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We explore quantum corrections of electrically charged black holes subject to vacuum polarization
effects of fermion fields in QED. Solving this problem exactly is challenging so we restrict to
perturbative corrections that one can obtain using the heat kernel expansion in the one-loop effective
action for electrons. Starting from the corrections originally computed by Drummond and Hathrell, we
solve the full semiclassical Einstein-Maxwell system of coupled equations to leading order in Planck’s
constant and find a new electrically charged, static black hole solution. To probe these quantum
corrections, we study electromagnetic and gravitational (axial) perturbations on this background and
derive the coupled system of Regge-Wheeler master equations that govern the propagation of these
waves. In the classical limit, our results agree with previous findings in the literature. We finally compare
these results with those that one can obtain by working out the Euler-Heisenberg effective action. We
find again a new electrically charged static black hole spacetime and derive the coupled system of
Regge-Wheeler equations governing the propagation of axial electromagnetic and gravitational
perturbations. Results are qualitatively similar in both cases. We briefly discuss some challenges found
in the numerical computation of the quasinormal mode frequency spectra when quantum corrections are
included.
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I. INTRODUCTION

General relativity is one of the pillars of modern physics,
yet it is not a complete description of the gravitational
interaction, as it fails to resolve black hole singularities or
to describe quantum aspects. To obtain a foundational
description of gravity, the Einstein field equations will
ultimately need modifications. The study of the semi-
classical Einstein equations, which incorporates the vac-
uum energies and stresses of quantum fields [1–3], can be
helpful as a first approach to explore these modifications.
From a theoretical standpoint, the coalescence of two

black holes (BHs) is not only a fascinating process in
classical general relativity [4], but can also be a rich
laboratory as to how quantum field theories work, which
displays their consistency issues in new and edifying
situations. In order to test new fundamental physics with
gravitational waves from coalescences of compact objects,
it is important to know what results to expect and how to
model them to the required precision. Ideally, one wants to
obtain the maximal amount of information from the data,

instead of looking for very specific predictions, in order not
to miss unexpected new physics. Effective field theories [5]
are at an advantage, because their range of validity is broad,
so they allow one to combine constraints coming from the
strong gravity regimewith bounds from, e.g., the weak field
regime, cosmology, astrophysics, laboratory tests, etc. One
drawback, however, is that this approach requires working
with a free set of parameters along calculations. In the
present work, given the complications of some of the
equations, we focus for simplicity on the predictions of
quantum electrodynamics (QED) in curved spacetimes, as
it is the oldest, simplest, and most successful quantum field
theory.
Once this framework is fixed, we can focus on comput-

ing the corrections to BH solutions and their dynamics. In a
BH merger, an especially interesting stage concerns the late
time dynamics, described by a “ringdown” phase, during
which the distorted remnant sheds its nontrivial multipolar
structure through gravitational waves (or other radiation)
and relaxes to the final stationary solution. During this
stage, the dynamics is well described by a set of quasi-
normal modes (QNMs) of the final stationary solution,
characterized by complex characteristic frequencies [6–9]
(but nonlinearities, initial transients, and backscattering
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may also play a role [10–13]). So far, gravitational-wave
observations involving BHs and their dynamics are well
described by classical general relativity with great accuracy
(i.e., by the Kerr solution) and any quantum correction is
a priori too suppressed to be observed with astrophysical
measurements. Nevertheless, it is important to understand
what our fundamental theories entail and how to build on
their ideas, even if, in practice, their predictions may be
elusive for current experiments. Similarly, great effort was
made in themid-20th century to understandQED to all orders
in perturbation theory, despite the fact that only the first few
orders could be corroborated in accelerators at that time.
Moreover, sometimes apparently slight perturbations of the
background can lead to drastic changes. Known examples
concern the superradiant instability of Kerr geometries
against massive fields [14], the spectral instability of BHs
under small changes of the effective potential governing
massless fluctuations [15–19], or the disappearance of theBH
horizon in nonperturbative calculations within semiclassical
gravity [20]. Therefore, the topic deserves further study.
In this work we attempt to explore the vacuum polari-

zation effects of fermion fields on BH solutions in general
relativity. The implications of vacuum polarization can be
studied from the one-loop effective action. Arguably,
the most renowned example is the Euler-Heisenberg
Lagrangian in QED. Roughly speaking, this is the result
of “integrating out” the dynamics of the electrons in the
QED action, producing as a consequence a new
Lagrangian that describes the effective dynamics of the
electromagnetic field Fab. This yields a nonlinear theory
whose leading-order corrections, for sufficiently weak
fields, are given by [3,21]

L eff ½A� ¼ −
1

4
FabFab −

ℏe4

45ð4πÞ2m4
e

×

�
5

4
ðFabFabÞ2 − 7

2
FabFcdFacFbd

�
; ð1Þ

whereme is the electron mass, e is the electron charge, and
A is the electromagnetic potential (defined by F ¼ dA).
The free Maxwell action, written in the first line above,
gets corrected by an extra, highly nonlinear contribution,
which captures the backreaction of quantum vacuum
fluctuations of the fermion field and which modifies
the classical dynamics of the electromagnetic field.
Effective actions allow one to explore a theory like QED

from a different perspective. In particular, one-loop effec-
tive actions are able to capture nonperturbative phenomena.
To give an example, the full Euler-Heisenberg effective
Lagrangian predicts the Schwinger effect in the strong field
limit (i.e., the excitation of electron-positron pairs out of the
quantum vacuum by a strong electric field), which is
otherwise not derivable from any order in perturbative
QED [21].

We wish to analyze the similar problem in general
relativity. In close analogy to QED, one first attempt is
to study the (backreaction) effects that the quantum vacuum
of a fermion field can produce on a spacetime metric.
Renormalizability arguments [1] yield an effective
Einstein-Hilbert action that, to leading order, reads

L eff ½g� ¼
R
16π

þ ℏðα1R2 þ α2RabRabÞ þOðℏ2Þ; ð2Þ

for some real numbers α1, α2. The usual Einstein-Hilbert
Lagrangian R

16π gets corrected by higher-order derivative
contributions, which account for the vacuum polarization
effects of the electrons. The presence of these terms,
regardless of how small the prefactors α1, α2 might be,
makes the new theory considerably different from the
original: additional families of solutions arise, some of
which are “runaways,” i.e., differ drastically from the
original theory.
Higher-order derivative contributions in the field equa-

tions typically arise as a result of truncating a perturbative
expansion of a nonlocal theory, which does not suffer from
these problems. If one expects that quantum corrections
will not dramatically change the behavior of the classical
system, then perturbative constraints must be applied on the
action to disregard solutions that do not exist in the limit of
a zero-expansion parameter, ℏ ∼ 0 [22,23]. This require-
ment is what ensures that the series expansion in the action
can be considered as a legitimate perturbative expansion of
some complicated, nonlocal functional of the metric, which
is expected from the UV completion of the theory. The
perturbative constraints consist of imposing the leading-
order equation of motion, which in this case isRab ¼ 0. This
has the effect that the new (constrained) field equations
ignore the ∝ R2; RabRab piece entirely in our problem1—
although this can dramatically change if matter fields are
included. Therefore, the above action (2) becomes trivial
with these constraints, i.e., to leading order the spacetime
metric does not “sense” the electrons’ vacuum fluctuations.
To get a nontrivial problem, it is necessary to consider a

case that, in the classical limit, does not satisfy the vacuum
Einstein equations. A natural possibility is to consider both
electromagnetic and gravitational backgrounds. In this
case, the effective action contains many more terms,
because it depends on two fields: Aa and gab, and mixed
combinations are allowed. An explicit expression of the
one-loop effective action was derived by Drummond and
Hathrell in Ref. [24], where the leading-order corrections
for weak fields, of order Oðℏ e2

m2
e
Þ, were obtained using

different methods. As we will see in more detail in the next

1Alternatively, the freedom to perform field reparametrizations
allows one to get rid of all these higher-order terms in (2) for
vacuum gravity, see, e.g., [5].
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sections, the presence of these corrections can produce
interesting results.
In this paper, we will look for static, spherically

symmetric exact solutions to the full Einstein-Maxwell
system of field equations at one-loop order in the quantum
corrections. We will derive first the new BH solution taking
into account the Drummond-Hathrell corrections only.
Then, we will do a similar analysis to obtain the BH
solution with Euler-Heisenberg corrections, which dominate
in the regime of high electric fields. The resulting expressions
can be understood as the extension of the Reissner-
NordströmBHs ofmassM and chargeQ to the semiclassical
regime, subject under the influence of the vacuum polariza-
tion of electrons. For Q ¼ 0 quantum corrections at first
order in Planck’s constant vanish and we recover the usual
Schwarzschild neutral spacetime, as expected from the
discussion above.
In order to probe the properties of these two BH

backgrounds, we will further analyze the propagation of
electromagnetic and gravitational linear perturbations
around and examine the way the underlying quantum
corrections can leave imprints on gravitational-/electro-
magnetic-wave observations. This is technically a rather
involved calculation because the field equations couple
both types of perturbations. As a first approach, we first
consider the Q ¼ 0 case for the Drummond-Hathrell BH.
In this case, not only do the electromagnetic and gravita-
tional perturbations decouple, but the resulting wave
equation for electromagnetic perturbations still receives
quantum corrections, so it is an interesting problem on its
own (for gravitational perturbations we just recover the
classical Regge-Wheeler/Zerilli equations for axial/polar
perturbations [8]). We derive the effective Regge-Wheeler/
Zerilli equations for the propagation of both axial and polar
electromagnetic perturbations. Then, we compute the new
QNM frequencies, and we find that quantum corrections
break the well-known classical isospectrality, i.e., the
vacuum polarization acts differently on axial and polar
waves. In this sense, we will point out and correct some
previous statements made in the literature.
Once this first approach is well understood, we move on

to address the full problem with the help of the package
XACT for Mathematica. We will provide the relevant
coupled differential equations governing the evolution of
gravitational/electromagnetic axial perturbations propagat-
ing on both Drummond-Hathrell and Euler-Heisenberg
charged BH backgrounds. We will end by discussing
several difficulties that we found when trying to compute
the QNM frequency spectra.
The outline of this article is as follows. In Sec. II, we set up

the necessary theoretical formalism underlying one-
loop effective actions. In Sec. III, we obtain a novel BH
solution of mass M and charge Q of the full semiclassical
Einstein-Maxwell system of equations, derived from the

Drummond-Hathrell corrections and to leading order in
Planck’s constant. To probe this solution, in Sec. IV, we
first focus on theQ ¼ 0 case and calculate thewave equation
for electromagnetic perturbations around this background
solution, as well as the first few characteristic QNM
frequencies. After this, in Sec. V, we address the full problem
of studying electromagnetic and gravitational linear pertur-
bations on this new electrically charged BH background.We
restrict only to axial perturbations, for simplicity. Then, in
Sec. VI, we obtain again a novel BH solution of the
semiclassical Einstein-Maxwell equations, but now restrict-
ing to the Euler-Heisenberg corrections of the one-loop
effective action. We study axial, coupled gravitational, and
electromagnetic perturbations on this new background sol-
ution in Sec. VI, and we finalize the article by discussing
some final remarks in Sec. VIII.
Throughout this article, we work with the system of units

G ¼ c ¼ 1. To emphasize quantum effects, we will keep
Planck’s constant ℏ ≠ 1 explicit. Our metric signature will
be ð−;þ;þ;þÞ, ∇a will represent the Levi-Civita con-
nection of the metric gab. The other sign conventions
conform with Ref. [25]. We use the Mathematica package
XACT [26], specifically the XTENSOR package [27] and the
associated XTRAS additions [28].

