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We critically examine the applicability of the effective potential within dynamical situations and find, in
short, that the answer is negative. An important caveat of the use of an effective potential in dynamical
equations of motion is an explicit violation of energy conservation. An adiabatic effective potential is
introduced in a consistent quasistatic approximation, and its narrow regime of validity is discussed. Two
ubiquitous instances in which even the adiabatic effective potential is not valid in dynamics are studied in
detail: parametric amplification in the case of oscillating mean fields, and spinodal instabilities associated
with spontaneous symmetry breaking. In both cases profuse particle production is directly linked to the
failure of the effective potential to describe the dynamics. We introduce a consistent, renormalized, energy
conserving dynamical framework that is amenable to numerical implementation. Energy conservation leads
to the emergence of asymptotic highly excited, entangled stationary states from the dynamical evolution.
As a corollary, decoherence via dephasing of the density matrix in the adiabatic basis is argued to lead to an
emergent entropy, formally equivalent to the entanglement entropy. The results suggest novel characteri-
zation of asymptotic equilibrium states in terms of order parameter vs energy density.
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I. INTRODUCTION

The effective potential is a very useful concept to study
spontaneous symmetry breaking in quantum field theory as
originally proposed in Refs. [1,2]. It is defined as the
generating functional of the single particle irreducible
Green’s functions at zero four momentum transfer. In
particular, the effective potential informs how radiative
corrections modify the symmetry breaking properties of the
vacuum [3]. While originally the effective potential was
obtained by summing an infinite series of Feynman
diagrams [3], functional methods [4–7] provide a system-
atic and simple derivation in a consistent loop expansion,
which has been extended to equilibrium finite temperature
field theory [8,9]. In equilibrium at finite temperature, the
effective potential informs on the quantum and thermal
corrections to the free energy landscape as a function of the
order parameter, and as such it provides a very useful
characterization of phase transitions. The concept of the
effective potential plays a fundamental role in cosmology,

in particular in the description of possible cosmological
phase transitions even during the inflationary era [10–14].
An alternative Hamiltonian formulation of the effective

potential was advanced in Refs. [15,16]; it provides
a compelling interpretation of the zero temperature effec-
tive potential as the expectation value of the quantum
Hamiltonian (divided by the volume) in a coherent state, in
which the (bosonic) field associated with symmetry break-
ing, namely the order parameter, acquires a space-time
constant expectation value (see also [6,16]). The one-loop
effective potential has also been related to a Gaussian wave
functional [17].

A. Motivation and objectives

Although the effective potential was introduced and
developed to study static aspects of spontaneous symmetry
breaking and to identify symmetry breakingminima beyond
the classical tree level, it is, however, often implemented in
dynamical studies of the time evolution of the expectation
value of the scalar field. Since the effective potential is
defined for zero four momentum transfer, namely for a static
and homogeneous field configuration, the rationale behind
its use in a dynamical situation is the assumption of the
validity of some adiabatic approximation. Such assumption
ultimately needs scrutiny and justification.
Our motivation for this study is the ubiquity of the use of

the effective potential in dynamical situations in which the
expectation value of the scalar field evolves in time. Our
objectives are: (i) to critically examine the validity of using
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the effective potential in such dynamical setting, (ii) to
assess the validity of an adiabatic approximation that would
justify its use, (iii) identify possible scenarios wherein
its use is unjustified, and (iv) to provide an alternative
formulation that overcomes the limitations of its (mis)use,
and to study the consequences of the dynamical evolution
within this framework.
In this article we address these aspects at zero tempera-

ture in Minkowski space-time, obtaining the energy func-
tional and equations of motion including one-loop quantum
corrections, which allows us to compare to the one-loop
effective potential and exhibit its shortcomings in the
simplest case. This study is a prelude towards extending
the results both to finite temperature, higher orders, and an
expanding cosmology in future work.

B. Brief summary of results

We implement a Hamiltonian approach to obtain the one-
loop effective potential in the static case and extend it to
obtain the energy functional and equations of motion for
the expectation value of a scalar field in the dynamical case.
An adiabatic effective potential is introduced as a test of
whether a quasistatic approximation can be reliably applied
to the dynamical case; it is explicitly shown that it has a
very restricted regime of applicability. Furthermore, we
unambiguously show that using the static effective potential
in dynamical situations leads to a violation of energy
conservation. Two ubiquitous instances are recognized
to lead to a breakdown of the adiabatic (quasistatic)
approximation to the equations of motion: parametric
amplification in the case of oscillating mean fields, and
spinodal decomposition in the case of spontaneous sym-
metry breaking. Both phenomena yield profuse particle
production which invalidates an adiabatic (quasistatic)
approximation and renders the static effective potential
an ill-suited description for the dynamics. We introduce a
self-consistent, energy conserving, fully renormalized
framework to study the dynamical evolution of expectation
values of scalar fields. Energy conservation leads us to
conjecture the emergence of asymptotic stationary states.
These are characterized by a large occupation number of
adiabatic particles in bands, yielding a highly excited
entangled state of correlated particle pairs produced from
resonant transfer of energy from parametric or spinodal
instabilities. These highly excited stationary states lead us
to suggest a novel characterization of asymptotic equilib-
rium states in terms of phase diagrams of asymptotic order
parameter as a function of energy density.
The article is organized as follows: in Sec. II we

summarize the Hamiltonian approach to the one-loop
effective potential in the static case introduced in
Refs. [15,16]) as a roadmap to extend this formulation
to the dynamical case. In Sec. III we extend the
Hamiltonian formulation and introduce the framework to
study the dynamical case. We also introduce a systematic

adiabatic expansion and an adiabatic effective potential and
analyze its suitability for describing the dynamics. It is
argued that using the static effective potential leads to a
violation of energy conservation, and that the adiabatic
effective potential has a very restricted range of validity. In
Sec. IV we study two ubiquitous cases that lead to a
breakdown of adiabaticity invalidating the use of the
effective potential: (i) parametric amplification when the
scalar field oscillates near the minimum of the tree level
potential, and (ii) spinodal instabilities in the case of
spontaneous symmetry breaking. In both cases we show
that parametric and spinodal instabilities lead to profuse
particle production which is associated with the breakdown
of adiabaticity. In Sec. V we introduce a self-consistent,
fully renormalized, energy conserving framework to study
the dynamical evolution of the expectation value of a scalar
field amenable to numerical implementation. In this section
we argue that energy conservation in the dynamics leads us
to conjecture the emergence of asymptotic stationary,
highly excited entangled states from the dynamical evolu-
tion with asymptotic values of the order parameter very
different from those obtained from an effective potential. In
this asymptotic regime, decoherence via dephasing leads to
an emergent entropy density,

s ¼
Z �ð1þ Ñ k⃗ð∞ÞÞ lnð1þ Ñ k⃗ð∞ÞÞ

− Ñ k⃗ð∞Þ ln Ñ k⃗ð∞Þ� d3k
ð2πÞ3 ;

where Ñ k⃗ð∞Þ is the particle number distribution as a
function of particle momentum as t → ∞. This entropy
is formally equivalent to an entanglement entropy.
Furthermore, we also propose the hitherto unexplored
concept of “phase diagrams” of order parameter versus
energy density as characterizations of these asymptotic
states. Conclusions are summarized in Sec. VI.

II. STATICS: THE EFFECTIVE POTENTIAL

In this study we focus on one-loop radiative corrections,
adopting and extending the formulation of the effective
potential of Refs. [15,16] which relies on a Hamiltonian
description as an alternative to the functional methods, which
will be extended to the dynamical case in the next sections.
Let us consider a real scalar field, ϕ, in Minkowski

space-time with an action given by

A ¼
Z

d4x

�
1

2
∂
μϕ∂νϕ − VðϕÞ

�
; ð2:1Þ

where VðϕÞ is the tree level potential. In the interest of
generality, we leave this function unspecified at present but
consider specific scenarios below from which we draw
more general conclusions.
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Introducing the canonical conjugate field momentum
operator πðx⃗Þ ¼ ∂L

∂ϕ ¼ ∂ϕ
∂t , and upon quantization of the field

and its canonical momentum ϕðxÞ → ϕ̂ðxÞ; πðxÞ → π̂ðxÞ,
where the operators ϕ̂ðx⃗; tÞ; π̂ðx⃗; tÞ obey canonical com-
mutation relations, the field Hamiltonian is given by

H ¼
Z

d3x

�
π̂2

2
þ ð∇ϕ̂Þ2

2
þ Vðϕ̂Þ

�
: ð2:2Þ

The Hamiltonian interpretation of the effective potential
advanced in Refs. [15,16] (see also Ref. [6]) identifies
the effective potential as the expectation value of the
Hamiltonian operator in a normalized coherent state jΦi
in which the field acquires a space-time independent
expectation value,

φ ¼ hΦjϕ̂ðx⃗; tÞjΦi; hΦjπ̂ðx⃗; tÞjΦi ¼ 0; ð2:3Þ
divided by the spatial volume of quantization V, namely,

VeffðφÞ ¼
1

V
hΦjHjΦi: ð2:4Þ

We refer to φ as a mean field, and writing

ϕ̂ðx⃗; tÞ ¼ φþ δ̂ðx⃗; tÞ; π̂ðx⃗; tÞ≡ π̂δðx⃗; tÞ; ð2:5Þ
the constraints (2.3) imply

hΦjδ̂ðx⃗; tÞjΦi ¼ 0; hΦjπ̂δðx⃗; tÞjΦi ¼ 0; ð2:6Þ
leading to

Veff ¼ VðφÞ þ 1

V

Z
d3xhΦj

×

�
π̂2δ
2
þ ð∇δ̂Þ2

2
þ 1

2
M2ðφÞδ̂2 þ � � �

�
jΦi; ð2:7Þ

where linear terms in δ̂ and π̂δ vanish by the constraints
(2.3), and

M2ðφÞ≡ V 00ðφÞ: ð2:8Þ

Assuming that the effective squared massM2ðφÞ ≥ 0, up to
quadratic order the Hamiltonian in Eq. (2.7) describes a free
massive field. Hence, we quantize as usual:

