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The amplification of radiation by superradiance is a universal phenomenon observed in numerous
physical systems. We demonstrate that superradiant scattering generates entanglement for different input
states, including coherent states, thereby establishing the inherently quantum nature of this phenomenon.
To put these concepts to the test, we propose a novel approach to create horizonless ergoregions, which
are nonetheless dynamically stable thanks to the dissipative dynamics of a polaritonic fluid of light.
We numerically simulate the system to demonstrate the creation of a stable ergoregion. Subsequently, we
investigate rotational superradiance within this system, with a primary focus on entanglement generation
and the possibilities for its enhancement using current techniques. Our methods permit the investigation of
quantum emission by rotational superradiance in state-of-the-art experiments, in which the input state can
be controlled at will.
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I. INTRODUCTION

Superradiance describes the amplification of radiation
by time-independent potentials, a phenomenon that occurs
across a broad spectrum of systems, including optics [1],
fluid dynamics [2], electrodynamics [3–5], particle physics
[6,7], and fields on curved spacetimes [2,8–12].
Rotational superradiance [2,13] occurs in spinning sys-

tems featuring an ergoregion—a region within which physi-
cal probes are dragged around and forced to corotate with
the system (see [14] for a review).1 While all probes have
positive energy outside the ergoregion, frame dragging
permits the existence of waves with negative energies within.
The mixing of positive- and negative-energies across the
boundary of the ergoregion (the ergosurface) allows for
incoming waves to be reflected with larger amplitudes.
The availability of negative energy states implies a

quantum instability [2,13,15,16], by which the vacuum
decays into pairs of field excitations. This entails the
unavoidable presence of a finite population of excitations
inside the ergosurface. If this population is not dissipated
away by some mechanism, it will be further amplified by

superradiance, leading to an instability. Ergoregions are
thus intrinsically unstable [17].
In known stable configurations, dissipation is provided

by a horizon inside the ergosurface (as, for instance, in
spinning black holes). A horizon is a one-way membrane,
which effectively dissipates negative energy modes out of
the system. However, horizons emit Hawking radiation,
meaning that ergosurfaces are constantly exposed to an
energy flux from the horizon. In other words, the input state
of rotational superradiance in such configurations is never
the vacuum, but thermal Hawking radiation instead. This
has prevented the isolation of quantum emission solely due
to rotational superradiance.
In studies of superradiance, a coherent state is typically

employed to externally illuminate the ergoregion (see,
e.g., [14]). The ensuing emission statistics are dominated
by classical amplitudes vastly surpassing the contributions
from vacuum emission, including emissions from the
horizon. Any potential quantum effects produced in the
emission, such as entanglement, get lost among classical
data (noise, classical correlations etc.). For this reason,
superradiance is commonly understood as a classical
amplification phenomenon.
This is the context within which rotational superradiance

has been investigated experimentally [18,19]. In these
experiments, the focus was on observing the reflection
of the incoming coherent state. Energy conservation
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1This is different from Dicke superradiance that describes the

collective amplification of radiation by coherent emitters [1].
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demands that the observed amplified wave is accompanied
by a partner negative energy excitation in the ergoregion.
However, experimental limitations were such that correla-
tions across the ergosurface were not observed.
This paper focuses on quantum emission by super-

radiance. On the one hand, we show how superradiance
generates entanglement for a variety of input states,
establishing it as an entanglement-generating phenome-
non (see [20,21] for previous discussions of entangle-
ment in rotating black holes). On the other hand, we
propose a new experimental setup to test our theoretical
findings, involving the creation of horizonless configu-
rations with an ergoregion that is nevertheless stable.
We use a two-dimensional quantum fluid of light made
of microcavity polaritons (hybrid particles composed of
a photon and an electric dipole). The dynamics of this
system are intrinsically dissipative, a property we use
in our advantage to control the ergoregion instability
while minimizing data loss. We numerically simulate an
irrotational vortex featuring an ergosurface. We study
the field equations describing acoustic perturbations and
show the occurrence of rotational superradiance in that
configuration.
The ability to create stable horizonless ergoregions is

promising, as it permits the investigation of the quantum
properties of superradiant emission by controlling the
input state at will. Observing entanglement generated in
pair-production processes has remained a challenge. We
argue that the ability of ergoregions to amplify entangle-
ment combined with the unique capabilities of fluids of
light offer a promising avenue to achieve this benchmark.
This article lays the theoretical groundwork toward the
observation of entanglement from rotational superra-
diance. The numerical configuration found here can be
implemented experimentally, paving the way for the
experimental investigation of rotational superradiance
from stable ergosurfaces.

II. SUPERRADIANT WAVE SCATTERING
IN A NUTSHELL

Superradiant scattering occurs when the transmission
and/or reflection coefficients that describe a stationary
scattering process exceed unity. In such cases, the ampli-
tudes of the scattered waves are larger than that of the
incident wave, at the expense of the potential, which
supplies the necessary energy for the amplification process
to occur.
Our objective in this section is to delineate the conditions

under which superradiance universally occurs, and pinpoint
the key mechanisms behind it. To that end, we focus on
scalar waves and leave the potential unspecified. In the
subsequent sections, we will restrict attention to a specific
system demonstrating rotational superradiance.
For the sake of clarity, we momentarily focus on

one-dimensional wave propagation. Due to the time-
independence of the potential, the frequency ω of the
waves remains conserved. Therefore, it suffices to focus on
a single frequency at a time.
Imagine a scenario akin to the one depicted in Fig. 1,

where an ingoing wave packet centered around the fre-
quency ω scatters off the potential, resulting in two out-
going wave packets, each centered at the same frequency ω.
The outgoing wave packets propagate away from the
potential—the reflected part toward the right and the
transmitted wave packet toward the left. This scattering
scenario is described by a wave Ψ such that

Ψjt→−∞ ¼ Win
l ⟶

time
Ψjt→∞ ¼ tWout

l þ rWout
r ; ð1Þ

where t and r denote the transmission and reflection
amplitudes, respectively, and the subscripts r and l indicate
rightward and leftward propagation, respectively. Valuable
insights into these coefficients can be obtained by examin-
ing conserved quantities of the wave equation.

(a) (b)

FIG. 1. Illustration of wave packet scattering by a time-independent potential. The hatched region indicates the interaction region—the
region where the gradient of the total potential VðxÞ is nonzero. (a) An incoming left-moving wave packet scatters into an outgoing
left-moving (transmitted) wave packet and a right-moving wave packet (reflected). (b) General scattering with incoming modes
approaching the interacting region from both sides.
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To gain some intuition, we first consider a scattering
process described by the standard Schrödinger equation,
with

R
dxjΨðt; xÞj2 being a conserved quantity. This is the

familiar conservation of probability in nonrelativistic quan-
tummechanics. This quantity is strictly positive, and equal to
1 for normalized wave packets. Equating its value at early
and late times, one finds 1 ¼ jtj2 þ jrj2, implying that neither
jtj nor jrj can exceed unity. In other words, amplification
cannot occur in the framework of Schrödinger theory, by
virtue of the conservation of probability.
Bosonic field theories behave differently. Consider a

scalar field Φðt; xÞ which satisfies the Klein-Gordon
equation in Minkowski spacetime (the argument below
readily generalizes to curved spacetimes and to other
bosonic theories, such as electromagnetic fields or gravi-
tational perturbations)

½∇μ∇μ þm2 þ νðxÞ�Φðt; xÞ ¼ 0; ð2Þ

where ∇μ is a covariant derivative, accounting for
possible interactions with external gauge fields, and
νðxÞ is an external potential. The total potential describ-
ing the scattering process, VðxÞ, can be thought of as
the combination of the gauge potentials contained in ∇μ

and the external potential νðxÞ. m ≥ 0 is the mass of
the field, and we are setting the speed of light to one.
This constitutes a relativistic field theory, with Φðt; xÞ
representing the value of the Klein-Gordon field at a
point in spacetime. The conserved quantity for this
theory is

QKGðΦÞ≡ i=ℏ
Z

ðΦ�Π − Π�ΦÞdx; ð3Þ

where Π is the momentum canonically conjugate to Φ.
The conservation of this quantity can be readily
checked by computing its time derivative and utilizing
the Klein-Gordon equation (2) to show that it vanishes.
(This quantity is commonly referred to as “symplectic
norm”). An important property of QKG is that it can
take negative values. Consequently, some potentials
admit scattering solutions in which the right- and
left-moving scattered wave packets carry different signs
of QKG. In such a scenario, the conservation of QKG
yields

1 ¼ jrj2 − jtj2; ð4Þ

which implies that jrj must be larger than unity.
Therefore, there is amplification, and the scattered
outgoing waves have larger amplitudes than the inci-
dent one. This is superradiance.
We see that superradiance is a consequence of having

modes with the same frequency but carrying opposite sign
of QKG, a possibility attributed to the bosonic character of

the field.2 Superradiance typically occurs in the presence
of external gauge fields, whose potential modifies the form
of the canonical momentum on one side of the interacting
region. A well-known simple example is a charged scalar
field interacting with a static electric field that is compactly
supported in space [14].
We finish this section with a simple characterization of

superradiant scattering, which will be useful in the sub-
sequent sections of this article.
Consider the scattering of two incoming wave packets

depicted in Fig. 1, both narrowly centered around the
frequency ω, approaching the potential from opposing
directions, denoted by Win

r and Win
l . The scattered wave

will result in a linear combination of the normalized
outgoing wave packets Wout

r and Wout
l . This scattering

phenomenon can be succinctly written as

ðWin
r ;Win

l Þjt→∞ ¼ ðWout
r ;Wout

l Þ · B; ð5Þ
where

B ¼
�
T r

R t

�
; ð6Þ

and T; R; r; t∈C. The matrix B describes the scattering of
wave packets with central frequency ω. If the incident wave
is of the form a1Win

r þ a2Win
l , the scattered wave will have

the form b1Wout
r þ b2Wout

l , where ai; bi ∈C are amplitudes.
The incident and scattered wave amplitudes are related via�

b1
b2

�
¼ B ·

�
a1
a2

�
: ð7Þ

The main outcome of this discussion is encapsulated in
the following theorem, the proof of which can be found
in Appendix A.
Theorem 1. The matrix B describing the scattering from

IN to OUT modes off a time-independent potential corre-
sponds to superradiant scattering if and only if it is not a
unitary matrix.

