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We propose a symmetry resolution of entanglement for categorical noninvertible symmetries
(CaT-SREE) in (1þ 1)-dimensional conformal field theories. The definition parallels that of grouplike
invertible symmetries, employing the concept of symmetric boundary states with respect to a categorical
symmetry. Our examination extends to rational conformal field theories, where the behavior of CaT-SREE
mirrors that of grouplike invertible symmetries. We find that CaT-SREE can be defined if there is no
obstruction to gauging the categorical symmetry, as happens in the case of grouplike symmetries. We also
provide instances of the breakdown of entanglement equipartition at the next-to-leading order in the cutoff
expansion. Our findings shed light on how the interplay between conformal boundary conditions and
categorical symmetries lead to specific patterns in the entanglement entropy.
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I. INTRODUCTION

The notion of a global symmetry in quantum field theory
(QFT) has been recently generalized in ways that go
beyond those described by groups. Central to this
is the idea that every symmetry can be associated to a
topological operator [1]. The most striking of these
generalizations are higher-form symmetries, related to
the conservation of extended objects, and categorical or
noninvertible symmetries, symmetries whose associated
topological operators form a fusion category, that is, do
not fuse according to a simple group law. The study of
these noninvertible symmetries is providing new and
deep insights into the characterization of universal proper-
ties of quantum systems of wide interest, spanning con-
densed matter and high-energy physics (see Refs. [2,3]
for a comprehensive and pedagogical review of these
developments.).
In (1þ 1)-dimensional conformal field theories (CFTs),

on which we focus on this work, noninvertible symmetries
implement dualities such as the Kramers-Wannier duality

of the ð1þ 1ÞD Ising model [4,5] and the duality between
momentum and winding modes (T duality) of the free
compactified boson [6–8]. In these theories, a finite
categorical symmetry is defined through a fusion category
C of one-dimensional topological defect line operators. In
rational conformal field theories (RCFTs) with a diagonal
modular invariant partition function [9,10], these topo-
logical defect line operators are known as Verlinde lines.
Verlinde lines represent both invertible as well as non-
invertible symmetries [11,12]. If the set of lines is denoted
as fLigi∈V where V labels the operators Li ∈ C, then the
fusion algebra is given by

Li × Lj ¼
X
k∈V

Nk
ijLk; ð1Þ

where Nk
ij ∈Z≥0 are non-negative integer-valued fusion

coefficients. Topological defect lines and particularly
Verlinde lines L, do not generically have an inverse L−1

such that L × L−1 ¼ 1.
Parallel to generalizing the concept of global symmetry,

there has been a remarkable interest in understanding the
relation between entanglement in QFT and symmetries.
In systems with a global grouplike invertible symmetry,
this has been carried out through the symmetry resolved
entanglement entropy (SREE) [13–15] which intuitively
quantifies the amount of entanglement for different charge
sectors. Remarkably, it has been shown that at leading order
in the UV cutoff expansion, the SRE entropies are equal for
all the charge sectors, a result known as entanglement
equipartition [15].

*pablo.saura@upct.es
†arpit.das@ed.ac.uk
‡german.sierra@csic.es
§javi.molina@upct.es

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 109, 105026 (2024)

2470-0010=2024=109(10)=105026(7) 105026-1 Published by the American Physical Society

https://orcid.org/0000-0001-8719-5514
https://orcid.org/0000-0002-9333-0062
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.105026&domain=pdf&date_stamp=2024-05-23
https://doi.org/10.1103/PhysRevD.109.105026
https://doi.org/10.1103/PhysRevD.109.105026
https://doi.org/10.1103/PhysRevD.109.105026
https://doi.org/10.1103/PhysRevD.109.105026
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Hitherto, the entanglement behavior in the presence of
categorical symmetries in a QFT has been unknown. In this
Letter, we establish the SREE for categorical symmetries
(CaT-SREE), mirroring the case of grouplike invertible
symmetries once the notion of symmetric boundary states
with respect to a categorical symmetry is provided [16].
Our results shed light on how certain CFT boundary
conditions preserve or enhance certain categorical sym-
metries, leading to specific patterns in the entanglement
entropy. We illustrate the proposal with two RCFTs, the
critical Ising model, where it is not possible to obtain a
CaT-SREE and the tricritical Ising model, where it is
possible, and the result at leading order shows entangle-
ment equipartition.

