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We investigate the radiative processes involving two entangled Unruh-DeWitt detectors that are moving
on circular trajectories in (2þ 1)-dimensional Minkowski spacetime. We assume that the detectors are
coupled to a massless, quantum scalar field, and calculate the transition probability rates of the detectors in
the Minkowski vacuum as well as in a thermal bath. We also evaluate the transition probability rates of the
detectors when they are switched on for a finite time interval with the aid of a Gaussian switching function.
We begin by examining the response of a single detector before we go on to consider the case of two
entangled detectors. As we shall see, working in (2þ 1)-spacetime dimensions makes the computations of
the transition probability rates of the detectors relatively simpler. We find that the cross transition
probability rates of the two entangled detectors can be comparable to the autotransition probability rates of
the individual detectors. We discuss specific characteristics of the response of the entangled detectors for
different values of the parameters involved and highlight the effects of the thermal bath as well as switching
on the detector for a finite time interval.
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I. INTRODUCTION

In quantum field theory in Minkowski spacetime, the
concept of a particle is covariant under Lorentz transforma-
tions. However, about half-a-century ago, it was discovered
that the notion of a particle is not a generally covariant
concept (for the original discussion, see Ref. [1]; for detailed
discussions, see the textbooks [2–5]). In general, an observer
inmotion along a noninertial trajectory in flat spacetimemay
see the Minkowski vacuum to be populated with particles
[6–8]. For instance, a uniformly accelerated observer sees the
Minkowskivacuumas a thermal bath, a phenomenon that has
come to be known as the Unruh effect (for the original
discussion, see Refs. [9,10]; for a detailed review on the
phenomenon, see, for instance, Ref. [11]).
Over the last few decades, there has been a constant

effort to understand the notion of a particle in a curved
spacetime. The idea of detectors was originally introduced
to provide an operational definition to the concept of a
particle [7,9,10]. By a detector one has in mind, say, a two
level system that interacts with the quantum field of interest
and is excited or deexcited when it is in motion. The
response of detectors that are in motion on a variety of
trajectories and are coupled to the quantum field in different

manner have been examined in flat and curved spacetimes
(for an inexhaustive list, see Refs. [7,8,12–22].)
At this stage, we should clarify that, in general, the

response of the detectors may not match the results obtained
from more formal methods such as the Bogoliubov trans-
formations and the effective Lagrangian, which also reflects
the particle content of the field (for a discussion in this
context, see Ref. [23]). Moreover, apart from depending on
the trajectory, the response of the detectors depends on the
nature of their interaction with the quantum field.
Nevertheless, the response of the detectors has been studied
extensively in a variety of situations. In particular, it has been
recognized that the idea of detectors can prove to be
indispensable to experimentally observe the phenomenon
of the Unruh effect or its equivalents (in this context, see, for
example, Refs. [24,25]). Therefore, it seems important to
construct specific models of detectors which closely capture
possible experimental realizations and investigate the
response of these detectors under different conditions.
In the literature, we find that a significant amount of

attention has been paid to detectors that are in uniformly
accelerated motion. Evidently, this interest has been due to
the fact that uniformly accelerated detectors exhibit a
thermal response, which has a close analogy with
Hawking radiation from black holes [2,4]. But, from a
practical and experimental perspective, it seems more
convenient to consider detectors that are moving on circular
trajectories (for early discussions, see Refs. [12,16,17]; for
more recent discussions in this context, seeRefs. [18–20,22]).
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Moreover, often the response of the detectors has been
evaluated assuming that they remain switched on for infinite
time. Needless to say, if such nontrivial phenomena are to be
experimentally observed, it becomes important to examine
the response of detectors that are switched on for a finite time
interval.
With the above motivations in mind, in this work, we

examine the response of the so-called Unruh-DeWitt
detectors that are coupled to a massless, quantum scalar
field through a monopole interaction and are in motion on
circular trajectories in Minkowski spacetime. The Unruh-
DeWitt monopole detectors are the simplest of the different
possible detectors in the sense that they are coupled linearly
to the quantum field [9,10]. We evaluate the infinite time as
well as the finite time response of these detectors. We shall
work with Gaussian window functions to switch the
detectors on for a finite time interval (for early discussions
in this context, see Refs. [13–15]; for recent discussions, see
Ref. [21]). For mathematical convenience, we shall work in
(2þ 1)-spacetime dimensions, and calculate the transition
probability rate of the detectors in the Minkowski vacuum
and in a thermal bath. We should mention that our focus on
the (2þ 1)-dimensional case is also motivated by its
extensive consideration in models of analogue gravity (in
this regard, see Ref. [26] and the references therein). After
discussing the case of a single detector, we shall go on to
calculate the transition probability rate of two detectors that
are assumed to be in an entangled initial state, a situation
that has drawn considerable attention in the literature
over the last few years (in this regard, see, for example,
Refs. [27–39]; for a discussion on entangled detectors in
circular motion, see, for instance, Refs. [21,40]). We shall
focus on the excitation of the detector (i.e., it absorbs rather
than emits quanta) due to its interaction with the quantum
field and its motion. As we shall illustrate, when the
detectors are in circular motion and are switched on for
an infinite time interval, generically, the transition proba-
bility rate of the detectors in the Minkowski vacuum and in
the thermal bath is higher when the energy gap between the
two levels of the detectors is smaller and the velocity of the
detector is larger. We also find that, in a thermal bath, when
the detectors remain switched on for an infinite time
interval, the higher the temperature of the bath, the higher
is response of the detectors. Interestingly, we find that the
transition probability rate of the detectors in the Minkowski
vacuum are higher when they are switched on for a shorter
time interval, and we should point out that similar phe-
nomenon has also been noticed previously in the literature
(see, for instance, Refs. [15,41–43]). The corresponding
transition probability rate in a thermal bath exhibits a more
complex behavior, with the transition probability rate
being higher when the temperature is higher provided the
energy gap is large, while the behavior can be reversed for
lower energy gaps, depending on the temperature. We also
discuss different aspects of the total transition probability

rate of the detectors for specific transitions from the
symmetric and antisymmetric entangled states to the col-
lective excited state due to the presence of the thermal bath
and the Gaussian switching function.
This paper is organized as follows. In Sec. II, we shall

introduce and describe the response of two entangled
Unruh-DeWitt detectors that are in motion along specific
trajectories and are interacting with a quantum scalar field.
In Sec. III, we shall discuss the response of a single Unruh-
DeWitt detector that is moving on a circular trajectory in
(2þ 1)-dimensional Minkowski spacetime. We shall evalu-
ate the transition probability rates of the detector in the
Minkowski vacuum as well as in a thermal bath. We shall
also consider the finite time transition probability rates of
these detectors when they are switched on and off with the
help of a Gaussian switching function. As we shall see,
these calculations for a single detector prove to be helpful
later when we evaluate the responses of the entangled
detectors. In Sec. IV, we shall evaluate the auto and cross
transition probability rates of two entangled detectors that
are in motion along circular trajectories, when the field is
assumed to be in the Minkowski vacuum and in a thermal
bath. We shall also discuss the response of these entangled
detectors when they are switched on for a finite time
interval. We shall conclude in Sec. V with a summary of the
results we have obtained and a discussion on the broader
implications of our analysis. We shall relegate some of the
additional discussions to the appendices.
A brief word on our notation is in order at this stage

of our discussion. We shall work with units such that
ℏ ¼ c ¼ 1. For convenience, we shall describe the set of
spacetime coordinates ðt; xÞ collectively as x̃.

II. RADIATIVE PROCESSES OF TWO
ENTANGLED DETECTORS: THE MODEL

In this section, we shall briefly outline the radiative
processes that arise in situations involving two entangled
Unruh-DeWitt detectors. The discussion allows us to intro-
duce the notation and also describe the quantities that we
shall evaluate later. We should mention that the model we
shall consider has been examined earlier in different sit-
uations (in this context, see, for instance, Refs. [21,29,34]).
The detectors we shall consider are assumed to be

composed of pointlike atomswith two internal energy levels,
which are interacting with a scalar field through a monopole
interaction. For simplicity, we shall assume the field to be a
massless, minimally coupled real scalar field, say, Φ. The
Hamiltonian of the complete system composed of the two
detectors and the scalar field is assumed to be of the form

H ¼ HD þHF þHI; ð1Þ

where HD denotes the Hamiltonian of the detectors free of
any interaction, HF is the Hamiltonian describing the free
scalar field, and the termHI describes the interaction between
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the detectors and the scalar field. As initially suggested by
Dicke (for the original discussion, see Ref. [44]; for a recent
discussion, see Ref. [34]), one may express the Hamiltonian
describing the two static atoms constituting the detectors as
follows:

HD ¼ ω0½Ŝz1 ⊗ 1̂2 þ 1̂1 ⊗ Ŝz2�; ð2Þ

where Ŝzj, with j ¼ f1; 2g, denotes the operator that deter-
mines the energy levels of the detectors. The operator Ŝzj is
defined as

Ŝzj ¼
1

2
ðjejihejj − jgjihgjjÞ; ð3Þ

where jgji and jeji represent the ground and excited states
of the jth atom.Moreover, note that, in the Hamiltonian (2)
describing the detectors, the quantity 1̂ represents the
identity operator, and ω0 represents the transition energy
corresponding to the collective two detector system. In
particular, for identical, static detectors, the energy eigen-
states and eigenvalues for the two-atom system are given
by [29]

Ee ¼ ω0; jei ¼ je1ije2i; ð4aÞ

Es ¼ 0; jsi ¼ 1ffiffiffi
2

p ðje1ijg2i þ jg1ije2iÞ; ð4bÞ

Ea ¼ 0; jai ¼ 1ffiffiffi
2

p ðje1ijg2i − jg1ije2iÞ; ð4cÞ

Eg ¼ −ω0; jgi ¼ jg1ijg2i; ð4dÞ

where jgi and jei correspond to the ground and the excited
states of the collective system, while jsi and jai denote the
symmetric and antisymmetric maximally entangled Bell
states. A pictorial representation of the different states and
the associated energy levels of the two entangled detectors
is illustrated in Fig. 1.
In (2þ 1)-dimensional Minkowski spacetime, the

Hamiltonian of the massless, free scalar field is given by

HF ¼ 1

2

Z
d2x½Φ̇2ðx̃Þ þ j∇Φðx̃Þj2�; ð5Þ

where the overdot denotes differentiation with respect to
the time coordinate, and ∇ denotes the spatial gradient. The
interaction Hamiltonian describing the monopole detectors
and the scalar field is assumed to be

HI ¼
X2
j¼1

μjmjðτjÞκjðτjÞΦ½x̃jðτjÞ�; ð6Þ

where μj denotes the strengths of the individual coupling
between the detectors and the scalar field, whilemjðτjÞ and
κjðτjÞ denote the monopole operators of the detectors and
the switching functions, respectively. For identical atomic
detectors, the coupling strengths between the detectors and
the scalar field can be assumed to be the same; i.e., we can
set μ1 ¼ μ2 ¼ μ. In such a case, the time evolution operator
can be expressed as

Û ¼ T exp

�
−iμ

Z
∞

−∞

h
m̂1ðτ1Þκ1ðτ1ÞΦ̂½x̃1ðτ1Þ�dτ1

þ m̂2ðτ2Þκ2ðτ2ÞΦ̂½x̃2ðτ2Þ�dτ2
i�

; ð7Þ

where T implies time ordering. Let jωi be the collective
initial state of the two detector system, and jω̄i be the
collective final state. Also, let the initial state of the scalar
field be the Minkowski vacuum j0Mi, and let jΘi be the
final state of the scalar field. Under these conditions,
the transition amplitude from the initial state jω; 0Mi to
the final state jω̄;Θi at the first order (when expanded in the
strength of the coupling constant μ) in perturbation theory
is given by

Ajω;0Mi→jω̄;Θi ¼ hΘ; ω̄jÛjω; 0Mi;

≃ −iμhΘ; ω̄j
Z

∞

−∞

h
κ1m̂1Φ̂ðx̃1Þdτ1

þ κ2m̂2Φ̂ðx̃2Þdτ2
i
jω; 0Mi: ð8Þ

Note that we shall be interested in examining the final state
of the detectors. The total transition probability of the
detectors can be arrived at from the above transition

FIG. 1. An illustration of the energy levels corresponding to the
eigenstates of the two entangled detectors with two levels each.
(We should mention that this figure has been taken from
Ref. [21].) The contributions from the monopole moment for
each transition have also been indicated in the figure.
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amplitude by summing over all the final states fjΘig of the
field. The total transition probability of the two detectors
can be expressed as

Γjωi→jω̄iðEÞ ¼
X
fjΘig

Ajω;0Mi→jω̄;ΘiA�
jω;0Mi→jω̄;Θi;

≃ μ2
X2
j;l¼1

mω̄ω�
j mω̄ω

l FjlðEÞ; ð9Þ

where E ¼ Eω̄ − Eω, with Eω and Eω̄ denoting the
energy eigenvalues associated with the states jωi and
jω̄i, and mω̄ω

j ¼ hω̄jm̂jð0Þjωi. As we shall discuss below,
the quantities FjlðEÞ—which we shall refer to as the auto or
the cross transition probabilities—depend on the trajectory
of the detectors.
Meanwhile, let us understand the values that the quantity

mω̄ω
j can take. We shall assume that the operator describing

the monopole moment of the detectors is given by

m̂jð0Þ ¼ jejihgjj þ jgjihejj: ð10Þ

This expression for the monopole operators can be utilized
to determine the contributions due to specific transitions
between the collective initial and final states of the two
detectors. For instance, it can be shown that the transition
from the collective ground state jgi to the collective excited
state jei (or the other way around) of the entangled
detectors is not possible since mge

j ¼ meg
j ¼ 0. Also, one

finds thatmse
1 ¼ mse

2 ¼ 1=
ffiffiffi
2

p
and mae

1 ¼ −mae
2 ¼ −1=

ffiffiffi
2

p
,

which denote the amplitudes for transitions between the
symmetric and antisymmetric Bell states (viz. jsi and jai)
and the excited state of the detectors, respectively.
Moreover, one can show that the amplitudes for the
transitions from the collective ground state to the sym-
metric and antisymmetric Bell states are given by mgs

1 ¼
mgs

2 ¼ 1=
ffiffiffi
2

p
and mga

1 ¼ −mga
2 ¼ 1=

ffiffiffi
2

p
. The energy levels

associated with the different states of the two entangled
detectors and the various possible transitions are illustrated
diagrammatically in Fig. 1 (taken from Ref. [21]).
Let us now shift our attention to the transition proba-

bilities FjlðEÞ in Eq. (9). The explicit form of the transition
probabilities FjlðEÞ are found to be

FjlðEÞ ¼
Z

∞

−∞
dτ0l

Z
∞

−∞
dτj e

−iEðτj−τ0lÞ

×Gþ
jl½x̃jðτjÞ; x̃lðτ0lÞ�κjðτjÞκlðτ0lÞ; ð11Þ

where the quantity Gþ
jl½x̃jðτjÞ; x̃lðτ0lÞ� denotes the positive

frequency Wightman function evaluated along the trajec-
tories of the detectors. The positive frequency Wightman
function is defined as

Gþ
jl½x̃jðτjÞ; x̃lðτ0lÞ� ¼ h0MjΦ̂½x̃jðτjÞ�Φ̂½x̃lðτ0lÞ�j0Mi: ð12Þ

In the following sections, we shall evaluate the transition
probabilities of detectors that are in motion on circular
trajectories in (2þ 1)-dimensional Minkowski spacetime.
We shall evaluate the responses of the detectors in the
Minkowski vacuum as well as in a thermal bath. As we
shall see, it proves to be convenient to work in terms of the
polar coordinates to arrive at the Wightman function along
the trajectories of the detectors when they are in circular
motion.