III. QUANTUM DESCRIPTION OF
SUPERRADIANCE

A simple way to translate the classical scattering
described by Eq. (5) to the quantum theory, is to recall
that each normalized wave packet Wi, where i denotes a
collective label, defines a creation and annihilation operator
as follows. Consider the operator defined as

i=ℏ
Z

ðW�
i Π̂ − Π�

Wi
Φ̂Þdx; ð8Þ

2For fermionic fields, the conserved charge is positive
definite—e.g.,QD ≡ R

dxΨ†Ψ for a Dirac field—thus precluding
the existence of superradiance. This positivity is directly related
to the fermionic statistics and Pauli’s exclusion principle.
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where Φ̂ðt; xÞ is the bosonic field operator, Π̂ðt; xÞ its
canonically conjugate momentum, and ΠWi

the conjugate
momentum associated with the wave packet Wi (see
Appendix D). We will call this operator âi whenever
QKGðWiÞ ¼ 1, and −â†i if QKGðWiÞ ¼ −1.
Using the canonical commutation relations one can

check that ½âi; â†i �¼ jQKGðWiÞj¼1. Hence, these are cre-
ation and annihilation operators, whose associated quanta
are described by the wave packet Wi. We can define in this
way a pair of such operators for each of the four wave
packets involved in the scattering process. The creation
and annihilation operators defined for the left- and right-
moving IN modes commute, and the same holds for the
OUT modes. The quantum scattering for a fixed central
frequency ω is thus described by the vector equation

Âout ¼ S · Âin; ð9Þ

where

Âout ¼

0
BBBBB@

âoutr

âoutl

âout†r

âout†l

1
CCCCCA; Âin ¼

0
BBBBB@

âinr
âinl

âin†r

âin†l

1
CCCCCA; ð10Þ

and S is a complex 4 × 4 matrix. As described in some
detail in Appendix B, S is a symplectic matrix.
Using Eq. (8), which establishes the relationship

between creation and annihilation operators and wave
packets, it is possible to derive the matrix S entirely from
the elements of the matrix B defined above. However,
caution is required when connecting these two matrices.
This is due to the fact that a wave packetWi defines either a
creation or an annihilation operator depending on the sign
of QKGðWiÞ, as indicated right below Eq. (8). Thus, we
must distinguish between nonsuperradiant (NSR) scatter-
ing, for which the sign of QKG is the same for all wave
packets involved, and superradiant (SR) scattering, where
that is not the case. Taking this into consideration, the
matrix S takes the form,3 respectively

SSR¼

0
BBB@

0 r T 0

R� 0 0 t�

T� 0 0 r�

0 t R 0

1
CCCA; SNSR¼

0
BBB@
T r 0 0

R t 0 0

0 0 T� r�

0 0 R� t�

1
CCCA ð11Þ

where the coefficients T, R, t and r are the elements
of B as defined in the previous section. Upon a mere
inspection of these matrices, it becomes evident that
superradiant scattering mixes creation and annihilation
operators. This mirrors the classical scattering process,
which mixes modes with different signs of QKGðWiÞ.
Conversely, this mixing does not occur in the case of
nonsuperradiant scattering.
Using the constraints satisfied by the coefficients T, R, t

and r for superradiant and nonsuperradiant scattering
(written in Appendix A) it is easy to see that SNSR is a
unitary matrix while SSR is not. We find, therefore, an
application of Theorem 1 to the quantum theory: the
transformations between creation and annihilation opera-
tors (9) describes superradiant scattering if and only if S is
not a unitary matrix.
From a physical perspective, the matrices SNSR and

SSR describe very different transformations. The unitary
nature of SNSR has physical implications: it preserves
the vacuum state and also preserves the total number of
quanta N̂in

r þ N̂in
l , thus conserving energy. SNSR functions

as a beam splitter. In contrast, SSR does not preserve
either the vacuum state or the total number of particles.
It does, however, leave the number difference, N̂in

r − N̂in
l ,

unchanged, implying the creation of excitations in pairs.
SSR is a two-mode squeezer, which converts the vacuum
state into a two-mode squeezed vacuum.
While it is well known that superradiant scattering

amplifies incoming field excitations, recognizing that
superradiance can be described as a two-mode squeezing
process reveals that wave amplification is tied to the
generation of entanglement [20,21]. Hence, entanglement
is expected to be generated at the output both for classical
and quantum input states. This is a fundamental aspect
of this quantum phenomenon which highlights its
entanglement-generating capabilities.

A. Generation of entanglement

In the remainder of this section, we quantify the
entanglement generated by superradiant scattering for
three representative initial states, namely vacuum, a coher-
ent state, and a single-mode squeezed state. These three
states are pure and separable, meaning there is no initial
entanglement between the two IN modes.
We consider a coherent state centered at hâri ¼ γr and

hâli ¼ γl, with γr; γl ∈C.
A single-mode squeezed state is obtained by acting with

a squeezing operator on one of the two IN modes, for
instance, the left-mover Win

l

jzl;ϕlisqz ¼ e
1
2
ðξ�l â2l−ξlâ†2l Þj0i; ð12Þ

where ξl ¼ zleiϕl , and ϕl; zl are real numbers representing
the squeezing angle and intensity, respectively.

3Without loss of generality, we have assumed that QðWin
r Þ ¼

QðWout
l Þ ¼ −1 in the superradiant case. Other choices will swap

the components of SSR, but will not alter our conclusions (see
Appendix A for further details).
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We evolve these Gaussian states using SSR, and quantify
entanglement between the two OUT modes on either side
of the potential barrier via the entanglement entropy
SentðωÞ. For this calculation, we use the tools spelled out
in Appendix B.4

First, we calculate the flux (number of quanta per unit
time and unit bandwidth) in each of the outgoing modes
in terms of the elements of SSR. For the two-mode vacuum,
we find

hN̂out
r i ¼ hN̂out

l i ¼ jTj2: ð13Þ

For the two-mode coherent state, we obtain

hN̂out
r i ¼ jγlj2 þ jTj2 þ jTj2ðjγrj2 þ jγlj2Þ þ 2Re½rT�γrγl�;

ð14Þ

hN̂out
l i ¼ jγrj2 þ jTj2 þ jTj2ðjγlj2 þ jγrj2Þ þ 2Re½tR�γlγr�:

ð15Þ

Finally, for the one-mode squeezed state

hN̂out
r i ¼ sinh2zl þ jTj2 þ jTj2sinh2zl; ð16Þ

hN̂out
l i ¼ jTj2 þ jTj2sinh2zl: ð17Þ

In Eqs. (14) and (15), the first term corresponds to the finite
number of quanta already present at the input, while the
second term, equal to jTj2, represents the amplification of
vacuum fluctuations (13). The third and fourth terms
represent stimulated emission (amplification) due to super-
radiance. Likewise, in Eqs. (16) and (17), jTj2 corresponds
to amplification of vacuum fluctuations while jTj2 sinh2 zl
manifests the amplification of the initial quanta in mode
Win

l present in the initial state.
Importantly, not all created pairs at the output are

entangled: superradiant scattering does not yield the same
emission statistics for all input states. Figure 2 shows the
entanglement entropy of the output SentðωÞ (i.e., the von
Neumann entropy of either of the two output modes) as a
function of jTj for the three input states (and two values
of initial squeezing in Win

l ). On the one hand, we see that
SentðωÞ is identical for vacuum and coherent input states.
This implies that, even though the amplitude of the
coherent state gets enhanced after the scattering, entangle-
ment at the output is due to the amplification of vacuum
fluctuations only. On the other hand, the amplification of
single-mode squeezed states is different: SentðωÞ is higher
than for the other two input states for any nonzero value of
zl. So, in this case, entanglement at the output does not

come exclusively from vacuum amplification—single-
mode squeezing at the input enhances entanglement
at the output. Hence, we observe that superradiant scatter-
ing not only amplifies incoming radiation, but also its
quantum properties.5

IV. STABLE ERGOREGIONS
IN POLARITON FLUIDS

Because of the spontaneous amplification of vacuum
fluctuations by rotational superradiance, ergoregions are
intrinsically dynamically unstable [22–24]. In this section,
we propose that dissipative dynamics can quench this
instability. We evidence this numerically by engineering
a stable ergosurface in a driven-dissipative fluid of light
realized with microcavity exciton-polaritons (polaritons).
Polaritons are half-light half-matter bosonic quasi-

particles resulting from the strong coupling of photons
in a semiconductor cavity with an excitonic transition [25].
Their dynamics in the cavity plane are intrinsically driven-
dissipative, with steady-states reached only through con-
stant pumping with a continuous wave laser. All properties
of the quantum fluid in the cavity are controlled by the
pump laser and measured via photons exiting the cavity.

A. Microcavity polaritons

We consider a laser field inside a semiconductor micro-
cavity made of quantum wells sandwiched between two
Bragg mirrors. Under the resonance-induced quantization
of the photon wave vector perpendicular to the cavity,

FIG. 2. Entanglement entropy, SentðωÞ, of the OUT modes as a
function of the absolute value of the scattering coefficient R. We
plot the result for different inputs: vacuum, an arbitrary coherent
state (this plot is insensitive to γr and γl), and states where the
left IN mode is in vacuum but the right one is squeezed with
squeezing intensity zl (the plot is insensitive to the squeezing
angle ϕl). To produce the plot, we have assumed, without loss of
generality, that QðWin

r Þ ¼ QðWout
l Þ, so that jRj2 ≥ 1.

4In Sec. VI, we extend the analysis presented here by
considering thermal noise at the input as well as losses and
detector inefficiencies.

5A similar effect occurs in pair production from causal
horizons, i.e., Hawking radiation.
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photons acquire an effective mass 5 orders of magnitude
lower than the mass of the electron.
Cavity photons excite electric dipoles (bound electron-

hole states) called excitons, which are massive self-
interacting excitations. The strong coupling of photons
and excitons generates two new eigenstates of the system:
two polariton branches with different dispersive properties,
the upper and the lower polaritons (see Fig. 3). In practice,
only the lower polaritons LP are excited and measured in
experiments.6

Polaritons inherit the properties of cavity photons and
excitons, and thus behave collectively as an ensemble
of self-interacting massive particles—a quantum fluid of
light [25–30].
Because of the decay of excitons and cavity photons,

polaritons are unstable and decay with a rate γ, yielding
photons exiting the cavity at the same rate. These photons
carry all the information of the phase and intensity of
the intra-cavity polariton field, allowing us to measure the
quantum properties of the fluid with optical detectors.
The mean field ψðr; tÞ of the polariton fluid is governed

by the driven-dissipative Gross-Pitaevski equation [25]

iℏ
∂ψ

∂t
¼

�
ℏωLP −

ℏ2∇2

2mLP
þ ℏgjψ j2 − iℏ

γ

2

�
ψ þ iℏF ðr; tÞ;

ð18Þ

where ωLP is the frequency of polaritons at wave vector
k ¼ 0, −ℏ2∇2=2mLP their kinetic energy in the cavity
plane,mLP their effective mass, ℏg the strength of repulsive
polariton self-interactions and F ðr; tÞ ¼ FpðrÞeiðϕpðrÞ−ωptÞ

represents the electromagnetic field of the laser pump.
Equation (18) can be rewritten in terms of the density n

and phase ϕLP of the fluid by ψ ¼ ffiffiffi
n

p
eiϕLP, which leads

to its hydrodynamical—or Madelung—representation.
The resulting equations are the continuity and Euler
equations for a fluid with density n and velocity
vðrÞ ¼ ℏ∇ϕLP=mLP.
If the laser frequency ωp is near resonance with the lower

polariton branch, the steady state of the polariton fluid is
controlled by the pump. Concretely, its phase is inherited
from the pump, ψðr; tÞ ¼ ffiffiffiffiffiffiffiffiffi

nðrÞp
eiðϕpðrÞ−ωptÞ, and its density

is related to the intensity of the pump and the detuning
according to Eq. (18). In particular, for a homogeneous
steady-state configuration excited by a plane wave at wave
number kp, in the rest frame of the fluid we find the
equation of state

n

��
γ

2

�
2

þ ðgn − δÞ2
�
¼ jFpj2; ð19Þ

with δðrÞ ¼ ω − ωLP − ℏk2pðrÞ=2mLP the effective detun-
ing. The number of solutions to this equation crucially
depends on the value of this detuning: for δ >

ffiffiffi
3

p
γ=2, there

can be either one or three solutions depending on the pump
intensity. This leads to a hysteresis loop, shown in Fig. 3(b),
where the fluid can either be in a high or low density regime
for some values of the pump intensity, known as optical
bistability [31].
Collective excitations of the polariton fluid are studied

by linearizing Eq. (18) via ψðr; tÞ ¼ ðψ0 þ δψÞeiðϕpðrÞ−ωptÞ.
Their spectrum in a spatially homogeneous region is
given by the Bogoliubov dispersion relation, which is a
quadratic form admitting two fk;ωg solutions at positive
laboratory-frame frequencies ω [25,32]. While these
roots can be complex, when they are real there are two
frequency solutions at each wave number [25,32]: positive
(negative) rest-frame frequency modes have a positive
(negative) norm (8) [33].
The inhomogeneous mean field ψ0eiðϕpðrÞ−ωptÞ sets the

kinematics of the collective excitations δψ (which effec-
tively behaves as a Klein-Gordon field) [34,35]. Depending
on the fluid velocity profile vðrÞ and the speed of sound
csðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏð2gn0ðrÞ − δðrÞÞ=m

p
in the inhomogeneous

flow (n0 the mean-field density associated to ψ0), we
can find configurations in which δψ experiences a scatter-
ing process as the one described in Eq. (11). Specifically,
there exist positive laboratory-frame frequencies at which
there are two positive-norm (QKG > 0) modes in some
region of space and two negative-norm (QKG < 0) modes
in some other region of space. In addition, in each spatial

(a) (b)

FIG. 3. Microcavity polaritons. (a) Dispersion of the light
coming from the cavity (experimental measurement). Dashed
turquoise: cavity photons; dashed purple: excitons; UP: upper
polaritons; LP: lower polaritons. Exciton-photon energy differ-
ence −1.88 meV. (b) Optical bistability of the LP for a homo-
geneous fluid with δkp¼0 ¼ 0.618 meV incident on the cavity at

different kp (numerical calculation): blue, kp ¼ 0 μm−1; orange,
kp ¼ 0.2 μm−1; green, kp ¼ 0.3 μm−1; red, kp ¼ 0.4 μm−1;
purple, kp ¼ 0.5 μm−1.