II. SYMMETRY RESOLVED
ENTANGLEMENT IN CFT

In extended quantum systems, the entanglement entropy
(EE) measures the amount of quantum correlations between
the degrees of freedom located within an arbitrary region A
and those sited on its complement B. Assuming that the
Hilbert spaceH of the system factorizes asH ¼ HA ⊗ HB,
where HA contains the degrees of freedom in the region A
and HB the ones in B, for given a pure state jΨi∈H, the
reduced density matrix of A is defined by tracing out the
degrees of freedom corresponding to the complementary
region B as ρA ¼ TrHB

jΨihΨj.
The entanglement between A and B is thus quantified

through the Rényi and entanglement entropies

SnA ¼ 1

1 − n
log TrρnA;

SA ¼ lim
n→1

SnA ¼ −TrρA log ρA: ð2Þ

We consider now there is a local charge operator Q ¼
QA ⊗ 1B þ 1A ⊗ QB that generates a global Abelian
symmetry groupG in our theory. When jΨi is an eigenstate
of Q, then ½ρA;QA� ¼ 0 and ρA is block diagonal ρA ¼
⊕Q ΠQρA ¼⊕Q pA½Q�ρA½Q�, with

P
Q pA½Q� ¼ 1 and

TrρA½Q� ¼ 1, each block corresponding to a charge sector
of QA where Q are eigenvalues of QA, ΠQ is a projector to
the eigenspace of Q and pA½Q� ¼ Tr½ΠQρA� is the prob-
ability of measuring the charge value Q in the region A.
G being Abelian, the eigenvalues Q label the irreducible
representations r of the group.
As a result, the entanglement between regions A and B,

may be decomposed into the contributions of each charge
sector [13–15] through the symmetry resolved Rényi
entropy

SnA½Q� ¼ 1

1 − n
log TrρnA½Q�: ð3Þ

Entanglement equipartition is the situation for which
TrρnA½Q� and thus SA½Q� do not depend on Q. With this, the

fundamental object to compute the SREE is the replica
partition function [17,18] at a fixed value of charge Q

Zn½Q� ¼ TrΠQρ
n
A; ð4Þ

from which the SREE can be written as

SnA½Q� ¼ 1

1 − n
log

Zn½Q�
Z½Q�n ; Z½Q�≡ Z1½Q�: ð5Þ

In a (1þ 1)-dimensional CFT, the factorization of the
Hilbert space H as H ¼ HA ⊗ HB, requires imposing
boundary conditions a, b that preserve conformal sym-
metry at the entangling surface ∂A. These boundary condi-
tions have nontrivial consequences for the EE [19,20].
Specifying the region A to an interval of length l, this is
implemented by encircling the two entangling points at ∂A
with two disks of radius ε ≪ 1, acting as UV cutoffs at
which the boundary conditions a and b are imposed (Fig. 1,
upper panel). This manifold is mapped into an annulus
of length W ¼ 2 log ðl=εÞ þOðεÞ and circumference 2π
(2πn, after replicating) by a conformal transformation
(Fig. 1, lower panel) where the space-time is periodic in
one direction and the jai and jbi states are defined at the ε
boundaries. In this geometry, traces of ρnA are evaluated in
terms of BCFT partition functions as [21,22]

Zn½qn� ¼ Trab½ρnA� ¼
Zab½qn�
Zab½q�n

;

Zab½q� ¼ TrabρA ¼ Trab½qðL0−c=24Þ�; ð6Þ

with the Virasoro zero mode L0 and the central charge c.
Here, Trab ≡ TrHA;ab refers to a trace taking into account
the nontrivial boundary conditions and q ¼ e2πiτ is the
nome with the modular parameter τ ¼ iπ=W. Therefore,
q ¼ e−2π

2=W and q̃ ¼ e−2W , with q̃ obtained after a modular
S transformation, S∶ τ → τ̃ ¼ −1=τ.
After imposing the Hilbert space decomposition

H ¼ HA;ab ⊗ HB;ba, the remaining symmetry algebra
in a CFT with a global symmetry is called A and