δ̂ðx⃗; tÞ ¼
ffiffiffiffi
ℏ
V

r X
k⃗

1ffiffiffiffiffiffiffiffi
2ωk

p �
ak⃗e

−iωkteik⃗·x⃗ þ a†
k⃗
eiωkte−ik⃗·x⃗

�
;

ð2:9Þ

π̂δðx⃗; tÞ ¼ −i
ffiffiffiffi
ℏ
V

r X
k⃗

ffiffiffiffiffiffi
ωk

p ffiffiffi
2

p �
ak⃗e

−iωkteik⃗·x⃗ − a†
k⃗
eiωkte−ik⃗·x⃗

�
;

ð2:10Þ

with

ωkðφÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2ðφÞ

q
: ð2:11Þ

The constraints (2.6) are implemented by requesting that

ak⃗jΦi ¼ 0; ∀ k⃗; ð2:12Þ

in other words, the coherent state jΦi is the vacuum state
for the fluctuations δ̂. In principle, the constraints (2.6) are
also fulfilled if jΦi is an eigenstate of the number operator
a†
k⃗
ak⃗ with eigenvalue nk, however the energy is lowest for

the vacuum state with nk ¼ 0.
Taking the infinite volume limit with

P
k⃗ →

V
R
d3k=ð2πÞ3 and using (2.12), we find that the effective

potential (2.4) is given by

VeffðφÞ¼VðφÞþℏ
2

Z
d3k
ð2πÞ3ωkðφÞþOðℏ2Þþ���: ð2:13Þ

The ℏ in (2.13) originates in the
ffiffiffi
ℏ

p
in the usual field

quantization [(2.9) and (2.10)] and implies that the expres-
sion (2.13) is the one-loop effective potential. If jΦi is an
excited eigenstate with nk ≠ 0, the integrand in the second
term features an extra contribution nkωkðφÞ thereby rasing
the energy.
That the second term in (2.13) is a one-loop contribution

is easily understood from the fact that hΦjδ̂2ðx⃗; tÞjΦi is the
δ propagator in the coincidence limit of space-time coor-
dinates, namely the propagator with the end points joined.
The integral is carried out with an ultraviolet cutoff Λ ≫
MðφÞ yielding the one-loop effective potential (after
setting ℏ≡ 1)

VeffðφÞ ¼ VðφÞ þ Λ4

16π2
þM2ðφÞ Λ2

16π2

−
ðM2ðφÞÞ2

64π2

�
ln
�
4Λ2

μ2

	
−
1

2




þ ðM2ðφÞÞ2
64π2

ln

�
M2ðφÞ

μ2

	
; ð2:14Þ

where we have introduced a renormalization scale μ. The
ultraviolet divergences must be absorbed into renormaliza-
tions of the parameters of the classical potential.
Considering the simple example of the tree level potential

VðφÞ ¼ V0 þ
m2

0

2
φ2 þ λ0

4
φ4 ⇒ M2ðφÞ ¼ 3λ0φ

2 þm2
0;

ð2:15Þ

introducing the renormalized quantities

IS THE EFFECTIVE POTENTIAL EFFECTIVE FOR … PHYS. REV. D 109, 105021 (2024)

105021-3



m2
RðμÞ
2

¼m2
0

2
þ 3λ0
16π2

Λ2−
3λ0
32π2

m2
0

�
ln

�
4Λ2

μ2

	
−
1

2



ð2:16Þ

λRðμÞ
4

¼ λ0
4
−

9λ20
32π2

�
ln

�
4Λ2

μ2

	
−
1

2



; ð2:17Þ

V0RðμÞ ¼ V0 þ
Λ4

16π2
þm2

0

Λ2

16π2
−

m4
0

64π2

�
ln

�
4Λ2

μ2

	
−
1

2



;

ð2:18Þ

and replacing bare by renormalized quantities up to one
loop, the renormalized effective potential becomes

VeffRðφ; μÞ ¼ V0RðμÞ þ
m2

RðμÞ
2

φ2 þ λRðμÞ
4

φ4

þ ðM2
RðφÞÞ2
64π2

ln

�
M2

RðφÞ
μ2

	
: ð2:19Þ

The effective potential is independent of the renormaliza-
tion scale μ which has been introduced to render the
logarithms dimensionless, therefore it obeys the renorm-
alization group equation [3]

μ
d
dμ

VeffRðφ; μÞ ¼ 0: ð2:20Þ

A. Fermionic contributions: Yukawa interactions

The Hamiltonian framework for the effective potential
also lends itself straightforwardly to include the contribu-
tion from fermions. Consider for example, massless Dirac
fermions Yukawa coupled to the scalar field ϕ with
Lagrangian density

Lf ¼ ψ̄ði=∂ − YϕÞψ : ð2:21Þ

Performing the shift ϕ̂ðx⃗; tÞ ¼ φþ δ̂ðx⃗; tÞ, the Dirac
Hamiltonian becomes to leading order

Hf ¼
Z

d3xψ†ðiα⃗ ·∇þmfðφÞÞψ ; ð2:22Þ

where the effective Dirac fermion mass is

mfðφÞ ¼ Yφ; ð2:23Þ

and we neglected the interaction term Yδ̂ψ†ψ as it yields
higher order loop corrections to the effective potential.
Quantization now is straightforward in terms of creation
and annihilation of particles and antiparticles and the usual
Dirac spinor wave functions: positive and negative fre-
quency solutions of the Dirac equation with a mass mfðφÞ.

The state jΦi now corresponds to the fermion vacuum and
the scalar boson coherent state, yielding the following
fermionic contribution to the effective potential:

VðfÞ
eff ðφÞ¼−2

Z
ωðfÞ
k ðφÞ d3k

ð2π3Þ ; ωðfÞ
k ðφÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

fðφÞ
q

:

ð2:24Þ

Introducing an upper momentum cutoff Λ, a calculation
similar to the one for the bosonic case yields the fermionic
contribution to the effective potential,

VðfÞ
eff ðφÞ ¼ −

�
Λ4

4π2
þm2

fðφÞ
Λ2

4π2
−
m4

fðφÞ
16π2

ln

�
4Λ2

μ2

	

þm4
fðφÞ
16π2

ln

�
m2

fðφÞ
μ2

	

: ð2:25Þ

Renormalization proceeds as in the bosonic case. These
results are in agreement with those of Refs. [6,15,16], and
while these are fairly well known, the main objective of
rederiving them here within the Hamiltonian formulation is
to highlight the following aspects: (i) the effective potential
is a static quantity, (ii) it can be directly obtained from the
Hamiltonian framework as the expectation value of the
quantized Hamiltonian in the particular coherent state jΦi
yielding the expectation values (2.3), and (iii) This analysis
informs on the renormalization aspects associated with the
effective potential and serve as a guide to the renormaliza-
tion in the dynamical case studied in the next sections.
We will not pursue the fermionic case further in this

article, postponing its detailed study to a forthcoming
article. The main and only reason for introducing the case
of Yukawa coupling to fermions is to highlight that the
Hamiltonian formulation of the effective potential repro-
duces the well-known results obtained by summation of
Feynman diagrams or functional methods which are best
suited for the static case and is not restricted to the
bosonic case.
Although the effective potential is a static quantity, it is

often used in effective equations of motion for φ, namely,

φ̈ðtÞ þ d
dφ

VeffðφðtÞÞ ¼ 0; ð2:26Þ

or in cosmology including the Hubble-friction term [13].
Underlying this use of the static effective potential in
a dynamical equation of motion is the unspelled (and
unexamined) assumption of quasistatic or adiabatic evolu-
tion, namely that the evolution of φðtÞ is “slow enough”
that using a static effective potential is warranted.
A main objective of this work is to critically assess

this assumption, identify under which circumstances it is
warranted, analyze the circumstances when it is not, and
provide a consistent framework to study the dynamics.
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III. DYNAMICS: AN ADIABATIC EFFECTIVE
POTENTIAL?