6Since the Rabi energy ℏΩR, controlling the gap between the
upper and lower polariton branches, is much larger than the
characteristic energies of the system, in particular the interaction
energy ℏgn, the fluid contains only lower polaritons, so its wave
function may be truncated to that of the lower polaritons
ψðr; tÞ ¼ ψLPðr; tÞ.
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region, the two modes always have opposite sign of group
velocity. This configuration entails supperadiant scattering.
In the following subsection, we show a simulation of a

stable rotating polariton fluid with a horizonless ergore-
gion. Entanglement between collective excitations gener-
ated by superradiance is then quantified in Sec. V.

B. Numerical simulations

Control of the fluid phase and density via the properties
of the pump laser allows us to engineer polariton vortices
by shaping the pump field into an optical vortex with
ϕpðr; θÞ ¼ DðrÞ þ Cθ, with ðr; θÞ being polar coordinates
in the plane and where we have imposed rotational
symmetry. The function DðrÞ and the parameter C control
the flow velocity, whose target velocity profile is

vðrÞ ¼ ℏ
mLP

�
dD
dr

r̂þ C
r
θ̂

�
; ð20Þ

where hats denote unit vectors.
We numerically simulate the polariton dynamics described

by Eq. (18) with the choice D ¼ 0 (this can be implemented
by tuning the pump profile), with mLP ¼ 5.7 × 10−35 kg
and a polariton linewidth ℏγ ¼ 0.08 meV. Figure 4 shows
the numerical data.
The fluid density (we show csðrÞ as a proxy to n)

assumes the annular shape characteristic of polariton
vortices. The density is high enough to enable the nonlinear
regime of interactions over r∈ ½20; 67� μm. Note that, due
to crossing of the radial and sound velocities at r ¼ 71 μm,
one could worry about the presence of an acoustic horizon
emitting Hawking radiation, which could interfere with
the superradiant effect we are interested in. However, in the
region where this horizon could form, the density of the
fluid is extremely low, and consequently there is no
significant Hawking radiation.
The phase ϕpðr; θÞ, shown in Fig. 4(b), features 15

jumps from 0 to 2π, indicating finite circulation of the
phase along any given radius. The negligible curvature of
phase jumps along r in the high-density region manifests
the near zero radial velocity vr of the fluid, as confirmed
by the corresponding orange line nearing zero in Fig. 4(f).
This implies that, in this configuration, v ¼ vθθ̂, so that in
the relativistic analogy [34], the acoustic ergosurface in the
simulation lies at re ¼ rvθ¼cs ¼ 43 μm.
The spectrum of collective excitations in this fluid is

approximately described (locally) by a dispersion relation
of the form [25]

ω−v · k¼−
iγ
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2

4m2
LP
k4þ c2sk2þðgn0 − δÞð3gn0− δÞ

s
;

ð21Þ

where k ¼ jkj and, for radial waves, the wave vector is
of the form k ¼ ðp;l=rÞ, where l and p are the azimuthal
and radial wave numbers—see Appendix C for a detailed
derivation of (21).
We use the truncated Wigner approximation to simulate

the full quantum dynamics of the polariton fluid. In this
approximation, noise is added at every simulation step [25].
Under these circumstances, a steady state can only be
reached if the system is dynamically stable against pertur-
bations. Our numerical simulations show that the fluid
reaches a steady state. Furthermore, the existence of a
steady state allows us to numerically extract the spectrum
of collective excitations, which agrees well with Eq. (21)
(see Appendix C for further details). The spectrum has
two branches ω�, which correspond to modes with
QKGðωþÞ ¼ 1 and QKGðω−Þ ¼ −1, shown in green and
red, respectively, in Figs. 4(d) and 4(e).
In our driven-dissipative fluid, the frequency detuning δ

contributes to a gap between positive- and negative-norm

(a) (b)

(c)

(d) (e)

FIG. 4. Vortex flow in a polariton fluid withD ¼ 0 and C ¼ 15.
(a)–(c) numerical simulation of Eq. (18). (a) speed of sound cs;
(b) phase ϕLP; (c) Velocities versus a radius. Blue: vθ; orange: vr;
green: cs. Gray area: weak nonlinear interactions. Corresponding
ω − p dispersion (21) for l ¼ 10 at (d) r ¼ 25 μm−1 and
(e) r ¼ 67 μm−1. Green: positive-norm modes; red: negative-
norm modes. Gray area: frequency interval for rotational super-
radiance in this configuration.
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modes (see Appendix C for an extended discussion on
the spectrum and the gap). Due to this gap, propagating/
oscillating modes with negative norm and positive lab
frequencies exist only in the region r ≤ 40 μm < re. The
dispersion relation shown in Figs. 4(d) and 4(e) indicates
that superradiant scattering between positive- and negative-
norm modes is possible across the ergosurface inside the
frequency interval ω∈ ½minðωþÞ;maxðω−Þ� [gray area in
Figs. 4(d) and 4(e)].
It may be surprising at first that a steady state is reached

despite the presence of superradiant scattering in this
horizonless ergoregion configuration. We conclude this
subsection by providing an explanation for the physical
origin of the observed stability.
Within the superradiant frequency window, negative-

norm modes in the ergoregion always have a finite
amplitude, even in the idealized case of zero temperature,
due to vacuum fluctuations. These excitations propagate
with a velocity comparable to cs ≤ 0.7 μmps−1. Given
that the value of γ corresponds to a lifetime of ≈8 ps,
the mean free path of these excitations is ≈6 μm. This
implies that, for the same reason that the polariton density
drops toward short radii, negative-norm excitations will
not be able to propagate across the vortex and reach the
ergosurface on the other side. The finite lifetime of
polaritons quenches the characteristic instability of hori-
zonless ergoregions.7

V. ROTATIONAL SUPERRADIANCE
IN A QUANTUM FLUID OF LIGHT

In this section, we will compute the matrix B describing
wave scattering by numerically solving the evolution
equation of collective excitations in a model with a simple
velocity profile modeling the shape shown in Fig. 4. These
calculations will demonstrate the presence of superradiant
scattering in the corresponding frequency window, con-
firming the insights gained from the dispersion relation
analysis in the previous section.
In the hydrodynamic limit, the scalar field, denoted as

δψ , describing these excitations as they propagate on a
polariton fluid follows the equation [37]�

ð∂t þ v · ∇Þ2 − c2s∇2

þ c2s

�
∇ ·

v

c2s

�
ð∂t þ v · ∇Þ

�
δψðt; r; θÞ ¼ 0 ð22Þ

which in the WKB approximation leads to dispersion (21)
with cs ¼

ffiffiffiffiffiffiffiffiffiffiffi
gn=m

p
, and we have taken δ ¼ gn. Assuming a

constant speed of sound cs and a velocity profile
vðrÞ ¼ vθðrÞθ̂, Eq. (22) simplifies to

½ð∂t þ v ·∇Þ2 − c2sΔ�δψðt; r; θÞ ¼ 0: ð23Þ

These equations suggest defining the time coordinate t̃
associated with a frame corotating with the fluid, such
that ∂t̃ ¼ ∂t þ v · ∇ ¼ ∂t þ vθ

r ∂θ.
Solutions to (23) are combinations of cylindrical waves

of the form

δψω;lðt; r; θÞ ¼ e−iωteilθφωlðrÞ; ð24Þ

with φωlðrÞ a solution of the radial differential equation�
1

r
d
dr

�
r
d
dr

�
þ VωlðrÞ

�
φωlðrÞ ¼ 0; ð25Þ

where

VωlðrÞ ¼
1

c2s

�
ω −

vθðrÞl
r

�
2

−
l2

r2
: ð26Þ

The symmetries of the problem ensure the conservation
of both ω and l. Therefore, modes characterized by
different ω or l values remain decoupled throughout
their evolution, and it suffices to describe each of them
individually. We drop these labels from now on to
simplify the notation.
From Eq. (25), we see that wave scattering in this

configuration reduces to a one-dimensional problem in
the radial direction described by the effective potential
VωlðrÞ, which can be written as

ðWin
r ;Win

l Þ⟶
time ðWout

r ;Wout
l Þ · B: ð27Þ

with “r” and “l” corresponding to propagation in the
radial direction, denoting local out- and inward propagating
modes respectively.
To facilitate the computation of the coefficients of

matrix B, we model the velocity profile vθ=cs across the
ergosurface with

vθðrÞ ¼
α1
2
½1þ tanh α2ðα3 − rÞ�; ð28Þ

which is parametrized by three constants, αi, i ¼ 1; 2; 3. As
shown in Fig. 5, the variation from vθ ¼ α1 for r ≪ α3 to
vθ → 0 as r ≫ α3 is monotonous, while α2 governs the
sharpness of the transition between the two asymptotic
values of vθ. Choosing α1 exceeding cs ensures the
existence of an ergoregion at small radii, with its boundary
situated at re, defined by vθðreÞ ¼ cs. We choose α1 ¼ 2cs
with cs ¼ 0.7 μmps−1 and α3 ¼ 45 μm, as suggested by
the values in Fig. 4, and α2 ¼ 0.3 μm−1. This velocity

7In our configuration, the phase is set by the resonant pump, so
the stabilization dynamics are different from configurations in
which the phase is left free, e.g., in the formation of multiply
charged vortices upon Bose-Einstein condensation [36].
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profile is relevant only for radii greater than rmin, below
which the fluid density is insufficient to support the
propagation of acoustic waves.
The conserved quantity (2) associated with the equation

of motion (23) reads

QKGðϕÞ ¼ i=ℏ
Z

∞

0

dr
Z

2π

0

dθ
r
c2s

½ϕ�
∂t̃ϕ − ∂t̃ϕ

�ϕ�; ð29Þ

implying that modes with ω̃ > 0 (ω̃ < 0) have positive
(negative) norm QKG. Here, ω̃ is defined as the frequency
associated with ∂t̃. Concretely, in our setup with cylindrical
symmetry and vanishing radial velocity vr ¼ 0, we have

ω̃ ¼ ω − vθðrÞ
r l.