III. RESPONSE OF A DETECTOR
IN CIRCULAR MOTION

In this section, we shall derive the response of a single
Unruh-DeWitt detector that is interacting with a scalar
field. The results we obtain in this situation will prove to be
helpful for understanding the results in the case of the two
entangled detectors. Consider a massless and minimally
coupled scalar field Φ that is described by the action

S½Φ� ¼ −
Z

d3x
ffiffiffiffiffiffi
−g

p 1

2
gμν∂μΦ∂νΦ: ð13Þ

On varying the action, we can obtain the equation of motion
of the scalar field to be

□Φ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νÞΦ ¼ 0: ð14Þ

In order to examine the behavior of a rotating detector in
Minkowski spacetime, it proves to be convenient to work in
the polar coordinates so that, in (2þ 1) dimensions, the
spacetime coordinates are given by x̃ ¼ ðt; ρ;ϕÞ. In these
coordinates, the normal modes of the massless scalar field
can be obtained to be

uqmðx̃Þ ¼
1ffiffiffiffiffiffi
4π

p e−iqtJmðqρÞeimϕ; ð15Þ

where 0 ≤ q < ∞, m is an integer, and JnðzÞ denotes the
Bessel function of order n. On quantization, the scalar field
can be decomposed in terms of the above normal modes
uqmðx̃Þ as follows:

Φ̂ðx̃Þ ¼
Z

∞

0

dq
X∞

m¼−∞
½âqmuqmðx̃Þ þ â†qmu�qmðx̃Þ�; ð16Þ

where âqm and â†qm are the creation and the annihilation
operators that satisfy the following standard commutation
relations:

½âqm; âq0m0 � ¼ ½â†qm; â†q0m0 � ¼ 0; ð17aÞ

½âqm; â†q0m0 � ¼ δð1Þðq − q0Þδmm0 : ð17bÞ
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In the case of a single detector, the transition probability
(11) simplifies to be

FðEÞ ¼
Z

∞

−∞
dτ0

Z
∞

−∞
dτ e−iEðτ−τ0Þ

×Gþ½x̃ðτÞ; x̃ðτ0Þ�κðτÞκðτ0Þ: ð18Þ

In our discussion, we shall be interested in examining
the response of detectors that are moving on circular
trajectories. Also, we shall evaluate the response of the
detectors in the Minkowski vacuum and in a thermal bath.
We shall utilize the mode functions (15) in the polar
coordinates to arrive at the Wightman function Gþðx̃; x̃0Þ
in both these situations. One finds that, in these situations,
the Wightman function along the trajectory of a detector in
circular motion is invariant under the time translation
in the proper time in the frame of the detector, i.e.,
Gþ½x̃ðτÞ; x̃ðτ0Þ� ¼ Gþðτ; τ0Þ ¼ GþðuÞ, where u ¼ ðτ − τ0Þ.
It is well known that such a time translation invariance
allows one to define the transition probability rate of the
detector. Often, in these contexts, the Wightman function is
first evaluated by summing over all the normal modes of the
quantum field, before evaluating the transition probability
rate of the detector. As we shall see, to arrive at the
transition probability rate of the rotating detector, rather
than explicitly evaluate the Wightman function, it proves to
be convenient to first carry out the integral over the quantity
u, and then sum over the modes. In the following
subsections, we shall evaluate the transition probability
rate of a rotating detector that has been switched on for
infinite as well as a finite time interval.

A. Detector switched on for infinite duration

Let us first consider the situation wherein the detector
remains switched on for all times. In such a situation, the
switching function κðτÞ reduces to unity.

1. Response in the Minkowski vacuum

Let us now evaluate the response of the rotating detector
in the Minkowski vacuum. The Wightman function
Gþðx̃; x̃0Þ associated with the massless scalar field in the
Minkowski vacuum can be expressed as (in this regard, also
see Appendix A)

Gþðx; x0Þ ¼ h0MjΦ̂ðx̃ÞΦ̂ðx̃0Þj0Mi;

¼
Z

∞

0

dq
4π

X∞
m¼−∞

JmðqρÞJmðqρ0Þ

× e−iqðt−t0Þeimðϕ−ϕ0Þ; ð19Þ

where we have made use of the fact that the Bessel
functions JnðxÞ are real for integer values of n and real
arguments. In order to arrive at the response of the detector,
we need to calculate the above Wightman function along

the trajectory of the detector. Let us assume that the detector
is moving along a circular trajectory with radius σ, at a
constant angular velocity Ω. If τ is the proper time in the
frame of the detector, then the trajectory of the detector is
given by (see, for example, Refs. [18,21])

t ¼ γτ; ρ ¼ σ; ϕ ¼ γΩτ; ð20Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is the Lorentz factor associated with

the linear velocity v ¼ σΩ of the detector. Along such a
trajectory, the Wightman function above reduces the
following form:

GþðuÞ ¼
Z

∞

0

dq
4π

X∞
m¼−∞

J2mðqσÞe−iγðq−mΩÞu; ð21Þ

where, as we mentioned above, u ¼ ðτ − τ0Þ. In such a
situation, we can define the transition probability rate of the
detector to be

RðEÞ ¼
Z

∞

−∞
du e−iEu GþðuÞ: ð22Þ

On substituting the Wightman function (21) along the
trajectory of the rotating detector in the above expression,
we find that the transition probability rate can be
expressed as

RðĒÞ ¼
X∞

m¼−∞

Z
∞

0

dq
2γ

J2mðqσÞδð1Þ½q − ðm − ĒÞΩ�;

¼ 1

2γ

X∞
m≥Ē

J2m½ðm − ĒÞv�; ð23Þ

where we have introduced the dimensionless energy gap
Ē ¼ E=ðγΩÞ and recall that v ¼ σΩ is the linear velocity of
the detector. Note that, since q∈ ½0;∞Þ, the Dirac delta
function in the above expression leads to nonzero con-
tributions only when m ≥ Ē, which is reflected in the lower
limit of the sum in the final expression.
Evidently, the transition probability rate (23) of the

detector in circular motion depends only on its linear
velocity v. The sum in the expression for the transition
probability rate proves to be difficult to evaluate analyti-
cally. But it converges quickly enough to be computed
numerically. For a given value of Ē, we find that the sum
converges exponentially beyond a certain value of m. For
instance, we find that, when Ē is chosen to be unity, for
v ¼ ð0.25; 0.5; 0.75Þ, the quantity J2m½ðm − ĒÞv� that
appears in the sum characterizing the transition probability
rate of the detector decreases at least as fast as
ðe−2.0m; e−0.9m; e−0.25mÞ, respectively, at suitably large m.
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We should clarify that we have confirmed this behavior for
adequately large values of m, much beyond the values we
sum over to arrive at the result. The rapid convergence of
the sum allows us to easily calculate the transition prob-
ability rate of the rotating detector numerically by summing
up to a finite value of m (in this regard, also see
Appendix B). We have also ensured that, over the domain
of Ē we focus on, the contributions beyond the maximum
value ofm we have worked with are insignificant. In Fig. 2,
we have illustrated the transition probability rate of the
detector as a function of the dimensionless energy gap Ē for
a few different values of the velocity. The figure suggests
that the higher the velocity of the detector, the higher is its
transition probability rate. Moreover, for a given velocity,
the transition probability of the detector is larger at smaller
values of the energy gap such that Ē ≪ 1.

2. Response in a thermal bath

Let us now turn to evaluate the response of the detector in
a thermal bath. We shall assume that the massless scalar
field Φ of our interest is in equilibrium with a thermal bath
maintained at the inverse temperature β. We can utilize the
decomposition (16) of the scalar field in terms of the
normal modes (15) to arrive at the following expression for
the Wightman function at a finite temperature (in this
context, also see Appendix A):

Gþ
β ðx̃; x̃0Þ ¼

Z
∞

0

dq
4π

X∞
m¼−∞

JmðqρÞJmðqρ0Þ

×

�
e−i½qðt−t0Þ−mðϕ−ϕ0Þ�

1− e−βq
þ ei½qðt−t0Þ−mðϕ−ϕ0Þ�

eβq−1

�
: ð24Þ

Along the trajectory (20) of the rotating detector, this finite
temperature Wightman function too turns out to be invari-
ant under translations in the proper time of the detector as in
the Minkowski vacuum. We find that, in the frame of the
rotating detector, the finite temperature Wightman function
reduces to

Gþ
β ðuÞ ¼

Z
∞

0

dq
4π

X∞
m¼−∞

J2mðqσÞ

×

�
e−iγðq−mΩÞu

1 − e−βq
þ eiγðq−mΩÞu

eβq − 1

�
: ð25Þ

Since the Wightman function depends only on the quantity
u, we can define a transition probability rate for the detector
as in the Minkowski vacuum [cf. Eq. (22)]. The transition
probability rate of the rotating detector at a finite temper-
ature can be easily evaluated to be

FIG. 2. The transition probability rate RðĒÞ of the Unruh-DeWitt detector that is moving on a circular trajectory and remains switched
on forever has been plotted as a function of the dimensionless energy gap Ē. We have plotted the response of the detector in the
Minkowski vacuum (on the left) and in a thermal bath (on the right). In the case of the Minkowski vacuum, we have plotted the results
for three different values of the velocity of the detector, viz. v ¼ ð0.25; 0.5; 0.75Þ (in red, blue, and green) and, in the case of the thermal
bath, we have fixed the velocity to be v ¼ 0.5 and have plotted the results for three different values of the dimensionless inverse
temperature, viz. β̄ ¼ ð0.1; 1; 10Þ (in red, blue, and green). We have arrived at these results by summing until ðm − ĒÞ ¼ 50 [in Eqs. (23)
and (26)] and we have confirmed that summing up to higher values of m does not significantly alter the results. Note that the transition
probability rate of the rotating detector is larger at smaller energies for a given velocity and temperature. Also, we find that, for a given
energy and temperature, the rate is higher at a higher velocity of the detector. Moreover, for a given energy and velocity, the transition
probability rate is higher when the temperature of the bath is higher. Clearly, this can be attributed to the fact that there are more quanta
available to excite the detector at higher temperatures.
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RðĒÞ ¼
X∞

m¼−∞

Z
∞

0

dq
2γ

J2mðqσÞ
�
δð1Þ½q − ðm − ĒÞΩ�

1 − e−βq

þ δð1Þ½q − ðmþ ĒÞΩ�
eβq − 1

�
;

¼ 1

2γ

�X∞
m≥Ē

J2m½ðm − ĒÞv�
1 − e−β̄ðm−ĒÞ

þ
X∞
m≥−Ē

J2m½ðmþ ĒÞv�
eβ̄ðmþĒÞ − 1

�
; ð26Þ

where β̄ ¼ βΩ denotes the dimensionless inverse temper-
ature of the bath. We had noted earlier that the quantity
J2m½ðm − ĒÞv�, which appears in the sum characterizing the
transition probability rate decreases exponentially at large
m. Though the sums in the above expression are again
difficult to evaluate analytically, such a rapid convergence
allows us to compute them numerically rather easily (again,
in this regard, see Appendix B). Actually, in the case of the
second term, the exponential in the denominator also aids
in a faster convergence of the sum. In Fig. 2, we have
plotted the above transition probability rate of the detector
for a fixed value of the velocity v and a few different values
of the dimensionless inverse temperature β̄. It should be
clear from the figure that the larger the temperature (or,
equivalently, smaller the value of β̄), the larger is the
transition probability rate of the rotating detector.
At this stage, there is a technical point that we need to

discuss. Actually, the finite temperature Wightman function
(25) contains an infrared divergence. As q → 0, the
functions J2mðqσÞ behave as q2m and, hence, the m ¼ 0
term in the Wightman function diverges logarithmically in
this limit even for a finite separation of the spacetime
points. This behavior is a surprising and less known
peculiarity of the thermal Green’s function in (2þ 1)-
dimensional Minkowski spacetime and, in fact, the diver-
gence is absent at zero temperature [as can be easily
checked with the Wightman function (21)]. Also, it can
be readily shown that such an infrared divergence is not
encountered in (3þ 1)-dimensional Minkowski spacetime.
We should point out that the infrared divergence occurs in
addition to the ultraviolet divergence which arises at large
q. The ultraviolet divergence can, as usual, be regulated
using the ðiϵÞ prescription. Note that, in arriving at the rate
RðĒÞ in Eq. (26), we chose to calculate the integral over u
first before evaluating the integral over q. In the process, the
infrared divergence is transferred to them ¼ �Ē term in the
sum, and it manifests itself only in the Ē → 0 limit. But,
since we have assumed that E > 0, we do not actually
encounter the divergence when evaluating the sum. In the
following section, when we consider detectors which are
switched on for a finite duration, we shall find that the
divergence at the finite temperature cannot be circumvented
in a similar manner. To handle the divergence, we shall

adopt a procedure that allows us to reproduce the results in
the different limits, viz. at zero temperature and when the
detector is switched on for infinite duration.
There is another point that we need to clarify regarding

the results illustrated in Fig. 2. Note that, in the case of
results plotted at a finite temperature, the transition prob-
ability rate RðĒÞ turns out to be more than unity for small
values of Ē. This may cause concern. But it occurs due to
the fact that we have dropped an overall factor of jμj2,
where μ is the coupling constant that determines the
strength of the interaction between the detector and the
field [cf. Eq. (6)], when evaluating the transition probability
rate. In order for the perturbative expansion of the time
evolution operator in Eq. (7) to be valid, we require μ to be
much smaller than unity. Evidently, for a suitably small
value of jμj2, the transition probability rate will reduce to a
value less than unity for all energies Ē.
We will now show that the transition probability rate of

the rotating detector in a thermal bath we have obtained
above corresponds to the accumulation of different types of
radiative processes that occur in the system. Let us
introduce the quantities