When φ evolves in time, the dynamics must be studied
by evolving a density matrix in time, for which the
Schwinger-Keldysh or in-in formulation is better suited
[18–22]. We here provide an alternative by extending to the
dynamical case, the Hamiltonian formulation of the effec-
tive potential up to one loop advanced in Refs. [15,16] and
summarized in the previous section (see also Ref. [6]). In
the dynamical situation the constraints (2.3) are relaxed
allowing the homogeneous expectation values of field and
canonical momentum to depend on time.
Therefore, we consider a coherent state jΦi such that the

field operator ϕ̂ and its canonical conjugate momentum π̂
acquire spatially homogeneous but time dependent expect-
ation values, namely,

hΦjϕ̂ðx⃗; tÞjΦi ¼ φðtÞ; hΦjπ̂ðx⃗; tÞjΦi ¼ φ̇ðtÞ; ð3:1Þ

where φðtÞ is a classical homogeneous field, namely a
dynamical mean field. Therefore jΦi characterizes a
spatially translational invariant coherent state (annihilated
by the spatial momentum operator). To describe this
dynamical case, we work in the Heisenberg picture wherein
operators evolve in time but states do not, hence the
coherent state jΦi is time independent. The Heisenberg
field equations obtained from the action (2.1) are

∂
2
t ϕ̂ −∇2ϕ̂þ V 0ðϕ̂Þ ¼ 0; ð3:2Þ

with ∂

∂ϕ≡0, which are obviously also satisfied as expect-
ation values in the time independent coherent state jΦi,
namely,

hΦj½∂2t ϕ̂ −∇2ϕ̂þ V 0ðϕ̂Þ�jΦi ¼ 0; ð3:3Þ

and we consider the following initial conditions:

hΦjϕ̂ðx⃗; 0ÞjΦi ¼ φð0Þ ð3:4Þ

hΦjπ̂ðx⃗; 0ÞjΦi ¼ φ̇ð0Þ: ð3:5Þ

As in the static case we write the field operators separating
the “classical” expectation values, namely the mean fields,
and the quantum fluctuations,

ϕ̂ðx⃗;tÞ¼φðtÞþ δ̂ðx⃗;tÞ; π̂ðx⃗;tÞ¼ φ̇ðtÞþ π̂δðx⃗;tÞ; ð3:6Þ

which in accordance with Eq. (3.1) requires vanishing
expectation values of the fluctuations in the coherent state
jΦi, namely,

hΦjδ̂ðx⃗; tÞjΦi ¼ 0; hΦjπ̂δðx⃗; tÞjΦi ¼ 0: ð3:7Þ

Using Eqs. (3.6) and (3.7), the expectation value of the
field Hamiltonian operator (2.2) can be written as

hΦjĤjΦi ¼ V
�
φ̇2ðtÞ
2

þ VðφðtÞÞ


þ hΦjHδjΦi; ð3:8Þ

with

Hδ ¼
Z

d3x
�
π̂2δ
2
þ ð∇δ̂Þ2

2
þ V 00ðφðtÞÞ

2
δ̂2 þ � � �

�
; ð3:9Þ

where the expectation values of the linear terms in π̂δ; δ̂
vanish by Eq. (3.7), V is the spatial volume in which the
field is quantized, and we have expanded the potential
around the mean field φðtÞ. The Heisenberg equation of
motion (3.2) becomes

φ̈ðtÞ þ V 0ðφðtÞÞ þ ∂
2
t δ̂ −∇2δ̂þ V 00ðφðtÞÞδ̂

þ 1

2
V 000ðφðtÞÞδ̂2 þ � � � ¼ 0; ð3:10Þ

and similarly with its expectation value in the coherent state
jΦi (3.3). A related approach has also been considered to
explore dynamical aspects in Ref. [23].

A. Quantization

The quadratic terms in δ̂ in the Hamiltonian (3.9)
describe a free field theory but now with a time dependent
mass term V 00ðφðtÞÞ. Therefore, in analogy with the static
case, we proceed to quantize the theory by considering the
solutions of the linearized equations of motion, describing
a free field with a time dependent mass V 00ðφðtÞÞ, namely,

∂
2
t δ̂ −∇2δ̂þ V 00ðφðtÞÞδ̂ ¼ 0: ð3:11Þ

The field operators δ̂ðx⃗; tÞ; π̂δ are expanded in Fourier
modes in the quantization volume V,

δ̂ðx⃗; tÞ ¼
ffiffiffi
ℏ

pffiffiffiffi
V

p
X
k⃗

�
ak⃗gkðtÞeik⃗·x⃗ þ a†

k⃗
g�kðtÞe−ik⃗·x⃗

�
; ð3:12Þ

π̂δðx⃗; tÞ ¼
ffiffiffi
ℏ

pffiffiffiffi
V

p
X
k⃗

�
ak⃗ġkðtÞeik⃗·x⃗ þ a†

k⃗
ġ�kðtÞe−ik⃗·x⃗

�
; ð3:13Þ

and the mode functions, gkðtÞ, obey the equation of motion

g̈kðtÞþω2
kðtÞgkðtÞ¼0; ω2

kðtÞ≡ ½k2þV 00ðφðtÞÞ�; ð3:14Þ

with the Wronskian condition dictated by canonical com-
mutation relations to be
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ġkðtÞg�kðtÞ − gkðtÞġ�kðtÞ ¼ −i: ð3:15Þ

The annihilation and creation operators ak⃗; a
†
k⃗
are time

independent because the mode functions gkðtÞ are solutions
of the mode equations (3.14), thereby the fluctuation field
δ̂ðx⃗; tÞ is a solution of the linearized Heisenberg field
equation (3.11). They obey standard canonical commuta-
tion relations and the condition

ak⃗jΦi ¼ 0; ð3:16Þ

hence ensuring the fulfillment of the conditions (3.7). Just
as in the static case, the conditions (3.7) are also fulfilled if
the state jΦi is an eigenstate of the number operator a†

k⃗
ak⃗

with eigenvalue nk. We have explicitly included
ffiffiffi
ℏ

p
in the

expressions (3.12) and (3.13) to highlight below the
connection with the loop expansion [4,6,9] as in the static
case of the previous section. We can now obtain the energy
density and the expectation value of the Heisenberg field
equation, with

hΦjHδjΦi ¼ ℏ
2

X
k⃗

½jġkðtÞj2 þ ω2ðtÞjgkðtÞj2� þOðℏ2Þ:

ð3:17Þ

We obtain up to OðℏÞ (one loop)

E ¼ hΦjĤjΦi
V

¼ 1

2
φ̇2ðtÞ þ VðφðtÞÞ þ EfðtÞ; ð3:18Þ

where we have introduced the energy density from one-
loop quantum fluctuations

EfðtÞ ¼
ℏ
2

Z
d3k
ð2πÞ3 ½jġkðtÞj

2 þ ω2ðtÞjgkðtÞj2�: ð3:19Þ

If the state jΦi is an eigenstate of the number operator with
eigenvalue nk, the bracket in the above expression is
multiplied by 1þ 2nk, just as in the static case this state
would be of higher energy. The vacuum state with nk ¼ 0
yields the lower fluctuation energy in the static and the
dynamical cases.
Similarly, up to one-loop order [OðℏÞ] the expectation

value of the Heisenberg field equation (3.3) in the coherent
state jΦi becomes

φ̈ðtÞþV 0ðφðtÞÞþℏ
2
V 000ðφðtÞÞ

Z
d3k
ð2πÞ3 jgkðtÞj

2¼0: ð3:20Þ

To obtain both expressions we used the linearized
equations of motion (3.11), the field expansions (3.12)
and (3.13), the constraint (3.16), and the infinite volume
limit

P
k⃗ → V

R
d3k=ð2πÞ3.

The OðℏÞ terms in (3.18) and (3.20) are one-loop
contributions: these arise from hΦjπ̂2δjΦi; hΦjδ̂2jΦi, which
are simply the propagators (or derivatives) closed onto
themselves. Solving the Heisenberg field equations, along
with the constraints (3.7) in a systematic perturbative
expansion in the nonlinearities, will generate higher orders
in the loop expansion. In this article we focus on the one-
loop [OðℏÞ] contribution to the energy density and equa-
tions of motion of the mean field.
The total Hamiltonian does not depend explicitly on

time, hence energy is conserved and in the Heisenberg
picture the state jΦi is time independent, therefore the
expectation value of the energy density in the coherent state
jΦi is conserved, namely Ė ¼ 0. Using the equations of
motion of the mode functions (3.14) and the form of the
time dependent frequencies (3.14), it is straightforward to
find

Ė ¼ φ̇ðtÞ
�
φ̈ðtÞ þ V 0ðφðtÞÞ þ ℏ

2
V 000ðφðtÞÞ

Z
d3k
ð2πÞ3 jgkðtÞj

2



¼ 0; ð3:21Þ

therefore the expectation value of the equation of motion
(3.20) is the statement of conservation of the (expectation
value) of the energy density.
This dynamical conservation law is of paramount

importance; if the amplitude of the modes gkðtÞ grows
in time the fluctuation contribution to the energy density
grows at the expense of the classical part of the energy,
resulting in a damping of the φðtÞ amplitude. As it will be
studied in detail below, growth of jgkðtÞj is a consequence
of instabilities and particle production. Therefore instabil-
ities in the fluctuations entail dissipative damping [22] of
φðtÞ. In turn, as discussed in detail below, these instabilities
entail the breakdown of a quasistatic or adiabatic approxi-
mation and imply that using the static effective potential in
the equation of motion of the mean field is unwarranted.
An important corollary of this analysis is that replacing

the second and third terms in the equation of motion (3.20)
by the field derivative of the static effective potential in the
case when φðtÞ evolves in time clearly violates energy
conservation. This is because energy is conserved only
when the mode functions gkðtÞ are the solutions of the
mode equations (3.14) and not of the form e∓iωkt as used in
the calculation of the static effective potential as is explicit
in the quantization [(2.9) and (2.10)] for the static case.
This observation will become more clear with the analysis
in the next section.