FIG. 1. The factorization ab imposes disks ε ≪ 1 with boun-
dary conditions a, b (upper panel). The resulting manifold is
replicated and after tracing over HB;ba, a conformal transforma-
tion yields an annulus of width W and circumference 2πn.
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HA;ab ¼ ⨁iH
niab
i with i running over the allowed repre-

sentations of A and the multiplicities niab depending on the
boundary conditions a and b. Then, the replica BCFT
partition functions can be written in terms of the characters
χiðqÞ ¼ TrHi

½qðL0−c=24Þ� for the representation i,

Zab½qn� ¼
X
i

niabχiðqnÞ ¼ hajq̃1
nðL0−c=24Þjbi: ð7Þ

The last equality is obtained after a modular transformation
to the S-dual channel where the boundary condition
dependence explicitly appears in terms of Cardy conformal
boundary states

jai ¼
X
j

Sajffiffiffiffiffiffi
S0j

p jj⟫; ð8Þ

with jj⟫ being an Ishibashi state for the jth representation
of A [23], and coefficients Saj are elements of the modular
matrix S of the CFT [21,24].

III. SREE FOR GROUP SYMMETRIES

The symmetry resolution of entanglement entropy of
Abelian group symmetries has been well studied previously
[25–28]. The projectors into different irreducible represen-
tations of a finite group G are given by

ð9Þ

where r labels the irreps of G and thus the different
Q-charge sectors, dr is the dimension of the irrep, jGj is
the order of the group, χ�rðgÞ is the character of the element
of g∈G in the irrep r and Lg is the topological operator
implementing the action of g on states supported on the
region A.
Using projectors (9) one may write the partition function

associated to a charge sector labeled by r in Eq. (4) as

Zab½qn; r� ¼ TrabΠrρnA ¼ dr
jGj

X
g∈G

χ�rðgÞ
Zab½qn; g�
Zn
ab½q�

;

Zab½qn; g� ¼ Tr½L̂gqnðL0−c=24Þ�; ð10Þ

where the explicit action of the topological operator L̂g is
encoded in the charged moment Zab½qn; g� (one for each
element of the group). Here, we use Lg for a topological

line in Euclidean spacetime, and L̂g for the corresponding
operator acting on the Hilbert space. As before, one may
express Zab½qn; g� in the S-dual channel in terms of
boundary states jai and jbi as

Zab½qn; g� ¼g hajq̃1
nðL0−c=24Þjbig; ð11Þ

where the subindex g represents that the states belong to the
Hilbert space generated by inserting the operator L̂g as a
defect operator in the original theory, which is the defect or
twisted Hilbert spaceHLg

. Thus, in this approach, comput-
ing SREE reduces to find suitable boundary states jaig and
jbig. Namely, as Zab½qn; g� is defined through the insertion
of Lg in the annulus partition function, it is required that Lg

can end topologically on the boundary of the interval which
imposes a constraint on the allowed boundary states in the
dual S channel [16].
For invertible group symmetries the topological end-

ability is equivalent to having G invariant boundary states.
A natural definition in the S-dual channel for a (conformal)
boundary a to be G symmetric is

L̂hjaig ¼ jaig; ∀ h∈G: ð12Þ

For finite groups the result at leading order in the limit
when ε ≪ l (where q → 1 and q̃ → 0) is quite simple.
There, the main contribution comes from the untwisted
sector [29], that is to say, the vacuum state propagation is
the major contribution to the amplitude in the S-dual
channel and the SREE reads as [25–28]

SA½q; r� ¼
c
3
log

l
ε
þ log

d2r
jGj þ ga þ gb; ð13Þ

where ga ¼ logh0jai, gb ¼ logh0jbi are the Affleck-
Ludwig boundary entropies [30], and dr is the dimension
of the irrep r. The term Oðlogl=εÞ captures the equiparti-
tion of EE among distinct charge sectors, primarily at
the leading order. This equal distribution is broken by the
term of order Oððl=εÞ0Þ by the negative term logpr, with
pr ¼ d2r=jGj representing the probability of measuring the
representation r within block A, a scenario denoted as weak
entanglement equipartition to distinguish it from the strong
equipartition. A parallel outcome was observed in the
examination of Wess-Zumino-Witten models [31].