II. THE EFFECTIVE ACTION

Let us consider a Dirac field Ψ, physically representing
electrons and positrons of mass me, interacting with
electromagnetic Fab and gravitational gab fields. This
theory is described by the action

S½Ψ; g; A�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−
1

4
FabFab þ Ψ̄ðiℏγaDa −meIÞΨ

�
;

ð3Þ

where γa are the usual Dirac matrices satisfying the Clifford
algebra fγa; γbg ¼ 2gab, and R is the Ricci scalar curvature.
The Dirac field Ψ couples to both backgrounds through the
covariant derivative Da ¼ ∇a þ i eℏAa, where e is the
electron charge, Aa is the electromagnetic potential defined
by F ¼ dA, and ∇a is the Levi-Civita connection of the
metric gab.
Classical electromagnetic and gravitational fields can

excite or modify quantum vacuum fluctuations of the
fermion field Ψ, and the latter can backreact on the fields
Aa, gab and lead to some quantum corrections. These
quantum modifications can be studied by constructing an
effective action Γ½hΨi; g; A� that only depends on the
variables Aa, gab (as well as a choice of fermionic vacuum
state hΨi), such that extremizing it with respect to them
yields the semiclassical field equations,
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Gab ¼ 8πðTM
ab þ hTabiÞ; ∇aFab ¼ hJbi: ð4Þ

In these equations hTabi, hJbi are the vacuum expectation
values of the stress-energy tensor and electric current
produced by the fermion field Ψ, and TM

ab represents the
usual source-free Maxwell stress-energy tensor,

TM
ab ¼ FcaFc

b −
1

4
gabFcdFcd: ð5Þ

Details on the derivation of this effective action can be
consulted in standard textbooks (see, e.g., Chap. 6 in [3]).
A standard strategy consists of obtaining a (formal)
Feynman path integral representation for the effective
action, where the fermionic degrees of freedom are
integrated out from the classical action (3). However, in
general, the resulting expression only produces an implicit
equation for Γ½hΨi; g; A�, which appears on both sides of
the equality. The usual method of computation is to resort
then to a perturbative expansion of Γ½hΨi; g; A� in powers
of the Planck constant ℏ and to solve this path integral
representation iteratively. This perturbative expansion is
called the loop expansion because each term in the
expansion admits an interpretation in terms of Feynman
diagrams.
At one-loop order, the effective action formally reads

Γð1Þ½hΨi; g;A�

¼ S½g;A�− ℏ
2

Z
d4x

ffiffiffiffiffiffi
−g

p Z
∞

0

ds
s
TrKðs;x; xÞe−s

m2
e

ℏ2 ; ð6Þ

where

S½g; A� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−
1

4
FabFab

�
ð7Þ

is the free action for gravity and electrodynamics, and
Kðs; x; x0Þ is the heat kernel of the Dirac field. The heat
kernel is a bidistributional solution of ∂sKðs; x; x0Þ ¼
−ΔxKðs; x; x0Þ with initial data Kð0; x; x0Þ ¼ δð4Þðx − x0ÞI,
whereΔx ¼ ð−iγaDaÞðiγbDbÞ is a second-order differential
operator. The specification of a vacuum state for the Dirac
field provides the necessaryboundary conditions to solve this
equation.
In general, the heat kernel equation cannot be solved in

full closed form. However, it is still possible to extract
partial information from Kðs; x; xÞ, independent of the
choice of boundary conditions, which can be used to
obtain a first approximate expression for (6). The expo-
nential suppression in Eq. (6) reveals that the dominant
contribution to the integral comes from the s≲ λ2e regime,
where λe ¼ ℏ

me
is the Compton wavelength of the electron.

This is known as the ultraviolet (UV) regime of the Dirac

theory. Interestingly, in the UV limit s → 0, the heat kernel
admits an asymptotic expansion of the form2

Kðs; x; xÞ ∼
s→0

ð4πsÞ−2
X∞
k¼0

skE2kðxÞ; ð8Þ

whereEkðxÞ are called the heat kernel coefficients [29]. Each
EkðxÞ in the perturbation series is a linear combination of
spinor-valued matrices that are constructed out of contrac-
tions of the Riemann tensor Rabcd and the electromagnetic
field strength Fab. Furthermore, they are independent of the
choice of vacuum state or boundary conditions for the heat
kernel equation. For instance, for a differential operator of the
form Δx ¼ −Igab∇a∇b −QðxÞ, the first few orders are
[3,29]

E0 ¼ I; ð9Þ

E2 ¼
R
6
þQ; ð10Þ

E4 ¼
�
1

30
□Rþ 1

72
R2 −

1

180
RabRab þ

1

180
RabcdRabcd

�
I

þ 1

12
WabWab þ

1

2
Q2 þ 1

6
RQþ 1

6
□Q;

… ð11Þ

whereWab ¼ ½∇a;∇b�. In our case, it is not difficult to show
that Q¼R

4
Iþi e

2ℏFabγ
aγb and Wab ¼ 1

4
Rabcdγ

cγd þ i eℏFabI.
As a general rule, the kth order in the series expansion (8)

counts the number of derivatives of the spacetime metric
and electromagnetic potential, counting the latter as one
derivative (gab is said to be of zero adiabatic order, while
the connections Aa and ∇a are regarded of first adiabatic
order). For instance, E0 has zero derivatives and is said to
be of zero adiabatic order, E2 has two derivatives and is of
second adiabatic order, etc. In this sense, higher-order heat
kernel coefficients in the asymptotic expansion measure
higher deviations from a “flat” background, where
Rabcd ¼ 0 and Fab ¼ 0.
The first three (even) orders in this asymptotic expansion

(8) lead to formally UV divergent integrals in (6), and the
one-loop effective action needs to be renormalized order by
order to get a finite expression. This is achieved by
reabsorbing the UV divergences in coupling constants of
the classical action (7) and adding suitable counterterms.
The result of this process yields a correction to the classical
action of the form

2For manifolds without boundaries, all odd orders vanish,
E2kþ1ðxÞ ¼ 0 [29].
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Γð1Þ½hΨi; g; A� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

Λ
8π

þ R
16π

þ ℏðα1R2 þ α2RabRabÞ − 1

4
FabFab

þ k1

�
aRFabFab þ bRabFacFb

c þ cRabcdFabFcd þ d∇aFab∇cFcb þ ℏ2

e2
fðR3Þ

�

þ k2½AðFabFabÞ2 þ BFabFcdFacFbd þ…� þ…;

�
; ð12Þ

where a ¼ 5, b ¼ −26, c ¼ 2, d ¼ 24, A ¼ −5, B ¼ 14,

k1 ¼
1

2880π2
ℏe2

m2
e
; k2 ¼

ℏe4

2880π2m4
e
; ð13Þ

and dots denote corrections with higher-order powers of the
Riemann Ra

bcd and field strength Fab. The function fðR3Þ
involves three powers of the Riemann tensor and will not be
relevant. In expression (12), the coupling constant Λ arises
from absorbing the UV divergence of the zero-order term
E0ðxÞ by adding a suitable counterterm in the classical
action (7). This term physically represents a cosmological
constant. On the other hand, the UV divergence associated
with the second-order term E2ðxÞ can be reabsorbed in
Newton’s gravitational constant. This yields some renor-
malized, observable value of G, which we have set to 1
according to our unit conventions. Finally, the UV diver-
gences associated with the fourth-order term E4ðxÞ can be
reabsorbed in the fields Aa and Fab, as well as in some
adimensional coupling constants α1, α2 by adding suitable
counterterms in the original action. Their value have to be
fixed with experimental measurements.
Higher-order terms in the heat kernel expansion [E2kðxÞ

for k ≥ 3] lead to finite corrections to the original action in
(6). For example, the second line in Eq. (12) displays the
leading-order quantum corrections corresponding to
k ¼ 3 in the heat kernel expansion, which were first
computed by Drummond-Hathrell in [24]. One can verify
that each of these terms is of sixth adiabatic order. On the
other hand, the Euler-Heisenberg perturbative corrections
in (1) are of eighth adiabatic order and are expected to
arise from the E8ðxÞ order in the heat kernel expansion.
We have included them in the third line of (12) for
completeness. For an explicit derivation of this coeffi-
cient, see, e.g., Refs. [30,31].
Notice that (12) is independent of the vacuum state hΨi;

this information is missed in the asymptotic expansion of
the heat kernel (8), which is entirely constructed from the
background fields Rabcd and Fab.
In this article, we will explore new BH solutions of this

effective action and derive the master equations governing
the propagation of linear gravitational and electromagnetic
perturbations around them. The effective semiclassical
Einstein and Maxwell equations are obtained by taking
the field variations

δΓð1Þ½hΨi; g; A�
δgab

¼ 0;
δΓð1Þ½hΨi; g; A�

δAa ¼ 0; ð14Þ

respectively, which yield

Gab ¼ 8πðTM
ab þ hTð1Þ

ab iÞ; ∇aFa
b ¼ hJð1Þb i; ð15Þ

for some approximated expressions of hTð1Þ
ab i and hJð1Þb i

obtained from the quantum corrections appearing in (12).
Our goal is to find static, spherically symmetric solutions

of this system of equations with Arnowitt-Deser-Misner
(ADM) mass M and electric charge Q. Taking the full
expression in (12) can lead, however, to intractable equa-
tions, so we will assume some simplifications. First of all,
the observed value of the cosmological constant Λ is very
small and it is only important at cosmological scales. Since
we are interested in astrophysical local phenomena, we
shall neglect it. Second, the coupling constants α1, α2 are
severely constrained by observations, so in this work we
shall set them to zero. On the other hand, the term going
with the prefactor d will be of higher order in ℏ upon
substituting back the result of solving the leading-order
field equations, so it will not play a relevant role in what
follows. Similarly, the term fðR3Þ is a purely gravitational
correction (not included in Drummond-Hathrell original
paper) which is highly suppressed by Planck’s constant and
can be neglected in front of the rest of corrections. In
conclusion, we can focus either on the a, b, c corrections or
on the A, B corrections in (12).
To further simplify the problem, we will consider the

Drummond-Hathrell corrections [a, b, c terms in (12)]
separate from the Euler-Heisenberg A, B terms. The latter
dominate for higher electric fields, while the former are
more important for BHs with low electric charge Q, like
more realistic compact objects in astrophysics.