B. Adiabatic approximation

Using the effective potential in the equations of motion
of the mean field is usually argued to describe the dynamics
in a quasistatic or adiabatic approximation. Here we
introduce the adiabatic expansion that consistently
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implements this approximation to understand its regime of
validity. Given the time dependence of the frequencies in
Eq. (3.14), we seek an approximate solution for the mode
functions in terms of a Wentzel-Kramers-Brillouin (WKB)
ansatz [24],

gkðtÞ ¼
e−i

R
t

0
Wkðt0Þdt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WkðtÞ
p ; ð3:22Þ

which when inserted into Eq. (3.14) reveals thatWkðtÞmust
satisfy

W2
kðtÞ ¼ ω2

kðtÞ −
1

2

�
Ẅk

Wk
−
3

2

Ẇ2
k

W2
k



: ð3:23Þ

The resulting equation can be solved in an adiabatic
expansion:

W2
kðtÞ ¼ ω2

kðtÞ
�
1 −

1

2

ω̈k

ω3
k

þ 3

4

�
ω̇k

ω2
k

	
2

þ � � �


: ð3:24Þ

In such an expansion, terms which contain n derivatives of
ωk are known as of nth order adiabatic. Inspecting the
resulting equation reveals that it contains exclusively terms
of even adiabatic order.
Using the WKB ansatz and assuming that WkðtÞ is real,

one can show that

jgkðtÞj2 ¼
1

2WkðtÞ
ð3:25Þ

jġkðtÞj2 ¼
WkðtÞ
2

�
1þ 1

4

�
Ẇk

W2
k

	
2


; ð3:26Þ

which can be combined with Eq. (3.17) to give

hΦjĤδjΦi ¼ 1

4

X
k

�
WkðtÞ

�
1þ 1

4

�
Ẇk

W2
k

	
2


þ ω2

k

WkðtÞ
�
:

ð3:27Þ

We now proceed by invoking the adiabatic expansion,
Eq. (3.24), and expanding this expectation value up to
second order adiabatic. After carrying out these algebraic
manipulations we obtain up to second adiabatic order

hΦjĤδjΦi ¼ 1

2

X
k

ωk

�
1þ 1

8

�
ω̇k

ω2
k

	
2

þ � � �
�
; ð3:28Þ

jgkðtÞj2 ¼
1

2ωkðtÞ
�
1þ 1

4

ω̈k

ω3
k

−
3

8

�
ω̇k

ω2
k

	
2

þ � � �


; ð3:29Þ

where the dots stand for terms of higher adiabatic order.

Following the analysis of the static case, one may
introduce an adiabatic effective potential as

VðadÞ
eff ðφÞ≡ VðφÞ þ 1

V
hΦjĤδjΦi: ð3:30Þ

With the result (3.28), we can now express this adiabatic
effective potential up to second adiabatic order, obtaining
(ℏ ¼ 1)

VðadÞ
eff ðφÞ≡VðφðtÞÞþ1

2

Z
d3k
ð2πÞ3ωkðtÞþ

1

16

Z
d3k
ð2πÞ3

ω̇2
kðtÞ

ω3
kðtÞ

:

ð3:31Þ

Recalling the definition of the frequencies, ωkðtÞ, given by
Eq. (3.14) and (3.31) becomes

VðadÞ
eff ðφÞ≡VðφðtÞÞþ1

2

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þV 00ðφðtÞÞ

q

þ φ̇2ðtÞ
64

ðV 000ðφðtÞÞÞ2
Z

d3k
ð2πÞ3

1

ðk2þV 00ðφðtÞÞÞ5=2 :

ð3:32Þ

The identification of this expression with an adiabatic
effective potential warrants discussion. The first term
represents the usual classical potential energy density of
the field configuration. The second term is a zeroth-order
adiabatic correction which encodes the effects of the
quantum fluctuations. Notice this term is identical to the
usual result for the one-loop effective potential (2.13) found
in Sec. II for the static case, but now in terms of the
dynamical expectation value φðtÞ. This is of course
expected because the zeroth-order adiabatic does not
include any terms with time derivatives of φðtÞ. This term
features all the ultraviolet divergences found within the
context of the static effective potential (2.14) and would
underpin using the usual effective potential in the evolution
equation for φðtÞ as in Eq. (2.26).
However, the third term represents the second order

adiabatic correction which is a consequence of quantum
fluctuations. This term is a distinct consequence of the time
dependence of the expectation value, φðtÞ, and is com-
pletely missed if one assumes that the usual form of the
effective potential extends without qualification to the
scenario of a dynamical expectation value as in Eq. (2.26).
The integral expression for the second adiabatic order

correction can be evaluated in a straightforward manner
provided we assume V00ðφÞ > 0:
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φ̇2

64
ðV 000ðφðtÞÞÞ2

Z
d3k
ð2πÞ3

1

ðk2 þ V 00ðφðtÞÞÞ5=2

¼ φ̇2

384π2
ðV 000ðφðtÞÞÞ2
V 00ðφðtÞÞ ; ðV 00ðφðtÞÞ > 0Þ: ð3:33Þ

It is noteworthy that this contribution (and the higher
adiabatic orders) is ultraviolet finite, albeit it may feature
infrared divergences whenever V 00ðφðtÞÞ vanishes, signal-
ling the breakdown of the adiabatic approximation.
Of course, there are additional, higher adiabatic order

corrections to the effective potential which at and beyond
second adiabatic order all feature time derivatives of φðtÞ
and they are all ultraviolet finite. At present, we restrict
ourselves to a study of the second order adiabatic correc-
tion, which suffices to highlight if and when the adiabatic
approximation breaks down.

C. Equations of motion and the
adiabatic effective potential

In the scenario where the expectation value of the scalar
field is time dependent, hΦjϕ̂ðx⃗; tÞjΦi ¼ φðtÞ, we are
interested in the dynamics of this classical field.
Inserting Eqs. (3.6) and (3.7) into the expectation value
of the Heisenberg equations of motion for ϕ̂, Eq. (3.2), and
expanding up toOðδ2Þ ∝ ℏ yields the following equation of
motion for the expectation value:

φ̈þ V 0ðφÞ þ 1

2
V 000ðφÞhΦjδ̂2ðx⃗; tÞjΦi ¼ 0; ð3:34Þ

which upon using the Fourier expansion for the fluctuation
given by (3.12), and upon setting ℏ≡ 1, becomes

φ̈þ U0ðφÞ ¼ 0; ð3:35Þ

where we have defined

U0ðφÞ≡ V 0ðφÞ þ 1

2
V 000ðφÞ

Z
d3k
ð2πÞ3 jgkðtÞj

2: ð3:36Þ

The important question is, does U0 ¼ ∂U
∂ϕ ¼ ∂VðadÞ

eff
∂ϕ with

VðadÞ
eff ðφÞ given by Eq. (3.30), which up to second adiabatic

order is given by (3.31) and (3.32)?
To investigate the relationship between U0, and

dVðadÞ
eff ðφÞ=dφ, we begin by using the result of the WKB

ansatz, (3.25), and the adiabatic expansion, (3.24), to obtain
U0 up to second order adiabatic:

U0ðφÞ ¼ V 0ðφÞ þ 1

2
V 000ðφÞ

Z
d3k
ð2πÞ3

1

2Wk
ð3:37Þ

U0ðφÞ ≃ V 0ðφÞ þ 1

4
V 000ðφÞ

×
Z

d3k
ð2πÞ3

�
1

ωk
þ 1

4

ω̈k

ω4
k

−
3

8

ω̇2
k

ω5
k

þ � � �


: ð3:38Þ

For comparison, using Eq. (3.31), we can obtain dVðadÞ
eff =dφ

to second adiabatic order:

dVðadÞ
eff

dφ
¼ V 0ðφÞ þ 1

4
V 000ðφÞ

Z
d3k
ð2πÞ3

×

�
1

ωk
þ φ̇

4

ω̇k

ω4
k

�
V 0000

V 000 −
V 000

2ω2
k

	
−
3

8

ω̇2
k

ω5
k

þ � � �


;

ð3:39Þ
where we have made use of Eq. (3.14) to calculate the
necessary derivatives of the frequencies, treating φ and φ̇
independently. Direct comparison of the expressions for U0

and dVðadÞ
eff =dφ reveals many common terms. However, in

the second integral expression lies an apparent discrepancy.
Using the definition of the frequencies (3.14), we see that

ω̇k ¼
φ̇

2ωk
V 000; ð3:40Þ

ω̈k ¼
φ̈

2ωk
V 000 þ φ̇2

2ωk
V 0000 −

φ̇

2ωk

ω̇k

ωk
V 000; ð3:41Þ

and thus

ω̈k

ω4
k

¼ φ̈

2ω5
k

V 000 þ φ̇
ω̇k

ω4
k

V0000

V 000 −
φ̇

2ω2
k

ω̇k

ω4
k

V 000: ð3:42Þ

Inserting this result into our expression for U0ðφÞ gives

U0ðφÞ ¼ V 0ðφÞ þ 1

4
V 000ðφÞ

×
Z

d3k
ð2πÞ3

�
1

ωk
þ φ̇

4

ω̇k

ω4
k

�
V 0000

V 000 −
V 000

2ω2
k

	

þ φ̈

4

V 000

2ω5
k

−
3

8

ω̇2
k

ω5
k

þ � � �


: ð3:43Þ

Written in this form, we can now manifestly see that U0 and
dVðadÞ

eff =dφ do not match. In particular, using Eqs. (3.39)
and (3.43),

U0ðφÞ − dVðadÞ
eff ðφÞ
dφ

¼ φ̈
ðV 000ðφÞÞ2

16

Z
d3k
ð2πÞ3

1

2ω5
k

þ � � �

¼ φ̈
ðV 000ðφÞÞ2
96π2V 00ðφÞ þ � � � ; ð3:44Þ
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where the dots stand for higher derivatives of φðtÞ and we
assumed V 00ðφðtÞÞ > 0. Hence, beyond leading adiabatic
order the equation of motion for φðtÞ does not involve

dVðadÞ
eff =dφ but instead U0ðφÞ defined by Eq. (3.36).