N rðq; ĒÞ ¼
1

2γ

X∞
m¼−∞

J2mðqσÞδð1Þ½q − ðm − ĒÞΩ� ð27Þ

and

N βðqÞ ¼
1

eβq − 1
: ð28Þ

Since ð1 − e−xÞ−1 ¼ 1þ ðex − 1Þ−1, in terms of the above
quantities, we can reexpress the first equality of Eq. (26) in
the following form:

RðĒÞ ¼
Z

∞

0

dqN rðq; ĒÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
R1ðĒÞ

þ
Z

∞

0

dqN βðqÞ½N rðq; ĒÞ þN rðq;−ĒÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R2ðĒ;βÞ

: ð29Þ

In other words, we can express the transition probability
rate of the rotating detector in a thermal bath as a sum of the
two contributions R1ðĒÞ and R2ðĒ; βÞ, which, as we shall
soon discuss, can be attributed to different types of radiative
processes. Note that the first term R1ðĒÞ is only a function
of Ē and is independent of β, whereas the second term
R2ðĒ; βÞ is a function of both Ē and β. The fact that the term
R1ðĒÞ is the same as the first equality in Eq. (23) clearly
suggests that it corresponds to the response of the rotating
detector in the Minkowski vacuum. The contribution
arises due to modes with the magnetic quantum numbers
m1 ¼ ðq=ΩÞ þ Ē for a given value of momentum q. A
contribution from the Minkowski vacuum can always be
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expected to occur and the contribution can be interpreted as
arising due to the spontaneous excitation of the detector.
The interesting aspect of the term R2ðĒ; βÞ is the appear-
ance of the factor N βðqÞ. The factor represents the
distribution of scalar field modes with momentum q and
it reflects the fact that the scalar field is immersed in a
thermal bath. Actually, the contribution R2ðĒ; βÞ consists of
two parts. The first part involving N rðq; ĒÞ can be
interpreted as the excitation of the rotating detector due
to the thermal nature of the scalar field, with modes
corresponding to the magnetic quantum number m1 con-
tributing to the transition probability rate of the detector.
The second part involving N rðq;−ĒÞ too signifies the
excitation of detector by the thermal character of the
field, but with the contributions arising from modes with
a different set of magnetic quantum number, viz. m̄1 ¼
ðq=ΩÞ − Ē. Evidently, these latter two contributions can be
attributed to the combined effects of both the circular
motion of the detector as well as the thermal bath. Since
these contributions are influenced by the presence of the
thermal bath and vanish in its absence (i.e., when β → ∞),
these contributions can be interpreted as arising due to the
stimulated excitation of the detector. Therefore, the overall
response of the rotating detector in the thermal bath can be
interpreted as arising due to the accumulation of three types
of radiative process—two processes (spontaneous and
stimulated excitation) to which the scalar field modes with
the magnetic quantum number m1 contribute and another
process (stimulated excitation) that arises due to the
contributions by the modes with quantum number m̄1.
In this regard, it may be pointed out that a similar

interpretation has also been suggested earlier for the
response of a uniformly accelerated detector in a thermal
bath (see Refs. [45–47]). However, we observe a noticeable
difference between the transition probability rates of accel-
erated detectors and our present system. In the accelerated
case, the second term in Eq. (29), which we had interpreted
as due to stimulated excitation, has a simpler structure. It is
composed of a purely thermal contribution and an excitation
due to the acceleration effects stimulated by the thermal
bath. Therefore, for an accelerated detector in a thermal bath,
there are two independent, spontaneous excitations—one is
due to the acceleration (known as the Unruh effect), and the
other is purely due to the thermal bath; apart from stimulated
excitation, which is influenced by the thermal background.
Whereas, in the present study, we do not find any contri-
bution due to the thermal bath that is independent of rotation.
This aspect of the transition probability rates of rotating
detectors in a thermal bath provides a signature distinct from
the case of accelerated detectors.

B. Detector switched on for a finite duration

Let us now consider the case wherein the detectors are
assumed to be switched on for a finite time interval, say, T.

We shall consider the switching functions κðτÞ to be of the
following Gaussian form [15]:

κðτÞ ¼ exp

�
−
τ2

T2

	
; ð30Þ

where, evidently, T denotes the duration for which the
detector remains effectively switched on. In the presence of
such a switching function, the transition probability of the
detector is given by [cf. Eq. (11)]

FTðEÞ ¼
Z

∞

−∞
dτ0

Z
∞

−∞
dτ e−iEðτ−τ0ÞGþðτ; τ0Þ

× exp ½−ðτ2 þ τ02Þ=T2�: ð31Þ

On changing variables to u ¼ ðτ − τ0Þ and v ¼ ðτ þ τ0Þ, the
integral can be expressed as

FTðEÞ ¼
Z

∞

−∞

dv
2
e−v

2=ð2T2Þ

×
Z

∞

−∞
du e−iEuGþðu; vÞ e−u2=ð2T2Þ: ð32Þ

In cases wherein the Wightman function is invariant under
time translations in the frame of the detector, i.e., when
Gþðτ; τ0Þ ¼ GþðuÞ—as in the case of the rotating detector
[cf. Eqs. (21) and (25)]—we can carry out the Gaussian
integral over v to define the transition probability rate of the
detector as follows:

RTðEÞ ¼
FTðEÞffiffiffiffiffiffiffiffiffiffiffiffiðπ=2Þp

T
;

¼
Z

∞

−∞
du e−iEuGþðuÞe−u2=ð2T2Þ: ð33Þ

Note that, as required, RTðEÞ → RðEÞ [cf. Eq. (22)] when
T → ∞. We shall now utilize the above expression to
evaluate the finite time response of the rotating detector in
the Minkowski vacuum and in a thermal bath.

1. Response in the Minkowski vacuum

On utilizing the expression (21) for the Wightman
function in the Minkowski vacuum along the circular
trajectory, the transition probability rate of the detector
that is switched on for a finite time interval T can be
expressed as

RTðEÞ ¼
Z

∞

0

dq
4π

X∞
m¼−∞

J2mðqσÞ

×
Z

∞

−∞
du e−i½Eþγðq−mΩÞ�ue−u2=ð2T2Þ: ð34Þ
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The Gaussian integral over u can be calculated easily to
arrive at

RTðEÞ ¼
ffiffiffiffiffiffi
2π

p
T

X∞
m¼−∞

Z
∞

0

dq
4π

J2mðqσÞ

× e−½Eþγðq−mΩÞ�2T2=2: ð35Þ

Recall that the Dirac delta function can be represented in
terms of the Gaussian function as follows:

δð1ÞðzÞ ¼ lim
α→∞

αffiffiffiffiffiffi
2π

p e−α
2z2=2: ð36Þ

Therefore, in the limit T → ∞, the expression (35) for the
finite time response rate of the detector reduces to the result
(23) for detectors that remain switched on for infinite time
(with the identification of α ¼ γT), as required. Upon
noting that J2nðxÞ ¼ J2−nðxÞ for integer n and real x and
setting q ¼ xΩ, the integral (35) can be expressed as

RTðĒÞ ¼
ffiffiffiffiffiffi
2π

p
T̄

4πγ
e−Ē

2T̄2=2

�Z
∞

0

dx J20ðxvÞ e−½ðx
2=2ÞþxĒ�T̄2

þ 2
X∞
m¼1

e−m
2T̄2=2

Z
∞

0

dx J2mðxvÞe−½ðx2=2ÞþxĒ�T̄2

× cosh½mðxþ ĒÞT̄2�
�
; ð37Þ

where we have defined the dimensionless time interval
T̄ ¼ γΩT. The above integrals and sum seem difficult to
evaluate analytically, but they can be computed numeri-
cally. We find that the functions J2mðxvÞ that appear in the
integrands behave as x2m when x → 0, and as x−1 when
x → ∞ (see, for instance, Refs. [48,49]). Note that the
factors e−½ðx2=2ÞþxĒ�T̄2

and cosh ½mðxþ ĒÞT̄2� reduce to
constants as x → 0. As a result, the integrals are well
behaved at small x. Moreover, at large x, the integrals over
x are dominated by the factor e−x

2T̄2=2, and hence converge
quickly (in this regard, also see Appendix C). We evaluate
the integrals up to a suitably large value of x and then carry
out the sum involved. In fact, we find that, because of the
factor e−m

2T̄2=2, the sum too converges extremely quickly. In
Fig. 3, we have plotted the transition probability rate of the
detector in circular motion for a given value of the velocity
v and a few different values of the dimensionless time
interval T̄. Note that, when T̄ is made larger, as expected,
the transition probability rate approaches the response
rate of the detector that remains switched on forever.
Interestingly, for a given energy Ē and velocity v, the
transition probability rate of a detector that is switched on
for a shorter duration is higher. However, this seems to
occur up to a specific value of Ē. At sufficiently large values
of Ē and T̄, the transition rate RTðĒÞ decreases, and all the
curves corresponding to different values of T̄ merge with

FIG. 3. The transition probability rate RTðĒÞ of the detector in motion on a circular trajectory that has been switched on for a finite time
T has been plotted as a function of the dimensionless energy gap Ē. We have plotted the results for T̄ ¼ ð1; 5; 10Þ (in red, blue, and
green), assuming the field is in the Minkowski vacuum (on the left) and in a thermal bath (on the right). We have set v ¼ 0.5 and β̄ ¼ 1 in
the plotting of these figures. We have arrived at the results for a finite time by integrating over x from zero up to 102, and carrying the
sum over m until ðm − ĒÞ ¼ 10. We have checked that increasing the upper limits of the integral and the sum does not significantly
change the results we have obtained. In the figures, we have also indicated the results in the case wherein the detector is switched on
forever, i.e., when T̄ → ∞ (in gray). Interestingly, we find that the transition probability rate of the detector in the Minkowski vacuum is
higher when it is switched on for a shorter duration. We find that, in a thermal bath, the transition probability rate of the detector also
exhibits a similar behavior at high Ē (when Ē ≳ 0.5, for the values of the parameters we have worked with), while at low Ē the behavior is
reversed. At a sufficiently low temperature (say, β̄ ≳ 150), when T̄ is decreased, we observe that the transition probability rate increases
over the whole domain of Ē, just like in the case of the Minkowski vacuum (in this context, see Fig. 4).
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the transition probability rate of the detector that remains
switched on forever.

2. Response in a thermal bath

Let us now evaluate the finite time response of the
detector in circular motion when it is immersed in a thermal
bath. As earlier, we shall consider Gaussian switching
functions [cf. Eq. (30)]. On substituting the Wightman
function at a finite temperature along the trajectory of the
rotating detector [cf. Eq. (25)] in the expression (33) that
governs the transition probability rate of the detector, we
obtain that

RTðEÞ ¼
Z

∞

0

dq
4π

X∞
m¼−∞

J2mðqσÞ

×
Z

∞

−∞
du

�
e−i½Eþγðq−mΩÞ�ue−u2=ð2T2Þ

1 − e−βq

þ e−i½E−γðq−mΩÞ�ue−u2=ð2T2Þ

eβq − 1

�
: ð38Þ

Upon carrying out the Gaussian integral over u, we arrive at

RTðEÞ ¼
ffiffiffiffiffiffi
2π

p
T
Z

∞

0

dq
4π

X∞
m¼−∞

J2mðqσÞ

×

�
e−½Eþγðq−mΩÞ�2T2=2

1− e−βq
þ e−½E−γðq−mΩÞ�2T2=2

eβq − 1

�
: ð39Þ

One can further simplify this expression to eventually
obtain that

RTðĒÞ ¼
ffiffiffiffiffiffi
2π

p
T̄

4πγ
e−Ē

2T̄2=2

�Z
∞

0

dx J20ðxvÞ

×

�
e−½ðx2=2ÞþxĒ�T̄2

1 − e−β̄x
þ e−½ðx2=2Þ−xĒ�T̄2

eβ̄x − 1

�

þ 2
X∞
m¼1

e−m
2T̄2=2

Z
∞

0

dx J2mðxvÞ

×

�
e−½ðx2=2ÞþxĒ�T̄2

1 − e−β̄x
cosh ½mðxþ ĒÞT̄2�

þ e−½ðx2=2Þ−xĒ�T̄2

eβ̄x − 1
cosh ½mðx − ĒÞT̄2�

��
: ð40Þ

Recall that the functions J2mðxvÞ behave as x2m when
x → 0. Also, as we pointed out, the factors e−½ðx2=2ÞþxĒ�T̄2

and cosh ½mðxþ ĒÞT̄2� reduce to constants when x → 0.
Moreover, note that the functions ð1 − e−β̄xÞ and ðeβ̄x − 1Þ
behave as x when x → 0. Therefore, in the m ¼ 0 term, as
x → 0, the integrand in the above expression for RTðĒÞ
behaves as x−1 and the integration over x leads to a

logarithmic divergence as x → 0. This is the infrared
divergence at the finite temperature that we had discussed
earlier. In contrast to the case wherein the detectors are
switched on forever, it proves to be more involved to handle
the divergence when the detectors are switched on for a
finite duration. We shall regulate the divergence using a
procedure which ensures that we recover the results we
have already obtained in the limits T̄ → ∞ and β̄ → ∞. In
order to avoid a long digression, we have discussed the
procedure in Appendix E. Once we have tackled the
divergence, the remaining terms can be evaluated without
any difficulty. As in the earlier cases, we have evaluated the
integrals and sum in Eq. (40) numerically to arrive at the
response of the detector. We had pointed out that, even in
the Minkowski vacuum, the integrals at large x and the sum
at large m are dominated by the factors e−x