III. A CHARGED BLACK HOLE WITH
DRUMMOND-HATHRELL CORRECTIONS

In this section, we solve the full semiclassical Einstein-
Maxwell system of equations (15) with sources hTabi, hJai
determined by the Drummond-Hathrell corrections in the
effective action (12). We will focus on static and spherically
symmetric solutions, which are analogous to the classical
Reissner-Nordström charged BH in general relativity.
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Then, we will study electromagnetic and gravitational
linear perturbations on this background. As mentioned
above, the term multiplied by the coefficient d in (12) is of
order OðℏÞ upon substituting back the result of solving the
leading-order field equations, so we can safely ignore it.
Therefore, we focus on the a, b, c corrections of (12).
Explicit expressions for hTabi, hJai originated by these

corrections can be obtained straightforwardly by comput-
ing the functional derivatives (14) and using XACT.
However, the results are cumbersome and not that illumi-
nating, so we will omit them.
Once we have explicit results for (15), we look for static

and spherically symmetric solutions. The metric Ansatz for
such a geometry is

ds2 ¼ NðrÞσðrÞdt2 þ dr2

NðrÞ þ r2dθ2 þ r2 sin2 θdϕ2; ð16Þ

while the Ansatz for a vector potential with similar proper-
ties reads

Aa ¼ ðA0ðrÞ; 0; 0; 0Þ: ð17Þ

Plugging these Ansätze on the semiclassical field equa-
tions (15) yields four independent coupled differential
equations. The Maxwell sector gives one nontrivial equa-
tion (the t component), while the gravitational sector
produces only three nontrivial and independent equations
(the tt, rr, and θθ components). Again, these equations are
still too tedious to show. To solve this system of coupled
equations, we write

NðrÞ ¼
�
1 −

2M
r

þQ2

r2

�
ð1þ k1δNðrÞÞ;

σðrÞ ¼ −1þ k1δσðrÞ;

A0ðrÞ ¼
Qffiffiffiffiffiffi
4π

p
r
þ k1δAðrÞ; ð18Þ

for some unknown functions δNðrÞ, δσðrÞ, δAðrÞ, where k1
is given in (13). We have then three unknowns for four
differential equations. If we substitute the above in the tt
and rr components of the semiclassical Einstein equa-
tions (15) and expand the result up to order Oðk21Þ, we
obtain

Qð−4 ffiffiffi
π

p
r6δA0 þ 40Qrð9r − 20MÞ þ 304Q3 þQr4δσÞ þ r5ðrðr − 2MÞ þQ2ÞδN0 þ r4δNðr2 −Q2Þ ¼ 0; ð19Þ

r4ðrð−4 ffiffiffi
π

p
QrδA0 þ ðr2 − 2MrþQ2ÞðδN0 − δσ0ÞÞ þ δNðr2 −Q2Þ þQ2δσÞ þ 8Q2ðrðr − 12MÞ − 6Q2Þ ¼ 0; ð20Þ

while the only nonzero equation of the Maxwell sector, up to order Oðk21Þ, gives

4
ffiffiffi
π

p
rðrδA00 þ 2δA0Þ −Qδσ0 −

64

r5
ð3MQrþ 7Q3Þ ¼ 0: ð21Þ

If we demand that the metric approaches Minkowski spacetime at spatial infinity [i.e., δNðrÞ, δσðrÞ, δAðrÞ → 0 as r → ∞],
and we fix the mass and charge of the resulting solution to beM andQ, respectively [by suitably identifying the r−1 and r−2

prefactors in the asymptotic expansion of the lapse function NðrÞσðrÞ], the above system of equations produces

δNðrÞ ¼ 5Q2rð−184M þ 120rÞ þ 416Q4

5r4ðrðr − 2MÞ þQ2Þ ;

δσðrÞ ¼ 88Q2

r4
;

δAðrÞ ¼ 2ð3Q3 þ 10MQrÞ
5

ffiffiffi
π

p
r5

: ð22Þ

As a sanity check, we also verify that this solution satisfies the fourth independent equation (the remaining θθ component of
the semiclassical Einstein equations).
Overall, the semiclassical metric and electromagnetic potential solutions are

ds2 ¼ −
�
1 −

2M
r

þQ2

r2
þ k1

8ð−3Q4 − 5MQ2rþ 20Q2r2Þ
5r6

�
dt2 þ dr2

½1 − 2M
r þ Q2

r2 þ k1
416Q4−920MQ2rþ600Q2r2

5r6 �
þ r2ðdθ2 þ sin2θdϕ2Þ; ð23Þ
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AðrÞ ¼ Qffiffiffiffiffiffi
4π

p
r

�
1þ k2

4ð3Q2 þ 10MrÞ
5r4

�
dt: ð24Þ

Despite the presence of apparently different corrections in
the tt and rr components of the spacetime metric, the
(highest) roots of gttðrHÞ ¼ 0 and g−1rr ðrHÞ ¼ 0 agree to
give, to leading order in the coupling constant k1,

rH ¼ rþ þ k1
4r−ð11r− − 35rþÞ
5r2þðrþ − r−Þ

þOðk21Þ; ð25Þ

where r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
are the horizons of the

classical Reissner-Nordström BH. Therefore, this new
spacetime background still contains a BH horizon, located
at r ¼ rH.
Notice that for Q ¼ 0 we recover the classical

Schwarzschild geometry. In this case, we also have
Fab ¼ 0, so indeed no quantum corrections are expected
in the metric to first order in ℏ, as argued in the Introduction.

IV. PERTURBATIONS ON A NEUTRAL BLACK
HOLE WITH DRUMMOND-HATHRELL

CORRECTIONS

Our goal now is to derive the observable implications of
these QED corrections, in such a way that they can be
verified with future generation gravitational-wave detec-
tors. To achieve this, we need to study electromagnetic and
gravitational linear perturbations on the new background
solution, Eqs. (23) and (24). This problem is, however,
rather complicated to address at first, because the resulting
system of differential equations, derived from (15), couples
both types of perturbations. As a first approach, in this
section we will only study the propagation of linear waves
on our new background but for Q ¼ 0. In this case, the

electromagnetic potential (24) vanishes entirely, and the
spacetime metric (23) reduces to the ordinary, neutral
Schwarzschild geometry,

ds2 ¼ −Ndt2 þ dr2

N
þ r2dθ2 þ r2 sin2 θdϕ2; ð26Þ

where N ¼ 1 − 2M
r , with M the BH mass. This is an

interesting problem in its own. Incidentally, we will correct
some previous statements appearing in the literature. In the
next section, we will address the full problem, with Q ≠ 0.
ForQ ¼ 0 the semiclassical field equations (15) not only

decouple, but the semiclassical Einstein equations become
the ordinary classical ones. Therefore, the propagation of
gravitational linear perturbations becomes trivial, i.e., one
gets the well-known Regge-Wheeler and Zerilli equations
for axial and polar perturbations, respectively.3 The prob-
lem reduces then to solving the one-loop corrected
Maxwell’s equations on a Schwarzschild background
metric. A straightforward calculation yields

Ma ≔ ∇bFð1Þab − 8k1Rab
cd∇bFð1Þcd ¼ 0; ð27Þ

for an electromagnetic perturbation Fð1Þ
ab around a neutral

background Fð0Þ
ab ¼ 0.4 In order to keep the notation

consistent with the original paper by Drummond and
Hathrell [24], in this section we will work with the coupling
constant ξ2 ≔ −8k1 for convenience.
Since the background metric is stationary and spherically

symmetric, we expand the vector potential Að1Þ
a of the

electromagnetic perturbation in Fourier modes of frequency
ω, as well as in vector spherical harmonics, labeled by an
angular momentum l and azimuthal number m [32],

Að1Þ
a ðt; r; θ;ϕÞ ¼ e−iωt

X∞
l¼1

Xl
m¼−l

0
BBB@

2
6664

0

0

alm
sin θ ∂ϕYlm

−alm sin θ∂θYlm

3
7775þ

2
6664

flmYlm

hlmYlm

klm∂θYlm

klm∂ϕYlm

3
7775

1
CCCA; ð28Þ

where alm ¼ almðrÞ is a radial function. The first column
vector represents the axial modes of parity ð−1Þlþ1 and the
second column represents the polar modes of parity ð−1Þl.
Because the semiclassical Maxwell equations (27) are still
linear, axial and polar modes are expected to decouple from
each other and can be analyzed independently. We will
work them out separately in the following two subsections.

A. The axial sector

We solve Eq. (27) for the axial modes using the
substitution (28). The variable alm is gauge invariant,

since a gauge transformation Að1Þ
a → Að1Þ

a þ∇aΛ only

affects the polar component of Að1Þ
a (in fact, the axial

vector satisfies the Coulomb and Lorenz gauges

3The rhs of the first equation in (15) is quadratic in F for the
Drummond-Hathrell corrections, so linear perturbations around a
background with F ¼ 0 do not produce any deviation.

4The rhs of the second equation in (15) is linear in F for the
Drummond-Hathrell corrections, so linear perturbations around a
background with F ¼ 0 do produce deviations, as manifested in
Eq. (27).
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identically). Doing this we obtain a second-order ordinary differential equation (ODE) that solves the full Maxwell
equations5

−N
lð1þ lÞ

r2
alm

�
4M

ξ2

r3
þ 1

�
þ NN0

�
1 − 8M

ξ2

r3
þ 3

ξ2

r2

�
dalm

dr
þ
�
1 − 2M

ξ2

r3

��
N2

d2alm

dr2
þ ω2alm

�
¼ 0: ð29Þ

We will rewrite this equation of motion for alm in an
explicit wavelike form. For this purpose, we further
decompose almðrÞ ¼ XAðrÞZAðrÞ, for two arbitrary func-
tions XAðrÞ and ZAðrÞ. We fix the function XA by requiring
that the quotient between the coefficients of Z0

A and Z00
A

satisfy 1
N
dN
dr, so that ZAðrÞ satisfies the usual ODE,

N2
d2ZA

dr2
þ NN0 dZA

dr
þ ðω2 − VAðrÞÞZA ¼ 0; ð30Þ

for some potential function VAðrÞ. Then, if we define the
tortoise coordinate r� by the relation dr�=dr ¼ 1=N,

Eq. (30) can be expressed as a Regge-Wheeler
equation,

d2ZA

dr2�
þ ðω2 − VAÞZA ¼ 0: ð31Þ

Doing all the above we find,

XAðrÞ ¼
r3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2ξ2M þ r3
p ; ð32Þ

and

VA ¼ N
ϒ

�
L
r2

þ 2
ξ2M
r6

ð15M þ rðL − 6ÞÞ − ξ4M2

r9
ð42M þ rð8L − 15ÞÞ

�
;

¼ N
L
r2

þ N
6ξ2Mð5M þ ðL − 2ÞrÞ

r6
þOðξ4Þ; ð33Þ

where we defined L ¼ lðlþ 1Þ and ϒ ¼ ð1 − 2Mξ2

r3 Þ2. In
summary, we can cast the semiclassical Maxwell equation
for axial waves as an ordinary Regge-Wheeler equation for
ZAðrÞ, where all quantum corrections are encoded in the
effective potential (33).