Obviously only when time derivatives of the expectation
value φ vanish, in other words, the static case, U0ðφÞ ¼
dVðadÞ=dφ. Therefore, it becomes very clear that while the
adiabatic effective potential improves upon the (mis)use of
the static effective potential in that it includes derivatives of
φðtÞ, it is still not the proper quantity to use in the equations
of motion of φðtÞ.
As stated above, the equation of motion (3.20) is

tantamount to the statement of the conservation of energy
by Eq. (3.21), consequently neglecting the derivatives of
φðtÞ by truncating the adiabatic expansion at some par-
ticular order of derivatives of φðtÞ entails a violation of
energy conservation beyond that order.
A practical question that obviously arises is the follow-

ing: if a small violation of energy conservation is tolerated,
what would be the range of validity of the adiabatic
effective potential in a numerical study of the evolution
of φðtÞ with the equation

φ̈ðtÞ þ dVðadÞ
eff

dφ
¼ 0; ð3:45Þ

instead of the exact equation (3.35) with U0ðφÞ defined
by (3.36)?
For a given classical potential VðφÞ, the result (3.44)

yields a quantitative criterion to assess the regime of
validity, at least up to second adiabatic order. Let us
consider first the typical case of

VðφÞ ¼ 1

2
m2φ2 þ λ

4
φ4 ð3:46Þ

with m2 > 0 for which

U0ðφÞ − dVðadÞ
eff ðφÞ
dφ

¼ φ̈ðtÞ λ

8π2

� ð3λφ2ðtÞ=m2Þ
1þ ð3λφ2ðtÞ=m2Þ



:

ð3:47Þ

In the small (dimensionless) amplitude regime
3λφ2ðtÞ=m2 ≪ 1 the difference is a priori perturbatively
small, the potential (3.46) is dominated by the mass term,
and the field oscillates around the minimum φ ¼ 0. This
seems to be a regime in which both the adiabatic approxi-
mation and the adiabatic potential are reliable, however as
we show below in the next section, precisely in this regime
there are parametric instabilities resulting in a nonpertur-
bative exponential growth of the mode functions and a
complete breakdown of adiabaticity.
In the large amplitude regime 3λφ2ðtÞ=m2 ≫ 1 the

difference (3.47) seems to be perturbatively small, of

OðλÞ; however, in this regime the adiabatic approximation
is no longer reliable for long wavelengths as shown by the
following argument. For long wavelengths k2 ≪ 3λφ2ðtÞ,
and in this large amplitude regime where VðφÞ ≈ λφ4=4,
the second order adiabatic ratio that enters in the adiabatic
expansion (3.24) becomes

ω̈kðtÞ
ω3
kðtÞ

≈
φ̈ðtÞ
3λφ3

; ð3:48Þ

however from the equation of motion at tree level it follows
that φ̈ðtÞ ≈ λφ3 and in this regime we find that

ω̈kðtÞ
ω3
kðtÞ

≃Oð1Þ; ð3:49Þ

therefore the adiabatic approximation is no longer valid for
long wavelength modes with k2 ≪ 3λφ2ðtÞ. It is important
to highlight that the breakdown of adiabaticity is associated
with long wavelength fluctuations, for k ≫ V 00ðφÞ the
adiabatic approximation is reliable, and higher order terms
in the adiabatic expansion become further suppressed in
this limit.
This analysis leads us to conclude that the regime of

validity of an adiabatic effective potential is severely
restricted to small amplitudes and short times when the
parametric instabilities studied in detail in the next section
have not yet led to a large growth of the mode functions.

IV. BREAKDOWN OF ADIABATICITY

The discussion above highlights that, in general, the
equation of motion cannot be simply written as
φ̈þ V 0

effðφÞ ¼ 0, even in an adiabatic approximation in
terms of the adiabatic effective potential, and also illumi-
nates if and when the adiabatic expansion breaks down. We
recognize at least two ubiquitous relevant instances:
(i) parametric amplification in the case of oscillating mean
fields, and (ii) spinodal (tachyonic) instabilities in the case
of spontaneous symmetry breaking.

A. Parametric amplification

The adiabatic approximation (3.24) relies on the
assumption that W2

kðtÞ > 0, namely that WkðtÞ defined
by Eq. (3.22) is real. This means, for example, that if
V 00ðφðtÞÞ is an oscillatory function bounded in time, the
resulting mode functions gkðtÞ in the adiabatic approxima-
tion, given by Eqs. (3.22) and (3.24) would also be
bounded in time, which precludes the possibility of
resonances and parametric amplification. Consider the case
with tree level potential

VðφÞ ¼ m2

2
φ2 þ λ

4
φ4 ⇒ V 00ðφÞ ¼ m2 þ 3λφ2; ð4:1Þ
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with m2 > 0, and consider that the mean field is oscillating
around the minimum of this tree level potential with1

φðtÞ ¼ φð0Þ cosðmtÞ; ð4:2Þ

defining

mt ¼ τ þ π

2
: ð4:3Þ

The mode equations (3.14) become

d2

dτ2
gkðτÞ þ ½ηk − 2α cosð2τÞ�gkðτÞ ¼ 0; ð4:4Þ

where we introduced the dimensionless variables

α ¼ 3λ
φ2ð0Þ
4m2

; η ¼ 1þ κ2 þ 2α; κ ¼ k
m
: ð4:5Þ

The Eq. (4.4) is recognized as Mathieu’s equation [25–28].
Floquet’s theory [25] shows that solutions are of the form

gkðτÞ ¼ eiνkτPkðτÞ; Pkðτ þ πÞ ¼ PkðτÞ; ð4:6Þ

where νk is the characteristic exponent of Floquet solutions.
If νk is real the (quasi)periodic solutions are stable, whereas
if νk is complex there is one growing and one (linearly
independent) decaying solution. The growing solution is a
consequence of the parametric amplification instability
associated with resonances, a subject of utmost importance
within the theory of cosmological reheating [29–36]. The
stability of solutions in the ηk − α plane have been
thoroughly studied in the literature [25–28]. Unstable
bands emanate from the resonance values ηk ¼ n2; n ¼
0; 1; 2… within these bands the characteristic Floquet
exponent νk is complex and the mode functions either
grow or decay exponentially, the growing mode
gkðτÞ ∝ ejImνkjτ. For generic initial conditions, the general
solution is a combination of the growing and decaying
solutions. Using the results from Refs. [26–28], we find
that these unstable bands correspond to

κ2n;− ≤ κ2 ≤ κ2n;þ; κ2 > 0; n ¼ 0; 1; 2…: ð4:7Þ

The bands for n ¼ 0, 1 are unphysical because these
correspond to negative values of κ2; for n ≥ 2 a power
series expansion in α for κ2n;� is available, the first few
terms [valid for α≲Oð1Þ] are given for n ¼ 2; 3; 4 in the
Appendix and displayed in Fig. 1.

Figure 2 shows the numerical evaluation of the
linearly independent solutions h0ðτÞ; h1ðτÞ with initial
conditions h0ð0Þ ¼ 0; h00ð0Þ ¼ 1; h1ð0Þ ¼ 1; h10ð0Þ ¼ 0,
respectively, for the unstable band with ηk ¼ 4; α ¼ 1

corresponding to κ2 ¼ 1, near the middle of the unstable
band. This figure clearly shows the exponential growth
associated with parametric amplification in the unstable
bands. The Floquet exponents may be obtained analytically
near the band edges by multitime scale analysis [25];
however, the actual values of these are not relevant for our
general arguments.
For comparison, Fig. 3 displays the solutions in the

stable regions for η ¼ 3; 5; α ¼ 1, on either side of the
instability band at η ¼ 4.
The bandwidths Δκ2ðnÞ ¼ κ2n;þ − κ2n;− ¼ Cnα

n þ � � �,
with coefficients Cn that become monotonically decreasing
with n (see the Appendix); therefore, for α≲Oð1Þ the
bands become narrower, as explicitly shown in Fig. 1.
In terms of the momenta k and the amplitude φð0Þ, the

bandwidths become

Δk2ðnÞ ¼ k2n;þ − k2n;− ¼ Cn
ð3λφ2ð0Þ=4Þn

m2ðn−1Þ þ � � � : ð4:8Þ

This expression highlights that the bands are narrower
for weak coupling, large masses, or small amplitudes.
While this result is particular to Mathieu’s equation, we
expect, quite generically, that bandwidths for resonances
will feature qualitatively similar characteristics as functions
of these parameters.
Obviously, the exponential growth with time of the mode

functions gkðtÞ implies a breakdown of adiabaticity for the
values of momentum k within these unstable bands. This
can be immediately seen from the adiabatic expansion
(3.24). Since the frequencies ωkðtÞ are oscillatory, each and
all terms in the adiabatic expansion (3.24) are oscillatory and
bounded in time. Therefore, jgkðtÞj2 and jġkðtÞj2 obtained
via the adiabatic approximation [(3.25) and (3.26)]

FIG. 1. Unstable bands for κ2n;− ≤ κ2 ¼ k2

m2 ≤ κ2n;þ for
n ¼ 2; 3; 4. The range is constrained by κ2 > 0.