2T̄2=2 and
e−m

2T̄2=2, respectively. Hence, they converge very quickly,
making it convenient to compute them numerically. In the
finite temperature case of our interest, additionally, the
contribution due to the exponential factor in the denom-
inator in the final term leads to a more rapid convergence of
the integral. We have checked that the results are robust
against increasing the upper limits of the integral over x and
the sum over m.
In Fig. 3, we have plotted the transition probability rate

of the detector in circular motion and is immersed in a
thermal bath for different values of the time interval T̄ for
which the detector remains effectively switched on, assum-
ing a given velocity v and inverse temperature β. In contrast
to the response in the Minkowski vacuum, we find that, at a
finite temperature, the transition probability rate of the
detector is lower at lower energies, when the detector is
switched on for a shorter duration. It is only at high enough
energies Ē that the response is higher when T̄ is made
smaller. This point should also be clear from Fig. 4 wherein
we have plotted the transition probability rate of the
detector as a function of the dimensionless inverse temper-
ature β̄ for different values of Ē and T̄.
We should point out here that, in the limit β̄ → ∞,

the quantities ½1 − expð−β̄xÞ�−1 and ½expðβ̄xÞ − 1�−1 in
Eq. (40) reduce to unity and zero, respectively. Note that
the limit β̄ → ∞ implies a vanishing temperature for the
thermal bath and hence corresponds to the Minkowski
vacuum. In such a case, the transition probability rates (26)
and (40) reduce to the corresponding results for the
Minkowski vacuum, viz. Eqs. (23) and (37), as required.
Moreover, recall that, earlier, in Eq. (29), we had expressed
the transition probability rate of the rotating detector as a
sum of different contributions arising due to spontaneous
and stimulated excitations. We should point out here that
the transition probability rate of the rotating detector which
has been switched on for a finite time interval can also be
expressed in a similar fashion.
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IV. RADIATIVE PROCESSES OF ENTANGLED
DETECTORS IN CIRCULAR MOTION

Having discussed the response of individual Unruh-
DeWitt detectors, let us now turn to examine the responses
of two entangled detectors that are moving on circular
trajectories.

A. Detectors switched on for infinite duration

As we have done earlier, let us first discuss the case
wherein the detectors are switched on forever, before going
to study the situations wherein the detectors are switched
on for a finite time interval.

1. Response in the Minkowski vacuum

Consider two detectors that are moving along the circular
trajectories x̃j ¼ ðγjτj;σj;γjΩjτjÞ and x̃l¼ðγlτl;σl;γlΩlτlÞ,
with vjðlÞ ¼ σjðlÞΩjðlÞÞ and γjðlÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2jðlÞ

q
. The circu-

lar trajectories of the two detectors are, in general, assumed
to be independent. On utilizing the mode decomposition
(16) of the scalar field, the positive frequency Wightman
function in the Minkowski vacuum which connects two
spacetime points corresponding to two such detectors in
circular motion can be obtained to be

Gþ
jl½xjðτjÞ; xlðτ0lÞ� ¼

Z
∞

0

dq
4π

X∞
m¼−∞

JmðqσjÞJmðqσlÞ

× e−iqðγjτj−γlτ
0
lÞeimðγjΩjτj−γlΩlτ

0
lÞ: ð41Þ

We can arrive at the total transition probability (9) corre-
sponding to the entangled detectors by evaluating the auto
and cross transition probabilities FjlðEÞ defined in Eq. (11).
To evaluate the auto and cross transition probabilities, let

us consider the change of variables ū ¼ τj − τ0l and
v̄ ¼ τj þ τ0l. In terms of these new variables, for the case
of detectors that are switched on forever, i.e., when
κjðτjÞ ¼ κlðτlÞ ¼ 1, the transition probabilities FjlðEÞ
can be expressed as

FjlðEÞ ¼
Z

∞

−∞

dv̄
2

Z
∞

−∞
dūe−iEūGþ

jlðū; v̄Þ: ð42Þ

Upon using the inverse transformations τj ¼ ðv̄þ ūÞ=2 and
τ0l ¼ ðv̄ − ūÞ=2 in the expression (41), we obtain the
Wightman function Gþ

jlðū; v̄Þ for the two detectors moving
on circular trajectories to be

Gþ
jlðū; v̄Þ ¼

Z
∞

0

dq
4π

X∞
m¼−∞

JmðqσjÞJmðqσlÞ

× e−i½α1ðqÞv̄þα2ðqÞū�=2; ð43Þ

where the quantities α1ðqÞ and α2ðqÞ are given by

α1ðqÞ ¼ qðγj − γlÞ −mðγjΩj − γlΩlÞ; ð44aÞ

α2ðqÞ ¼ qðγj þ γlÞ −mðγjΩj þ γlΩlÞ: ð44bÞ

FIG. 4. The transition probability rate RTðĒ; β̄Þ of the detector in circular motion that is immersed in a thermal bath and has been
switched on for a finite time T has been plotted as a function of the dimensionless inverse temperature β̄. We have set v ¼ 0.5, and have
plotted the results for two different values of the dimensionless energy gap, viz. Ē ¼ ð0.02; 0.6Þ (on the left and right), and three different
values of switching time, viz. for T̄ ¼ ð1; 5; 10Þ (in red, blue, and green, respectively). These plots clearly indicate that the transition
probability rate is larger for larger temperatures of the thermal bath (or, equivalently, for smaller values of β̄). We also observe that, when
Ē is suitably large, the transition probability rate increases with decreasing T̄, as in the case of the Minkowski vacuum. However, for
smaller values of Ē, we find that this behavior can be reversed when β̄ is small.
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On carrying the integral over ū, we obtain the transition
probability FjlðEÞ to be

FjlðEÞ ¼
Z

∞

0

dq
2

X∞
m¼−∞

JmðqσjÞJmðqσlÞ

× δð1Þ
�
E þ α2ðqÞ

2

� Z
∞

−∞

dv̄
2
e−iα1ðqÞv̄=2;

¼ 1

γj þ γl

X∞
m≥Ê

Jmðq0σjÞJmðq0σlÞ

×
Z

∞

−∞

dv̄
2
e−iα1ðq0Þv̄=2; ð45Þ

where the quantity q0 is defined as

q0 ¼
ðm − ÊÞ
γj þ γl

ðγjΩj þ γlΩlÞ ð46Þ

with Ê being given by

Ê ¼ 2E
γjΩj þ γlΩl

: ð47Þ

We should point out that the condition m ≥ Ê arises since
q0 ≥ 0. Let us now explicitly evaluate the transition
probabilities FjlðEÞ for the cases j ¼ l and j ≠ l.
When j ¼ l, the trajectories correspond to the same

detector so that we have γj ¼ γl andΩj ¼ Ωl, which lead to
α1ðq0Þ ¼ 0. In such a case, the expression (45) reduces to
the transition probability of a single detector. We can also
define the corresponding transition probability rate, say,
RjjðEÞ, by dividing the quantity FjjðEÞ in Eq. (45) by the

integral over v̄ [cf. Eq. (22)]. Since, Ê ¼ E=ðγjΩjÞ ¼ Ēj

and q0 ¼ ðm − ĒjÞΩj, when j ¼ l, we obtain the transition
probability rate of the detector to be

RjjðĒjÞ ¼
1

2γj

X∞
m≥Ēj

J2m½ðm − ĒjÞvj�; ð48Þ

where, as we mentioned before, the conditionm ≥ Ēj arises
because q0 ≥ 0. This is exactly the result we had obtained
earlier when we had considered the response of a single
detector [cf. Eq. (23)]. When j ¼ 1, the transition proba-
bility rate R11ðĒ1Þ is given by the expression (23), with
ðv; γ; Ē) replaced by ðv1; γ1; Ē1Þ. If we define the dimen-
sionless parameters Ω̄ ¼ Ω2=Ω1 and γ̄ ¼ γ2=γ1, then the
transition probability R22ðĒ1Þ can be expressed as

R22ðĒ1Þ ¼
1

2γ2

X∞
m≥Ē1=ðγ̄ Ω̄Þ

J2m

��
m −

Ē1

γ̄ Ω̄

	
v2

�
: ð49Þ

Let us now consider the case wherein j ≠ l. When j ≠ l,
the integral over v̄ in Eq. (45) results in a delta function of
the form δð1Þ½α1ðq0Þ�, which can be utilized to define the
transition probability rate. Also, the delta function leads to
an additional constraint on m. For the transition probability
rate RjlðEÞ to be nonzero, other than the condition m ≥ Ê,
we also require that

m ¼ m0 ¼
ðγl − γjÞE

γjγlðΩj − ΩlÞ
: ð50Þ

In other words, the contribution to the transition proba-
bility rate arises due to only one term in the sum over m,
leading to

RjlðÊÞ ¼
1

ðγj þ γlÞ
Jm0

ðq0σjÞJm0
ðq0σlÞ; ð51Þ

and we should stress that this result is true only when j ≠ l.
However, since m0 has to be an integer, the relation (50)
implies that it is only for some specific values of the
parameters of the system that the transition probability
rates R12ðEÞ and R21ðEÞ contribute to the radiative process.
In terms of the dimensionless parameters γ̄ and Ω̄, we
can express the transition probability rate R12ðĒ1Þ as
follows:

R12ðĒ1Þ ¼
1

ðγ1 þ γ2Þ
Jm0

�
ðm0 − ÊÞ ð1þ γ̄ Ω̄Þ

ð1þ γ̄Þ v1

�

× Jm0

�
ðm0 − ÊÞ ð1þ γ̄ Ω̄Þ

ð1þ γ̄ÞΩ̄ v2

�
;

¼ R21ðĒ1Þ; ð52Þ

with Ê and m0 being given by

Ê ¼ 2E
γ1Ω1 þ γ2Ω2

¼ 2Ē1

1þ γ̄ Ω̄
;

m0 ¼
ðγ2 − γ1ÞE

γ1γ2ðΩ1 −Ω2Þ
¼ ð1 − 1=γ̄ÞĒ1

1 − Ω̄
: ð53Þ

Let us now understand if the transition probability rate
R12ðĒ1Þ can be nonzero for values of the parameters
describing the trajectories of the two detectors, viz.
ðΩ1; γ1Þ and ðΩ2; γ2Þ, whichwe shall focuson. First, consider
the case wherein γ1 ≠ γ2, while ðΩ1 −Ω2Þ → 0þ. In such a
situation, m0 → ∞ as Ω1 → Ω2, and the required condition
m0 ≥ Ê will indeed be satisfied. However, we find that, as
m → ∞, the function JmðzÞ goes to zero (in this context, see
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Refs. [48,49]). This implies that the transition probability rate
R12ðEÞ vanishes. Second,when γ1 ¼ γ2, we requireΩ1 ≠ Ω2

so that they correspond to different trajectories for the two
detectors. In such a situation,m0 ¼ 0. However, since Ê > 0,
the condition m0 ≥ Ê cannot be satisfied leading to a
vanishing R12ðĒ1Þ. Hence, in these situations, the complete
transition probability rate of the two entangled detectors will
be solely determined by the rates R11ðĒ1Þ and R22ðĒ1Þ of the
individual detectors. Naturally, constructive or destructive
effects due to the cross transition probability rates R12ðĒ1Þ
and R21ðĒ1Þ will be absent in the corresponding total
transition rate. However, in general, nonzero contributions
due toR12ðĒ1Þ andR21ðĒ1Þ can be expected to arisewhenone
considers, say, transitions from the symmetric and antisym-
metric Bell states to the collective excited state. We shall
discuss these points further in the concluding section.

