO is independent of R̂. Thus when
subtracting the two we get zero. In other words the
disconnected contribution cancels between the two turning
points.

5. dS horizon issues

Here we explain using the explicit parametrization used
in [16] how the last term in Eq. (2.23) arises from including
a term corresponding to the nucleation of the brane behind
the horizon of the observer.
In that calculation, at the turning point geometry.25 we had

R ¼ H−1
I sin r− (with L ¼ H−1

I ) inside and R ¼ H−1
O sin rþ

(withL ¼ H−1
O ) outside. Since the physical radiusRmust be

continuous at the wall R ¼ R̂ ¼ H−1
I sin r̂− ¼ HO sin r̂þ.

Also R̂0
�
L ¼ cos r̂� and AO=I ¼ 1 −H2

O=IR
2 ¼ cos2 r�.

Define the static patch identified as region III of the
Penrose diagram as the one covered by the range 0 ≤ r� <
π=2 and region I as the one covered by π=2 < r� < π. Note
that at r ¼ π=2 the static patch coordinates [which have the
factor ð1 −H2R2Þ] become singular.
On the other hand r is a global coordinate which may be

extended beyond π=2. But going beyond this point is
tantamount to going into region III from I, or the reverse, in

the Penrose diagram. In fact since there are two values of r
determining a given R [since sin r ¼ sinðπ − rÞ]—one
corresponding to region I and one for region III.
So if we confine the calculation to region I, the outside

integral [the second term in (A29)] becomes after putting
sin r ¼ s, (note that RR0 ¼ H−2

O sin r cos r)

−
η

G
H−2

O

Z
π

r̂þ
dr sin r cos rcos−1

�
cos r
j cos rj

�
¼ −

η

G
H−2

O

Z
0

sin r̂þ
dssπθ

�
sin−1s −

π

2

�
;

¼ ηπ

2G
H−2

O sin2r̂þθ
�
r̂þ −

π

2

�
¼ ηπ

2G
R̂2θð−R̂0þÞ: ðA33Þ

For the inside integral [the first integral in (A29)] we have

−
η

G
H−2

I

Z
r̂−

0

dr sin r cos rcos−1
�

cos r
j cos rj

�
¼ −

ηπ

G
H−2

I

Z
sin r̂−

0

dssθ

�
sin−1s −

π

2

�
;

¼ −
ηπ

2G
H−2

I

�
sin2r̂ − sin2

π

2

�
θ

�
sin−1ŝ −

π

2

�
;

¼ −
ηπ

2G
½R̂2 −H−2

I �θð−R̂0
−Þ: ðA34Þ

Thus for the total bulk action we get25As observed in footnote 11.
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IðR̂Þ¼ iSðR̂Þ¼ ηπ

2G
½ðθð−R̂0Þ−θð−R̂0

−ÞÞR̂2þH−2
I θð−R̂0

−Þ�:
ðA35Þ

This expression is exactly what is obtained in the limit
RO;S → 0 of the SdS to SdS expression [i.e. (A14) for the
bulk integral]—namely Eq. (2.22).
Comparing this expression to Eq. (2.23), we see that it is

missing the term θðR̂0þÞH2
O within the square brackets.

Where did this come from?
In the calculation in [16] we used global coordinates to

calculate the bulk integral. In terms of the static patch
coordinates relevant to an observer in a given such patch,
this involves integration through the de Sitter horizon. To
see this in the above calculation we need to add a piece
proportional to θðπ

2
− r̂Þ corresponding to the brane being

nucleated behind the horizon of the observer at r ¼ π. Thus
we add the term

−
η

G
H−2

O

Z
sin π

sin r̂þ
dssπθ

�
sin−1s −

π

2

�
θ

�
π

2
− r̂

�
¼ −

ηπ

G
H−2

O

Z
sin π

sinπ
2

dssθ

�
π

2
− r̂

�
¼ ηπ

2G
H−2

O θðR̂0þÞ: ðA36Þ

Adding this to (A35) gives the result (2.23).
It should be noted that we could have done the integral

in (A33) in a different way by writing (after identifying the
integration variable as t ¼ cos r)

−
η

G
H−2

O

Z
π

r̂þ
dr sin r cos rcos−1

�
cos r
j cos rj

�
¼ η

G
H−2

O

Z
cos π

cos r̂þ
dttπθð−tÞ

¼ ηπ

2G
H−2

O ½1 − ð1 − sin2r̂þÞθð− cos r̂þÞ�

¼ ηπ

2G
½H−2

O θðR̂þÞ þ R̂2θð−R̂0þÞ�:

However this way of calculating (essentially what was done
in [16]) misses the fact that the extra term comes from
going behind the horizon of the observer at r ¼ π.
To belabor the point let us redo the calculation without

using an explicit parametrization. This is all we can do in

the general situation of SdS transitions where we do not
have the luxury of such a parametrization. In this case the
outside integral [the second term in (A29)] may written as
(ignoring the delta function terms discussed in the previous
subsection)

¼ −
ηπ

G

�Z
rmax

r̂
drR0Rθð−R0þÞ

�
¼ −

ηπ

2G

�Z
rmax

r̂
dr

dR2

dr
θð−R0þÞ

�
¼ −

ηπ

2G

�Z
0

R̂
dR2θð−R0þÞ

�
;

¼ ηπ

2G
R̂2θð−R0þÞ:

In agreement with (A33).

6. Reflection symmetry of tunneling action

In this subsection we will show explicitly the symmetry
under the interchange of the outside and inside space times
when the configuration is at a general point (i.e., not a
turning point), for both the bulk and the brane actions.
Let us first look at (i times) the bulk action I ¼ iS,

with the wall/brane at some arbitrary point with radius
R̂ ¼ Rðr̂Þ. We have for a transition from a stateO outside to
a state I inside,26

G
η
IIOB ¼

Z
r̂−ϵ

0

drR

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AIL2 − R02

q
− R0cos−1

�
R0

LAI

��
þ
Z

r�

r̂þϵ
drR

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AOL2 − R02

q
− R0cos−1

�
R0

LAO

��
;

ðA37Þ

G
η
IOI
B ¼

Z
r̂

0

drR

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AIL2 − R02

q
− R0cos−1

�
R0

LAI

��
þ
Z

r�

r̂
drR

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AOL2 − R02

q
− R0cos−1

�
R0

LAO

��
:

ðA38Þ

In the first equation let us change the integration variable:
put r0 ¼ r � −r. So we get

G
η
IIOB ¼

Z
r̂0þϵ

r�
ð−dr0ÞRðr � −r0Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AIL2 − R02

q
−

dR
dðr � −r0Þ cos

−1
�
dR=dðr � −r0Þ

LAI

��
þ
Z

0

r̂−ϵ
ð−dr0ÞRðr � −r0Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AOL2 − R02

q
−

dR
dðr � −r0Þ cos

−1
�
dR=dðr � −r0Þ

LAO

��
: ðA39Þ

26Note that we have replaced rmax by r�.
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The above may be rewritten as

G
η
IIOB ½Rðr̂Þ� ¼

Z
r�

r̂0þϵ
ð−dr0ÞRðr � −r0Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AIL2 − R02

q
−
dR
dr

				
r¼r�−r0

cos−1
�ðdR=drÞjr¼r�−r0

LAI

��
þ
Z

r̂−ϵ

0

drRðr � −r0Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AOL2 − R02
q

−
dR
dr

				
r¼r�−r0

cos−1
�ðdR=drÞjr¼r�−r0

LAO

��
;

¼ G
η
IOI
B ½Rðr � −r̂0Þ� ¼ G

η
IOI
B ½Rðr̂Þ�;

which establishes the symmetry of the bulk action between the outside and inside spacetimes.
For the wall/brane action we have

−
G
η
IIOW ¼

Z
δR̂ R̂

�
cos−1

�
R̂þ

L
ffiffiffiffiffiffi
AO

p
�
− cos−1

�
R̂−

L
ffiffiffiffiffi
AI

p
��

: ðA40Þ

Under the interchange O ⇄ I we have R̂� ⇄ −R̂∓. So since cos−1 ð−xÞ ¼ π − cos−1ðxÞ, we have

−
G
η
IOI
W ¼

Z
δR̂ R̂

��
π − cos−1

�
R̂−

L
ffiffiffiffiffi
AI

p
��

−
�
π − cos−1

�
R̂þ

L
ffiffiffiffiffiffi
AO

p
���

¼
Z

δR̂ R̂

��
−cos−1

�
R̂−

L
ffiffiffiffiffi
AI

p
��

þ
�
cos−1

�
R̂þ

L
ffiffiffiffiffiffi
AO

p
���

¼ −
G
η
IIOW :

Hence the total action at R̂ is invariant under the interchange of the outside and the inside.
It is important to note that this reflection symmetry is manifest only with at general points in field space—i.e., without

imposing turning point values for either the geometry or the brane.
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