Given that vθ diminishes for large radii, in this asymp-
totic region (r ≫ re) we have ∂t̃ ¼ ∂t, and ω̃ ¼ ω.
Consequently, the sign of QKG for wave packets initially
localized at large radii is determined by the sign of ω. This
scenario applies to the wave packets Win

l and Wout
r , since

they are localized at large radii at early and late times,
respectively. Since QKG remains conserved throughout
their evolution, these wave packets bear positive QKG at
all times when ω > 0.
Conversely, for wave packets localized in the vicinity

of r ≈ rmin, the relation between ω̃ and ω is instead

ω̃ ¼ ω − vθðrminÞ
rmin

l. Consequently, these modes possess neg-

ative QKG values when ðω − vθðrminÞ
rmin

lÞ < 0. This applies to

the modes Win
r and Wout

l , which are localized near rmin at
early and late times, respectively.
In brief, whenever ω and ðω − vθðrminÞ

rmin
lÞ have different

signs, we expect superradiant scattering to occur near the
ergosurface.
Next, we proceed to solve the scattering process

between the IN and OUT wave packets. Exact solutions
to the radial Eq. (25) exist when the velocity vθ
remains constant along the radial direction. In such a

scenario, a basis of solutions is provided by Whittaker
functions

1ffiffiffi
r

p WhittakerM

0
B@il

vθ
c
;l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

v2θ
c2

s
; i
2ω

c
r

1
CA;

1ffiffiffi
r

p WhittakerW

0
B@il

vθ
c
;l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

v2θ
c2

s
; i
2ω

c
r

1
CA; ð30Þ

which reduce to Bessel functions in the homogeneous
limit vθ → 0. (In the definition of these functions, we
adhere to the same conventions as those used in the
software Mathematica.)
At a given radius r, these solutions can have either

locally oscillatory or evanescent behavior, depending on

the value of ω − vθðrÞ
r l. The behavior of a mode ðω;lÞ is

determined by the WKB dispersion relation, which
has a position-dependent gap equal to 2csl=r (see
Appendix C). To a good approximation, if the frequency
of a mode falls within this gap, it will be an evanescent
mode, and wave packets constructed from it do not
propagate energy. Evanescent modes are not part of the
IN and OUT bases.
On the other hand, for propagating modes, negative-

norm modes at inner radii have frequency

ω − vθðrminÞ
rmin

l < − cs
rmin

l, while positive-norm modes at

rmax ≫ α3 have frequency ω − vθðrmaxÞ
rmax

l < − cs
rmax

l. In our
system, the laboratory-frame frequency window of super-
radiant scattering is thus 6.54l < ℏω < 18.31l (in μeV).
The velocity profile (28) remains almost uniform in r,

except in the vicinity of r ¼ α3. Consequently, we can
employ exact solutions (30) to define the IN and OUT
modes within the asymptotic regions r ∼ rmin and r ≫ α3,
respectively. Purely incoming or outgoing waves are
represented by specific linear combinations of these
exact solutions, and in each of the asymptotic regions take
the form

exp

�
�i

�
ωr
c
−
lvθðrminÞ

cs
log

r
rmin

��
for r→ rmin;

exp

�
�i

�
ωr
c
−
lvθðrmaxÞ

cs
log

r
rmax

��
for r→ rmax; ð31Þ

We construct the wave packetsWin
r ,Win

l ,W
out
r , andWout

l ,
each associated with an azimutal number l and narrowly
centered at frequency ω, from these radial functions
multiplied by e−iωteilθ. We then proceed to numerically
solve the evolution of the IN wave packets with the velocity
profile (28) (see Appendix D for details).
Numerical calculations are needed because of the

absence of closed analytical solutions for the radial

FIG. 5. Velocity profile in (28) with α1 ¼ 2cs, with
cs ¼ 0.7 μmps−1, and α3 ¼ 45 μm. The gray vertical line signals
the position of the ergosurface.
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differential equations corresponding to the velocity
profile (28). We numerically solve the scattering problem
across a parameter space grid encompassing (ω;l). As
explained above, we consider frequencies in the range
6.54l < ω < 18.31l in μeV for each l, which remain
well within the hydrodynamical regime, and for which the
modes scatter superradiantly. For illustrative purposes, we
consider integer values of l within the range [1, 4].
The outcomes of these calculations are the elements of

the scattering matrix

Bωl ¼
�
Tωl rωl
Rωl tωl

�
: ð32Þ

The resulting values of these coefficients corresponding to
the selected values of ω and l are displayed in Table I in
Appendix D. All figures in the subsequent section are based
on these calculated values. As an illustrative example, we
present here the scattering coefficients corresponding to
ω ¼ 17.00 μeV and l ¼ 1:

Bωl ¼
�

1.377þ 0.990i 1.296þ 0.444i

−1.296 − 0.444i −1.695 − 0.069i

�
: ð33Þ

This is not a unitary matrix, which confirms, in accordance
with Theorem 1 in Sec. II, that the scattering process
exhibits superradiance.8 Furthermore, one can check that
these numerically obtained coefficients satisfy the con-
straints in (A7).

VI. SUPERRADIANT PRODUCTION
OF ENTANGLEMENT

The calculations in the previous section yield the
scattering coefficients Tωl; Rωl; tωl, and rωl for the
relevant range of ω and l—the superradiant modes
within the hydrodynamical approximation. By substi-
tuting these coefficients into expression (11), we derive
the matrix SωlSR, which describes the quantum scattering
process for each mode ðω;lÞ. This matrix provides all
the information necessary to analyze the scattering,
once the initial quantum state is specified. The primary
objective of this section is to compute the entanglement
between the two OUT modes following the scattering,
considering a family of physically interesting initial
states.
The content of this section shares certain similarities

with the calculations performed in Sec. III, with a signifi-
cant distinction being that, while the description in Sec. III
was generically applicable to any superradiant process, we

focus here on the specific rotating quantum fluid examined
in the preceding sections. We also make use of the velocity
profile depicted in Fig. 5.
For the initial state of acoustic perturbations, we first

consider a thermal state at temperature Tenv, in order to
incorporate thermal noise, a common element in real
experiments. It will become evident that the temperature
Tenv influences the entanglement generated during the
scattering in an important manner.
However, given that thermal states are mixed quantum

states, entanglement entropy is no longer applicable to
quantify entanglement, as entropy measures entanglement
only when the total state is pure. An easily computable
entanglement metric suitable for both mixed and pure
states is the logarithmic negativity (LN) [38–40]. It is
defined as

LNðρ̂Þ ¼ log2kρ̂⊤Ak1; ð34Þ

where ρ̂ represents the density matrix of the system, ρ̂⊤A is
its partial transpose with respect to one of the two
subsystems, which we denote as A, and k · k1 is the trace
norm. A nonzero value of LN indicates a violation of
the positivity of partial transpose criterion for quantum
states [38]. For Gaussian states, and when one subsystem
contains a single mode, regardless of the size of the other
subsystem, LN is nonzero if and only if the state is
entangled. Furthermore, LN is a faithful quantifier of
entanglement, meaning that a higher LN value corresponds
to a greater degree of entanglement. In our calculations,
we will restrict to Gaussian states, which encompass the
vacuum, coherent, squeezed, and thermal states. This
family is sufficiently comprehensive to describe many
interesting states in our setup. Additionally, evolving
Gaussian states through a scattering process described
by SωlSR or, more generally, by any Hamiltonian quadratic
in the fields, can be efficiently accomplished using the
Gaussian formalism (see, [41,42] for reviews). While not
needed for an understanding of the results in this section,
we have succinctly compiled the necessary tools to repro-
duce our calculations in Appendix B.
To facilitate comparison, we first show in Fig. 6 our

results for vacuum input. As this is a pure state, entangle-
ment can be quantified through entanglement entropy. This
plot manifestly shows that pair-creation at the ergoregion
involves generation of quantum entanglement.
Conversely, Fig. 7 shows the LN for a thermal input

with various environmental temperatures, and for the
l ¼ 1modes (the result for other values of l is qualitatively
similar). This figure reveals that the presence of thermal
quanta in the initial state hinders the generation of
entanglement. This outcome aligns with the intuitive
notion that thermal fluctuations act as an effective source
of noise, contributing to the decoherence of the system and
consequently reducing entanglement. In fact, for each

8As an additional verification, we have confirmed that, if
we extend our calculations to higher frequencies, the numerically
obtained scattering matrix indeed becomes unitary outside of
the superradiant regime, serving as a test of our theoretical
framework.
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mode ðω;lÞ, there exists a threshold temperature beyond
which the two out modes are not entangled. This “critical”
temperature is given by9

Tcðω;lÞ ¼
ℏω=kB

ln ½1þ ðjTωljðjTωlj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jTωlj2

p
ÞÞ−1� ;

ð35Þ

where Tωl are the reflection coefficients, which we have
obtained numerically, and kB is Boltzman’s constant.
Figure 8 shows Tcðω;lÞ for l ¼ 1, 2, 3 and 4, and for
the relevant range of frequencies. This threshold temper-
ature is important for experimental efforts seeking to detect
entanglement. The range of temperatures at which entan-
glement exists is within current experimental capabilities
with state-of-the-art cryostats.
All the findings discussed thus far remain unaffected if

we replace the initial state with a coherent state. This holds
true whether we consider a pure coherent state at zero
temperature or add thermal noise to it. The rationale behind
this is that a coherent state differs from the vacuum solely
through a displacement of the mean value of the field
operator, which entanglement remains insensitive to.
Consequently, while the number of quanta in each of the
OUT modes is amplified when the input is a coherent
state [according to formulas (14) and (15)], entanglement
remains unaffected.

FIG. 6. Entanglement entropy for OUT modes for vacuum input (left) and for a one-mode squeezed input with squeezing intensity zl
for modes with l ¼ 1 (right) as a function of the frequency. These plots are obtained for a polariton fluid with velocity depicted in Fig. 5.
Only frequencies describing propagating superradiant modes are shown.

FIG. 7. The LN for OUT modes with l ¼ 1 under four different
thermal input states with varying temperatures. This plot illus-
trates how the presence of thermal noise degrades entanglement.
The frequencies at which LN vanishes are explained by Tcðω;lÞ
and are also displayed in Fig. 8.

FIG. 8. Critical temperature, Tc, above which entanglement at
the output vanishes, assuming a thermal input state. Only frequen-
cies describing propagating superradiant modes are shown.

9The logarithmic negativity vanishes when the minimum
symplectic eigenvalue of the partially transposed covariance
matrix is equal to or larger than one ν̃min ≥ 1 (see Appendix B).
These eigenvalues are a function of jTωlj and the initial state. For
a thermal input state at temperature Tenv, they are proportional to
1þ 2nωðTenvÞ, where nωðTenvÞ is given by a Bose-Einstein
distribution at temperature Tenv. Hence, ν̃min grows monotoni-
cally with temperature. Tcðω;lÞ is the temperature at which
ν̃min ¼ 1 and, thus, at which entanglement vanishes.
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Next, we discuss superradiant amplification of entangle-
ment. As described in Sec. III, entanglement in the final
state can be amplified by illuminating the ergoregion with a
thermal-single-mode squeezed state. This state stems
from the application of a single-mode squeezer operator,

e
1
2
ðξ�l â2l−ξlâ†2l Þ, to a thermal state (ξl ¼ zleiϕl ). In keeping with

Sec. III, we focus on squeezing the (radially inward
propagating) IN mode Win

l . It is worth noting that this
initial state does not contain any entanglement between
the two IN modes. However, initial squeezing represents
a quantum resource [43,44], and the ergoregion has the
capability to transform it into entanglement. Consequently,
the resulting OUT state exhibits a higher degree of
entanglement compared to what would have been achieved
with thermal or coherent-thermal inputs at the same
temperature. This amplification serves to counterbalance
the detrimental effects of thermal noise.
These effects are shown in the right panel of Figs. 6

and 9. In particular, the latter figure illustrates how initial
squeezing can maintain the OUT state entangled, even
for temperatures exceeding the threshold value that
would render the state separable in the absence of initial
squeezing.
To finish, we discuss the effects of detection losses and

their impact on the entanglement in the OUT state. These
losses are not related to the cavity lifetime γ, which controls
the amount of photons escaping the cavity, but rather to the
efficiency in detecting these photons. The escaping photons
provide exhaustive information on the state of the cavity

fluid, and failure to detect all of them will hinder our ability
to measure entanglement. A suitable estimation of these
effects can be achieved using a pure loss channel (see, for
example, [42]). In this model, quanta have a probability η of
being observed and a probability (1 − η) of being replaced
by the vacuum—or by environment modes. The parameter
η represents the detection efficiency, typically around 98%
in polariton experiments (see e.g. [32]). This model can
also be used to effectively parametrize sources of
decoherence in a simple way. However, a precise model
for decoherence will depend on the particular couplings
between our system and the environment, and is beyond the
scope of this work. As a final remark, we note that this loss
model maintains the Gaussian nature of quantum states.
Further details are provided in Appendix B.
Figure 10 shows the behavior of entanglement in the

OUT state, quantified by the LN, as it varies with η. The LN
decreases rapidly when η significantly deviates from unity.
Entanglement enhances with the squeezing intensity, but
this is only notable for high detection efficiency η > 90%.