2. Response in a thermal bath

Let us now evaluate the response of the entangled
detectors in a thermal bath. In a thermal bath, upon using
the decomposition (16) of the scalar field, one can obtain
the positive frequency Wightman function connecting two
spacetime points corresponding to two differently rotating
detectors, denoted by the subscripts j and l, to be

Gþ
βjl
½x̃jðτjÞ; x̃lðτ0lÞ� ¼

Z
∞

0

dq
4π

X∞
m¼−∞

JmðqσjÞJmðqσlÞ

×

�
e−i½qðγjτj−γlτ

0
lÞ−mðγjΩjτj−γlΩlτ

0
lÞ�

1 − e−βq

þ ei½qðγjτj−γlτ
0
lÞ−mðγjΩjτj−γlΩlτ

0
lÞ�

eβq − 1

�
: ð54Þ

To calculate the corresponding transition probabilities
FjlðEÞ [cf. Eq. (11)], we proceed as in the case of the
Minkowski vacuum and consider the change of variables
ū ¼ τj − τ0l and v̄ ¼ τj þ τ0l. With the change of variables,
the above Wightman function simplifies to be

Gþ
βjl
ðū; v̄Þ¼

Z
∞

0

dq
4π

X∞
m¼−∞

JmðqσjÞJmðqσlÞ

×

�
e−i½α1ðqÞv̄þα2ðqÞū�=2

1− e−βq
þ ei½α1ðqÞv̄þα2ðqÞū�=2

eβq−1

�
; ð55Þ

where the quantities α1ðqÞ and α2ðqÞ are given by Eq. (44).
Upon substituting this expression in Eq. (11) and integrating
over ū, we obtain the transition probabilities FjlðEÞ to be

FjlðEÞ ¼
Z

∞

0

dq
2

X∞
m¼−∞

JmðqσjÞJmðqσlÞ
�
δð1Þ½E þ α2ðqÞ=2�

1 − e−βq
þ δð1Þ½−E þ α2ðqÞ=2�

eβq − 1

�Z
∞

−∞

dv̄
2
e−iα1ðqÞv̄=2;

¼ 1

ðγj þ γlÞ
�X∞
m≥Ê

Jmðq0σjÞJmðq0σlÞ
1 − e−βq0

Z
∞

−∞

dv̄
2
e−iα1ðq0Þv̄=2 þ

X∞
m≥−Ê

Jmðq̄0σjÞJmðq̄0σlÞ
eβq̄0 − 1

Z
∞

−∞

dv̄
2
e−iα1ðq̄0Þv̄=2

�
; ð56Þ

where q0 is given by Eq. (46), while q̄0 is defined to be

q̄0 ¼
ðmþ ÊÞ
γj þ γl

ðγjΩj þ γlΩlÞ ð57Þ

and, as before, Ê is given by Eq. (47).
Let us first discuss the results in the cases wherein j ¼ l

and j ≠ l. When j ¼ l, we have α1ðq0Þ ¼ α1ðq̄0Þ ¼ 0
[cf. Eq. (44)], and one can readily determine the corre-
sponding transition probability rate to be

RjjðĒjÞ ¼
1

2γj

�X∞
m≥Ēj

J2m½ðm − ĒjÞvj�
1 − e−β̄jðm−ĒjÞ

þ
X∞

m≥−Ēj

J2m½ðmþ ĒjÞvj�
eβ̄jðmþĒjÞ − 1

�
; ð58Þ

wherewe have set β̄j ¼ βΩj. As expected, this result is same
as the transition probability rate of a single detector in a

thermal bath that we had obtained earlier. For instance, the
transition probability rate R11ðĒ1Þ is given by the expression
(26), with ðv; γ; Ē; β̄Þ replaced by ðv1; γ1; Ē1; β̄1Þ. Also, we
can express the transition probability rateR22ðĒ1Þ in terms of
the dimensionless parameters Ω̄ and γ̄ as follows:

R22ðĒ1Þ ¼
1

2γ2

� X∞
m≥Ē1=ðγ̄ Ω̄Þ

J2m

��
m −

Ē1

γ̄ Ω̄

	
v2

�

×
1

1 − e−β̄1Ω̄½m−ðĒ1=γ̄ Ω̄Þ�

þ
X∞

m≥−Ē1=ðγ̄ Ω̄Þ
J2m

��
mþ Ē1

γ̄ Ω̄

	
v2

�

×
1

eβ̄1Ω̄½mþðĒ1=γ̄ Ω̄Þ� − 1

�
: ð59Þ

Let us now turn to the case wherein j ≠ l. In this case, we
can notice from Eq. (56) that the integral over v̄ leads to
δð1Þ½α1ðq0Þ� and δð1Þ½α1ðq̄0Þ� in the first and the second
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sums, respectively. This implies that nontrivial contribu-
tions arise only when α1ðq0Þ and α1ðq̄0Þ vanish in these
sums. We find that, α1ðq0Þ ¼ 0 corresponds to m ¼ m0 as
have encountered earlier in the Minkowski vacuum,
whereas α1ðq̄0Þ ¼ 0 corresponds to m ¼ −m0. Note that,
in order to lead to nonzero contributions to the transition
probability rate RjlðEÞ (with j ≠ l), while the constraint

m0 ≥ Ê must be fulfilled in the first sum, the condition
−m0 ≥ −Ê must be satisfied in the second sum. It is easy to
observe that these two conditions cannot be satisfied
simultaneously as the second condition, which corresponds
to m0 ≤ Ê, is mathematically the opposite of the first one.
In particular, if the first condition is fulfilled, i.e., when

m0 ≥ Ê, then the transition probability rate is given by

R12ðĒ1Þ ¼
1

ðγ1 þ γ2Þ
Jm0

�
ðm0 − ÊÞ ð1þ γ̄ Ω̄Þ

ð1þ γ̄Þ v1

�

× Jm0

�
ðm0 − ÊÞ ð1þ γ̄ Ω̄Þ

ð1þ γ̄ÞΩ̄ v2

�

×
1

1 − e−β̄1ðm0−ÊÞð1þγ̄ Ω̄Þ=ð1þγ̄Þ ;

¼ R21ðĒ1Þ; ð60Þ

where β̄1 ¼ βΩ1. As we had discussed before, we have
m0 ¼ 0, when γ1 ¼ γ2 and Ω1 ≠ Ω2. In such a case, the
condition m0 ≥ Ê will not be satisfied and hence R12ðĒ1Þ
vanishes. Moreover, when γ1 ≠ γ2 and ðΩ1 −Ω2Þ → 0þ,
m0 → ∞. Since Ê is finite, the condition m0 ≥ Ê will
indeed be satisfied. However, as we had pointed out earlier,
when m → ∞, the Bessel functions JmðzÞ go to zero
[48,49]. As a result, the transition probability rate
R12ðEÞ vanishes in this case as well.
On the other hand, when the second condition m0 ≤ Ê is

satisfied, the transition probability rate is given by

R12ðĒ1Þ ¼
1

ðγ1 þ γ2Þ
Jm0

�
ð−m0 þ ÊÞ ð1þ γ̄ Ω̄Þ

ð1þ γ̄Þ v1

�

× Jm0

�
ð−m0 þ ÊÞ ð1þ γ̄ Ω̄Þ

ð1þ γ̄ÞΩ̄ v2

�

×
1

eβ̄1ð−m0þÊÞð1þγ̄ Ω̄Þ=ð1þγ̄Þ − 1
;

¼ R21ðĒ1Þ: ð61Þ

Recall that, when γ1 ≠ γ2 and Ω1 → Ω2, m0 → ∞. In such
a case, clearly, the condition m0 ≤ Ê cannot be met and the
cross transition probability rate R12ðĒ1Þ between the two
entangled detectors will be zero. But, for the case wherein
γ1 ¼ γ2 and Ω1 ≠ Ω2, since m0 ¼ 0, clearly, the condition
m0 ≤ Ê is satisfied and the cross transition probability rate

will be given by the above expression for R12ðĒ1Þ.
Evidently, in contrast to the response in the Minkowski
vacuum wherein the cross transition probability rates were
always zero (for the parameters we focus on), these rates
can contribute nontrivially in a thermal bath for certain sets
of the parameters involved. In Fig. 5, we have plotted the
cross transition probability rate R12ðĒ1Þ for a set of
parameters that satisfy the condition m0 ≤ Ê and also
correspond to an integer value for m0 (in fact, for
m0 ¼ 0). We have plotted the rate for a few different
values of the dimensionless inverse temperature β̄1. The
figure suggests that the cross transition probability rate
decreases with increasing β̄1, a behavior we had encoun-
tered earlier when we had discussed the results for the case
of a single detector, which corresponds to the auto
transition probability rate. In the next section, we will
discuss the complete transition probability of the rotating
detector, including the auto and the cross transition prob-
ability rates. As we shall see, the nonzero cross transition
probability rates contribute constructively and destructively
for the transition from the symmetric and antisymmetric
Bell states to the collective excited state.
Lastly, it should be noted that, in the limit β → ∞, i.e.,

when the temperature of the thermal bath vanishes, the
transition probability rate R12ðĒ1Þ as given by Eq. (61)
above reduces to zero. In the same limit, the last factor in
the transition probability rate R12ðĒ1Þ as given by Eq. (60)
simplifies to unity and the expression reduces to the result
in the Minkowski vacuum [cf. Eq. (52)], as required.

FIG. 5. The cross transition probability rate R12ðĒ1Þ of the two
entangled detectors moving on circular trajectories and immersed
in a thermal bath has been plotted as a function of Ē1, for the case
wherein the detectors remain switched on forever. We have set
v1 ¼ v2 ¼ 0.5 so that γ̄ ¼ 1, which corresponds to m0 ¼ 0, and
have chosen Ω̄ ¼ 5. We have plotted the results for the cases
wherein β̄1 ¼ ð0.1; 1; 10Þ (in red, blue, and green, respectively).
Clearly, the cross transition probability rate is higher at a higher
temperature.
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B. Detectors switched on for a finite duration

Let us now turn to discuss the responses of entangled
detectors that have been switched on for a finite time
interval.

1. Response in the Minkowski vacuum

As we have done earlier in the case of single detectors,
let us now introduce Gaussian switching functions
[cf. Eq. (30)] to examine the response of entangled
detectors that are switched on for a finite time interval.
In such a case, the transition probabilities (11) for two
entangled detectors is given by

FT
jlðEÞ ¼

Z
∞

−∞
dτ0l

Z
∞

−∞
dτje−iEðτj−τ

0
lÞGþðτj; τ0lÞ

× exp ½−ðτ2j þ τ02l Þ=T2�; ð62Þ

which, in terms of the variables ū ¼ ðτj − τ0lÞ and v̄ ¼
ðτj þ τ0lÞ, can be expressed as

FT
jlðEÞ ¼

Z
∞

−∞

dv̄
2

e−v̄
2=ð2T2Þ

×
Z

∞

−∞
dū e−iEūGþðū; v̄Þe−ū2=ð2T2Þ: ð63Þ

Recall that, in the Minkowski vacuum, the Wightman
function associated with the two entangled detectors that
are in circular motion can be expressed as in Eq. (43). Also,
as in the case of the single detector, we can define the
transition probability rate of the detectors to be

RT
jlðEÞ ¼

FT
jlðEÞffiffiffiffiffiffiffiffiffiffiffiffiðπ=2Þp

T
: ð64Þ

Upon substituting the Wightman function (43) in Eq. (63),
we find that the corresponding transition probability rate
can be expressed as

RT
jlðEÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiðπ=2Þp
T

Z
∞

0

dq
4π

X∞
m¼−∞

JmðqσjÞJmðqσlÞ

×
Z

∞

−∞

dv̄
2
e−½ðv̄2=T2Þþiα1ðqÞv̄�=2

×
Z

∞

−∞
dūe−iEūe−½ðū2=T2Þþiα2ðqÞū�=2: ð65Þ

After carrying out the Gaussian integrals, we obtain that

RT
jlðEÞ ¼

ffiffiffiffiffiffi
2π

p
T
Z

∞

0

dq
4π

X∞
m¼−∞

JmðqσjÞJmðqσlÞ

× e−fα21ðqÞþ½α2ðqÞþ2E�2gT2=8: ð66Þ

Since the integral over q and the sum overm do not seem to
be analytically tractable, we need to compute them numeri-
cally as in the case of the single detector.
Let us first consider the auto transition probability rates

of the two detectors. As we had discussed, when j ¼ l, we
have α1ðqÞ ¼ 0 and α2ðqÞ ¼ 2γjðq −mΩjÞ and, in such a
situation, the above transition probability rate reduces to

RT
jjðEÞ ¼

ffiffiffiffiffiffi
2π

p
T
Z

∞

0

dq
4π

X∞
m¼−∞

J2mðqσjÞ

× e−½Eþγjðq−mΩjÞ�2T2=2: ð67Þ

Note that, as expected, this result exactly matches the
transition probability rate of a single detector [cf. Eq. (35)].
We can also introduce the dimensionless variable xj ¼
q=Ωj and the dimensionless parameter T̄j ¼ γjΩjT to
rewrite the above integral and sum, as we have done
earlier. If we do so, then we find that the result for RT

11ðĒ1Þ
is given by the expression in Eq. (37) with ðv; γ; Ē; x; T̄Þ
replaced by ðv1; γ1; Ē1; x1; T̄1Þ. With respect to the same set
of dimensionless quantities as well as the dimensionless
parameters γ̄ and Ω̄, we find that the auto transition
probability rate RT

22ðĒ1Þ can be expressed as follows:

RT
22ðĒ1Þ ¼

ffiffiffiffiffiffi
2π

p
T̄1

4πγ1

Z
∞

0

dx1
X∞

m¼−∞
J2mðx1v2=Ω̄Þ

× e−½Ē1þγ̄ðx1−mΩ̄Þ�2T̄2
1
=2: ð68Þ

We should point out that, when γ̄ ¼ 1 ¼ Ω̄ and v2 ¼ v1,
this expression reduces to RT

11ðĒ1Þ.
When j ¼ 1 and l ¼ 2, we can express the cross

transition probability rate RT
12ðĒ1Þ as

RT
12ðĒ1Þ ¼

ffiffiffiffiffiffi
2π

p
T̄1

4πγ1

X∞
m¼−∞

Z
∞

0

dx1 Jmðx1v1ÞJmðx1v2=Ω̄Þ

× expð−f½ð1 − γ̄Þx1 −mð1 − γ̄ Ω̄Þ�2
þ ½2Ē1 þ ð1þ γ̄Þx1 −mð1þ γ̄ Ω̄Þ�2gT̄2

1=8Þ;
¼ RT

21ðĒ1Þ: ð69Þ

This expression too reduces to that of RT
11ðEÞ when γ̄ ¼

1 ¼ Ω̄ and v2 ¼ v1. In Appendix D, for convenience, we
have explicitly listed the complete expressions for the finite
time auto and cross transition probability rates RT

11ðĒ1Þ,
RT
22ðĒ1Þ, andRT

12ðĒ1Þ. It is these expressions that we actually
utilize to numerically compute the rates. While computing
the rates,weworkwith the limits for thevariables x andm for
the integral and the sum that we had considered in the case of
a single detector (in this context, see the caption of Fig. 3). In
Fig. 6 we have plotted the above cross transition probability
rate R12ðĒ1Þ for a given set of parameters describing the
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circular motion of the detector and for different values of
the dimensionless time parameter T̄1. We observe that the
results for the cross transition probability rate are broadly
similar to the auto transition probability ratewe had obtained
earlier in the case of a single detector (see Fig. 3). These plots
also suggest that the transition probability rate is higher
when the detectors interact with the field for a smaller time
interval.