B. The polar sector

A similar analysis can be done for the polar sector,
although the calculation is more involved in this case.
Maxwell equations (27) for the polar sector of (28) yield
three independent equations that couple the three functions
flm, hlm, klm. On top of that, these functions are gauge
dependent. To work with physically relevant, gauge-inde-
pendent variables we have to take suitable linear combi-
nations of these three functions. These can be inferred from
the different components of the field strength Fab ¼∇aAb −∇bAa. For instance, the tr component motivates
us to define

ψlmðrÞ ¼
�
−iωhlm −

∂flm

∂r

�
r2: ð34Þ

It is easy to check that this combination remains invariant
under a gauge transformation Aa → Aa þ∇aΛ, for any Λ.
The other two gauge-invariant combinations that one can
build from the functions flm, hlm, klm can be deduced from

the tθ and rθ components of Fab: ψ
ð1Þ
lm ¼ flm þ iωklm,

ψ ð2Þ
lm ¼ hlm − ∂rklm. The change fflm; hlm; klmg → fψlm;

ψ ð1Þ
lm;ψ

ð2Þ
lmg drastically simplifies the set of Maxwell equa-

tions (27).Namely, the t component allows us to solveψ ð1Þ
lm in

terms of ψlm and its derivative,

ψ ð1Þ
lm ¼ ð2M − rÞð−12Mξ2ψlm þ rð4Mξ2 þ r3Þ∂rψlmÞ

ðr3 − 2Mξ2Þr2lðlþ 1Þ ;

ð35Þ

while the r component solves ψ ð2Þ
lm in terms of ψlm alone,

ψ ð2Þ
lm ¼ rð4Mξ2 þ r3Þð−iωψlmÞ

ðr3 − 2Mξ2Þð2M − rÞlðlþ 1Þ : ð36Þ

The θ (or ϕ) component of the semiclassical Maxwell
equations (27) becomes trivial using these results. The polar

5More precisely, Eq. (27) with the Ansatz (28) restricted to the
axial modes gives only two nontrivial equations for alm, namely,
the θ, ϕ components. Both are equivalent, as expected from
spherical symmetry. Equation (29) is obtained from either one of
them.
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sector is then reduced to solving for one single gauge-
independent variable ψlmðrÞ.
To find the differential equation governing the radial

profile of ψlmðrÞ, we need to manipulate the three indepen-
dent Maxwell equations so as to get one differential equation

that only involves the hlm and flm functions. One can check
that the combination of Maxwell equations ∂rðr2 Nffiffiffi

ϒ
p MtÞþ

∂tð r2

N
ffiffiffi
ϒ

p MrÞ ¼ 0, where Ma was defined in (27), accom-

plishes this. Moreover, it only involves the combination (34),

rN½96M3ξ4 þ 4ð12þ LÞMξ2r4 − Lr7 − 4M2ξ2rð30r2 þ ð6þ LÞξ2Þ�ψlm

þ 2Mr2Nð−32M2ξ4 þ 12Mξ4rþ 32Mξ2r3 − 15ξ2r4 þ r6Þ dψlm

dr

− r4N2ð2Mξ2 − r3Þð4Mξ2 þ r3Þ d
2ψlm

dr2
− ω2r4ð2Mξ2 − r3Þð4Mξ2 þ r3Þψlm ¼ 0: ð37Þ

This is a second-order ODE for ψlmðrÞ. Now, as in the axial case, we decompose ψlmðrÞ ¼ XPðrÞZPðrÞ and demand that ZP

obeys the Regge-Wheeler-like equation (30),

N2
d2ZP

dr2
þ NN0 dZP

dr
þ ðω2 − VPðrÞÞZP ¼ 0: ð38Þ

As a result, we find

XPðrÞ ¼
r3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Mξ2 þ r3

p
4Mξ2 þ r3

; ð39Þ

and the potential

VP ¼ N
ϒϒ2

�
L
r2

−
6ξ2Mð5M þ rðL − 2ÞÞ

r6
þ 3ξ4M2ðrð17þ 4LÞ − 38MÞ

r9
þ 4ξ6M3ð6M þ rð3 − 2LÞÞ

r12

�

¼ N
L
r2

− N
6Mξ2½5M þ ðL − 2Þr�

r6
þOðξ4Þ; ð40Þ

withϒ2 ¼ 1þ 4ξ2M=r3. Again, all quantum corrections are
encoded in the effective potential.
Notice that, already at leading order, the two potentials

(33) and (40) differ (the coefficient of ξ2 has different sign
in both potentials). Therefore, the axial and polar sectors
are not isospectral andwe donot have superpartner potentials
(as can be easily verified). We calculate the QNM frequency
spectra in the following subsection and verify that isospec-
trality is indeed broken by vacuum fluctuations. In essence,
this is because the quantum correction in (15) can be
interpreted as an effective current hJai that breaks the
classical electric-magnetic duality symmetry of the vacuum
Maxwell equations. If we regard the axial modes as the
electric component of the electromagnetic perturbation (odd
under parity transformations) and the polar component as the
magnetic component (even under parity transformations),
the lack of isospectrality we find is a direct consequence of
explicitly breaking this symmetry.
Incidentally, Eq. (27) agrees with the field equation that

one obtains in a generalized electromagnetic theory [33],

where a coupling between the field Fab and the Weyl tensor
is studied. Our results for the axial and polar potentials
match those obtained in Ref. [33] with the identification
ξ2 ¼ 4α, where α is the relevant coupling constant in
Ref. [33]. Despite this agreement, the authors of Ref. [33]
claim to have obtained superpartner potentials, but their
own results, which also indicate a different spectrum for
axial and polar perturbations, disprove these claims.

C. Quasinormal mode spectrum

A BH can be perturbed in various ways, and small
perturbations typically satisfy a wave equation like in (31)
or (38). The QNMs of a BH are the proper solutions of
these perturbation equations. In other words, they are
solutions that satisfy boundary conditions appropriate for
a dissipative system: purely ingoing waves at the BH
horizon and purely outgoing waves at spatial infinity. These
solutions only exist for certain characteristic complex-
valued frequencies ω, called quasinormal frequencies,
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whose real and imaginary parts represent the oscillatory
frequency and decaying timescale of the propagating linear
(scattered) field [6–9]. These characteristic oscillations
always appear and dominate the signal at intermediate
times in any event involving BHs. For example, they can
appear at the linearized level, where fields are treated as a
perturbation in a single BH spacetime (as in the present
article), but also in full numerical simulations of BH-BH
collisions or stellar collapse, making them a central feature
for tests involving gravitational waves.
We wish to obtain now the characteristic frequencies of

QNMs associated with the axial and polar wave equations
described by the effective potentials (33) and (40). Despite
the fact that QNMs are triggered by external perturbations,
their frequencies constitute an intrinsic property of the
background and therefore encode crucial geometric infor-
mation about BHs. Moreover, QNM overtones have been
proposed as a possible probe into the quantum aspects of
spacetime (see [18] and references therein).
The method we implement here makes use of a geo-

metric frame based on conformal compactifications,
together with hyperboloidal foliations of spacetime.
Methodologically, a compactified hyperboloidal approach
to QNMs is adopted to cast QNMs in terms of the spectral
problem of a non-self-adjoint operator. Crucially, such a
spectral problem can be cast as a proper “eigenvalue
problem” for this non-self-adjoint operator. Therefore,
following [34,35], we construct numerically the pseudo-
spectrum notion via Chebyshev spectral methods.6 Since
the actual value of ξ2 is way below the machine precision,
our strategy will be to do the calculation for several
artificially big values of ξ2 and then to extract the actual
numerical value using a linear extrapolation.
Specific results are listed in the Tables I and II.7 We have

also checked these results with the more familiar direct
integration method [8] (see the Appendix for a review).
Using these results, one can now show that the difference
between the classical and semiclassical predictions scales
linearly with ξ2 ∼ ℏe2=m2

e. This is clearly shown in Figs. 1
and 2. If for each multipole l we define

δl ≡ ðReðω − ω0Þ; Imðω − ω0ÞÞ; ð41Þ

where ω0 is the classical QNM value (i.e., the ξ ¼ 0 value),
then one can find

δaxial1 ¼ −ð0.0317; 0.0017Þ ℏe2

360π2m2
eM3

; ð42Þ

δaxial2 ¼ −ð0.0526; 0.0008Þ ℏe2

360π2m2
eM3

; ð43Þ

δpolar1 ¼ ð0.0315; 0.0020Þ ℏe2

360π2m2
eM3

; ð44Þ

δpolar2 ¼ ð0.0524; 0.0012Þ ℏe2

360π2m2
eM3

: ð45Þ

Notice the opposite sign in the correction of axial and polar
modes, showing immediately the breaking of isospectrality.

TABLE I. Fundamental mode of axial electromagnetic QNMs
[see Eq. (31)] for different values of the coupling constant ξ and
angular dependence l. Columns show the real and imaginary
parts (normalized by BH mass M) of the mode.

l ξ=M MReðω0lÞ MImðω0lÞ
1 0.00 0.24826 −0.092486
1 0.07 0.24842 −0.092477
1 0.09 0.24852 −0.092473
1 0.10 0.24858 −0.092468
1 0.15 0.24898 −0.092447
1 0.20 0.24953 −0.092425

2 0.00 0.45760 −0.095004
2 0.07 0.45785 −0.095000
2 0.09 0.45802 −0.094997
2 0.10 0.45812 −0.094996
2 0.15 0.45878 −0.094986
2 0.20 0.45970 −0.094976

TABLE II. Fundamental mode of polar electromagnetic QNMs
[see Eq. (38)] for different values of the coupling constant ξ and
angular dependence l. Columns show the real and imaginary
parts (normalized by BH mass M) of the mode.

l ξ=M MReðω0lÞ MImðω0lÞ
1 0.00 0.24826 −0.09249
1 0.07 0.24810 −0.09250
1 0.09 0.24801 −0.092505
1 0.10 0.24794 −0.09251
1 0.15 0.24755 −0.09253
1 0.20 0.24700 −0.09257

2 0.00 0.45760 −0.095004
2 0.07 0.45734 −0.095009
2 0.09 0.45717 −0.095012
2 0.10 0.45707 −0.095014
2 0.15 0.45642 −0.095028
2 0.20 0.45550 −0.095051

6This is also relevant for addressing the potential spectral
instability of a class of non-self-adjoint operators, which are
associated with a nonconservative system like in a BH, where
field perturbations leak away from the system at far distances and
through the BH horizon.

7The lower bound ξ ¼ 0.07M is the minimum value of ξ that
accomplishes to see the impact of quantum corrections within
5–6 digits of reliable precision. For smaller values of ξ, one would
need more digits of precision to find significant deviations from
the classical values ω0. On the other hand, the upper bound
ξ ¼ 0.2M represents the value of ξ beyond which the linear
truncation starts to fail.
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These results can be checked against model-independent
expansions of the relevant effective potentials [36,37].
More precisely, for l ¼ 1 the effective potentials (33)–
(40) yield

VA;P=N ¼ lðlþ 1Þ
r2

� 30ξ2M2

r6
; ð46Þ

which in the terminology of Refs. [36,37] amounts to
having δV ¼ 1=r2HðrH=rÞ6β16, with β16 ¼ �15ξ2=ð8M2Þ.
From tabulated values in those papers, one can find that
Mδω ¼ �ð0.0317; 0.00184Þξ2=M2, in very good agree-
ment with the above results. On the other hand, for l ¼ 2,
Eqs. (33)–(40) produce

VA;P=N ¼ lðlþ 1Þ
r2

�
�
30ξ2M2

r6
þ 24Mξ2

r5

�
: ð47Þ

From Eqs. (7) and (8) in [36] we infer δV ¼
1=r2HðrH=rÞ5β15 þ 1=r2HðrH=rÞ6β16, with β15 ¼ �24ξ2=
ð8M2Þ and β16 ¼ �15ξ2=ð8M2Þ. Then, Eq. (11) in [36]
using tabulated values leads to Mδω ¼ �ð0.0525;

0.0009Þξ2=M2, which is again in good agreement with
our results above.