IV. CATEGORICAL-SYMMETRY RESOLVED
ENTANGLEMENT ENTROPY

We propose the symmetry resolution of entanglement for
CaT-SREE in analogy with the BCFT approach for group-
like invertible symmetries. For this, it is necessary to define
topological endability and thus, symmetric boundary
conditions, for the case of (categorical) noninvertible
symmetries. These have been proposed in [16] through
the notions of strongly symmetric and weakly symmetric
boundary states. While these two concepts are equivalent
for invertible grouplike symmetries, they diverge for
categorylike noninvertible symmetries.
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Recalling the fusion algebra in Eq. (1), we focus on the
finite subset of boundary conditions faga∈B with B
labeling these boundaries, related by the action of a finite
symmetry fusion category C. The corresponding boundary
states are denoted as fjaig. This is known as a module
category and the action of Li acting on such a class of
boundary a is given by

Li ⊗ a ¼ ⨁
b∈B

Ñb
iab; ð14Þ

where Ñb
ia ∈Z≥0. With this, two notions of C-symmetric

boundary states can be established [16]: A conformal
boundary condition a is C-strongly symmetric if the
corresponding boundary state jai is an eigenstate under
the action of C with eigenvalues given by the quantum
dimensions hLii,

L̂ijai ¼ hLiijai ∀ Li ∈ C: ð15Þ

This definition reduces to a G-symmetric boundary con-
dition in the case of grouplike invertible symmetries. On
the other hand it is considered that a conformal boundary
condition a is C-weakly symmetric if every topological line
in C can end topologically on a. Operationally speaking this
means that Ña

ia ≥ 1 for every Li in C, which implies

L̂ijai ¼ jai ⊕ � � � ∀ Li ∈ C: ð16Þ

This second notion of C-symmetric boundary condition
relax enough the requirements for finding the appropriate
boundary states needed to define SREE for fusion cat-
egorical noninvertible symmetries.

A. CaT-SREE in RCFT

The simplest models to define the SREE for fusion CaT-
SREE are two-dimensional RCFTs, for which there exists a
correspondence between Verlinde lines and bulk primary
operators [32]. Thus, each line representing a symmetry of
the model is associated with one primary operator, and their
fusion rules are those given by the operator product
expansion coefficients of the corresponding primaries.
The first step to define CaT-SREE is to write a full set of

projectors associated to the elements of fusion category C in
terms of elements of the modular matrix S of the CFT [33]:

ð17Þ

where fL̂aga∈V ∈ C. The lines pictorially represent the
Verlinde lines of the RCFT inserted either along the time
direction in the annulus (vertical ones), which twist the
Hilbert space of the theory, or along the spatial direction,

which amounts to charged operators acting over the states
on the Hilbert space (horizontal ones) [11].
As we are interested in resolving EE on the original

Hilbert space of the theory, we will consider only projectors
of the form Πc

1. Here, we write these projectors in full
analogy with the grouplike symmetry case Eq. (9) as

ð18Þ

by defining dc ¼ S0c
S00

as the quantum dimension of the line
L̂c, the order of the category jCj ¼ P

c d
2
c, and the

characters χ�cðbÞ ¼ S̄bc
S00
.

We note that the projectors in Eq. (18) are written for a
simple element of the category Lc ∈ C. However, the
element labeling an irrep of the category is not, in general,
a simple object and may be described by nonsimple
topological lines whose associated projectors can be written
as (18) [34,35].
Thus, in analogy with grouplike invertible symmetries,

we define the CaT-SREE in terms of the partition functions

Zc1c2 ½qn; a� ¼ Trc1c2 ½ΠaρnA� ¼
da
jCj

X
b∈ C

χ�aðbÞ
Zc1c2 ½qn; b�
ðZc1c2 ½q�Þn

;

ð19Þ

where the generalized charged moment in the S-dual
channel is defined as

Zc1c2 ½qn; b� ¼b hc1jq̃1
nðL0−c=24Þjc2ib; ð20Þ

and jc1;2ib are Cardy boundary states in the C-weakly
symmetric sense exposed above.
We illustrate our definition with two examples, the

critical Ising model and the tricritical Ising model.