VII. EXPERIMENTAL PROPOSAL FOR
DETECTION OF ENTANGLEMENT

Thermal noise is a roadblock between any experiment
aiming at observing amplification by rotational super-
radiance and the resulting generation of entanglement.
Specifically, polaritons couple to the vibrations of the
crystalline structure of the semiconductor quantum wells.
This heat transfer mechanism results in the generation
of “heat phonons” (collective excitations) in typical exper-
imental conditions even at vanishing temperatures,
although there is a threshold below which the generation
of collective excitations is dominated by the photonic

FIG. 9. The LN of the OUT modes as a function of the
squeezing intensity of the initial state zl and the temperature Tenv.
White points have LN ¼ 0. The value of the LN is independent of
the squeezing angle ϕl. The results for other superradiant modes
exhibit qualitatively similar behaviors. This figure illustrates the
interplay between the detrimental effects of temperature and the
amplifying influence of initial squeezing.

0.25

0.50

0.75

1.00

1.25

1.50

FIG. 10. Variation of entanglement (quantified by LN) between
the two OUT modes with the efficiency η and the squeezing
intensity in the initial state zl. White points have LN ¼ 0.
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vacuum [45]. However, the data of Fig. 9 indicates that
entanglement can be measured at the output even in the
presence of thermal noise, provided that a single-mode
squeezed state is made to scatter at the ergosurface and that
the sample is cooled to low-enough temperatures, which
are within the reach of dilution cryostats (T < 0.3 K).
The strategy to observe entanglement thus is to send a

mode of orbital angular momentum within the super-
radiance acceptance window, with one squeezed quadrature
(either phase or intensity). Orbital angular momentum can
be readily obtained by shaping the Gaussian mode of a laser
with a spatial light modulator [46]. This can then be used to
pump an optical parametric oscillator (OPO). Type-I OPOs
regularly yield above 3 dB of squeezing below the shot-
noise [47] with records at near-infrared wavelengths (as
the resonance of the cavity used in our experiment in
Sec. IV B) of about 9 dB with improved detection
methods [48]. These correspond to squeezing intensities
of 0.35 and 1.04 respectively.
At the output, intensity correlations and phase anticor-

relations can be measured with homodyne detection. This
consists of collecting the photons exiting the cavity at a
given angle from a given spot, corresponding to excitations
spatially located on either side of the ergosurface.10 Each of
the two beams (which share the same frequency) is then
interfered with a (spatially matched) reference beam
(local oscillator, LO, provided by the same laser that
generated the squeezed state at the input) on a beam
splitter. The resulting interference pattern is measured
with photodiodes in both output ports of the beam splitter,
while the relative phase of the signal beams and the LO
can be scanned by modulating the path length of the LO
to the beam splitter. This allows for the resolution of both
quadratures of the output state and to thus reconstruct its
density matrix by optical state tomography [49]. From
there, the LN (34) can be evaluated using the analytical
tools presented in this article.

VIII. OUTLOOK

Superradiant amplification is a universal phenomenon in
which radiation scattered off time-independent potentials
exhibits greater amplitude than the incoming radiation.
Because of the type of input states commonly used
in theoretical and experimental investigations (see the
review [14]), superradiance is commonly believed to yield
only classical statistics, i.e., classically correlated radiation
resulting from the amplification and redistribution of
incoming field quanta.

In this paper, we have revisited the basics of super-
radiance and described its field theoretic origin as the
scattering of field modes having opposite symplectic norm
QKG (which is the conserved quantity in relativistic bosonic
field theories). From there, we have used tools from the
theory of Gaussian quantum bosonic systems to identify
that the symplectic transformation describing superradiant
scattering is a two-mode squeezer.
From this perspective, superradiance shares similarities

with the Hawking effect, since the latter is also described by
a two-mode squeezer [50–52]. A key difference is that the
pair production from superradiance does not follow a black
body spectrum.
As in any two-mode squeezing process, entanglement

is not exclusive to vacuum input; rather, it extends to a
broad range of input states, including coherent states.
However, in the case of coherent states, quantum corre-
lations tend to be drowned by classical correlations. This
overshadowing is the origin of the common belief that
superradiance only yields classical statistics. We have
shown that entanglement generation can be modulated at
will, by appropriately choosing the input state: while
thermal fluctuations at the input inhibit the generation
of entanglement, the use of (unentangled) single-mode
squeezed states amplifies the nonseparability at the out-
put. These findings establish that superradiance is an
entanglement-generating phenomenon.
In the context of rotational superradiance in ergoregions,

the superradiant amplification of vacuum fluctuations
yields a finite population of negative-norm field excitations
in the ergoregion. In the absence of dissipation, repeated
superradiant amplification of this negative-norm population
would result in a build-up of its amplitude, resulting in a
dynamical instability of the ergoregion [22]. In this paper,
we have proposed a new configuration to quench the
intrinsic dynamical instability of ergoregions. In numerical
simulations we have used a polaritonic quantum fluid of
light, which has a driven-dissipative dynamics, to show that
superradiance can occur in irrotational vortices. We explain
the stability of the ergoregion observed in numerical
simulations as a result of the losses in the system (mostly
due to the photonic decay of the cavity).
This configuration with a horizonless ergoregion has

allowed us to apply our theoretical methods to the study of
quantum emission by rotational superradiance.
We have taken noise and losses into account in our

calculations and shown that, although entanglement
is generically degraded by thermal noise, it can be
recovered using single-mode squeezed states at the input.
This strategy can be used in future experiments to
facilitate the observation of entanglement generation
by superradiance.
In conclusion, our methods permit the study of rotational

superradiance with control over the input state, a feat not
attainable in the presence of horizons because of the

10The angles at which photons come out of the cavity can be
determined thanks to coherent probe spectroscopy, where a
continuous-wave, coherent state excites collective excitations
of the fluid on either side of the ergosurface, yielding their
Bogoliubov spectrum [32].
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Hawking effect. This presents a new avenue for both
theoretical and experimental exploration of this phenome-
non. Nevertheless, our analysis also has implications for
rotating configurations where dissipation is provided by a
horizon, as for spinning black holes or analogue gravity
experiments [18,19,37,53]. Indeed, in scenarios featuring
a horizon, the dynamics of entanglement will be ruled by
the interplay between the Hawking effect and rotational
superradiance [21]. An understanding of this interplay
requires knowledge of each of these individual mecha-
nisms. Having the capability to investigate quantum
emission originating from each effect independently
becomes valuable in this regard.
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APPENDIX A: PROOF OF THE THEOREM
CHARACTERIZING SUPERRADIANCE

Here we provide a proof for Theorem 1, which states:
The matrix B describing the scattering from IN to OUT
modes off a time-independent potential corresponds to
superradiant scattering if and only if it is not a unitary
matrix.
To prove this theorem, we will actually prove its

negation: the scattering is not superradiant if and only if
B is unitary. First, we recall that B is the matrix of complex
coefficients

B ¼
�
T r

R t

�
; ðA1Þ

that relate the amplitude of IN and OUTwave packet basis
elements with central frequency ω in the considered
scattering process (see Sec. II). We find that

B† · B ¼
� jTj2 þ jRj2 T�rþ R�t

Tr� þ Rt� jtj2 þ jrj2
�
: ðA2Þ

Unitarity of B requires the following constraints

jTj2þjRj2¼1; jtj2þjrj2¼1 and Tr�þRt� ¼0; ðA3Þ

implying that jTj; jRj; jtj and jrj are all smaller than unity
and the scattering is nonsuperradiant.
To prove that nonsuperradiant scattering implies unitar-

ity of B, let us use the conserved quantity QKG to define a
(nonpositive definite) Hermitian inner product in the space
of complex solutions to the Klein-Gordon equation

hW1;W2i≡QKGðW1;W2Þ¼ i=ℏ
Z

ðW�
1ΠW2

−Π�
W1
W2Þdx;

ðA4Þ

where ΠWi
denotes the conjugate momentum of the

solution Wi. This product is commonly referred to as
the Klein-Gordon or symplectic product (see, e.g., [54]).
Without loss of generality, we can work with wave packets
normalized to have QKGðWi;WiÞ ¼ �1. Furthermore, it is
easy to check that left- and right-moving wave packets are
orthogonal. With this, conservation of QKG implies

hWin
r ;Win

r i ¼ jTj2hWout
r ;Wout

r i þ jRj2hWout
l ;Wout

l i
hWin

l ; W
in
l i ¼ jrj2hWout

r ;Wout
r i þ jtj2hWout

l ; Wout
l i

hWin
r ;Win

l i ¼ T�rhWout
r ;Wout

r i þ R�thWout
l ; Wout

l i: ðA5Þ

For a nonsuperradiant scattering, jTj; jRj; jtj and jrj are all
smaller than unity. With this, relations (A5) imply that the
KG norm of each of the four wave packets must have the
same sign, either þ1 or −1. Furthermore, (A5) also implies

jTj2þjRj2¼1; jtj2þjrj2¼1 and Tr�þRt� ¼0; ðA6Þ

implying that B is a unitary matrix. This proves the
theorem.
We conclude this appendix by presenting several expres-

sions employed in the main text. It has been established
that, in the context of nonsuperradiant scattering, all four
modes participating in the scattering process exhibit the
same sign of QKG. In contrast, in superradiant scattering
scenarios, the two IN modes bear different signs of QKG,
and the same applies to the two OUT modes.
When, for superradiant scattering, there is one modewith

norm of each sign at the same side of the interaction region,
hWin

r ;Win
r i ¼ hWout

r ;Wout
r i, and Eq. (A5) lead to the follow-

ing constraints

jTj2− jRj2¼1; jtj2− jrj2¼1 and Tr�−Rt� ¼0: ðA7Þ

On the other hand, when both modes at each side of
the interaction region have norm of the same sign,
hWin

r ;Win
r i ¼ −hWout

r ;Wout
r i, Eq. (A5) produce

jRj2− jTj2¼1; jrj2− jtj2¼1 and Tr�−Rt� ¼0: ðA8Þ
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These two sets of constraints indicate that either reflection
or transmission coefficients (or both) have an absolute
value greater than one, indicating superradiant scattering.

APPENDIX B: GAUSSIAN STATES,
ENTANGLEMENT QUANTIFIERS, AND

ENTANGLEMENT WITNESSES

This appendix contains a brief summary of techniques of
Gaussian states for bosonic quantum systems on which we
have based the calculations in the main body of the paper.
These are well-known tools, and detailed descriptions of
them can be found, for instance, in [41,42]. In comparing
the content of this appendix with other references, includ-
ing [41,42], the reader should bear in mind that we work
here with creation and annihilation operators, rather than
Hermitian combinations of them. This introduces some
differences in the expressions we write below.
A bosonic quantum system with N degrees of freedom

can be described in terms of 2N creation and annihilation
operators Â ¼ ðâ1;…; âN; â

†
1;…; â†NÞ which satisfy stan-

dard commutation relations

½ÂI; ÂJ� ¼ ΩIJ; where Ω ≔
�

0N IN
−IN 0N

�
ðB1Þ

is the symplectic form and I; J∈ f1;…; 2Ng. A general
state for such system will be characterized by a density
matrix ρ̂, which encodes the information of the infinitely
many moments of the creation and annihilation operators

hÂI1…ÂIni ≔ Tr½ρ̂ÂI1…ÂIn �; ðB2Þ

with n∈N. Of special relevance for us are the first and the
(symmetrized and centered) second moments, known as
mean vector and covariance matrix, whose components are,
respectively

μI ¼ hÂIi σIJ ¼ hfÂI − μI; ÂJ − μJgi; ðB3Þ

where curly brackets denote the anticommutator. Among
all possible quantum states, there is a subset called
Gaussian states, which have the remarkable property that
all their moments can be written in terms of their first and
second moments, in analogy to what occurs for Gaussian
probability distributions. Hence, these states are fully
characterized by their mean and covariance matrix, which
contain complete information on the physical properties of
the state. Furthermore, Gaussian states are ubiquitous, with
prominent examples being the ground or thermal states
of any quadratic Hamiltonian, and any state that can be
prepared by applying symplectic transformations to such
states. As example, the vacuum is characterized by