1This choice neglects the nonlinearities, but will capture the
main aspects of parametric amplification. This analysis also
neglects the damping of the amplitude from the backreaction of
the fluctuations, which is discussed in detail below.
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are bounded in time. Instead, the Floquet solutions are
unbounded in time formodeswithin the unstable bands. The
unstable Floquet solutions cannot be reliably captured by an
adiabatic approximation, because secular terms associated
with resonances [25] cannot be described by the adiabatic
expansion (3.24).
In the fluctuations contribution to the equation of motion

(3.20), the integral in k ¼ mκ sweeps across the unstable
bands within which jgkðtÞj2 grows exponentially in time.
Consequently, the third term in (3.10) grows in time
receiving contributions from all unstable bands within
which there is exponential growth. We emphasize that this
behavior is not captured by the simple effective potential
nor any adiabatic approximation to it.
The mode equation (4.4) is correct for oscillations of

φðtÞ around an harmonic potential, for anharmonic poten-
tials, the nonlinearity induces higher harmonics in the
dynamical evolution of φðtÞ, in turn higher harmonics
induce new resonances and unstable bands. However, while
the instability chart will be modified by anharmonicity
[22,29,30], the main observation that the adiabatic approxi-
mation cannot reliably describe parametric amplification
with the concomitant growth of the mode functions is a

generic result of broader significance. This analysis con-
firms that even in the small amplitude regime when the
difference (3.47) seems to be perturbatively small, the
adiabatic approximation breaks down because of para-
metric amplification and the adiabatic effective potential is
not reliable to describe the dynamics. This analysis of
Mathieu’s equation, valid for small amplitude, shows that
parametric amplification and exponentially growing modes
will continue as long as the amplitude of oscillations is
nonvanishing. Exponential growth of parametrically ampli-
fied modes is effective unless the amplitude of oscillations
vanishes.
The breakdown of adiabaticity discussed in Sec. III C

and by parametric amplification discussed above is mani-
fest for long wavelengths. For k2 ≫ λφ2ð0Þ, the adiabatic
ratios ω̈kðtÞ=ω3

kðtÞ; ðω̇kðtÞ=ω2
kðtÞÞ2 ≪ 1 and the width of

the unstable bands and the imaginary part of the Floquet
exponents become smaller; therefore for large wave vectors
the adiabatic approximation is reliable. This is expected
on physical grounds as finite amplitude oscillations cannot
efficiently transfer energy to very short wavelength modes;
in other words, cannot excite high energy degrees of
freedom.

FIG. 2. Two linearly independent solutions of Mathieu’s equation (4.4), h0ðτÞ; h1ðτÞ with initial conditions
h0ð0Þ ¼ 1; h00ð0Þ ¼ 0; h1ð0Þ ¼ 0; h10ð0Þ ¼ 1, for the unstable band for n ¼ 2, with η ¼ 4 and α ¼ 1, corresponding to κ2 ¼ 1,
approximately in the middle of the first physical unstable band for κ. A general solution for a mode function gkðτÞ is a complex linear
combination of h0ðτÞ and h1ðτÞ satisfying the condition (3.15).

FIG. 3. Two stable solutions of Mathieu’s equation (4.4), FðτÞ with initial conditions Fð0Þ ¼ 1; F0ð0Þ ¼ 0, for η ¼ 3; 5 and α ¼ 1,
respectively, on either side of the first physical unstable band at η ¼ 4.
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B. Spinodal instabilities

The result (3.32) for the effective potential up to second
adiabatic order exhibits an important caveat in the case of
spontaneous symmetry breaking when the tree level poten-
tial features a maximum implying that V 00ðφÞ < 0 in a
region 0 ≤ jφðtÞj ≤ jφsj, where the actual value of φs
depends on the particular form of the potential. This region
is known as the classical spinodal and corresponds to an
unstable region in field space [16,37–42]. In this region the
effective mass squared M2ðφÞ≡ V 00ðφÞ in Eq. (2.8) is
negative and the static effective potential (2.14) and its
renormalized counterpart (2.19) feature an imaginary part.
In Ref. [16] the physical interpretation of this imaginary
part, associated with the spinodal instabilities, was eluci-
dated: it yields the lifetime of a quantum state whose wave
functional is localized in field space within the spinodal
region [43]. In Refs. [41,42] the dynamics of such Gaussian
wave functional and the growth of correlations associated
with domain formation were studied in detail.
To give a specific example, consider the tree level

(classical) potential

VðφÞ ¼ λ

4

�
μ2

λ
− ϕ2

	
2

; μ2 > 0; ð4:9Þ

within the region

0 ≤ φ2 ≤
μ2

3λ
⇒ V 00ðφÞ < 0; ð4:10Þ

to which we refer as the (classical) spinodal [37–39], the
frequencies ωk in Eq. (3.14) are given by

ωkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − jV 00ðφðtÞÞj

q
: ð4:11Þ

For k2 < jV 00ðφðtÞÞj these are purely imaginary describing
the spinodal (tachyonic) instabilities which occur because
the field configuration finds itself near a local maximum of
its potential.
In condensed matter systems these instabilities describe

the early stages of a phase transition characterized by the
formation of correlated domains, whose typical size,
namely the correlation length ξðtÞ, grows in time [37–39].
A similar behavior emerges in quantum field theory as
shown in Refs. [16,41,42], where the correlation length
grows as ξðtÞ ∝ ffiffi

t
p

during the early stages, in a similar
fashion as in condensed matter systems with a noncon-
served order parameter [37–39]. These instabilities have
also been discussed within the context of inflationary
cosmology [43].
Since the adiabatic approximation (3.24) explicitly

requires that WkðtÞ, introduced in Eq. (3.22), be real
valued, such instabilities characterize a breakdown of
adiabaticity.

This breakdown is explicit in Eq. (3.32) where both the
zeroth and second adiabatic order (the lowest orders)
become complex because the momentum integrals receive
purely imaginary contributions from the band of unstable
wave vectors in the spinodal region k2 < jV 00ðφðtÞÞj; this is
the origin of the imaginary part of the static effective
potential in this region. The result (3.33) assumed that the
frequencies are purely real, namely that V 00ðφðtÞÞ never
becomes negative.
Assuming that φðtÞ is initially near the maximum of the

potential and rolls slowly down the potential hill, at early
times the mode functions in the band of spinodally unstable
momenta are to leading order in an adiabatic (derivative)
expansion neglecting terms with time derivatives of φðtÞ
under the assumption of a “slow roll,” are of the form

gkðtÞ ¼ rke
R

t

0
Ωkðt0Þdt0 þ ske

−
R

t

0
Ωkðt0Þdt0 ;

ΩkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV 00ðφðtÞÞj − k2

q
; ð4:12Þ

where the complex coefficients rk, sk are determined by the
initial conditions and Wronskian condition (3.15). The
growth of the mode functions gkðtÞ continues until φðtÞ
reaches the inflection or spinodal point V 00ðφÞ ¼ 0 corre-
sponding to the end of the classical spinodal region, beyond
which V 00ðφðtÞÞ > 0.
The essential conclusion with regards to spinodal insta-

bilities and the effective potential is twofold. (i) If the
classical potential features a spinodal region, then a
quasistatic, adiabatic description will fail to capture the
dynamics of the system above the spinodal point.
(ii) Moreover, even outside the spinodal region, a signifi-
cant breakdown of adiabaticity can occur as the spinodal
point is approached from below, even when arbitrarily
slowly, because the frequencies ωkðtÞ vanish at the spinodal
point and become imaginary above it, thus rendering a
quasistatic, adiabatic approach ineffective.
In a numerical integration of the equations of motion, it

is possible to set initial conditions for which φðtÞ is well
below the spinodal and V 00ðφÞ > 0, thereby avoiding the
spinodal instabilities altogether. Such a setup must also
avoid possible excursions of φðtÞ near the end of the
spinodal at which V 00ðφðtÞÞ ¼ 0 because in this case the
adiabatic approximation also breaks down for small
momenta. Even restricting initial conditions to avoid the
region with V 00ðφÞ ≤ 0, the oscillations of φðtÞ in the region
V 00ðφðtÞÞ > 0 will lead to parametric instabilities as dis-
cussed in the previous section. Therefore insisting on using
the static effective potential or even the adiabatic effective
potential is clearly unreliable, leading to a manifest
violation of energy conservation and to completely miss
exponentially growing modes associated with spinodal or
parametric instabilities.
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C. Nonadiabatic particle production

As emphasized in the above discussion, the equation of
motion for φðtÞ, (3.20) is the statement of the conservation
of the total energy density (3.18) when the mode functions
obey the Eq. (3.14). In the case of instabilities, either
parametric or spinodal, the fluctuation contribution to the
total energy density, EfðtÞ given by Eq. (3.19), grows at the
expense of the first two, classical terms in the energy
density (3.18). In this subsection we seek to establish a
correspondence between the growth of EfðtÞ and particle
production.

1. Parametric instabilities

In the case of parametric instabilities for a convex
function VðφÞ which can always be defined to be positive,
the first two terms in (3.18) are manifestly positive and so is
the fluctuation term EfðtÞ, because ω2

kðtÞ > 0. Therefore,
energy conservation implies that the nonadiabatic growth
of the fluctuation term must result in a damping of the
amplitude of φðtÞ. The draining of the classical part of the
energy, namely the first two terms in (3.18), can be
interpreted as the profuse production of adiabatic particles.
This can be understood from the following argument.
In the expansion of the field in terms of the exact mode

functions (3.13), the annihilation and creation operators
ak⃗; a

†
k⃗
are time independent because the mode functions

gkðtÞ obey the Heisenberg field equation (3.11). Following
[24,44–50], we can introduce time dependent operators by
expanding in the basis of the zeroth-order adiabatic particle
states. Introducing the zeroth-order adiabatic modes,

f̃kðtÞ ¼
e−i

R
t
ωkðt0Þdt0ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðtÞ
p ; ð4:13Þ

we can expand the exact mode functions gkðtÞ as

gkðtÞ ¼ ÃkðtÞf̃kðtÞ þ B̃kðtÞf̃�kðtÞ ð4:14Þ

and define [44,49,50]

ġkðtÞ ¼ −iωkðtÞ½ÃkðtÞf̃kðtÞ − B̃kðtÞf̃�kðtÞ�: ð4:15Þ

The relations (4.14) and (4.15) can be inverted to yield the
Bogoliubov coefficients [49],