V. THE CRITICAL ISING MODEL

The critical Ising model is described by a (1þ 1)-
dimensional RCFT with a central charge c ¼ 1

2
. There

are three primary operators in the model: the identity 1,
the energy field ϵ, and the spin field σ. The symmetries of
this model are described by three Verlinde lines: f1̂; η̂g
which conform the usual Z2 symmetry of the Ising model,

and N̂ that implements the Kramers-Wannier duality [4,5].
These lines follow the fusion rules of the Ising category

η × η ¼ 1; N ×N ¼ 1þ η; η ×N ¼ N ð21Þ

As discussed above, to obtain the CaT-SREE one must
first compute the set of the CIsing-symmetric Cardy states
through (8). In doing so, it is noticed that there are three
simple boundary states in this model,
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j1i ¼ 1ffiffiffi
2

p j1⟫þ 1ffiffiffi
2

p jϵ⟫þ 1
21=4

jσ⟫;

jϵi ¼ 1ffiffiffi
2

p j1⟫þ 1ffiffiffi
2

p jϵ⟫ −
1

21=4
jσ⟫;

jσi ¼ j1⟫ − jϵ⟫: ð22Þ

The boundary states j1i, jϵi, and jσi conform the Ising,
or more technically, the Tambara-Yamagami TYþZ2 fusion
category, that is a regular module category. Therefore, there
is a one-to-one correspondence between the boundary

states (22) and the Verlinde lines such that j1i≡ 1̂; jϵi≡
η̂; jσi≡ N̂ with

η̂j1i ¼ jϵi; η̂jϵi ¼ j1i; η̂jσi ¼ jσi;
N̂ j1i ¼ jσi; N̂ jϵi ¼ jσi; N̂ jσi ¼ j1i⊕ jϵi: ð23Þ

We note that only jσi is invariant under the action of the
group Z2. In this sense, jσi is a Z2-symmetric state, and
thus it is possible to use it to compute the SREE for the Z2

grouplike symmetry of the model [27]. However, none
of the three boundary states are symmetric, neither in the
strong nor weak sense, under the action of N . As a result,
it is not possible to define the CaT-SREE in the critical
Ising model. A fusion category can only admit a strongly
symmetric boundary if it is anomaly free, while it admits
a weakly symmetric boundary if and only if it can be
“gauged” in the generalized sense posed in [16]. Being
CIsing anomalous, hence the impossibility of defining the
CaT-SREE from the obstruction to gauging it, as just
happens in the case of group-like symmetries [27,36].

VI. THE TRICRITICAL ISING MODEL

The tricritical Ising model is a RCFTwith central charge
c ¼ 7

10
. The model is composed by six primary operators

and six lines. In addition to the trivial line 1 and the Z2

invertible line η, there are four more simple lines, W, ηW,
N , and WN . Nontrivial fusion rules for these lines are
given by

η × η ¼ 1; N ×N ¼ 1þ η;

η ×N ¼ N × η ¼ N ; W ×W ¼ 1þW: ð24Þ

From these relations we can identify f1; η;N g as a TYþZ2

subcategory and f1;Wg a Fibonacci subcategory CFib.
Same as with critical Ising model, for the first group
of lines we cannot find symmetric boundary conditions,
neither strong nor weak. However, that is not the case for
CFib that is the simplest example of a category that can be
gauged, and therefore admits a weakly symmetric boun-
dary. Namely, there are three boundary states that are
weakly symmetric under CFib:

ŴjWi ¼ jWi ⊕ j1i; ŴjηWi ¼ jηWi ⊕ jηi;
ŴjWN i ¼ jWN i ⊕ jN i: ð25Þ

For simplicity, we choose to work with the boundary
condition jWN i. Through Eq. (8), this state can be
written as

jWN i ¼ 1ffiffiffiffi
N

p �j1⟫þ φ−3=2jϵ⟫ − φ−3=2jϵ0⟫ − jϵ00⟫�; ð26Þ

with φ ¼ 1þ ffiffi
5

p
2

the golden ratio and N ¼ ð 10

5þ2
ffiffi
5

p Þ1=2. Thus,
the charged moment associated to the untwisted sector is
given in terms of the Virasoro characters by (see
Supplemental Material [37]):

ZWN ½qn; 1� ¼ 1

N

h
χ0
�
q̃

1
n
�þ φ−3χ 1

10

�
q̃

1
n
�

þ φ−3χ3
5

�
q̃

1
n
�þ χ3

2
ðq̃1

nÞ
i
; ð27Þ

where, for notational convenience, we use Zaa → Za.
In order to compute the charged moment ZWN ½qn;W�,

we need an explicit expression of the boundary state jWN i
twisted by the introduction of the Verlinde line Ŵ as a
defect operator. In general, this new boundary state is given
by a combination of twisted Ishibashi states, that is, con-
formal scalars on the W-twisted Hilbert space. The twisted
W-Hilbert space contains nine primary operators; among
them there are three scalars, ϵW , ϵ0W , σW with conformal
weights 1