2. Response in a thermal bath

Wecan repeat the procedure thatwe have adopted earlier to
determine the response of two entangled detectors in circular
motion and are immersed in a thermal bath. For Gaussian
switching functions, we can make use of the expression (63)
for the transition probability of the detectors, with the
Wightman function in the thermal bath being given by
Eq. (55). Upon carrying out the resulting Gaussian integrals

over ū and v̄, we find that the transition probability rate of the
detectors [as defined in Eq. (64)] can be expressed as

RT
jlðEÞ ¼

ffiffiffiffiffiffi
2π

p
T
Z

∞

0

dq
4π

X∞
m¼−∞

JmðqσjÞJmðqσlÞ

×

�
e−fα21ðqÞþ½α2ðqÞþ2E�2gT2=8

1 − e−βq

þ e−fα21ðqÞþ½α2ðqÞ−2E�2gT2=8

eβq − 1

�
: ð70Þ

When j¼ l, since α1ðqÞ ¼ 0 and α2ðqÞ ¼ 2γjðq −mΩjÞ,
the above transition probability rate can be expressed as

RT
jjðEÞ ¼

ffiffiffiffiffiffi
2π

p
T
Z

∞

0

dq
4π

X∞
m¼−∞

J2mðqσjÞ

×

�
e−½Eþγjðq−mΩjÞ�2T2=2

1 − e−βq

þ e−½E−γjðq−mΩjÞ�2T2=2

eβq − 1

�
; ð71Þ

which is essentially the transition probability rate of a
single detector that we encountered earlier [cf. Eq (40)].
For instance, the transition probability rate RT

11ðĒ1Þ is given
by the expression (40) with ðv; γ; Ē; β̄; T̄Þ replaced by
ðv1; γ1; Ē1; β̄1; T̄1Þ. In terms of the dimensionless variables
γ̄ and Ω̄ we had introduced, we find that the transition
probability rate RT

22ðĒ1Þ can be written as

RT
22ðĒ1Þ ¼

ffiffiffiffiffiffi
2π

p
T̄1

4πγ1

Z
∞

0

dx1
X∞

m¼−∞
J2mðx1v2=Ω̄Þ

×

�
e−½Ē1þγ̄ðx1−mΩ̄Þ�2T̄2

1
=2

1 − e−β̄1x1

þ e−½Ē1−γ̄ðx1−mΩ̄Þ�2T̄2
1
=2

eβ̄1x1 − 1

�
: ð72Þ

Again, we can numerically compute the integral over the
variable x1 and carry out the sum over m.
When j ¼ 1 and l ¼ 2, the transition probability rate

RT
12ðĒ1Þ can be expressed as follows:

RT
12ðĒ1Þ ¼

ffiffiffiffiffiffi
2π

p
T̄1

4πγ1

Z
∞

0

dx1
X∞

m¼−∞
Jmðx1v1ÞJmðx1v2=Ω̄Þ

×

�
1

1 − e−β̄1x1
e−f½ð1−γ̄Þx1−mð1−γ̄ Ω̄Þ�2þ½ð1þγ̄Þx1−mð1þγ̄ Ω̄Þþ2Ē1�2gT̄2

1
=8

þ 1

eβ̄1x1 − 1
e−f½ð1−γ̄Þx1−mð1−γ̄ Ω̄Þ�2þ½ð1þγ̄Þx1−mð1þγ̄ Ω̄Þ−2Ē1�2gT̄2

1
=8

	
¼ RT

21ðĒ1Þ: ð73Þ

FIG. 6. The cross transition probability rate RT
12ðĒ1Þ of the two

entangled detectors in the Minkowski vacuum has been plotted as
a function of Ē1 when the detectors are in motion on circular
trajectories and are switched on for a finite time interval T. As in
the previous figure, we have set v1 ¼ v2 ¼ 0.5 so that γ̄ ¼ 1, and
have chosen Ω̄ ¼ 5. We have plotted the results for three different
values of the dimensionless time interval, viz. T̄1 ¼ ð1; 5; 10Þ (in
red, blue, and green, respectively). Note that, as in the case of the
auto transition probability rate of a single detector (see Fig. 3),
the cross transition probability rate R12ðĒ1Þ is higher when the
detector is switched on for a shorter time interval.
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This expression also reduces to RT
11ðEÞ when γ̄ ¼ 1 ¼ Ω̄

and v2 ¼ v1. As in the case of the response in the
Minkowski vacuum, in Appendix D, we have provided
the complete expressions for the auto and cross transition
probability rates of the rotating detectors in a thermal bath.
Moreover, we carry out the integral and the sum over the
domain we had indicated earlier (in the caption of Fig. 3).
In Fig. 7 we have plotted the cross transition probability
rate R12ðĒ1Þ for different values of the dimensionless time
T̄1 and a fixed value of the dimensionless inverse temper-
ature β̄1. Broadly, the cross transition probability rate
exhibits the same behavior as the auto transition probability
rate we had encountered earlier (cf. Fig. 3).

V. SUMMARY AND DISCUSSION

In this section, we shall summarize the results we have
obtained and conclude with a broader discussion.

A. Summary

In the previous section, we had calculated the auto and
the cross transition probability rates of the two entangled
detectors that are moving on circular trajectories. The auto
transition probability rates of the detectors are evidently the
same as the response of the single detectors we had
discussed initially (in Sec. III). Note that the complete
transition probability of the entangled detectors is given by
expression (9), which involves contributions from the auto
and cross transition probabilities. Let us now discuss the

complete probability rates for transitions from the sym-
metric and antisymmetric Bell states to the excited state of
the two entangled detectors.
Recall that the transition amplitude of the monopole

operator is given bymωω̄
j ¼ hω̄jm̂jð0Þjωi, with m̂jð0Þ being

defined in Eq. (10). As we had mentioned, for a transition
from the symmetric or the antisymmetric Bell states (i.e.,
from jsi or jai) to the collective excited state (i.e., jei), the
transition amplitudes of the monopole operator are found to
bemse

1 ¼ mse
2 ¼ 1=

ffiffiffi
2

p
andmae

1 ¼ −mae
2 ¼ −1=

ffiffiffi
2

p
. Due to

this reason, the corresponding transition probability (9) will
contain an overall factor of 1=2, apart from the factor of μ2

that arises due to the strength of the coupling between the
detectors and the scalar field. Since the overall factor μ2=2
does not depend on either the trajectory of the detector or
the state of the field, we shall drop the quantity or,
equivalently, consider the total transition probability rate,
say, RT̃

ωω̄ðEÞ, to be given by

RT̃
ωω̄ðEÞ ¼

2

μ2
Γjωi→jω̄iðEÞ

T̃
; ð74Þ

where T̃ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiðπ=2Þp
T in the case of detectors that are

switched on for a finite duration through the Gaussian
switching functions and T̃ ¼ limT→∞ T in the case of
detectors that remain switched on forever. Therefore, the
total transition probability rates from the symmetric and
antisymmetric Bell states to the collective excited state,
referred to by the subscripts “se” and “ae,” respectively,
can be expressed as

RT̃
seðEÞ ¼ RT̃

11ðEÞ þ RT̃
22ðEÞ þ ½RT̃

12ðEÞ þ RT̃
21ðEÞ�; ð75aÞ

RT̃
aeðEÞ ¼ RT̃

11ðEÞ þ RT̃
22ðEÞ − ½RT̃

12ðEÞ þ RT̃
21ðEÞ�: ð75bÞ

Note that, in these expressions, for convenience, we have
used the notation introduced above, viz. that RT̃

jlðEÞ denotes
the auto or cross transition probability rate of the detectors
switched on for a finite or infinite time interval.
Let us first consider the case wherein the detectors are

switched on for infinite duration. When the scalar field is
assumed to be in the Minkowski vacuum, in the situations
wherein γ1 ¼ γ2 and Ω1 ≠ Ω2 that we had focused on, the
cross transition probability rates R12ðEÞ and R21ðEÞ vanish.
This implies that the total transition probability rates
RT̃

seðEÞ and RT̃
aeðEÞ will be equal and both the rates can

be entirely expressed in terms of the auto transition
probability rates R11ðEÞ and R22ðEÞ. As a result, the rates
RT̃

seðEÞ andRT̃
aeðĒÞ can be expected to be similar to that of,

say, R11ðEÞ (in this regard, see Fig. 2). When the detectors
are assumed to be immersed in a thermal bath of quanta
associated with the scalar field, we had found that, for
γ1 ¼ γ2 and Ω1 ≠ Ω2, the cross transition probability rates
R12ðEÞ and R21ðEÞ prove to be nonzero. Consequently, the

FIG. 7. The cross transition probability rate RT
12ðĒ1Þ of the

two entangled detectors moving on circular trajectories and
immersed in a thermal bath has been plotted as a function of
the dimensionless energy gap Ē1 for the case wherein the
detectors remain switched on for a finite time interval. As in
the previous two figures, we have set v1 ¼ v2 ¼ 0.5 (so that
γ̄ ¼ 1) and Ω̄ ¼ 5. We have plotted the results for T̄1 ¼ ð1; 5; 10Þ
(in red, blue, and green) and β̄1 ¼ 1. Note that the cross transition
probability rate behaves in a manner similar to the auto transition
probability rate we had plotted earlier (see Fig. 3).
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total transition probability rates RT̃
seðEÞ and RT̃

aeðĒÞ can be
expected to be different. This is evident from Fig. 8 where
we have presented these total transition probability rates.
Note that the total rate RT̃

seðĒ1Þ is about 103 times larger in
magnitude than the rateRT̃

seðĒ1Þ for suitably small energies
(in fact, for Ē1 ≲ 0.01). These findings can provide, in
principle, observable distinction in the radiative processes
of entangled detectors between the Minkowski vacuum and
a thermal bath.
Let us now discuss the cases wherein the detectors are

switched on for a finite time interval using the Gaussian
switching functions. In Fig. 9, we have plotted the total
transition probability rates RT̃

seðEÞ and RT̃
aeðĒÞ of the

entangled detectors in the Minkowski vacuum as well as
the thermal bath. We find that the total rate RT̃

seðEÞ for a
transition from the symmetric Bell state to the excited state
is nearly 10 times than the total rate RT̃

aeðĒÞ from the
asymmetric Bell state, due to the constructive and destruc-
tive interference we mentioned above. Apart from this
aspect, the total rates broadly exhibit characteristics that are
similar to what we had encountered in the auto and cross
transition probability rates.

B. Discussion

In this work, we have examined the response of detectors
that are moving on circular trajectories in (2þ 1) dimen-
sional flat spacetime. As has been pointed out before (in
this context, see, for example, Ref. [12]), it seems more
realistic and practical to consider detectors that are in
motion on circular trajectories than detectors that are
moving on uniformly accelerated trajectories. We should
mention that certain aspects of the response of entangled

detectors that are in motion on circular trajectories have
been studied earlier in the literature (see, for instance,
Ref. [21]). We believe that there are many interesting
aspects of the rotating detectors that we have uncovered. To
begin with, we find that, in the case of two entangled,
rotating detectors, the cross transition probability rates can
be comparable to the auto transition probability rates of the
individual detectors (cf. Figs. 5, 6, 7). Second, when the
detectors are switched on for infinite duration (in both
single and entangled cases), the transition probability rate
of the rotating detectors in the Minkowski vacuum and a
thermal bath are higher at smaller values of the energy gap
of the detectors, higher values of their velocity and higher
values of the temperature (cf. Fig. 2). Third, in the
Minkowski vacuum, interestingly, we find that the tran-
sition probability rates of the detectors are higher when they
are switched on for a shorter duration (cf. Fig. 3). Though,
at first, this result may seem counterintuitive, it can be
interpreted as a manifestation of the energy-time uncer-
tainty principle. The shorter the interval of time that the
detector remains switched on, the larger can be the energy
of the virtual quanta that are available to excite the detector.
Fourth, in a thermal bath, when the detectors are switched
on for a finite time interval, we observe that the transition
probability rate is higher for smaller intervals of time only
when the temperature of the thermal bath is lower or the
energy gap of the detectors is higher. In fact, we observe
that the behavior can be reversed at higher temperatures and
smaller energy gaps (cf. Figs. 3 and 4). Fifth, from Eq. (29)
and the related discussions in Sec. III, we identified a
specific difference in the nature of the response of single
Unruh-DeWitt detectors in a thermal bath, while they are on
circular trajectories, when compared to the accelerated
case. There is a single spontaneous excitation in the case of

FIG. 8. The total transition probability ratesRT̃
seðĒ1Þ (on the left) andRT̃

aeðĒ1Þ (on the right) of the two entangled, rotating detectors in
a thermal bath have been plotted as functions of Ē1 for the case wherein the detectors remain switched on forever. We have set
v1 ¼ v2 ¼ 0.5, corresponding to γ̄ ¼ 1, and have chosen Ω̄ ¼ 5, as we have done in the earlier figures. We have plotted the results for
three different values of the dimensionless inverse temperature, viz. β̄1 ¼ ð0.1; 1; 10Þ (in red, blue, and green). Note that, for the values
of the parameters we have worked with, the total rate RT̃

seðĒ1Þ is a factor of 103 higher at small energies than the rate RT̃
aeðĒ1Þ.