D. The static limit

In the classical theory, the only static solution of
Maxwell equations in a Schwarzschild BH spacetime,
which is additionally spherically symmetric and vanishes
at spatial infinity, is the field of a point electric charge (i.e.,
the monopole l ¼ 0 solution). This is precisely the
electromagnetic potential of the Reissner-Nordström BH
solution. Therefore, if we add this static electromagnetic
field as a small perturbation on the Schwarzschild BH
background, one can roughly say that the spacetime
becomes a Reissner-Nordström BH after “eating” this
electric charge.
Similarly, the static electrically charged BH solution of

the full semiclassical field equations (15) that we obtained
in Sec. III, Eqs. (23) and (24), should be compatible with a
Schwarzschild BH that “eats” a static solution of the
semiclassical Maxwell equations (27). In other words,
the static solutions (ω ¼ 0) of (30) and (38) should be
compatible, or partially recover, the electromagnetic poten-
tial obtained in (22).

FIG. 1. Linear dependence of the fundamental QNM frequency ω0l with Planck’s constant ξ2=M2 for l ¼ 1 (upper) and l ¼ 2
(lower) in case of axial electromagnetic perturbations. Red crosses denote the numerically calculated quasinormal frequencies, while the
blue dashed line represents a linear fit.
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Let us make this idea more precise. In the static limit
(ω ¼ 0), the master equations (30) and (38) reduce to

ðNΨ0
lÞ0 −

Vl

N
Ψl ¼ 0; ð48Þ

where a prime stands for radial derivative. At infinity Vl ∼
lðlþ 1Þ=r2 while N ∼ 1, thus solutions behave as Ψl ∼
a1r−l þ a2rlþ1 for some constants a1, a2. At the horizon,
since Vl=N is finite, we find Ψl ∼ c1 þ c2 logðr − 2MÞ,
for some constants c1, c2. Demanding regularity at the
horizon requires c2 ¼ 0, while regularity at infinity
demands a2 ¼ 0 for any l. However, this is a big constraint,
since fixing c2 ¼ 0 as a boundary condition will, in general,
correspond to a1 ≠ 0, a2 ≠ 0 at infinity.
To see the implications of imposing these regularity

conditions, let us first analyze the classical case. First of all,
multiply (48) by the complex conjugate Ψ�

l and integrate
outside the horizon to find,

0 ¼
Z

∞

2M
dr

�
ðNΨ0

lÞ0Ψ�
l −

Vl

N
jΨlj2

�

¼ ½NΨ0
lΨ�

l�∞2M −
Z

∞

2M
dr

�
ðNjΨ0

lj2Þ þ
Vl

N
jΨlj2

�
: ð49Þ

The first term is zero for any l as a consequence of the
regularity conditions imposed above. On the other hand, for
positive-definite potentials, as in the classical case, the
integral in the second term is definite positive. If l ≠ 0 then
Vl ≠ 0 and the above equation implies jΨlj ¼ 0 and
jΨ0

lj ¼ 0, i.e., the only regular solution is Ψl ¼ 0. If
l ¼ 0, in the classical case we would have V0 ¼ 0, and
the above equation would only imply jΨ0

lj ¼ 0, so the most
general solution is Ψ0 ¼ η ¼ const. The axial sector is
trivial for l ¼ 0, since the angular derivatives vanish. This
solution is necessarily polar. Using then (34) this result
implies flm ¼ Q=rδl0δm0, which, according to (28), is the
electromagnetic potential of a point charge. With this static
electromagnetic perturbation, the fixed Schwarzschild BH
background becomes, in a natural way, a Reissner-
Nordström charged BH. This is the expected result.
However, quantum corrections make the potential Vl not

positive definite, so the above argument fails and there
could be nontrivial solutions satisfying the regularity
conditions at both the horizon and infinity. Let us look
for solutions of the form

Ψ0ðrÞ ¼ ηþ ξ2χðrÞ; ð50Þ

FIG. 2. Linear dependence of the fundamental QNM frequency ω0l with Planck’s constant ξ2=M2 for l ¼ 1 (upper) and l ¼ 2
(lower) in case of polar electromagnetic perturbations. Red crosses denote the numerically calculated quasinormal frequencies, while the
blue dashed line represents a linear fit.
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where η is the constant solution satisfying the classical
static limit equation for l ¼ 0 and χ is the leading-order
quantum correction. Upon substituting this expansion in
Eq. (48), with the potential given by (40) and letting l ¼ 0,
we have that the solution of the master equation is

χðrÞ ¼ −
Mη

r3
þ c1 − c2ðrþ 2 log ðr − 2MÞÞ: ð51Þ

By demanding regularity at the horizon and at spatial
infinity, then χðrÞ ¼ c1 −Mη=r3. Therefore,

Ψ0 ∼ η − ξ2Mη=r3 þ c1ξ2: ð52Þ

This is the l ¼ 0 mode. For general l ≠ 0, we can do a
similar reasoning,

ΨlðrÞ ¼ 0þ ξ2χlðrÞ: ð53Þ

The solution to the Regge-Wheeler equation restricted to
order ξ2 in this case is given in terms of special functions.
Demanding regularity conditions at both the horizon and
infinity eventually renders χl ¼ 0 for any l ≠ 0.
Equation (52) is polar, so from Eq. (34), we obtain that

flm ∼ c1=rþ ηMξ2=r4. Recalling that flm is the t com-
ponent of Aa in (28), this finding is consistent with Eq. (22)
(c1 can be reabsorbed inQ, and η ∝ Q). In particular, this is
the leading-order result for (22) for small charge Q.

V. AXIAL PERTURBATIONS ON A CHARGED
BLACK HOLE WITH DRUMMOND-HATHRELL

CORRECTIONS

In this section, we address the original problem posed at
the beginning of Sec. IV. Namely, we will derive the

coupled system of equations governing the propagation of
both electromagnetic and gravitational linear perturbations
on the background BH solution (23) and (24), with Q ≠ 0.
Still, we will only deal with the axial case, which is simpler.
The complexity of the problem is already formidable, and
all calculations require using the software XACT for tensor
algebra manipulations with Mathematica. The polar case,
technically much more involved, is qualitatively similar and
is not expected to provide any new insight.
Using (12), and restricting to the a, b, c corrections, we

derive the explicit form of the semiclassical field equa-
tions (15). Then, we look for solutions of these equations
with a metric and electromagnetic potential of the form

gab ¼ gð0Þab þ gð1Þab ;

Aa ¼ Að0Þ
a þ Að1Þ

a ; ð54Þ

where gð0Þab and Að0Þ
a are given in Eqs. (23) and (24) of

Sec. III. For the electromagnetic perturbation, we expand
again in Fourier modes of frequency ω and vector spherical
harmonics of odd parity,

Að1Þ
a ðt; r; θ;ϕÞ ¼ e−iωt

X∞
l¼1

Xl
m¼−l

2
6664

0

0
almðrÞ
sin θ ∂ϕYlm

−almðrÞ sin θ∂θYlm

3
7775;

ð55Þ

for some radial functions almðrÞ. For the gravitational
perturbation, we have to expand in terms of tensor spherical
harmonics of odd parity. In the Regge-Wheeler gauge
fixing, this can be written as [8]

gð1Þab ðt; r; θ;ϕÞ ¼ e−iωt
X∞
l¼2

Xl
m¼−l

2
6666664

0 0 −h0ðrÞ csc θ ∂Ylm
∂θ h0ðrÞ sin θ ∂Ylm

∂θ

0 0 −h1ðrÞ csc θ ∂Ylm
∂ϕ h1ðrÞ sin θ ∂Ylm

∂θ

−h0ðrÞ csc θ ∂Ylm
∂ϕ −h1ðrÞ csc θ ∂Ylm

∂ϕ 0 0

h0ðrÞ sin θ ∂Ylm
∂ϕ h1ðrÞ sin θ ∂Ylm

∂θ 0 0

3
7777775
; ð56Þ

for some radial functions h0;lmðrÞ, h1;lmðrÞ. Then, the
problem reduces to determining the three unknown func-
tions h0;lmðrÞ, h1;lmðrÞ, almðrÞ by perturbing the semi-
classical field equations to first order in perturbations,

Eab ≔ δGab − 8πδðTM
ab þ hTabiÞ ¼ 0; ð57Þ

Mb ≔ ∇aδFab − δhJbi ¼ 0; ð58Þ

taking into account that δgab ¼ gð1Þab and δAa ¼ Að1Þ
a .

Explicit expressions for the linearized semiclassical equa-
tions can be obtained using XACT, but the output is too
cumbersome to fit in these pages.
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A. Gravitational perturbations

By introducing (55) and (56) in the perturbed semi-
classical Einstein equation (57), we get four independent,
nontrivial equations: Etθ ¼ 0, Erθ ¼ 0, Eθθ ¼ 0, Eθϕ ¼ 0.
The equation Eθϕ ¼ 0 can be solved for hlm0 ðrÞ in terms of
hlm1 ðrÞ and its derivatives. Then Eθθ ¼ 0 is satisfied
identically, and we remain with two independent equations,
Etθ and Erθ, and one unknown function hlm1 ðrÞ. Doing
the transformation hlm1 ðrÞ ¼ Qlm

axialðrÞ r

1−2M
r þQ2

r2

, the equation

Erθ ¼ 0 leads to a second-order differential equation for
Qlm

axialðrÞ,
�
C1ðrÞ

d2

dr2
þ C2ðrÞ

d
dr

þ ðω2 − C3ðω;l; rÞÞ
�
Qlm

axial

¼ C4ðω; rÞalm þ C5ðω; rÞ
dalm

dr
; ð59Þ

where

C1¼
ðQ2þrð−2MþrÞÞ2

r4
þ8k1Q2ðQ2þrð−2MþrÞÞð179Q2þ5rð−76Mþ45rÞÞ

5r8
;

C2¼−
2ðQ2−MrÞðQ2þrð−2MþrÞÞ

r5
−
8k1Q2ð812Q4þQ2rð−3033Mþ1496rÞþ5r2ð568M2−569Mrþ146r2ÞÞ

5r9
;

C3¼
ðQ2þrð−2MþrÞÞð4Q2þrð−6MþLrÞÞ

r6
−
208k1Q2ω2

r4

−8k1Q2

�
1152Q6−Q4rð6831Mþð−3392þ47LÞrÞþQ2r2ð13632M2þð−13768þ199LÞMr−3ð−1186þ39LÞr2Þ

ðQ2þrð−2MþrÞÞ5r10
�

−8k1Q2
½−1840M3−42ð−68þLÞM2rþð−1525þ49LÞMr2−2ð−141þ7LÞr3�

ðQ2þrð−2MþrÞÞr7 ;