10
, 3

5
, and 3

80
, respectively. This implies that the

CFib-symmetric twisted Cardy state is a linear combination
of the twisted Ishibashi states associated with these
operators,

jWN iW ¼ α1jϵ⟫W þ α2jϵ0⟫W þ α3jσ⟫W; ð28Þ

for some fixed coefficients αi. With this state, the twisted
charged moment is

ZWN ½qn;W� ¼ α21χ 1
10

�
q̃

1
n
�þ α22χ3

5

�
q̃

1
n
�þ α23χ 3

80

�
q̃

1
n
�
: ð29Þ

Comparing the two contributions for the CaT-SREE of the
CFib subcategory of this model, one notices that ZWN ½qn; 1�
dominates over ZWN ½qn;W� at leading order in the ε
expansion (see the Supplemental Material [37]).
In order to find the CaT-SREE, we note that there are 2

irreps of CFib that we label with rC ¼ fA;Bg. With this, one
may write the projectors associated to those representations
as a combination of projectors of the form (18),

ΠA ¼ Π1 þ Πη þ ΠN ;

ΠB ¼ ΠW þ ΠηW þ ΠWN ; ð30Þ
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which explicitly read as

ð31Þ

where dA ¼ 1 and dB ¼ φ are the quantum dimensions of
the Fibonacci anyons, the total quantum dimension is given
by the usual formula jCj ¼ d2A þ d2B ¼ 1þ φ2, and the
characters are χ�AðWÞ ¼ φ and χ�BðWÞ ¼ −1.
These projectors coincide with those characterizing a

theory with Fibonacci anyons, those describing the low-
energy physics of the fractional quantum Hall effect at
filling factor ν ¼ 5=2 [38].
As there are two simple anyons in this category, there are

two projectors of the type of Eq. (18). This ensures that the
projectors (31) successfully project into the irreps of the
Fibonacci subcategory CFib.
With this, the partition functions associated to each

charged sector (10) are given by

Z½qn; rC� ¼
drC
jCj

�
drC

Z½qn; 1�
ðZn½q� þ χ�rCðWÞZ½q

n;W�
Zn½q�Þ

�
; ð32Þ

where the subscript WN has been suppressed for conven-
ience. From these, the CaT-SREE at leading order for both
irreps rC ¼ fA;Bg reads as

S½q; rC� ¼
c
3
log

l
ε
þ log

d2rC
jCj þ 2gWN ; ð33Þ

with gWN ¼ log⟪1jWN i the Affleck-Ludwig boundary
entropy. This is the main result in this work. Formally, it is
analogous to the one obtained for finite groups (13), that is,
the CaT-SREE at leading order in the UV cutoff is equally
distributed among the different (Fibonacci anyon) charge
sectors A and B. Similarly to invertible grouplike sym-
metries, the entanglement equipartition is broken by con-
stant terms related to the quantum dimension drC and the
boundary entropy.

We note that the same entanglement resolution can be
obtained for the tetracritical Ising model, whose topological
lines generate the nonanomalous symmetry RepðS3Þ that
possesses weakly symmetric boundary states under the
subcategory CFib. Finally, we remark that, in some cases, the
CaT-SREE can be obtained in terms of strongly symmetric
states, as, for instance, the double Ising CFT, which admits
a strongly symmetric boundary condition with respect to
the categorical symmetry RepðH8Þ [16].

VII. CONCLUSIONS

We have shown how categorical symmetries shape the
entanglement structure in CFTs by proposing a symmetry
resolution of entanglement for these symmetries. Our
proposal has then provided new insights into the relation-
ship between EE and boundary conditions. As the EE
of a topological phase reflects the fusion rules of anyons
and their braiding statistics, a deeper understanding of the
imprint of categorical symmetries on entanglement pro-
vides a future route to characterize topological order. It is
also interesting to understand in future works, the micro-
scropic description of CaT-SREE by exploring the entan-
glement properties of noninvertible operators on the
lattice [39–42].
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