BARMAN, MAJHI, and SRIRAMKUMAR PHYS. REV. D 109, 105025 (2024)

105025-18



circular trajectories due to the motion, while the thermal
bath contributes to the stimulated excitations. On the other
hand, there are two independent, spontaneous excitations
due to the motion and the thermal bath in the accelerated
case, in addition to the stimulated excitation due to the
thermal bath. Finally, as we had discussed in the previous
subsection, due to constructive or destructive interference,
the total transition probability rates from the symmetric and
antisymmetric Bell states to the collective excited state can
be substantially different in a thermal bath or when they are
switched on for a finite time interval in the Minkowski
vacuum. We should mention that a similar behavior is also
observed when one considers the deexcitation of the
detector from the symmetric or the antisymmetric Bell
states to the ground state (in this regard, see the discussion
in Refs. [28,50]).
There are many further aspects of the rotating and

entangled detectors that remain to be explored. We need

to urgently extend all our analysis to (3þ 1)-spacetime
dimensions. In (3þ 1)-spacetime dimensions, while we
expect the results to be qualitatively similar to the (2þ 1)-
dimensional case we have considered here, we can expect
some quantitative differences. Also, we have to examine
whether two initially uncorrelated atomic detectors moving
on circular trajectories can get entangled over time, a
phenomenon that has been referred to as entanglement
harvesting (in this regard, see Refs. [51–56]). In particular,
we need to investigate entanglement harvesting in the
presence of a thermal bath, with detectors switched on
for infinite as well as finite intervals of time (for previous
studies in this context involving static and noninertial
detectors in a thermal bath, see Refs. [57,58] and
Ref. [55], respectively). Moreover, it will be interesting
to study the effects due to the presence of boundaries
[16,21]. Further, on the practical front, it is easier to set
charged particles in motion on circular trajectories, using,

FIG. 9. The total transition probability rates RT̃
seðĒ1Þ (on the left) and RT̃

aeðĒ1Þ (on the right) of two entangled detectors moving on
circular trajectories have been plotted as functions of Ē1, when the detectors have been switched on for a finite time interval. We have
plotted the results in the Minkowski vacuum (on top) as well as in a thermal bath (at the bottom). As before, we have set v1 ¼ v2 ¼ 0.5
(corresponding to γ̄ ¼ 1) and have chosen Ω̄ ¼ 5. We have set the dimensionless inverse temperature of the thermal bath to be β̄1 ¼ 1.
Moreover, as earlier, we have plotted the total rates for three different values of the dimensionless time interval, viz. T̄1 ¼ ð1; 5; 10Þ (in
red, blue and green). Clearly, the total rate RT̃

seðĒ1Þ is significantly higher than the rate RT̃
aeðĒ1Þ due to the interference effects.
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say, with the help of an external magnetic field. If a charged
particle (say, an ion) is to be used as a detector, then it may
emit classical synchrotron radiation as it moves along the
circular trajectories. We need to understand the implica-
tions or effects of the synchrotron radiation for the
detection of quanta emitted or absorbed by the detector
due to the quantum phenomena we are investigating. We
are presently working on these issues.
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APPENDIX A: WIGHTMAN FUNCTION
IN POLAR COORDINATES

In (2þ 1)-dimensional flat spacetime, when working in
the Cartesian coordinates x ¼ ðx; yÞ, the Wightman func-
tion associated with a massive, minimally coupled, scalar
field can be written as (in this regard, see, for instance,
Ref. [59])

Gþðx̃; x̃0Þ ¼
Z

d2k
ð2πÞ2ð2ωÞ e

−iωðt−t0Þþik·ðx−x0Þ; ðA1Þ

where ω ¼ ðjkj2 þ μ2Þ1=2, and μ denotes the mass of the
field. Let us write both the wave vector k and the position
vector x in terms of the corresponding polar coordinates,
say, ðq; αÞ and ðρ;ϕÞ, as follows:

kx ¼ q cos α; ky ¼ q sin α; ðA2aÞ

x ¼ ρ cosϕ; y ¼ ρ sinϕ; ðA2bÞ

x0 ¼ ρ0 cosϕ0; y0 ¼ ρ0 sinϕ0: ðA2cÞ

In such a case, the Wightman function (A1) can be
expressed as

Gþðx̃; x̃0Þ ¼
Z

∞

0

dqq
ð2πÞð2ωÞ

Z
2π

0

dα
2π

e−iωðt−t0Þ

× eiq½ρ cosðϕ−αÞ−ρ0 cosðϕ0−αÞ�: ðA3Þ

If we now use the following identity (known as the
Jacobi-Anger identity; in this context, see, for instance,
Ref. [60])

eiz cosϕ ¼
X∞

m¼−∞
imJmðzÞeimϕ; ðA4Þ

where JmðzÞ are the Bessel functions, then the Wightman
function can be written as

Gþðx̃; x̃0Þ ¼
Z

∞

0

dqq
ð2πÞð2ωÞ

Z
2π

0

dα
2π

e−iωðt−t0Þ

×
X∞

m¼−∞
imJmðqρÞeimðϕ−αÞ

×
X∞

m0¼−∞

im
0
Jm0 ð−qρ0Þeim0ðϕ0−αÞ;

¼
Z

∞

0

dqq
4πω

e−iωðt−t0Þ

×
X∞

m¼−∞
JmðqρÞJ−mð−qρ0Þeimðϕ−ϕ0Þ: ðA5Þ

We should mention that, to arrive at the final equality, we
have used the relation

Z
2π

0

dα e−iðmþm0Þα ¼ ð2πÞδm;−m0 ; ðA6Þ

where δn;n0 denotes the Kronecker delta. On using the
identity J−mð−qρ0Þ ¼ Jmðqρ0Þ, in the case of a massless
field (i.e., when μ ¼ 0 so that ω ¼ q), we can arrive at the
expression (19) for the Wightman function we have
mentioned earlier.
Similarly, when working in the Cartesian coordinates,

the Wightman function for the scalar field at a finite
temperature in (2þ 1)-spacetime dimensions can be easily
obtained to be (see, for instance, Refs. [47,59,61])

Gþ
β ðx̃; x̃0Þ ¼

Z
d2k

ð2πÞ2ð2ωÞ
�
e−i½ωðt−t0Þ−k·ðx−x0Þ�

1 − e−βω

þ ei½ωðt−t0Þ−k·ðx−x0Þ�

eβω−1

�
: ðA7Þ

In the case of a massless field, upon carrying out the
transformations (A2), we can arrive at the expression for
the above Wightman function in terms of the polar
coordinates (in both real and momentum space), which
is the result (24) we have quoted earlier.

APPENDIX B: BEHAVIOR OF THE TRANSITION
PROBABILITY RATE AS A FUNCTION
OF VELOCITY OF THE DETECTOR

In our discussion, barring in Fig. 4, we have been
primarily interested in computing the auto and cross
transition probability rates of the detectors as a function
of the energy gap E, for given angular and linear velocities
Ω and v of the detector, inverse temperature β of the
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thermal bath and the time interval T for which the detector
is switched on. We had pointed out that the sums over m
that appear in the transition probability rates converge fairly
quickly. Specifically, we had mentioned that, for the
parameters we have considered, it is adequate to evaluate
the sum until ðm − ĒÞ ¼ 50 and ðm − ĒÞ ¼ 10 when the
detectors are switched on for infinite or a finite duration (in
this regard, see the captions of Figs. 2 and 3). However,

when the detector is switched on for infinite duration, as we
had discussed in Sec. III [see our discussion following
Eq. (23)], the convergence of the sum depends on the
velocity of the detector. We find that, for detector velocities
very close to the velocity of light (say, for v≳ 0.9), it
becomes necessary to evaluate the sum to larger values of
m. To illustrate this point, in Fig. 10, we have plotted the
transition probability rate of the rotating detector in the
Minkowski vacuum as a function of the linear velocity v of
the detector. We have fixed the value of the energy gap E in
plotting the results and have assumed that the detector
remains switched on forever. Note that, for v≳ 0.9, the peak
in the transition probability rate of the detector shifts
towards higher velocities as we sum to larger and larger
values of m. In the results we have presented in all the
earlier figures, we have ensured that, for the parameters we
have worked with, summing to larger values of m does not
significantly change the results we obtain.

APPENDIX C: BEHAVIOR OF THE INTEGRAND
IN THE FINITE TIME TRANSITION

PROBABILITY RATE

Recall that, in the case of detectors that are switched on
for a finite time interval, we have to carry out an integral
over x, apart from summing over m. Immediately after
Eq. (37), we had discussed the behavior of the integrals at
large and small values of x. In this appendix, we shall
briefly illustrate the behavior of the integrands that are
encountered when evaluating the response of the detector in
the Minkowski vacuum. Note that the integrands in this
case are of the following form:

ITðxÞ ¼ J2mðxvÞe−½ðx2=2ÞþxĒ�T̄2

e−m
2T̄2=2

× cosh ½mðxþ ĒÞT̄2�: ðC1Þ

FIG. 10. The transition probability rate of the detector RðĒ; vÞ
in the Minkowski vacuum, when it is moving on a circular
trajectory and has been switched on for infinite duration, has been
plotted as a function of the velocity v, when the sum over m is
carried out to larger and larger values, viz. until ðm − ĒÞ ¼
ð50; 100; 150Þ (in red, blue, and green, respectively). We have set
Ē ¼ 0.1 in arriving at these plots. Note that, for velocities close to
unity, the peak in the transition probability rates shifts towards
higher values of the velocity as we sum until larger values of m.
This illustrates that care needs to be exercised when the sum over
m is carried out. In the plots we have presented earlier, at every
stage, we have checked and confirmed that the terms we have
ignored do not contribute significantly to the transition proba-
bility rate of the detector.

FIG. 11. The integrand ITðxÞ [cf. Eq. (C1)] has been plotted as a function of the dimensionless variable x for m ¼ 0 (on the left) and
m ¼ 1 (on the right). We have chosen v ¼ 0.5 and Ē ¼ 0.01, and have plotted the integrand for T̄ ¼ ð1; 5; 10Þ (in red, blue, and green).
Clearly, the integrand is well behaved at small x and quickly dies down at large x, allowing us to efficiently compute the integrals.
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In Fig. 11, we have plotted this integrand for m ¼ 0 and
m ¼ 1 and a few different values of the dimensionless time
interval T̄, assuming fixed values for the velocity v and the
dimensionless energy gap Ē. It is evident that the integrands
are well behaved and, in particular, they decrease rapidly at
large x due to the e−x

2T̄2=2 factor. Moreover, for m > 0, the
factor e−m

2T̄2=2 also suppresses the overall amplitude of the
integrand. Such a rapid decrease allows us to quickly
compute the integrals involved. As we had mentioned, for
the values of the parameters we work with, we find that it is
adequate to integrate up to x ¼ 102 (see the caption of
Fig. 3) and we have also checked that the results we obtain
are not altered if we increase the upper limit.

APPENDIX D: TRANSITION PROBABILITY
RATES OF ENTANGLED DETECTORS

FOR FINITE DURATION

In this appendix, we shall provide explicit expressions
for the transition probability rates of the entangled detectors
that are moving on circular trajectories and are interacting
with the scalar field for a finite time interval. It is these
expressions that we eventually use to numerically compute
the transition probability rates.
Let us first consider the case of the Minkowski vacuum.

We find that the expressions (67) and (68) can be utilized to
write RT

11ðĒ1Þ and RT
22ðĒ1Þ as

RT
11ðĒ1Þ ¼

ffiffiffiffiffiffi
2π

p
T̄1

4πγ1
e−Ē

2
1
T̄2
1
=2

�Z
∞

0

dx1 J20ðx1v1Þe−½ðx
2
1
=2Þþx1Ē1�T̄2

1

þ 2
X∞
m¼1

e−m
2T̄2

1
=2

Z
∞

0

dx1 J2mðx1v1Þe−½ðx21=2Þþx1Ē1�T̄2
1 cosh ½mðx1 þ Ē1ÞT̄2

1�
�
; ðD1aÞ

RT
22ðEÞ ¼

ffiffiffiffiffiffi
2π

p
T̄1

4πγ1
e−Ē

2
1
T̄2
1
=2

�Z
∞

0

dx1 J20ðx1v2=Ω̄Þe−½ðx
2
1
=2Þþx1Ē1=γ̄�γ̄2T̄2

1

þ 2
X∞
m¼1

e−m
2 γ̄2Ω̄2T̄2

1
=2

Z
∞

0

dx1 J2mðx1v2=Ω̄Þe−½ðx21=2Þþx1Ē1=γ̄�γ̄2T̄2
1 cosh ½mðx1 þ Ē1=γ̄Þγ̄2Ω̄T̄2

1�
�
: ðD1bÞ

Similarly, the expression (69) for the cross transition probability rate RT
12ðĒ1Þ in the Minkowski vacuum can be written as

RT
12ðĒ1Þ ¼

ffiffiffiffiffiffi
2π

p
T̄1

4πγ1
e−Ē

2
1
T̄2
1
=2

�Z
∞

0

dx1J0ðx1v1ÞJ0ðx1v2=Ω̄Þe−½ð1þγ̄2Þx2
1
þ2ð1þγ̄Þx1Ē1�T̄2

1
=4

þ 2
X∞
m¼1

e−m
2ð1þγ̄2Ω̄2ÞT̄2

1
=4

Z
∞

0

dx1Jmðx1v1ÞJmðx1v2=Ω̄Þe−½ð1þγ̄2Þx2
1
þ2ð1þγ̄Þx1Ē1�T̄2

1
=4

× cosh fm½ð1þ γ̄2Ω̄Þx1 þ ð1þ γ̄ Ω̄ÞĒ1�T̄2
1=2g

	
¼ RT

21ðĒ1Þ: ðD2Þ

The expressions (71) and (72) can be used to write the auto transition probability rates of the rotating detectors in a
thermal bath as