C4¼
8i

ffiffiffi
π

p
QωðQ2þrð−2MþrÞÞ

r5
þ8ik1

ffiffiffi
π

p
QωðQ2þrð−2MþrÞÞð480Q2þ312rð−2MþrÞÞ

r9
; ð60Þ

C5 ¼ −
1056ik1

ffiffiffi
π

p
QωðQ2 þ rð−2M þ rÞÞ2

r8
; ð61Þ

and L ¼ lðlþ 1Þ. To arrive at this expression, we have
made use of the classical result to get rid of a source term
k1 d2alm

dr2 , which is allowed to first order in k1. In the classical
limit k1 ¼ 0, our result recovers the expression found by
Zerilli8 [Eq. (20) in [38] ]. Furthermore, for Q ¼ 0 we
recover the ordinary Regge-Wheeler equation, as expected
from the results of the previous section.
The last independent equation Etθ ¼ 0 is satisfied

identically with hlm0 and hlm1 (or Qaxial) satisfying the
above equations. The only last step is to solve (59) for
Qlm

axial. Equation (59) can be recast as an ordinary Regge-
Wheeler equation with the transformations

Qlm
axial ¼

�
1 −

4k1Q2ð89Q2 þ 5rð−40M þ 27rÞÞ
5r4ðQ2 þ rð−2M þ rÞÞ

�
Zlm
G ;

ð62Þ

alm ¼
�
1þ k1ð80Q2 − 8MrÞ

r4

�
Zlm
e ; ð63Þ

which yields

h
Ñ2 d2

dr2
þ ÑÑ0 d

dr
þ ðω2 − Vg

lðrÞÞ
i
Zlm
G

¼ C̃4ðω; rÞZlm
e þ C5ðω; rÞ

dZlm
e

dr
; ð64Þ

where Ñ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−σN2

p
is the usual function of the background

metric (16)–(22), and

Vg
l ¼ ðQ2 þ rð−2M þ rÞÞð4Q2 þ rð−6M þ LrÞÞ

r6
ð65Þ8Up to a redefinition alm → alm=ð ffiffiffiffiffi

4π
p Þ, which is due to a

different convention in (5).
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−
8k1Q2ð426Q4þQ2rð−1521Mþð394þ83LÞrÞþ5r2ð272M2−ð139þ31LÞMrþ12ð1þLÞr2ÞÞ

5r10
;

C̃4¼
8i

ffiffiffi
π

p
QωðQ2þrð−2MþrÞÞ

r5
þ32ik1

ffiffiffi
π

p
Qωð529Q4þ10ð79M−39rÞð2M−rÞr2þ5Q2rð−374Mþ193rÞÞ

5r9
; ð66Þ

valid to first order in k1.

B. Electromagnetic perturbations

By plugging (55) and (56) in the explicit expression that one gets for the perturbed semiclassical Maxwell equation (58),
we obtain only one independent nontrivial equation: Mθ ¼ 0. By evaluating this equation in the gravitational and
electromagnetic backgrounds (23) and (24), and taking into account the values of hlm0 ðrÞ, hlm1 ðrÞ obtained in the previous
section for the metric perturbations, we are able to find the following second-order ODE for the electromagnetic
perturbation alm:

�
D1ðrÞ

d2

dr2
þD2ðrÞ

d
dr

þ ðω2 −D3ðω;l; rÞÞ
�
alm ¼ D4ðω; rÞQlm

axial þD5ðω; rÞ
dQlm

axial

dr
; ð67Þ

where

D1 ¼
ðQ2 þ rð−2Mþ rÞÞ2

r4
−
8k1ðQ2 þ rð−2Mþ rÞÞð48Q4 þ 10Mð2M − rÞr2 þ 5Q2rð−19Mþ 5rÞÞ

5r8
;

D2 ¼
2ð−Q2 þMrÞðQ2 þ rð−2Mþ rÞÞ

r5
þ 8k1ðQ2 þ rð−2Mþ rÞÞð398Q4 þ 10Mð8M − 3rÞr2 þ 5Q2rð−139Mþ 42rÞÞ

5r9
;

D3 ¼
ð4Q2 þLr2ÞðQ2 þ rð−2Mþ rÞÞ

r6

−
8k1½440Q8 − 10Q6rð200Mþ 3ð−27þLÞrÞ þQ4r2ð2720M2 þ 140ð−14þLÞMr− 60ð−5þLÞr2 − 97r4ω2Þ�

5r10ðQ2 þ rð−2Mþ rÞÞ

− 8k1
−5Q2r3ð192M3 þ 8ð−17þ 5LÞM2rþ 2ð7þ 3LÞr3 − 8Mðrþ 2llrÞ2 þ r4ð−43Mþ 24rÞω2Þ

5r10ðQ2 þ rð−2Mþ rÞÞ

−
16k1Mð−2Mþ rÞðr3ω2 þ 2Lð−2Mþ rÞÞ

r5ðQ2 þ rð−2Mþ rÞÞ ;

D4 ¼ −
ið−2þLÞQðQ2 þ rð−2Mþ rÞÞ

2
ffiffiffi
π

p
r5w

þ 2ik1ð−2þLÞQð61Q4 þ 60Mð2M − rÞr2 þ 5Q2rð−32Mþ 3rÞÞ
5

ffiffiffi
π

p
r9w

;

D5 ¼ −
12ik1ð−2þLÞQðQ2 þ rð−2Mþ rÞÞ2ffiffiffi

π
p

r8w
; ð68Þ

and L ¼ lðlþ 1Þ. In the classical limit k1 ¼ 0 our result recovers the expression found by Zerilli9 [Eq. (21) in [38] ]. To
arrive at this expression, we have made use of the classical result to get rid of higher-order derivative terms in the source:

k1
d2Qlm

axial
dr2 , k1

d3Qlm
axial

dr3 , k1
d4Qlm

axial
dr4 , which is allowed to first order in k1.

Equation (92) can be recast as an ordinary Regge-Wheeler equation with the transformations (62) and (63), which yields

�
Ñ2 d2

dr2
þ ÑÑ0 d

dr
þ ðω2 − Ve

lðrÞÞ
�
Zlm
e ¼ D̃4ðω; rÞZlm

G þD5ðω; rÞ
dZlm

G

dr
; ð69Þ

where Ñ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−σN2

p
is the usual function of the background metric (16)–(22). On the other hand,

9Up to a redefinition alm → alm=ð ffiffiffiffiffi
4π

p Þ, which is due to a different convention in (5).
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Ve
l ¼ ð4Q2 þ Lr2ÞðQ2 þ rð−2M þ rÞÞ

r6

þ 8k1ð−1452Q6 þ 30Mð2M − rÞr3ð5M þ ð−2þ LÞrÞ þQ4rð5550M þ ð−2290þ 127LÞrÞÞ
5r10

þ 8k1
Q2r2ð−1106M2 þ ð922 − 59LÞMrþ 6ð−31þ 5LÞr2Þ

r10
; ð70Þ

D̃4 ¼ −
ið−2þ LÞQðQ2 þ rð−2M þ rÞÞ

2
ffiffiffi
π

p
r5ω

þ k1
4ið−2þ LÞQð28Q4 þ 25Mð2M − rÞr2 þ 5Q2rð−14M þ rÞÞ

5
ffiffiffi
π

p
r9ω

: ð71Þ

Notice that for Q ¼ 0 we recover our previous result, Eq. (30) with effective potential (33). Equation (69) thus generalizes
Eq. (30) when Q ≠ 0.

C. Master equations

If we define the tortoise radial coordinate by dr ¼ ÑðrÞdr�, then electromagnetic and gravitational linear perturbations on
the background spacetime (23) and (24) of Sec. III propagate according to a pair of coupled wave equations,

�
d2

dr2�
þ ðω2 − Vg

lðrÞÞ
�
Zlm
G ¼ C̃4ðω; rÞZlm

e þ C5ðω; rÞ
ÑðrÞ

dZlm
e

dr�
; ð72Þ

�
d2

dr2�
þ ðω2 − Ve

lðrÞÞ
�
Zlm
e ¼ D̃4ðω; rÞZlm

G þD5ðω; rÞ
ÑðrÞ

dZlm
G

dr�
: ð73Þ

All quantum corrections are encoded in the effective potential as well as in the source terms.
It is not difficult to check that, in a neighborhood around the BH horizon (25) and at spatial infinity r → ∞, the effective

potential and source terms vanish to first order in k1 ∼ ℏ. Consequently, the two linearly independent solutions of each of
the equations above can be still taken such that

Zlm
λ ∼

r→rH
Aλωle−iωr�H þ Bλωleiωr�H ; ð74Þ

Zlm
λ ∼

r→∞
Cλωle−iωr þDλωleiωr; ð75Þ

where λ∈ fG; eg and, to first order in k1, the tortoise coordinate reads

r�ðrÞ ¼
rr− − rrþ þ r2− log½r − r−� − r2þ log½r − rþ�

r− − rþ
þ k1

5

�
196

r
−
152ðr− þ rþÞ log½r�

r−rþ

þ
�
64

r−
þ 44r−

r2þ
−

8

rþ
þ 220

rþ − r−

�
logðr − r−Þ þ

�
64

rþ
þ 44rþ

r2−
−

8

r−
þ 220

r− − rþ

�
logðr − rþÞ

�
:

VI. A CHARGED BLACK HOLE WITH EULER-
HEISENBERG CORRECTIONS

In this and in the next sections we want to compare the
charged BH solution that we have obtained in Sec. III from
the Drummond-Hathrell semiclassical corrections (23) and
(24) with the solution that one may get by working instead
with the Euler-Heisenberg corrections in (12).
Again, we evaluate the functional derivatives (14) using

XACT in order to obtain explicit expressions for hTð1Þ
ab i,

hJð1Þa i, generated by the corrections A, B of (12). The output

is terribly cumbersome and not particularly interesting.
Then, we look for static and spherically symmetric sol-
utions of (15) by working with the metric Ansatz

ds2 ¼ NðrÞσðrÞdt2 þ dr2

NðrÞ þ r2dθ2 þ r2sin2θdϕ2; ð76Þ

and the electromagnetic potential

AðrÞ ¼ ðA0ðrÞ; 0; 0; 0Þ: ð77Þ
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Using these expressions in the semiclassical field equa-
tions (15) leads to four independent coupled differential
equations, three from the gravitational sector (the tt, rr, and
θθ components) and one from the electromagnetic one (the
t component). To solve this system of coupled differential
equations, we write

NðrÞ ¼
�
1 −

2M
r

þQ2

r2

�
ð1þ k2δNÞ;

σðrÞ ¼ −1þ k2δσ;

A0ðrÞ ¼
Qffiffiffiffiffiffi
4π

p
r
þ k2δA; ð78Þ

where k2 was defined in Eq. (13). The tt and rr components
of the Einstein equations, expanded to order Oðk22Þ, give