μvac ¼ 0 and σvac ¼
�
0N IN
IN 0N

�
; ðB4Þ

a coherent state is characterized by having the same
covariance matrix as the vacuum but a “displaced” mean,
namely μcoh ≠ 0 and σcoh ¼ σvac. A thermal state is of the
form μ ¼ 0 and σ ¼⊕j ð1þ 2njÞσvac, where nj is the mean
number of quanta in the mode j, with j∈ f1;…; Ng, and
the covariance matrices in the direct sum are those
corresponding to a vacuum 1-mode system.
Furthermore, if an N-mode system is in a Gaussian state,

the reduced state of any subset of the N modes is also
Gaussian.
The evolution of linear quantum systems—i.e., systems

described by a Hamiltonian at most quadratic in the
creation and annihilation operators—is completely deter-
mined by the classical evolution. Hence, evolution can be
encoded in a linear symplectic transformation S. These are
2N × 2N complex matrices of the form

S ¼
�

α β

β� α�

�
; ðB5Þ

with α and β complex N × N matrices, and satisfying
that they leave invariant the symplectic form, i.e.,
S ·Ω · S⊤ ¼ Ω. This condition implies

α · α† − β · β† ¼ I2; α · β⊤ − β · α⊤ ¼ 02: ðB6Þ

Matrices S of this form constitute a group isomorphic to the
symplectic group Spð2N;RÞ.
Moreover, linear evolution preserves Gaussianity. If the

initial state at time t0 is Gaussian and characterized by μit0
and σijt0 , the state of the system will be Gaussian at all times,
and given by μit ¼ Sikμk0 and σt

ij ¼ Sikσt0
kmSjm, or, in

matrix notation

μt ¼ S · μt0 and σt ¼ S · σt0 · S
⊤: ðB7Þ

In the Heisenberg picture, this evolution is translated to the
creation and annihilation operators as

At ¼ S · At0 : ðB8Þ

Because S is symplectic, this transformation preserves the
standard commutation relations written in (B2).
We can express the mean number of quanta in a given

mode i as

hN̂ii ¼
1

2
σi;iþN þ μiμiþN −

1

2
; ðB9Þ

We use this expression to compute the number of quanta
for the cases considered in Eqs. (13)–(17). Starting with
the vacuum case, we have an initial state characterized
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by (B11) for N ¼ 2. As in the text, we consider a scenario
where modes at the left of the interacting region, Win

r and
Wout

l , have negative norm. The matrix S describing super-
radiant scattering [Eq. (11) in the main text] is

SSR ¼

0
BBB@

0 r T 0

R� 0 0 t�

T� 0 0 r�

0 t R 0

1
CCCA: ðB10Þ

The state after the scattering is

μout ¼ S · μvac ¼ 0

σout ¼ S · σvac · S⊤

¼

0
BBB@

0 2TR� 1þ 2jTj2 0

2TR� 0 0 1þ 2jTj2
1þ 2jTj2 0 0 2RT�

0 1þ 2jTj2 2RT� 0

1
CCCA;

ðB11Þ
where we have used jRj2 ¼ 1þ jTj2, jrj ¼ jRj, jtj ¼ jTj as
well as tr� ¼ RT�, which hold for superradiant scattering.
We see that the reduced covariance matrices correspond to
a thermal state with jTj2 number of quanta for each of the
modes, as expected for a two-mode squeezed vacuum.
Indeed, using Eq. (B9), we find that mean numbers of
quanta for each mode are

hN̂out
r i ¼ 1

2
ðσ13 − 1Þ ¼ jTj2 and

hN̂out
l i ¼ 1

2
ðσ24 − 1Þ ¼ jTj2 ðB12Þ

As a remark, note that the fact that each pair of modes is in a
thermal state does not mean that the number of quanta per
frequency—i.e., the dependence of jTj on ω—follows a

black body distribution with a common temperature for
all modes.
Starting now with a coherent input state jγr; γli, with

mean μcoh ¼ ðγr; γl; γ�r ; γ�lÞ⊤ and same covariance matrix
as the vacuum, we find that

μout ¼ ðTγ�r þ rγl; R�γr þ t�γ�l; T
�γr þ r�γ�l; Rγ

�
r þ tγlÞ⊤;

ðB13Þ

and the σout given in (B11). Thus, we find

hN̂out
r i ¼ 1

2
ðσ13out − 1Þ þ μ1outμ

3
out

¼ jγlj2 þ jTj2 þ jTj2ðjγrj2 þ jγlj2Þ þ 2Re½rT�γrγl�;
ðB14Þ

hN̂out
l i ¼ 1

2
ðσ24out − 1Þ þ μ2outμ

4
out

¼ jγrj2 þ jTj2 þ jTj2ðjγlj2 þ jγrj2Þ þ 2Re½tR�γlγr�:
ðB15Þ

These are the expressions given in expressions (14)
and (15) in the main text.
Finally, a single-mode squeezed state is a Gaussian state

input characterized by μsq ¼ 0 and

σsq ¼

0
BBB@

0 0 1 0

0 −eiϕl sinh 2zl 0 cosh 2zl
1 0 0 0

0 cosh 2zl 0 −e−iϕl sinh 2zl

1
CCCA; ðB16Þ

where we have squeezed only the second modeWin
l . zl ∈R

is called the squeezing intensity, and ϕl ∈ ½0; 2πÞ is the
squeezing angle. For this single-mode squeezed state as an
input, the state after superradiant scattering is characterized
by μout ¼ 0 and

σout ¼

0
BBBB@

−eiϕl r2 sinh 2zl 2TR�cosh2zl ð1þ 2jTj2Þcosh2zl þ sinh2zl −eiϕl rt sinh 2zl
2TR�cosh2zl −e−iϕl t�2 sinh 2zl −e−iϕl r�t� sinh 2zl 1þ 2jTj2cosh2zl

ð1þ 2jTj2Þcosh2zl þ sinh2zl −e−iϕl r�t� sinh 2zl −e−iϕl r�2 sinh 2zl 2RT�cosh2zl
−eiϕl rt sinh 2zl 1þ 2jTj2cosh2zl 2RT�cosh2zl −eiϕl t2 sinh 2zl

1
CCCCA: ðB17Þ

where we have used identities between hyperbolic trigo-
nometric functions and the relations satisfied the scattering
coefficients.
Again, using formula (B9) to compute the number of

particles in each mode, we find

hN̂out
r i¼1

2
ðσ13out−1Þ¼ sinh2zlþjTj2þjTj2sinh2zl; ðB18Þ

hN̂out
l i ¼ 1

2
ðσ24out − 1Þ ¼ jTj2 þ jTj2sinh2zl ðB19Þ

which correspond to formulas (16) and (17) in the
main text.
Many properties of the state can be extracted from σ

alone. For instance, the absolute value of the eigenvalues of
σ ·Ω−1 is always greater or equal to 1, and the state is pure
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if and only if all of these eigenvalues are equal to �1. For
Gaussian states, the information in σ is also enough to
compute the von Neumann entropy of the state and the
logarithmic negativity (LN) associated with any bipartition
of the system. These are quantities that we have used to
quantify the entanglement generated by superradiance.
The computation of these quantities from the covariance

matrix of a given Gaussian state proceeds as follows.
The von Neumann entropy of a Gaussian state is given by
(see, e.g. [42])

S½σ� ¼
XN
k

��
νk þ 1

2

�
log2

�
νk þ 1

2

�

−
�
νk − 1

2

�
log2

�
νk − 1

2

��
; ðB20Þ

where νk are the so-called symplectic eigenvalues of the
covariance matrix σ, namely the modulus of the eigenval-
ues of σ ·Ω−1. There are only N such eigenvalues, even
though these matrices are 2N-dimensional, because eigen-
values come in pairs, with the members of each pair
differing by a sign. This sign is irrelevant since νk are
defined as the modulus of the eigenvalues.
Similarly, given the Gaussian state ðμAB; σABÞ (with A

and B two subsystems), the logarithmic negativity can be
computed from the symplectic eigenvalues of the so-called
partially transposed state [39,40]—where the transpose is
taken with respect to either of the two subsystems. If
subsystem A consists of p modes, labeled by fk1;…; kpg,
with kj ∈ f1;…; Ng and 1 ≤ p ≤ N − 1, the partially
transposed state with respect to A is the Gaussian state
with the same mean μAB but covariance matrix σ̃AB
obtained from σAB just by swapping the rows kj and
kjþN and the columns kj and kjþN for all the modes of the
subsystem A. The logarithmic negativity of the bipartition
AB in state σAB is thus given by the formula

LogNeg½σAB� ¼
X
i

Max½0;−log2ν̃i� ðB21Þ

where ν̃i are the symplectic eigenvalues of σ̃AB.

1. Modeling loss

In this subsection, we provide some additional details of
the loss model used in Sec. VI.
A simple theory to model loss of a bosonic mode â is

given by the simple input-output relation â →
ffiffiffi
η

p
âþffiffiffiffiffiffiffiffiffiffiffi

1 − η
p

ê, where 0 ≤ η ≤ 1 is the transmittance and ê is
the annihilation operator of an environment mode follow-
ing thermal Gaussian statistics—i.e., with mean zero,
hêi ¼ 0, and variance determined by the thermal popula-
tion, hê†êi ¼ nenv. To illustrate the model with a short
example, consider a strong classical wave, i.e., a coherent

state, with intensity (mean number of quanta) Iin ≫ nenv.
The output intensity is then Iin→ Iout¼ηIinþð1−ηÞnenv≈
ηIin. In other words, the input intensity is attenuated by
an amount η. This model is often employed to represent
detector losses, where the efficiency of the detector,
expressed as a percentage, is 100 × η.
For simplicity, we consider “pure loss”, such that

nenv ¼ 0, i.e. the environment is close to the vacuum.
On Gaussian states, the pure loss channel transforms the
mean and the covariance matrix via

μ →
ffiffiffi
η

p
μ

σ → ησ þ ð1 − ηÞσvac; ðB22Þ

where σvac is the covariance matrix of the vacuum. This
transformation reflects the fact that quanta make it to the
detector with probability η: for η ¼ 0, all quanta are lost
and only the vacuum remains, while η ¼ 1 corresponds to
perfect collection of the outgoing radiation.

APPENDIX C: KINEMATICS OF COLLECTIVE
EXCITATIONS IN ROTATING

POLARITON FLUIDS

In this appendix, we study the kinematics of collective
excitations—which are described by a Klein-Gordon
field—on the effective curved geometry created by the
mean-field of the fluid.
The equation or linear perturbations δψ around the

background fluid described by ψ0 satisfying the stationary
equation (19) is

ið∂t þ v0 · ∇Þδψ

¼
�
−

ℏ
2mLP

∇2 −
iℏ

2mLP
ð∇ · v0Þ − δþ 2gn0 − i

γ

2

�
δψ

þ gn0δψ�; ðC1Þ

where n0 and v0 are the mean-field density and flow
velocity, respectively. δ is the effective frequency detuning
between the laser and the lower polariton branch at k.
Equation (C1) can be rewritten as a system of linear
equations for the fields δψ and δψ� as

ið∂t þ v0 · ∇Þ
�

δψ

δψ�

�
¼ L

�
δψ

δψ�

�

¼
�

A gn0

−gn0 −A�

��
δψ

δψ�

�
ðC2Þ

where A ¼ − ℏ
2mLP

∇2 − iℏ
2mLP

ð∇ · v0Þ − δþ 2gn0 − i γ
2
.