RT
11ðĒ1Þ ¼

ffiffiffiffiffiffi
2π

p
T̄1

4πγ1
e−Ē

2
1
T̄2
1
=2

�Z
∞

0

dx1 J20ðx1v1Þ
�
e−½ðx21=2Þþx1Ē1�T̄2

1

1 − e−β̄1x1
þ e−½ðx21=2Þ−x1Ē1�T̄2

1

eβ̄1x1 − 1

�

þ 2
X∞
m¼1

e−m
2T̄2

1
=2

Z
∞

0

dx1 J2mðx1v1Þ
�
e−½ðx21=2Þþx1Ē1�T̄2

1

1 − e−β̄1x1
cosh ½mðx1 þ Ē1ÞT̄2

1�

þ e−½ðx21=2Þ−x1Ē1�T̄2
1

eβ̄1x1 − 1
cosh ½mðx1 − Ē1ÞT̄2

1�
��

; ðD3aÞ
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RT
22ðĒ1Þ ¼

ffiffiffiffiffiffi
2π

p
T̄1

4πγ1
e−Ē

2
1
T̄2
1
=2

�Z
∞

0

dx1J20

�
x1v2
Ω̄

	�
e−½ðx21=2Þþx1Ē1=γ̄�γ̄2T̄2

1

1 − e−β̄1x1
þ e−½ðx21=2Þ−x1Ē1=γ̄�γ̄2T̄2

1

eβ̄1x1 − 1

�

þ 2
X∞
m¼1

e−m
2 γ̄2Ω̄2T̄2

1
=2

Z
∞

0

dx1J2mðx1v2=Ω̄Þ
�
e−½ðx21=2Þþx1Ē1=γ̄�γ̄2T̄2

1

1 − e−β̄1x1
cosh

�
m
�
x1 þ

Ē1

γ̄

	
γ̄2Ω̄T̄2

1

�

þ e−½ðx21=2Þ−x1Ē1=γ̄�γ̄2T̄2
1

eβ̄1x1 − 1
cosh

�
m

�
x1 −

Ē1

γ̄

	
γ̄2Ω̄T̄2

1

��	
: ðD3bÞ

Similarly, upon using the expression (73), the corresponding cross transition transition probability rate RT
12ðĒ1Þ can be

written as

RT
12ðĒ1Þ ¼

ffiffiffiffiffiffi
2π

p
T̄1

4πγ1
e−Ē

2
1
T̄2
1
=2

�Z
∞

0

dx1J0ðx1v1ÞJ0ðx1v2=Ω̄Þ
�
e−½ð1þγ̄2Þx2

1
þ2ð1þγ̄Þx1Ē1�T̄2

1
=4

1 − e−β̄1x1
þ e−½ð1þγ̄2Þx2

1
−2ð1þγ̄Þx1Ē1�T̄2

1
=4

eβ̄1x1 − 1

�

þ 2
X∞
m¼1

e−m
2ð1þγ̄2Ω̄2ÞT̄2

1
=4

Z
∞

0

dx1Jmðx1v1ÞJmðx1v2=Ω̄Þ

×

�
e−½ð1þγ̄2Þx2

1
þ2ð1þγ̄Þx1Ē1�T̄2

1
=4

1 − e−β̄1x1
cosh fm½ð1þ γ̄2Ω̄Þx1 þ ð1þ γ̄ Ω̄ÞĒ1�T̄2

1=2g

þ e−½ð1þγ̄2Þx2
1
−2ð1þγ̄Þx1Ē1�T̄2

1
=4

eβ̄1x1 − 1
cosh fm½ð1þ γ̄2Ω̄Þx1 − ð1þ γ̄ Ω̄ÞĒ1�T̄2

1=2g
	�

¼ RT
21ðĒ1Þ: ðD4Þ

APPENDIX E: A REMEDY FOR THE
INFRARED DIVERGENCE

In our analysis, we had encountered an infrared diver-
gence when calculating the Wightman function at a finite
temperature. The occurrence of infrared divergences in
Green’s functions in spacetime dimensions less than
(3þ 1) is not uncommon. We can turn to the calculation
of the Green’s functions in (1þ 1)-spacetime dimensions
to identify possible remedies to regulate the divergence (in
this context, see, for example, Ref. [61]). Note that, in the
case of (2þ 1)-spacetime dimensions, we encounter the
divergence only when calculating the Green’s function at a
finite temperature. [We should clarify that such a diver-
gence does not arise in (3þ 1)-spacetime dimensions.]
Also, the divergence occurs only in the m ¼ 0 term in the
sum in Eq. (25). In the case wherein the detectors are
switched on forever, the divergence in the Wightman
function does not affect the transition probability rate of
the detector, as the m ¼ 0 term does not contribute
[cf. Eq. (26)]. We should mention here that such a behavior
has also been noticed earlier in a related work [56].
However, when we consider detectors that are switched
on for a finite duration, the m ¼ 0 term in Eq. (40) leads to
a nonzero contribution and we need to formally regulate the
divergence. We need to do so in such a way that we recover
the result in the limit of β̄ → ∞ [viz. Eq. (37)], i.e., when
the temperature of the thermal bath vanishes. Needless to
add, we also need to reproduce our earlier result (26) at a
finite temperature for the case of detectors that remain
switched on forever (i.e., in the limit T̄ → ∞).

Let us first single out the term containing the infrared
divergence in the finite temperature Wightman function
(25). Using the following identity (cf. Ref. [62], 8.531.1),

J20ðzÞ þ 2
X∞
m¼1

J2mðzÞ ¼ 1; ðE1Þ

we can express the Wightman function (25) as

Gþ
β ðuÞ ¼ A0ðuÞ þA1ðuÞ; ðE2Þ

where the quantities A0ðuÞ and A1ðuÞ are given by

A0ðuÞ ¼
Z

∞

0

dq
4π

�
e−iγqu

1 − e−βq
þ eiγqu

eβq − 1

	
; ðE3aÞ

A1ðuÞ ¼
Z

∞

0

dq
4π

�X∞
m¼−∞
m≠0

J2mðqσÞ
�
e−iγðq−mΩÞu

1 − e−βq
þ eiγðq−mΩÞu

eβq − 1

�

− 2

�
e−iγqu

1 − e−βq
þ eiγqu

eβq − 1

	X∞
m¼1

J2mðqσÞ
�
: ðE3bÞ

Therefore, the transition probability rate of a detector
switched on for a finite time through the Gaussian window
function can be expressed as

RTðEÞ ¼ R0
TðEÞ þ R1

TðEÞ; ðE4Þ
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where, evidently, R0;1
T ðEÞ are given by

R0;1
T ðEÞ ¼

Z
∞

−∞
due−iEuA0;1ðuÞe−u2=ð2T2Þ: ðE5Þ

Since the termA1ðuÞ in the finite temperature Wightman
function does not contain the infrared divergence, the
corresponding transition probability rate R1

TðEÞ can be
evaluated as we have done earlier in the other cases.
Therefore, let us turn to the calculation of the rate
R0
TðEÞ that depends on the term A0ðuÞ. To do so, let us

first explicitly evaluate A0ðuÞ. As is often done in the case
of (1þ 1)-spacetime dimensions, in order to avoid the
divergence, we shall take the derivative of A0ðuÞ with
respect to the variable u, thus rendering it safe from the
infrared divergence. We can then evaluate the integral over
q as usual, by introducing an ultraviolet regulator of the
form of e−ϵq to obtain that

∂A0ðuÞ
∂u

¼ −
iγ

4πβ2

�
ψ ð1Þ

�
iγuþ ϵ

β

	

− ψ ð1Þ
�
−iγuþ β þ ϵ

β

	�
; ðE6Þ

where ψ ðnÞðzÞ denotes the polygamma function of order n.
Upon integrating over u, we arrive at the expression

A0ðuÞ ¼ −
1

4πβ

�
ψ ð0Þ

�
iγuþ ϵ

β

	

þ ψ ð0Þ
�
−iγuþ β þ ϵ

β

	�
: ðE7Þ

In the limit of zero temperature (i.e., as β → ∞), this
expression reduces to

lim
β→∞

A0ðuÞ ¼ −
i
4π

1

γu − iϵ
; ðE8Þ

which is the result we would have obtained had we taken
the limit β → ∞ in Eq. (E3a) (i.e., before taking the
derivative and carrying out the integration with respect
to variable u).
We can now evaluate the transition probability rate

R0
TðEÞ of the detector using the expression (E7) for

A0ðuÞ. To do so, let us define the dimensionless variable
ũ ¼ γΩu and parameter ϵ̄ ¼ ϵΩ. Let us also make use of
the Fourier transform

e−ũ
2=ð2T̄2Þ ¼ T̄ffiffiffiffiffiffi

2π
p

Z
∞

−∞
dξeiũξ−ξ

2T̄2=2 ðE9Þ

and the following series expansion of the polygamma
function:

ψ ð0ÞðzÞ ¼ −
X∞
k¼0

1

ðzþ kÞ : ðE10Þ

From this last expression, it would be clear that the first and
the second polygamma functions in Eq. (E7) would have
poles at ũ ¼ iðkβ̄ þ ϵ̄Þ ¼ ip1ðkÞ (i.e., in the upper half of
the complex ũ plane) and at ũ ¼ −i½ðkþ 1Þβ̄ þ ϵ̄� ¼
−ip2ðkÞ (i.e., in the lower half of the complex ũ plane),
respectively. The transition probability rate R0

TðEÞ can be
written as

R0
TðEÞ ¼

T̄

4πiγ
ffiffiffiffiffiffi
2π

p
X∞
k¼0

Z
∞

−∞
dξ e−ξ

2T̄2=2

Z
∞

−∞
dũ eiðξ−ĒÞũ

×

�
1

ũ − ip1ðkÞ
−

1

ũþ ip2ðkÞ
�
: ðE11Þ

After carrying out the integration over ũ and imposing the
appropriate conditions for nonvanishing residues (such as
when ξ > Ē and ξ < Ē for the first and the second terms in
the square brackets), we obtain that

R0
TðEÞ ¼

T̄

2γ
ffiffiffiffiffiffi
2π

p
X∞
k¼0

�Z
∞

Ē
dξ e−ξ

2T̄2=2e−ðξ−ĒÞp1ðkÞ

þ
Z

Ē

−∞
dξ e−ξ

2T̄2=2eðξ−ĒÞp2ðkÞ
�
: ðE12Þ

On further calculating the integral over ξ and then taking
the limit ϵ̄ → 0, we arrive at the expression

R0
TðEÞ ¼

1

4γ

X∞
k¼0

feβ̄kð2ĒT̄2þβ̄kÞ=ð2T̄2ÞErfc½ðβ̄kþ ĒT̄2Þ=ð
ffiffiffi
2

p
T̄Þ�

þ eβ̄ðkþ1Þðβ̄þβ̄k−2ĒT̄2Þ=ð2T̄2Þ

× Erfc½ðβ̄ þ β̄k − ĒT̄2Þ=ð
ffiffiffi
2

p
T̄Þ�g: ðE13Þ

We find that, when the temperature of the thermal bath
vanishes (i.e., when β̄ → ∞), in Eq. (E12), the quantity
p2ðkÞ → ∞ for all accessible values of k. In the same limit,
we have p1ðkÞ ¼ ϵ̄ for k ¼ 0, whereas, for the all other
values of k, we have p1ðkÞ → ∞. Therefore, when β → ∞,
in Eq. (E12), we are left with only one term of the sum, and
it can be expressed as

lim
β→∞
ϵ̄→0

R0
TðEÞ ¼

T̄

2γ
ffiffiffiffiffiffi
2π

p
Z

∞

Ē
dξ e−ξ

2T̄2=2;

¼ 1

4γ
Erfc

�
Ē T̄ffiffiffi
2

p
	
: ðE14Þ

In a similar manner, in the β̄ → ∞ limit, the expression
(E13) is nonzero only when k ¼ 0. Also, in this limit, the
result reduces to same expression as in Eq. (E14).

BARMAN, MAJHI, and SRIRAMKUMAR PHYS. REV. D 109, 105025 (2024)

105025-24



Furthermore, we can take the limit of infinite interaction
time, i.e., T̄ → ∞) in Eq. (E13) and observe that the
quantity R0

TðEÞ reduces to

R0
TðEÞ ¼

1

2γ

X∞
k¼0

e−ðkþ1Þβ̄ Ē ¼ 1

2γ

1

eβ̄ Ē − 1
: ðE15Þ

The same quantity can also be obtained from the second
sum of Eq. (26) with m ¼ 0 and by utilizing the relation
J20ðzÞ ¼ 1–2

P∞
m¼1 J

2
mðzÞ. We also observe that in the zero

temperature limit and for infinite interaction time, i.e.,
when T̄ → ∞, the quantity R0

TðEÞ vanishes, which is
evident from Eq. (E14). (For a different approach to handle

this infrared divergence, we would refer the reader
to Ref. [63].)
Let us now provide a similar regularization procedure for

the thermal Green’s function in Eqs. (54) and (55) that, in
general, connect two detector events. In the same manner as
in Eq. (E2), we can express the Green’s function (55) as

Gþ
βjl
ðū; v̄Þ ¼ Ā0jlðū; v̄Þ þ Ā1jlðū; v̄Þ: ðE16Þ

As earlier, in the quantity Ā0ðū; v̄Þ, we have singled out the
contribution containing the infrared divergence. The quan-
tity Ā1ðū; v̄Þ contains all the other contributions and it does
not diverge in the infrared limit. These quantities are
given by

Ā0jlðū; v̄Þ ¼
Z

∞

0

dq
4π

�
e−i½ᾱ1ðqÞv̄þᾱ2ðqÞū�=2

1 − e−βq
þ ei½ᾱ1ðqÞv̄þᾱ2ðqÞū�=2

eβq − 1

�
;

Ā1jlðū; v̄Þ ¼
Z

∞

0

dq
4π

�X∞
m¼−∞
m≠0

JmðqσjÞJmðqσlÞ
�
e−i½α1ðqÞv̄þα2ðqÞū�=2

1 − e−βq
þ ei½α1ðqÞv̄þα2ðqÞū�=2

eβq − 1

�

−
�
e−i½ᾱ1ðqÞv̄þᾱ2ðqÞū�=2

1 − e−βq
þ ei½ᾱ1ðqÞv̄þᾱ2ðqÞū�=2

eβq − 1

�
½1 − J0ðqσjÞJ0ðqσlÞ�

�
; ðE17Þ

where ᾱ1ðqÞ ¼ qðγj − γlÞ and ᾱ2ðqÞ ¼ qðγj þ γlÞ; i.e.,
they correspond to α1ðqÞ and α2ðqÞ when m ¼ 0. We
can define the corresponding transition probability rates as

RT
jlðEÞ ¼ RT

0jlðEÞ þ RT
1jlðEÞ; ðE18Þ

where RT
0jlðEÞ depends exclusively on Ā0jlðū; v̄Þ and

RT
1jlðEÞ on Ā1jl

ðū; v̄Þ. We can evaluate the contribution
RT
1jlðEÞ using the same procedure we had adopted in

Sec. IV B 2. Therefore, we shall now focus only the

evaluation of RT
0jlðEÞ. In particular, one can consider

general γj and γl for the evaluation of Ā0jlðū; v̄Þ. However,
recall that, we had considered the same velocities for the
two different detectors, with different radial distances and
angular velocities, to estimate total transition probabilities
(see Figs. 7 and 9). Therefore, for simplicity, we shall set
γj ¼ γl ¼ γ, so that Ā0jlðū; v̄Þ ¼ A0ðūÞ [cf. Eq. (E3a)]. In
such a case, the expression RT

0jlðEÞ will be given exactly by
Eq. (E13) for all j and l. We can use this result to plot the
different transition probability rates as in Figs. 7 and 9.
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