4
ffiffiffi
π

p
r6QδA0 − r4½rδN0ðQ2 − 2Mrþ r2Þ

þ δNðr2 −Q2Þ þQ2δσ� þ 3Q4

π
¼ 0; ð79Þ

r4½Q2δσ þ rðð−2MrþQ2 þ r2ÞðδN0 − δσ0Þ

− 4
ffiffiffi
π

p
QrδA0Þ þ δNðr2 −Q2Þ� − 3Q4

π
¼ 0; ð80Þ

and the nonzero component of the Maxwell sector yields

πr5½4 ffiffiffi
π

p
rðrδA00 þ 2δA0Þ −Qδσ0� − 16Q3 ¼ 0: ð81Þ

This coupled system of three differential equations can be
solved in full closed form. If we demand that the solution
approaches the Minkowski metric at spatial infinity [i.e.,
δNðrÞ, δσðrÞ, δAðrÞ → 0 as r → ∞], and we fix the mass
and charge of the resulting solution to be M and Q,
respectively (by identifying the r−1 and r−2 prefactors in
the asymptotic expansion of the lapse function), one
obtains

δNðrÞ ¼ Q4

5πr4ðQ2 þ rð−2M þ rÞÞ ;

δσðrÞ ¼ 0;

δAðrÞ ¼ Q3

5π3=2r5
; ð82Þ

which also satisfies the remaining fourth differential
equation of the system (the θθ component of the semi-
classical Einstein equations).
These results agree with the ones obtained in Eqs. (54)

and (55) of Ref. [39] with the identificationQ → −Q=
ffiffiffiffiffiffi
4π

p
,

and Ec → m2
e=e ¼ m2

e=
ffiffiffiffiffiffiffiffi
4πα

p
. However, they differ by a

factor of 2=π from the ones obtained in Ref. [40].
Overall, the semiclassical metric and electromagnetic

potential solutions are

ds2¼−
�
1−

2M
r

þQ2

r2
þk2

Q4

5πr6

�
dt2

þ dr2

1− 2M
r þQ2

r2 þk2
Q4

5πr6

þ r2ðdθ2þ sin2θdϕ2Þ; ð83Þ

AðrÞ ¼ Qffiffiffiffiffiffi
4π

p
r

�
1þ k2

2Q2

5πr4

�
dt: ð84Þ

To leading order in the coupling constant k2, the (highest)
roots of gttðrHÞ ¼ 0 and g−1rr ðrHÞ ¼ 0 lead to

rH ¼ rþ þ k2
r2−

5πr2þðr− − rþÞ
þOðk22Þ; ð85Þ

where r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
are the horizons of the

classical Reissner-Nordström BH. Therefore, this space-
time background contains a BH horizon at r ¼ rH.

VII. AXIAL PERTURBATIONS ON A CHARGED
BLACK HOLE WITH EULER-HEISENBERG

CORRECTIONS

We will now derive the wave equations for the propa-
gation of electromagnetic and gravitational linear pertur-
bations on the spacetime background obtained in Sec. VI,
given in (83) and (84).
ForQ ¼ 0 this background reduces to the ordinary, neutral

Schwarzschild spacetime. Since the Euler-Heisenberg cor-
rections only produce quadratic (or higher-order) polyno-
mials in Fab on the rhs of both equations in (15), linear
perturbations around a background with Fab ¼ 0 do not
produce any deviation with respect to the classical case.
Therefore, unlike the Drummond-Hathrell case described in
Sec. IV, the problem is trivial if Q ¼ 0 (i.e., perturbations
totally decouple and the problem reduces to that of solving
classical Maxwell equations in a neutral background). For
this reason, we will focus directly on the most general
case, Q ≠ 0.
To solve this problem, we follow exactly the same steps

as in Sec. V. First of all, we derive the specific semiclassical
field equations (15) that one obtains from the effective
action (12) by taking suitable field variations (14) of the A,
B corrections. This is carried out using XACT. We then
linearize this answer by using the decomposition (54) for
both the metric and electromagnetic potential, using the
Ansätze (56) and (55), respectively, and working again with
XACT. This produces lengthy tensorial equations that we
denote by (57) and (58). Our final task is to determine the
three unknown functions h0;lmðrÞ, h1;lmðrÞ, alm in (56)
and (55) by solving these equations.

A. Gravitational perturbations

The problem is very similar to the one described in
Sec. V. If we plug (55) and (56) in the explicit expressions
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that one gets for the perturbed semiclassical Einstein
equation (57), we get four independent nontrivial equa-
tions: Etθ ¼ 0, Erθ ¼ 0, Eθθ ¼ 0, Eθϕ ¼ 0. The equation
Eθϕ ¼ 0 can be solved for hlm0 ðrÞ in terms of hlm1 ðrÞ and its
first derivative. Then Eθθ ¼ 0 is satisfied as an identity, and

we remain with two independent equations, Etθ and Erθ,
and one unknown function hlm1 ðrÞ. Doing the transforma-
tion hlm1 ðrÞ ¼ Qlm

axialðrÞ r

1−2M
r þQ2

r2

, the equation Erθ ¼ 0 leads

to a second-order differential equation for Qlm
axialðrÞ,

�
C1ðrÞ

d2

dr2
þ C2ðrÞ

d
dr

þ ðω2 − C3ðω;l; rÞÞ
�
Qlm

axial ¼ C4ðω; rÞalm; ð86Þ

where, up to Oðk22Þ, we have

C1¼
ðQ2þrð−2MþrÞÞ2

r4
þk2Q4ðQ2þrð−2MþrÞÞ

5πr8
;

C2¼−
2ðQ2−MrÞðQ2þrð−2MþrÞÞ

r5
−
2k2Q4ð7Q2þrð−16Mþ9rÞÞ

5πr9
;

C3¼
ðQ2þrð−2MþrÞÞð4Q2þrð−6MþLrÞÞ

r6
−
k2Q4ð20Q4þ2Q2rð−46Mþ25rÞþr2ð108M2−120Mrþ34r2−ω2r4ÞÞ

5πr10ðQ2þrð−2MþrÞÞ ;

C4¼
8i

ffiffiffi
π

p
QωðQ2þrð−2MþrÞÞ

r5
−
8ik2Q5ω

5
ffiffiffi
π

p
r9

;

and L ¼ lðlþ 1Þ. For k2 ¼ 0 we recover the classical limit of Zerilli10 [see Eq. (20) in [38] ]. In addition, for Q ¼ 0 we
recover the well-known Regge-Wheeler equation for gravitational perturbations on a Schwarzschild background.
We now rewrite the above equation as a Regge-Wheeler equation,

�
Ñ2 d2

dr2
þ ÑÑ0 d

dr
þ ðω2 − Vg

lðrÞÞ
�
Zlm
G ¼ C̃4ðω; rÞZlm

e ; ð87Þ

for some ZG and Ze, and where Ñ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−σN2

p
is the usual function of the background metric (76)–(82). This is

accomplished with the transformation

Qaxial ¼
�
1 −

k2Q4

5πr4ðQ2 þ rð−2M þ rÞÞ
�
ZG; ð88Þ

alm ¼
�
1þ k2Q2

πr4

�
Zlm
e ; ð89Þ

which leads to

Vg
l ¼ ðQ2 þ rð−2M þ rÞÞð4Q2 þ rð−6M þ LrÞÞ

r6
−
k2Q4ð−12Q2 þ rð22M − ð8þ LÞrÞÞ

5πr10
; ð90Þ

C̃4ðω; rÞ ¼
8i

ffiffiffi
π

p
QðQ2 þ rð−2M þ rÞÞω

r5
þ 8i̇k2ð6Q5 þ 5Q3rð−2M þ rÞÞω

5
ffiffiffi
π

p
r9

: ð91Þ

B. Electromagnetic perturbations

We repeat the same steps of previous sections. Namely, we plug (55) and (56) in the specific result that we obtain for the
perturbed semiclassical Maxwell equation (58) using XACT, and we obtain only one independent nontrivial equation:
Mθ ¼ 0. We evaluate this equation in the spacetime and electromagnetic backgrounds of Sec. VI, given in (83) and (84).

10Up to a redefinition alm → alm=ð ffiffiffiffiffi
4π

p Þ, which is due to a different convention in (5).
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Taking into account the values of hlm0 ðrÞ, hlm1 ðrÞ obtained in the previous subsection for the metric perturbations, we are
able to find the following second-order ODE for the electromagnetic perturbation alm:

�
D1ðrÞ

d2

dr2
þD2ðrÞ

d
dr

þ ðω2 −D3ðω;l; rÞÞ
�
alm ¼ D4ðω; rÞQlm

axial; ð92Þ

where now

D1 ¼
ðQ2 þ rð−2M þ rÞÞ2

r4
−
Mk2ðQ2 − 2Mrþ r2Þð9Q4 − 20MQ2rþ 10Q2r2Þ

5πr8
; ð93Þ

D2 ¼
2ð−Q2 þMrÞðQ2 þ rð−2M þ rÞÞ

r5
þ 2k2Q2ð27Q2 − 50Mrþ 20r2ÞðQ2 þ rð−2M þ rÞÞ

5πr9
; ð94Þ

D3 ¼
20πQ2r2ðQ2 þ rð−2M þ rÞÞ2 þ 5Lπr4ðQ2 þ rð−2M þ rÞÞ2

5πr8ðQ2 þ rð−2M þ rÞÞ ð95Þ

þMk2ð25LQ2ðQ2 þ rð−2M þ rÞÞ2 þQ2r4ð11Q2 þ 10rð−2M þ rÞÞω2Þ
5πr8ðQ2 þ rð−2M þ rÞÞ ; ð96Þ

D4 ¼
ið−2þ LÞQðQ2 þ rð−2M þ rÞÞ

2
ffiffiffi
π

p
ωr5

þ ið−2þ LÞQ5k2
10π3=2ωr9

; ð97Þ

and L ¼ lðlþ 1Þ. Again, for k2 ¼ 0we recover the classical limit of Zerilli, up to a redefinition of alm [see Eq. (21) in [38]
and our footnote 7]. Furthermore, for Q ¼ 0 we recover the well-known Regge-Wheeler equation for electromagnetic
waves on a Schwarzschild background.
Performing the change of variables (88) and (89), we can cast the above result in terms of a Regge-Wheeler wave

equation,

�
Ñ2 d2

dr2
þ ÑÑ0 d

dr
þ ðω2 − Ve

lðrÞÞ
�
Zlm
e ¼ D̃4ðω; rÞZlm

G ; ð98Þ

where

Ve
l ¼

ð4Q2þLr2ÞðQ2þ rð−2Mþ rÞÞ
r6

−k2
Q2ð96Q4þ5ð2M− rÞr2ð48Mþð−20þ7LÞrÞ−4Q2rð110Mþð−50þ9LÞrÞÞ

5πr10
;

ð99Þ

D̃4 ¼ −
ið−2þ LÞQðQ2 þ rð−2M þ rÞÞ

2
ffiffiffi
π

p
ωr5

− k2
ið−2þ LÞQ3ð6Q2 þ 5rð−2M þ rÞÞ

10π3=2ωr9
: ð100Þ

C. Master equations

To conclude, we can write the linearized Einstein and Maxwell coupled system of equations, with one-loop Euler-
Heisenberg corrections, as a pair of two coupled Regge-Wheeler equations for the variables Zlm

G and Zlm
e ,

�
d2

dr2�
þ ðω2 − Vg

lðrÞÞ
�
Zlm
G ¼ C̃4ðω; rÞZlm

e ; ð101Þ

�
d2

dr2�
þ ðω2 − Ve

lðrÞÞ
�
Zlm
e ¼ D̃4ðω; rÞZlm

G ; ð102Þ

where the tortoise coordinate is given by dr ¼ ÑðrÞdr�. To first order in k2, the integration yields
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r�ðrÞ ¼
rr− − rrþ þ r2− log½r − r−� − r2þ log½r − rþ�

r− − rþ

−
k2
5π

�
−
1

r
þ
− r2þ

r−r−
þ r2−

−rþrþ

ðr− − rþÞ2
þ 2ðr− þ rþÞ log½r�

r−rþ
þ 2r3þð−2r− þ rþÞ log½r − r−� − 2r3−ðr− − 2rþÞ log½r − rþ�

r−ðr− − rþÞ3rþ

�
;

ð103Þ

where r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
are the two classical horizons

for a Reissner-Nordström BH. Similar to what happens in
the Drummond-Hathrell case, in a neighborhood around
the BH horizon (85) and at spatial infinity r → ∞, the
effective potential and source terms vanish to first order
in k2 ∼ ℏ.