In time-independent backgrounds, modes with different
frequencies decouple, and Eq. (C2) turns into an eigenvalue
problem for the differential operator L. If the background is
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also homogeneous, the modes can be expanded in plane waves with fluid-rest-frame wave vector k, yielding the Bogoliubov
dispersion relation [25]

ω − v0 · k ¼ −
iγ
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2k4

4m2
LP

þ ℏk2

mLP
ð2gn0 − δÞ þ ðgn0 − δÞð3gn0 − δÞ

s
: ðC3Þ

In this driven-dissipative system, the frequency detuning δ
controls a mass gap in the dispersion (which vanishes only
if δ ¼ gn0; 3gn0).
While Eq. (C3) describes well the spectrum of collective

excitations in configurations without rotation in which
plane waves are the eigenfunctions of the system [32],
this is not the case when working with configurations with
rotational symmetry around an axis. In that case, the basis is
best obtained by decomposing in the eigenfunctions of the
angular momentum operator Lθ ¼ −i∂=∂θ, which have the
form eilθ with eigenvalue l, and which will not mix during
the evolution.
In the rest frame of the fluid, the problem is solved by

finding eigenfunctions of the operator L. For a given l,
these are the eigenfunctions of both the Laplacian operator
∇2 and the angular momentum operator Lθ and are of the
form eilθJlðprÞ; eilθYlðprÞ, with eigenvalues −p2. Jl and
Yl are Bessel functions of the first and second kind

respectively. They asymptotically approach radial plane
waves far from the origin, where their amplitude has an
oscillatory wavelike profile. However, below an l- and
p-dependent radius rc, Yl diverges while the amplitude of
Jl exponentially decays (much like an evanescent wave). rc
decreases with p and increases with l, vanishing for l ¼ 0
(see Fig. 12). Physically, this can be thought of as a
consequence of the effective centrifugal potential barrier,
which is not felt by l ¼ 0 waves, but diverges as r → 0
for l ≠ 0 waves.
Thus, while the eigenvalue l is an angular wave number

that counts the number of oscillations that occur in a
circulation at a fixed radius, the eigenvalue p is not exactly
a wave number—it can be thought of as a local wave
number that controls how fast oscillations occur in the
radial direction, defining a local wavelength as 2π=p.
Indeed, it is possible to arrive at a local dispersion relation
through the WKB approximation, which for a profile with
vanishing radial velocity reads

ω −
vθl
r

¼ −
iγ
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2

4m2
LP

�
p2 þ l2

r2

�
2

þ ℏð2gn0 − δÞ
mLP

�
p2 þ l2

r2

�
þ ðgn0 − δÞð3gn0 − δÞ

s
ðC4Þ

where the � branches are related to modes of positive/
negative norm. Using the WKB approximation, Eq. (C3)
can be adapted, with k ¼ ðp;l=rÞ, to recover an expression
in which the labels can be physically interpreted as
usual [55]. The resulting l-dependent terms that do not
vanish in the p → 0 limit yield a position- and l-dependent
contribution to the mass gap in the spectrum of cylindrical
waves, which effectively accounts for the effect of the
centrifugal barrier near the origin (locally evanescent
amplitudes). In the hydrodynamical approximation,
neglecting cavity losses and with vr ¼ 0, the WKB
dispersion is

ω −
vθl
r

¼ �cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ l2

r2

r
; ðC5Þ

where cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏgn0=m

p
(assuming that δ ¼ gn0). From

Eq. (C5), we find the condition for positive-(negative-)
norm modes to be “locally propagating” at a given radius
r0, namely, to have real-valued p at positive laboratory-
frame frequency at a given radius r0, is given by

ω −
vθðr0Þl

r0
>

csl
r0

and ω −
vθðr0Þl

r0
< −

csl
r0

; ðC6Þ

respectively. Laboratory frequencies outside this range
have imaginary solutions for p, so that they describe a
mode that is “locally evanescent”—energy in such a mode
cannot propagate in that spatial region.
We now study the spectrum of collective excitations.

We use the truncated Wigner approximation to add small
amplitude noise at all spatial and temporal frequencies
to the numerical simulation of the GPE (18). This noise
creates collective excitations at resonant-frequencies in
the fluid.
Figure 11 shows the dispersion of collective excitations

on either side of the ergosurface. In numerical simulations,
after having reached the steady-state of the GPE (18), we
subtract the mean-field background and perform angular
and temporal Fourier transforms inside r-windows to
obtain the local noise spectrum in the l − ω plane. We
plot spectra at radii (b) inside (r ¼ 25 μm) and (c) outside
(r ¼ 67 μm) the ergoregion. The vortex mean-field is still
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FIG. 12. Bessel functions of the first kind for different values of l and p as functions of the radius. In the top left graphic, we plot JlðrÞ
and its asymptotic plane wave expansion for l ¼ 10. We see how there is a radius rc below which the oscillatory behavior turns into an
exponentially decaying tail that vanishes at the origin. In the top right graphic we plot JlðrÞ for l∈ f0; 5; 10g, which shows how r0
monotonically increases with l, and vanishes for l ¼ 0. In the bottom left graphic we plot J10ðprÞ for p∈ f1; 5g. This plot shows how
rc decreases with p, and how the value of p can can be seen as a local radial wave number that controls how fast the oscillations occur in
the radial direction. p locally defines a wavelength as λ ¼ 2π=p, which is the wavelength that appears in the asymptotic plane wave
expansion. The bottom right graphic is the real part of eilθJlðprÞ for l ¼ 2 and p ¼ 1. We can see how l is the number of oscillations of
the corresponding eigenfunction as θ goes from 0 to 2π at a fixed radius.

(a)

(b) (c)

(d) (e)

FIG. 11. Collective excitation in the inhomogeneous fluid. (a) Velocities along a radial cut in Fig. 4(f). Green, cs; orange, vr; blue, vθ.
(b) l − ω dispersion in the supersonic region. (c) l − ω dispersion in the subsonic region. Insets: zoom near l ¼ lvortex and ω ¼ 0 and
fit of WKB dispersion. Green, positive-norm branch; red, negative-norm branch. (d) p − ω WKB dispersion in the subsonic region.
(e) p − ω WKB dispersion in the supersonic region.
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visible as a vertical spike at lvortex ¼ 0 (l and p are
defined in the rest frame of the fluid). We observe that the
positive-norm branch is more visible than the negative-
norm branch.
Insets show zooms on the azimuthal numbers near

lvortex, to which the dispersion obtained by the WKB
approximation is superimposed (green, positive-norm
branch; red, negative-norm branch). The WKB dispersion
describes well the noise spectrum over regions where
the density is high enough for nonlinear self-interactions.
As explained above, modes with l > 0 have an
l=r-dependent mass gap induced by the fluid rotation.
This has also been evidenced in experiments in superfluid
helium [53].
We also calculate the dispersion (C3) in the laboratory

frame for modes with l ¼ 10 at the same two radii
with the WKB approximation (δ ≠ gn0 as in the experi-
ment). We remark that, due to the finite gap inside and
outside the ergosurface, there are intervals in which
we find no real roots at positive laboratory-frame
frequencies on either side of the interface. As explained
above, this signals the presence of evanescent waves in
these regions [55].
In Fig. 11(d), we see that the increase in vθ across the

ergosurface pulls the negative-norm branch to positive
frequency, signaling the possibility to excite negative-
energy modes and to have superradiant scattering. And
indeed, there is a narrow positive-frequency interval for
which there are positive-norm mode solutions outside,
and negative-norm mode solutions inside the ergosurface.
Note that, because of the finite lifetime of polaritons,
the group velocity of these rightward and leftward
propagating modes has to be taken into account when
characterizing the scattering coefficients across the
ergosurface—this defines their mean-free path as well
as amplitude damping before and after the scattering
process has occurred.

APPENDIX D: CALCULATION OF THE S
MATRIX AND WAVE PACKET PICTURE

Our goal is to obtain, for each mode ðω;lÞ, the
coefficients Tωl; Rωl; tωl and rωl defined from these
two scattering processes of wave packets (see Fig. 1 for
an illustration)

Win
r → TωlWout

r þ RωlWout
l ;

Win
l → tωlWout

l þ rωlWout
r : ðD1Þ

Because of the time-independence and rotational symmetry
of the problem, the calculation reduces to solve an ordinary
differential equation in the radial direction [Eq. (25)].
We proceed as follows.
Equation (31) contains the (asymptotic) form of our basis

of IN and OUT modes near rmin and rmax

φin
r ðrminÞ¼Nωlexp

�
i

�
ωrmin

c
−
lvθðrminÞ

cs
log

r
rmin

��
;

φin
l ðrmaxÞ¼ Ñωlexp

�
−i
�
ωrmax

c
−
lvθðrmaxÞ

cs
log

r
rmax

��
;

φout
r ðrmaxÞ¼ Ñωlexp

�
i

�
ωrmax

c
−
lvθðrmaxÞ

cs
log

r
rmax

��
;

φout
l ðrminÞ¼Nωlexp

�
−i
�
ωrmin

c
−
lvθðrminÞ

cs
log

r
rmin

��
:

ðD2Þ

The names in/out and r=l are motivated from the direction
in which these modes propagate once the time-dependence
eiωt is added to them. Nωl and Ñωl are two normalization
constants. When vθðrmaxÞ ≈ 0, as in the case under con-
sideration, Ñωl can be obtained by noticing that Bessel
functions are exact solutions when r ∼ rmax, resulting in
Ñωl ¼ 1=

ffiffiffiffiffiffiffiffiffi
4πω

p
. This strategy does not work to obtain

Nωl, because vθðrminÞ ≠ 0. We explain below how to
compute this normalization constant.
For each mode ðω;lÞ, we solve the radial differential

equation (25) twice. On the one hand, we solve it using
boundary data corresponding to the function φin

l ðrÞ and its
first derivative at rmax. We propagate the solution until rmin
where it becomes a linear combination of the two inde-
pendent solutions φin

r ðrminÞ and φout
l ðrminÞ. In other words,

the asymptotic behavior of this solution is

φð1Þ
ωlðrÞ ¼

�
aωlφout

l þ bωlφin
r r → rmin

φin
l r → rmax

ðD3Þ

By fitting the numerical solution near rmin to a linear
combination of φout

l and φin
r we extract the coefficients aωl

and bωl. On the other hand, we repeat the calculation, this
time with boundary data specified by φout

r ðrÞ at rmax. The
asymptotic form of the resulting solution is

φð2Þ
ωlðrÞ ¼

�
cωlφin

r þ dωlφout
l r → rmin

φout
r r → rmax

; ðD4Þ

from which we extract cωl and dωl.
If the time and angular dependence e−iωteilθ is added to

these radial functions, we obtain two “stationary” solutions
to the wave equation. They are stationary in the sense that
they do not describe propagating waves. Instead, they
oscillate perpetually in time by virtue of their harmonic
time dependence e−iωt.
The trick to transform these stationary solutions into a

dynamical scattering of waves is to integrate these solutions
in a frequency range as follows:

1ffiffiffi
ϵ

p
Z ðjþ1Þϵ

jϵ
dωeiω

n
ϵe−iωteilθφðiÞ

ωlðrÞ; ðD5Þ
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TABLE I. Numerical data for the scattering coefficients,
obtained as described above, with the velocity profile (28),
with values α1 ¼ 2cs, cs ¼ 0.7 μmps−1, α2 ¼ 0.3 μm−1 and
α3 ¼ 45 μm.