VIII. CONCLUSIONS AND FINAL REMARKS

The advent of gravitational-wave astronomy has put BHs
in the spotlight. In particular, gravitational interferometers
can extract the ringdown signal of solar-mass binary BH
mergers, from which we can study the physics underlying
BH dynamics via the analysis of QNM frequencies.
According to classical general relativity, for BHs these
frequencies can only depend on three parameters: mass,
spin, and electric charge. Current expectations for high
precession measurements in future generation gravita-
tional-wave interferometers motivates us to take a step
forward and to calculate quantum corrections for BHs and
their imprints in QNM frequencies.
Even though the theory of quantum fields in curved

spacetime is a mature field of research that dates back to as
early as the 1960s, the intrinsic difficulties inherent in this
framework complicates making significant progress in
practical calculations. In particular, the space of solutions
of the semiclassical Einstein equations is still pretty much
unexplored. Furthermore, linear perturbation theory has not
even been addressed in this framework to the best of our
knowledge.
Much of the difficulties in the search for solutions to the

semiclassical field equations is owed to the problem of
renormalization in curved spacetime. In practical applica-
tions, we do not have a systematic way to renormalize the
vacuum expectation value of the stress-energy tensor of
quantum fields and to solve these equations for a suffi-
ciently wide family of spacetime metrics, not even using
numerical methods. In this work, we have opted to work
with perturbative expansions of the one-loop effective
action that can be obtained using heat kernel techniques.
These approximations miss the physical details of the
quantum state, but they still provide leading-order quantum
corrections to the classical action of general relativity,
which are expected to dominate for weak background
fields.

In the present work, we used the Drummond-Hathrell
[24] and Euler-Heisenberg [21] approximate expressions
for the one-loop effective action to derive static, spherically
symmetric solutions of the full Einstein-Maxwell semi-
classical equations. We have been able to find solutions that
are exact to leading order in Planck’s constant. Our results
can be found in (23), (24) and (83), (84), respectively. The
latter case agrees with previous studies [39]. Interestingly,
the quantum corrections do not add more “hair” to the
classical BHs (at least, in spherical symmetry). More
precisely, after imposing asymptotic flatness and the values
for the mass M and electric charge Q of the resulting
compact object, all free constants of integration vanish. The
corrections are entirely determined by the two parameters
M and Q.
According to general relativity, BHs react when they are

subject to small perturbations, as a consequence of which
they emit gravitational radiation with a characteristic
frequency spectrum. If they are electrically charged, they
can also emit electromagnetic radiation with an associated
spectrum. We have studied here the propagation of both
electromagnetic and gravitational linear perturbations
around the semiclassical solutions (23), (24) and (83),
(84). We have first addressed the Q ¼ 0 case for (23) and
(24), since in this case the Maxwell sector still receives
quantum corrections (the gravitational sector does not). In
particular, we have derived the equation describing the
propagation of both axial and polar electromagnetic per-
turbations subject to vacuum polarization effects, which
can be consulted in (33) and (40), respectively. To complete
the analysis, we also computed the spectrum of character-
istic frequencies for the fundamental tone and the first few
angular momentum values, written in Eqs. (42)–(45). We
verified that quantum corrections scale linearly with
Planck’s constant, and that the classical isospectrality
is lost.
After this, we addressed the full perturbation problem for

Q ≠ 0. For axial perturbations, and for both backgrounds
(23), (24) and (83), (84), we have obtained the relevant
coupled pair of Regge-Wheeler master equations that
govern the evolution of these linear waves. Main results
can be seen in (72) and (73) for Drummond-Hathrell
corrections and (101) and (102) for Euler-Heisenberg
corrections. In the classical limit we recover well-known
results [38,41]. Our findings extend these references when
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vacuum polarization effects of electron-positron pairs are
taken into account. Polar perturbations, on the other hand,
are technically much more involved due to the existence of
many more field variables and issues with gauge invari-
ance. We found significant difficulties in solving this
problem, particularly because our Mathematica notebooks
were unable to produce results, even with the use of the
powerful packages of XACT. This study is left for a
future work.
In the future, we plan to calculate the dominant QNM

frequencies for the system of equations (72), (73) and
(101), (102), for the Drummond-Hathrell and Euler-
Heisenberg semiclassical solutions, respectively. At first
sight, one may think this is a straightforward exercise by
using standard numerical techniques. However, the pres-
ence of ℏ makes the problem considerably more compli-
cated, a difficulty that gets particularly enhanced when
Q ≠ 0. As discussed in Sec. IV C, since the actual value of
ℏ is dozens of orders of magnitude below machine
precision, one is forced to do the numerical calculation
using several higher artificial values of ℏ, from which one
expects to extract the actual numerical result for the QNM
spectra by linear extrapolation. However, we cannot use
arbitrarily big values of ℏ either, otherwise perturbation
theory breaks down and, among other complications, the
corrections need not follow a linear dependence. On the
other hand, if the chosen values of ℏ are still too small, one
may not have sufficient numerical precision to infer the
impact of ℏ on the classical spectra, and quantum correc-
tions remain buried in numerical errors.
This issue arose already in theQ ¼ 0 case, but it was still

tractable (see footnote 7). Because a nonzero electric
charge Q ≠ 0 couples both equations in (72), (73) and
(101), (102), the problem gets qualitatively and signifi-
cantly more complicated than the Q ¼ 0 case. For rela-
tively big values of ℏ (but still below M2) we found that,
using the direct integration method (see the Appendix),
quantum corrections seem to affect the frequency spectra
quadratically, i.e., to order Oðℏ2Þ. Taken at face value, this
would mean that, to leading order in the perturbative
(quantum) framework, the QNM frequency spectra remains
unaffected. However, this is not apparent from equa-
tions (72), (73) and (101), (102), which include explicit
Oðℏ1Þ corrections. On the other hand, when we decreased
the size of ℏ in order to approach the linear regime, we
found convergence problems against variations of the
parameters used. The determination of the QNM frequency
spectra when Q ≠ 0 is technically more demanding and
deserves a separate study.
As remarked in the Introduction, effective field theories

have a broad range of validity, which make them useful to
test fundamental physics. The most general low-energy
limit of quantum gravity and electrodynamics is expected
to have the form of (12) for some unknown coefficients a,
b, c, etc. From a theoretical viewpoint, their specific value

depends on the details of the particular UV completion of
the theory. Although calculations would become more
tedious, our results could be easily extended for free
parameters in the action (12), so that their theoretical
prediction could, in principle, be tested with gravita-
tional-wave observations.
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APPENDIX: NUMERICAL METHOD

In this appendix, we briefly review the direct integra-
tion method for computing the QNM spectra, which we
used here to derive the numerical values in Tables I and II.
These tables contain the electromagnetic quasinormal
(QN) frequencies for Q ¼ 0 when Drummond-Hathrell
corrections are considered, corresponding to Eqs. (31) and
(38) for axial and polar perturbations, respectively (recall
that the classical gravitational QN spectra do not get
affected when Q ¼ 0). This method can also be applied to
calculate the QNM spectra of equations (72) and (73)
(Drummond-Hathrell corrections) and (101) and (102)
(Euler-Heisenberg corrections), valid when Q ≠ 0. For
completeness, we will treat here the general description
for any Q. On the other hand, for details on the pseudo-
spectrum technique, which we only used in Sec. IV C, we
refer to the original papers [34,35], which include all the
necessary mathematical machinery.
As mentioned in Secs. V C and VII C, in a neighborhood

of the BH horizon and at spatial infinity, the effective
potentials and source terms vanish to first order in ℏ.
Therefore, the boundary conditions that define the QNMs
are still formally equal, as in the classical theory,
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Zlm
G;e ∼

r→rH
e−iωr�H ; ðA1Þ

Zlm
G;e ∼

r→∞
eiωr�H ; ðA2Þ

but with r�H ≡ r�ðrHÞ the (quantum-corrected) tortoise
coordinate evaluated at the horizon radius. To reach
sufficient numerical precision in the calculation, we need
to include higher-order terms in the above asymptotic
relations. We can do this by using Frobenius expansions
of the form11

Zlm
G;e ¼ e−iωr�H

XordH
i¼0

fG;eli ðr − rHÞi; ðA3Þ

Zlm
G;e ¼ eiωr�H

XordI
i¼0

gG;eli

ri
: ðA4Þ

The coefficients fG;eli and gG;eli are obtained by solving
iteratively and order by order the field equations (72) and

(73) (Drummond-Hathrell corrections) or (101) and (102)
(Euler-Heisenberg corrections), together with the initial
value gG;el0 ¼ fG;el0 ¼ 1. Once all these coefficients are
calculated, we integrate twice the field equations, from
the horizon and from infinity, using (A3) and (A4) and their
derivatives as boundary conditions. We then impose a C1

matching of the two numerical results at some intermediate,
but otherwise arbitrary, value of the radius rint. This
matching condition severely constrains the possible values
that ω can take and produces the QNM frequency spectra.
For Q ¼ 0 and Drummond-Hathrell corrections, the

results found for the allowed values of ω are shown in
Tables I and II for l ¼ 1; 2 and several values of the
coupling constant ξ2 ∼ k1 (see footnote 7 for details). We
used ordH ¼ 11 and ordI ¼ 9 for the truncation of the
Frobenius expansions (A3) and (A4). To avoid the coor-
dinate singularity at the horizon radius, we need to integrate
slightly away from this location. When Q ¼ 0 the BH
horizon (25) reduces to the ordinary Schwarzschild
radius, rH ¼ 2M, so we locate the effective horizon at
rϵH ≔ 2Mð1þ ϵÞ. Similarly, we place spatial infinity at
some finite value r∞ < ∞. We checked the convergence of
our calculations against variations of ϵ, r∞, and rint. In
particular, the digits shown in Tables I and II are robust for
ϵ∈ ½10−2; 10−4�, r∞ ∈ ½20; 40�, and rint ∈ ½rϵH; r∞�.
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