l ¼ 1

ω [μeV] T r ¼ −R t

6.540 1.3410þ 0.2178i 0.0809þ 0.9161i 1.2821 − 0.4495i
7.063 1.3839þ 0.2507i 0.1415þ 0.9788i 1.2563 − 0.6324i
7.586 1.426þ 0.285i 0.2104þ 1.0351i 1.202 − 0.819i
8.110 1.468þ 0.320i 0.2870þ 1.0836i 1.117 − 1.004i
8.633 1.507þ 0.356i 0.3704þ 1.1228i 1.00 − 1.183i
9.156 1.544þ 0.392i 0.4594þ 1.1514i 0.850 − 1.347i
9.679 1.577þ 0.428i 0.5522þ 1.1682i 0.670 − 1.490i
10.20 1.605þ 0.465i 0.6470þ 1.1724i 0.462 − 1.606i
10.73 1.628þ 0.502i 0.7417þ 1.1636i 0.233 − 1.688i
11.25 1.646þ 0.539i 0.8338þ 1.1420i −0.012 − 1.732i
11.77 1.657þ 0.577i 0.921þ 1.108i −0.265 − 1.734i
12.30 1.660þ 0.615i 1.002þ 1.063i −0.516 − 1.694i
12.82 1.657þ 0.653i 1.075þ 1.009i −0.757 − 1.612i
13.34 1.646þ 0.693i 1.138þ 0.946i −0.982 − 1.492i
13.86 1.628þ 0.733i 1.191þ 0.878i −1.182 − 1.338i
14.39 1.603þ 0.775i 1.233þ 0.806i −1.353 − 1.157i
14.91 1.570þ 0.817i 1.264þ 0.731i −1.491 − 0.954i
15.43 1.531þ 0.860i 1.285þ 0.657i −1.594 − 0.737i
15.96 1.485þ 0.903i 1.297þ 0.583i −1.662 − 0.512i
16.48 1.434þ 0.947i 1.3003þ 0.5120i −1.695 − 0.285i
17.00 1.377þ 0.990i 1.2959þ 0.4439i −1.695 − 0.062i
17.53 1.315þ 1.032i 1.2849þ 0.3795i −1.665þ 0.152i
18.05 1.249þ 1.073i 1.2683þ 0.3193i −1.608þ 0.354i

l ¼ 2

ω
[μeV] T r ¼ −R t

13.34 1.1841þ 0.0743i −0.1037þ 0.6300i 1.1455þ 0.3090i
14.39 1.2189þ 0.1010i −0.0403þ 0.7030i 1.2224þ 0.0389i
15.43 1.2520þ 0.1346i 0.0362þ 0.7645i 1.2337 − 0.2525i
16.48 1.2816þ 0.1760i 0.1229þ 0.8114i 1.1720 − 0.5476i
17.53 1.3053þ 0.2260i 0.2158þ 0.8416i 1.0355 − 0.8262i
18.57 1.3211þ 0.2850i 0.3107þ 0.8544i 0.8295 − 1.0671i
19.62 1.3271þ 0.3533i 0.4034þ 0.8504i 0.5659 − 1.2513i
20.67 1.3215þ 0.4304i 0.4904þ 0.8313i 0.2625 − 1.3648i
21.71 1.3026þ 0.5156i 0.5687þ 0.7995i −0.0597 − 1.3997i
22.76 1.2693þ 0.6074i 0.6366þ 0.7580i −0.3789 − 1.3551i
23.81 1.2204þ 0.7039i 0.6934þ 0.7099i −0.6751 − 1.2365i
24.85 1.1552þ 0.8026i 0.7390þ 0.6577i −0.9312 − 1.0543i
25.90 1.0735þ 0.9009i 0.7741þ 0.6040i −1.1349 − 0.8222i
26.94 0.9752þ 0.9957i 0.7996þ 0.5504i −1.2782 − 0.5555i
27.99 0.8607þ 1.0838i 0.8167þ 0.4985i −1.3574 − 0.2700i
29.04 0.7312þ 1.1621i 0.8267þ 0.4490i −1.3728þ 0.0193i
30.08 0.5880þ 1.2274i 0.8307þ 0.4026i −1.3278þ 0.2989i
31.13 0.4331þ 1.2769i 0.8299þ 0.3597i −1.2279þ 0.5571i

(Table continued)

TABLE I. (Continued)

l ¼ 2

ω
[μeV] T r ¼ −R t

32.18 0.2689þ 1.3080i 0.8251þ 0.3202i −1.0809þ 0.7843i
33.22 0.0984þ 1.3187i 0.8172þ 0.2841i −0.8953þ 0.9731i
34.27 −0.0752þ 1.3071i 0.8068þ 0.2514i −0.6807þ 1.1184i
35.32 −0.2483þ 1.2724i 0.7946þ 0.2218i −0.4467þ 1.2170i
36.36 −0.4173þ 1.2140i 0.7809þ 0.1952i −0.2029þ 1.2676i

l ¼ 3

ω
[μeV] T r ¼ −R t

19.62 1.1085þ 0.0208i −0.2272þ 0.4214i 0.6264þ 0.9148i
21.19 1.1390þ 0.0352i −0.1721þ 0.5185i 0.9341þ 0.6527i
22.76 1.1686þ 0.0585i −0.0910þ 0.6007i 1.1335þ 0.2905i
24.33 1.1943þ 0.0937i 0.0092þ 0.6596i 1.1912 − 0.1271i
25.90 1.2125þ 0.1440i 0.1193þ 0.6905i 1.0939 − 0.5426i
27.47 1.2198þ 0.2117i 0.2290þ 0.6929i 0.8534 − 0.8969i
29.04 1.2124þ 0.2974i 0.3296þ 0.6706i 0.5051 − 1.1416i
30.61 1.1868þ 0.4003i 0.4153þ 0.6296i 0.0992 − 1.2486i
32.18 1.1396þ 0.5173i 0.4834þ 0.5767i −0.3103 − 1.2124i
33.75 1.0674þ 0.6436i 0.5340þ 0.5181i −0.6755 − 1.0475i
35.32 0.9677þ 0.7729i 0.5688þ 0.4587i −0.9604 − 0.7820i
36.89 0.8392þ 0.8974i 0.5903þ 0.4016i −1.1429 − 0.4510i
38.46 0.6820þ 1.0090i 0.6013þ 0.3488i −1.2144 − 0.0911i
40.02 0.4983þ 1.0989i 0.6042þ 0.3012i −1.1775þ 0.2633i
41.59 0.2922þ 1.1590i 0.6011þ 0.2593i −1.0435þ 0.5829i
43.16 0.0701þ 1.1821i 0.5939þ 0.2228i −0.8302þ 0.8445i
44.73 −0.1596þ 1.1627i 0.5838þ 0.1913i −0.5593þ 1.0318i
46.30 −0.3871þ 1.0973i 0.5718þ 0.1643i −0.2546þ 1.1354i
47.87 −0.6014þ 0.9851i 0.5586þ 0.1415i 0.0601þ 1.1526i
49.44 −0.7911þ 0.8282i 0.5449þ 0.1221i 0.3620þ 1.0866i
51.01 −0.9456þ 0.6317i 0.5309þ 0.1058i 0.6311þ 0.9460i
52.58 −1.0550þ 0.4035i 0.5170þ 0.0922i 0.8505þ 0.7433i
54.15 −1.1118þ 0.1541i 0.5033þ 0.0808i 1.0076þ 0.4945i

l ¼ 4

ω
[μeV] T r ¼ −R t

26.68 1.0795þ0.0172i −0.3017þ0.2730i −0.0905þ1.0758i
28.78 1.1089þ 0.0287i −0.2626þ 0.4018i 0.4714þ 1.0041i
30.87 1.1372þ 0.0498i −0.1757þ 0.5147i 0.9302þ 0.6562i
32.96 1.1596þ 0.0865i −0.0532þ 0.5910i 1.1564þ 0.1219i
35.05 1.1706þ 0.1450i 0.0841þ 0.6199i 1.0897 − 0.4515i
37.15 1.1651þ 0.2295i 0.2141þ 0.6036i 0.7601 − 0.9123i
39.24 1.1375þ 0.3407i 0.3215þ 0.5537i 0.2681 − 1.1568i
41.33 1.0817þ 0.4748i 0.4001þ 0.4851i −0.2602 − 1.1523i
43.43 0.9912þ 0.6239i 0.4508þ 0.4105i −0.7138 − 0.9286i

(Table continued)
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for i ¼ 1; 2. In this equation, j > 0 and n are integers,
and ϵ is a real number with dimensions of frequency.
For i ¼ 1, this function describes the following dynamical
process

bωlWin
r þWin

l ⟶
time

aωlWout
l ; ðD6Þ

where Win
r ;Win

l and Wout
l are wave packets with mean

frequency ω ¼ ðjþ 1=2Þϵ and bandwidth Δω ¼ ϵ. The
integer n controls the region in spacetime in which these
packets are supported. One can select ϵ to be small enough
for the coefficients aωl and bωl not to change significantly
with ω within the interval Δω. Similarly, the solution for
i ¼ 2 describes the scattering

cωlWin
r ⟶

time
dωlWout

l þWout
l : ðD7Þ

The linearity of the dynamics allows us to take linear
combinations of these two scattering processes to obtain
information about another scattering process of interest. In
particular, two appropriate linear combinations produce

Win
r ⟶

time dωl
cωl

Wout
l þ 1

cωl
Φout

r ; ðD8Þ

and

Win
l ⟶

time
�
aωl −

bωldωl
cωl

�
Wout

l þ bωl
cωl

Wout
r ; ðD9Þ

from which we can read the coefficients we are interested in

Rωl ¼ dωl
cωl

; Tωl ¼ 1

cωl
;

tωl ¼ aωl −
bωldωl
cωl

and rωl ¼ bωl
cωl

: ðD10Þ

This strategy allows us to determine the scattering coef-
ficients Tωl; Rωl; tωl and rωl for each mode ðω;lÞ, up to
the normalization constant Nωl. This constant can be
determined by demanding the scattering matrix SSR to
be symplectic. Notice that this is a nontrivial requirement,
since symplecticity of SSR imposes four constraints on
Tωl; Rωl; tωl and rωl [Eq. (A7), which correspond to four
real conditions]. We have checked that there is a unique
value of Nωl for which all four constraints are satisfied.
Therefore, besides obtaining this normalization constant,
our calculation actually provides a nontrivial test of
symplecticity. In Table I we collect the result of our
calculations, from which the plots shown in Sec. VI of
this article can be reproduced.
As a useful remark let us note that, in general, given any

solution Φðt; xÞ of our field equations, we can define an
associated “wave packet” W as above

W ¼ 1ffiffiffi
ϵ

p
Z ðjþ1Þϵ

jϵ
dωeiω

n
ϵΦðt; xÞ: ðD11Þ

In a stationary problem, where solutions are labeled by
frequency ω, we can build an orthonormal basis of
solutions with wave packets associated to the Fourier
modes. Each wave packet can be understood as encoding
one degree of freedom of the field and, as such, each has a
canonically conjugated momentum ΠW defined as

ΠW ¼ cWffiffiffi
ϵ

p
Z ðjþ1Þϵ

jϵ
dωeiω

n
ϵΠðt; xÞ ðD12Þ

where Π is the momentum canonically conjugate to Φ. If
the wave packet basis is orthonormal with respect to the
symplectic product (A4)—see also Eq. (3)—the constant
cW can be chosen so that the canonical commutation
relations between independent degrees of freedom are
satisfied for all the basis elements.

TABLE I. (Continued)

l ¼ 4

ω
[μeV] T r ¼ −R t

45.52 0.8609þ 0.7761i 0.4786þ 0.3385i −1.0186−0.5531i
47.61 0.6881þ 0.9169i 0.4891þ 0.2737i −1.1414 − 0.1067i
49.70 0.4741þ 1.0299i 0.4878þ 0.2179i −1.0835þ 0.3341i
51.80 0.2253þ 1.0991i 0.4789þ 0.1714i −0.8717þ 0.7063i
53.89 −0.0462þ 1.1100i 0.4653þ 0.1334i −0.5491þ 0.9658i
55.98 −0.3235þ 1.0525i 0.4493þ 0.1028i −0.1666þ 1.0884i
58.08 −0.5857þ 0.9219i 0.4322þ 0.0785i 0.2240þ 1.0690i
60.17 −0.8099þ 0.7210i 0.4150þ 0.0594i 0.5752þ 0.9192i
62.26 −0.9741þ 0.4602i 0.3983þ 0.0446i 0.8484þ 0.6640i
64.35 −1.0594þ 0.1578i 0.3823þ 0.0332i 1.0164þ 0.3379i
66.45 −1.0533 − 0.1615i 0.3672þ 0.0246i 1.0654 − 0.0195i
68.54 −0.9514 − 0.4689i 0.3532þ 0.0183i 0.9949 − 0.3678i
70.63 −0.7593 − 0.7344i 0.3401þ 0.0139i 0.8168 − 0.6699i
72.72 −0.4922 − 0.9303i 0.3279þ 0.0110i 0.5535 − 0.8952i
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J. L. Staehli,V. Savona, P. B. Littlewood,B.Deveaud, andL. S.
Dang, Bose–Einstein condensation of exciton polaritons,
Nature (London) 443, 409 (2006).

[27] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West,
Bose-Einstein condensation of microcavity polaritons in a
trap, Science 316, 1007 (2007).

[28] K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I.
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