ÃkðtÞ ¼ if̃�kðtÞ½ġkðtÞ − iωkðtÞgkðtÞ� ð4:16Þ

B̃kðtÞ ¼ −if̃kðtÞ½ġkðtÞ þ iωkðtÞgkðtÞ�: ð4:17Þ

It follows from the Wronskian condition (3.15) that

jÃkðtÞj2 − jB̃kðtÞj2 ¼ 1: ð4:18Þ

The definition (4.14) yields

ak⃗gkðtÞ þ a†
−k⃗
g�kðtÞ ¼ ck⃗ðtÞf̃kðtÞ þ c†

−k⃗
ðtÞf̃�kðtÞ; ð4:19Þ

ak⃗ġkðtÞ þ a†
−k⃗
ġ�kðtÞ ¼ −iωkðtÞðck⃗ðtÞf̃kðtÞ − c†

−k⃗
ðtÞf̃�kðtÞÞ;

ð4:20Þ

where

ck⃗ðtÞ¼ak⃗ÃkðtÞþa†
−k⃗
B̃�
kðtÞ; c†

k⃗
ðtÞ¼a†

k⃗
Ã�
kðtÞþa−k⃗B̃kðtÞ:

ð4:21Þ

The condition (4.18) ensures that ck⃗ðtÞ; c†k⃗ðtÞ obey equal

time canonical commutation relations.
Although in principle other definitions of particles are

possible, there are two important and compelling aspects
that distinguish the zeroth adiabatic basis choice over other
possible choices: (i) if there is an asymptotic stationary
state such that the frequencies ωkðtÞ → ωkð∞Þ, the creation
and annihilation operators become constant in time
c†ðtÞ; cðtÞ → c†ð∞Þ; cð∞Þ and the right-hand side of
(4.19) describes asymptotic “out” states with the time
evolution e∓iωkð∞Þt. (ii) The time dependent operators
ck⃗ðtÞ; c†k⃗ðtÞ associated with the zeroth-order adiabatic

modes have special significance: it is straightforward to
show that the quadratic Hamiltonian Hδ given by Eq. (3.9)
can be written as

Hδ ¼
X
k⃗

ℏωkðtÞ
�
c†
k⃗
ðtÞck⃗ðtÞ þ

1

2



: ð4:22Þ

Therefore defining the instantaneous adiabatic vacuum
state j0aðtÞi so that

ckðtÞj0aðtÞi ¼ 0∀ k; t; ð4:23Þ

the Fock states,

jnk⃗ðtÞi ¼
ðc†

k⃗
ðtÞÞnk⃗ffiffiffiffiffiffiffi
nk⃗!

p j0aðtÞi; nk⃗ ¼ 0; 1; 2…; ð4:24Þ

are instantaneous eigenstates of HδðtÞ to which we refer as
adiabatic particles. The number of adiabatic particles at a
given time in the coherent state jΦi is given by

Ñ kðtÞ ¼ hΦjc†
k⃗
ðtÞck⃗ðtÞjΦi ¼ jB̃kðtÞj2: ð4:25Þ
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This result can also be understood from the relation (4.17)
and the Wronskian condition (3.15) which yield

Ñ kðtÞ ¼
1

2ωkðtÞ
½jġkðtÞj2 þ ω2

kðtÞjgkðtÞj2� −
1

2
; ð4:26Þ

from which it follows that

1

V
hΦjHδðtÞjΦi ¼ ℏ

2

Z
d3k
ð2πÞ3 ωkðtÞ½1þ 2Ñ kðtÞ�: ð4:27Þ

Note that if gkðtÞ coincides exactly with the zeroth-order
adiabatic order mode function, then ÃkðtÞ ¼ 1; B̃kðtÞ ¼ 0
and there is no particle production; however, if gkðtÞ is a
linear combination of both adiabatic modes f̃kðtÞ; f̃�kðtÞ, the
Bogoliubov coefficients Ak; Bk ≠ 0. This is important
because the zeroth adiabatic order for gkðtÞ yields the
usual effective potential as shown explicitly above.
Therefore, we conclude that the failure of the effective

potential to correctly describe the dynamical evolution of
φðtÞ is explicitly a consequence of the production of
adiabatic particles. The growth of gkðtÞ as a consequence
of parametric instabilities leads to profuse particle produc-
tion. From the relation (4.17) it is clear that the exponential
growth of gkðtÞ within the instability bands yields an
exponential growth in the adiabatic particle number.
The relation of the fluctuation component of the energy

density EfðtÞ and particle production can be made explicit
from the result (4.27), yielding the energy density (3.18)
directly in terms of the adiabatic particle number, namely
(setting ℏ ¼ 1)

E ¼ 1

2
φ̇2ðtÞ þ VðφðtÞÞ þ 1

2

Z
d3k
ð2πÞ3 ωkðtÞ½1þ 2Ñ kðtÞ�:

ð4:28Þ

Comparing with the one-loop static effective potential
(2.13), we see that the first term in the integral in (4.28) is
precisely the one-loop contribution to the effective poten-
tial, now with the mean field φðtÞ depending on time;
therefore we write (4.28) in a more illuminating manner as

E ¼ 1

2
φ̇2ðtÞ þ VeffðφðtÞÞ þ

Z
d3k
ð2πÞ3 ωkðtÞÑ kðtÞ; ð4:29Þ

with

VeffðφðtÞÞ ¼ VðφðtÞÞ þ 1

2

Z
d3k
ð2πÞ3 ωkðtÞ ð4:30Þ

being the effective potential extrapolated from the static
case (2.13) to the dynamical case, given by Eq. (2.14), and
its renormalized version (2.19) with φ → φðtÞ. The final
expression for the energy density (4.29) shows explicitly

that, in the presence of particle production, the effective
potential does not yield the correct description of the
dynamics.
The initial condition on the mode functions,

gkð0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkð0Þ
p ; ġkð0Þ ¼

−iωkð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkð0Þ

p ; ð4:31Þ

yields

Ñ kð0Þ ¼ 0; ð4:32Þ

corresponding to the zeroth-order adiabatic vacuum state.
Parametric amplification leads to profuse particle produc-
tion via the exponential growth of mode functions within
the unstable bands with the concomitant growth of the
occupation number of adiabatic particles Ñ kðtÞ.
Particle production from parametric amplification is a

well-known phenomenon studied in detail within the
context of postinflationary reheating [29–36]. However,
to the best of our knowledge, its connection with the
shortcomings of the use of the effective potential to
studying the dynamical evolution of the expectation value
of a scalar field with radiative corrections has not been
previously highlighted.

2. Spinodal instabilities

If jφðtÞj < jφsj, spinodal instabilities lead to growth of
the mode functions gkðtÞ given by Eq. (4.12) in the band of
spinodally unstable modes with k2 < jV 00ðφðtÞÞj. Because
the ω2

kðtÞ are negative for these modes, it is not obvious that
the fluctuation contribution to the energy density, namely
EfðtÞ given by Eq. (3.19), is positive and grows in time.
However, the following argument indeed shows that ĖfðtÞ
is positive and grows exponentially: taking the time
derivative of EfðtÞ and using the mode equations (3.14)
yields (setting ℏ ¼ 1)

ĖfðtÞ ¼
1

2

�
d
dt

V 00ðφðtÞÞ
	Z

d3k
ð2πÞ3 jgkðtÞj

2; ð4:33Þ

as φðtÞ rolls down the potential hill within the spinodal
region, V 00ðφðtÞÞ increases as a function of time from a
negative value up to V 00ðφsÞ ¼ 0. Therefore Ėf > 0 and
grows exponentially during this regime as a consequence of
the exponential growth of the mode functions.
Since the total energy is conserved, the growth in the

fluctuation contributions is at the expense of diminishing
the classical part, namely the first two terms in (3.18).
Obviously there is no possible definition of adiabatic

modes within this region as the frequencies are purely
imaginary for k2 < jV 00ðφðtÞÞj. Therefore, unlike the case
of parametric instabilities discussed above [see Eq. (4.28)],
EfðtÞ cannot be written solely in terms of an occupation
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number of adiabatic particles. However, as φðtÞ rolls down
the “hill” towards a stable minimum of the potential
including radiative corrections, the drain of the classical
part of the energy implies that its amplitude damps out. The
mean field eventually will oscillate around this minimum
below the spinodal point where the frequencies become real
ωkðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ V 00ðφðtÞÞ

p
with V 00ðφðtÞÞ > 0. This sug-

gests separating the spinodally unstable modes, for which
the maximum unstable wave vector is given by

Ks ¼ jV 00ð0Þj; ð4:34Þ

and for k ≤ Ks we define the interpolating frequencies

ϖkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ jV 00ðφðtÞÞj

q
; ð4:35Þ

in terms of which we now introduce the mode functions,

fkðtÞ ¼
e−i

R
t
ϖkðt0Þdt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ϖkðtÞ
p : ð4:36Þ

Following the steps leading to Eqs. (4.14) and (4.15), for
k ≤ Ks we now write

gkðtÞ ¼ ĀkðtÞf̄kðtÞ þ B̄kðtÞf̄�kðtÞ; ð4:37Þ

ġkðtÞ ¼ −iϖkðtÞ½ĀkðtÞf̄kðtÞ − B̄kðtÞf̄�kðtÞ�; k ≤ Ks;

ð4:38Þ

whereas for k > Ks we use the zeroth-order adiabatic mode
functions f̃kðtÞ given by (4.13) along with the definitions
(4.14) and (4.15).
The advantage of introducing the (interpolating) mode

functions f̄kðtÞ and the definitions (4.37) and (4.38) is that
we expect that asymptotically at long time, when φðtÞ
oscillates below the spinodal, they merge with the asymp-
totic adiabatic modes.
In analogy with the previous case, for the spinodally

unstable wave vectors k < Ks we introduce

jB̄kðtÞj2 ≡ N̄ kðtÞ ¼
1

2ϖkðtÞ
½jġkðtÞj2 þϖ2

kðtÞjgkðtÞj2� −
1

2
:

ð4:39Þ

In order to understand particle production within the
spinodal region more quantitatively, let us consider an
initial condition with φðtÞ near the (shallow) maximum of
the potential and slowly evolving towards the bottom, and
set the following initial conditions on the mode functions:

gkð0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ϖkð0Þ
p ; ġkð0Þ ¼

−iϖkð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϖkð0Þ

p ; ð4:40Þ

which fulfill the Wronskian condition (3.15) and yield
N̄ kð0Þ ¼ 0, describing the vacuum corresponding to the
theory with an “upright” harmonic potential with frequen-
cies ϖð0Þ.
We can now write EfðtÞ as

EfðtÞ ¼
Z

Λ

0

k2½ϖkðtÞΘðKs − kÞ þ ωkðtÞΘðk − KsÞ�
dk
4π2

þ
Z

Λ

0

k2½ϖkðtÞN̄ kðtÞΘðKs − kÞ þ ωkðtÞÑ kðtÞΘðk − KsÞ�
dk
2π2

þ ½V 00ðφðtÞÞ − jV00ðφðtÞÞj�
Z

Ks

0

k2jgkðtÞj2
dk
4π2

; ð4:41Þ

where Λ is an ultraviolet cutoff.
The total energy density (3.18) becomes

E ¼ 1

2
φ̇2ðtÞ þ VðφðtÞÞ þ

Z
Λ

0

k2½ϖkðtÞΘðKs − kÞ þ ωkðtÞΘðk − KsÞ�
dk
4π2

þ
Z

Λ

0

k2½ϖkðtÞN̄ kðtÞΘðKs − kÞ þ ωkðtÞÑ kðtÞΘðk − KsÞ�
dk
2π2

þ ½V 00ðφðtÞÞ − jV 00ðφðtÞÞj�
Z

Ks

0

k2jgkðtÞj2
dk
4π2

: ð4:42Þ

Although it is not necessary to rewrite the energy density
in this form because the set of equations (3.14) and (3.20)
contain all the information, there are three important
aspects that emerge from Eq. (4.42): (i) although the
definition of “adiabatic particles” in terms of the mode
functions (4.36) yielding the number of “particles” (4.39) is
somewhat arbitrary, any alternative definition will exhibit

the growth of such particle number as a consequence of
spinodal instabilities. (ii) An advantage of this definition is
that, after the mean field begins its oscillations around the
broken symmetry minimum below the spinodal point, it
follows that V 00ðφðtÞÞ > 0, therefore ϖðtÞ → ωkðtÞ, and
N̄ kðtÞ → Ñ kðtÞ, namely the definition of the particle
number (4.39) thus coincides with the “adiabatic particle
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number,” and the last terms in Eqs. (4.41) and (4.42)
vanish. When φðtÞ begins oscillations around the broken
symmetry minimum, namely beyond the spinodal point, the
evolution of the gkðtÞ results in the production of particles
by parametric amplification, determined by Eq. (4.25) but
now defined in terms of the oscillations around the stable
broken symmetry minimum of the tree level potential.
Therefore the definition of “adiabatic modes” (4.36) and
particle number (4.39) merge smoothly with the definition
of adiabatic particles within the context of parametric
amplification. Different definitions of “particle” are pos-
sible; an advantage of the definition in terms of the
asymptotic adiabatic mode functions (4.36) is that it merges
with the adiabatic modes corresponding to oscillations
around stable minima.
This ambiguity notwithstanding, it is clear that spinodal

and parametric instabilities both lead to exponential growth
of the exact mode functions gkðtÞ which, in turn, leads to
profuse particle production. As discussed above, oscilla-
tions around a broken symmetry minimum also lead to
parametric amplification and exponential growth of the
mode functions, different from the spinodal instability.
Therefore in this scenario, particles are profusely produced
first during the spinodal state, and when the field is
oscillating around the broken symmetry minimum via
parametric instability. While the quantitative expression
of the number of particles produced depends on the precise
definition of the mode functions f̃kðtÞ, it is clear that either
the zeroth-order adiabatic (4.13) for parametric or (4.36) for
spinodal instabilities, yield profuse particle production as a
consequence of either instability. (iii) The last term in the
first line in (4.42) features the same ultraviolet divergences
as those found to renormalize the effective potential (2.14)–
(2.18). The last term in (4.42) is finite, and it will be argued
in the next section that all the terms with occupation
numbers are indeed finite. This is certainly the case for the
contribution from N̄ kðtÞ since only momenta k ≤ Ks
contribute to these.

V. A RENORMALIZED, ENERGY CONSERVING
FRAMEWORK

The analysis presented in the previous sections unam-
biguously points out that the effective potential is not
reliable to study the dynamics of the mean field φðtÞ in a
broad range of theories with and without symmetry break-
ing as a consequence of the various instabilities associated
with particle production. Instead, up to one loop (setting
ℏ ¼ 1), the dynamics must be studied by implementing the
set of equations

φ̈ðtÞ þ V 0ðφðtÞÞ þ 1

2
V 000ðφðtÞÞ

Z
d3k
ð2πÞ3 jgkðtÞj

2 ¼ 0; ð5:1Þ

where the mode functions are the solutions of the equations

g̈kðtÞ þ ω2
kðtÞgkðtÞ ¼ 0; ω2

kðtÞ≡ ½k2 þ V 00ðφðtÞÞ�;
ð5:2Þ

and fulfill the Wronskian condition (3.15). Complemented
with initial conditions on φðtÞ; φ̇ðtÞ; gkðtÞ; ġkðtÞ, this is a
closed set of equations with a conserved energy density

E¼1

2
φ̇2ðtÞþVðφðtÞÞþ1

2

Z
d3k
ð2πÞ3 ½jġkðtÞj

2þω2ðtÞjgkðtÞj2�:

ð5:3Þ

However, as discussed within the context of the static
effective potential both (5.1) and (5.3) feature ultraviolet
divergences that must be absorbed by renormalization of
the bare parameters of the theory. The instabilities asso-
ciated with spinodal decomposition or parametric ampli-
fication affect the mode functions for a finite range of
momenta k: spinodal instabilities only affect mode func-
tions with k ≤ jV 00ð0Þj, with jV 00ð0Þj the maximum value of
jV 00ðφÞj in the spinodal region. Although parametric
instabilities affect all values of k2 for which there are
resonances that lead to parametric amplification, the
bandwidth of the unstable regions becomes smaller for
larger values of k. On physical grounds, for k2 ≫ V00ðφð0ÞÞ
resonant transfer of energy from the “zero mode” to high
energy modes is inefficient. Furthermore, as analyzed in
detail in Sec. IV, the adiabatic approximation fails for low
energy, long wavelength modes: those with k <
Ks ≃ V 00ð0Þ for spinodal instabilities and those within
resonant bands for parametric amplification. However,
for k2 ≫ V 00ðφð0ÞÞ, the adiabatic approximation is valid;
in this limit the mode functions

gkðtÞ ∝
e�iktffiffiffiffiffi
2k

p : ð5:4Þ

The explicit form of the adiabatic effective potential
(3.32) explicitly shows that the zeroth-order adiabatic
contribution contains all the ultraviolet divergences and
the higher order adiabatic terms are all ultraviolet finite.
Furthermore, the analysis leading up to Eqs. (4.28)
and (4.42) also clearly shows that the “zero point” con-
tribution

R
d3kωkðtÞ in these expressions contains the ultra-

violet divergences, whereas the occupation number Ñ kðtÞ is
finite since neither spinodal nor parametric instabilities can
excite very high energy modes. As discussed above, in
Sec. III B the zero point contribution is completely deter-
mined by the zeroth adiabatic order of the mode functions
gkðtÞ. Therefore, we separate this ultraviolet divergent
contribution by adding it into an effective potential and
subtracting it from the fluctuation part by writing

E ¼ 1

2
φ̇2ðtÞ þ V̄effðφðtÞÞ þ EfRðtÞ; ð5:5Þ
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with

V̄effðφðtÞÞ¼VðφðtÞÞþ
Z

Λ

0

k2ωkðtÞΘðk−kmÞ
dk
4π2

; ð5:6Þ

and

EfRðtÞ ¼
Z

Λ

0

dk
4π2

k2
�jġkðtÞj2 þ ω2ðtÞjgkðtÞj2

− ωkðtÞΘðk − kmÞ
� ð5:7Þ

is the ultraviolet finite, renormalized fluctuation contribu-
tion to the energy density,where the lowermomentumcutoff
km is given by

km¼
�
0 without symmetry breakingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijV 00ð0Þjp ¼Ks with symmetry breaking;

ð5:8Þ

to account for the spinodal region in the case of symmetry
breaking where the frequencies ωkðtÞ become purely
imaginary.
The integrals of ωkðtÞ are straightforward, for Λ ≫

jV 00ðφðtÞÞj we find

V̄effðφÞ ¼ VðφÞ þ Λ4

16π2
þM2

RðφÞ
Λ2

16π2

−
ðM2

RðφÞÞ2
64π2

�
ln

�
4Λ2

μ2

	
−
1

2




þ ðM2
RðφÞÞ2
64π2

ln

�jM2
RðφÞj
μ2

	

− ðM2
RðφÞÞ2F

�
km

jM2
RðφÞj1=2



; ð5:9Þ

with

F ½x� ¼ 1

32π2
�
2x½x2 þ signðM2

RðφÞÞ�3=2

− xsignðM2
RðφÞÞ½x2 þ signðM2

RðφÞÞ�1=2
− ln½xþ ½x2 þ signðM2

RðφÞÞ�1=2�
�
; ð5:10Þ

where we have written VeffðφðtÞÞ in terms of

M2
RðφÞ ¼ V 00

RðφðtÞÞ; ð5:11Þ

to compare to the static result (2.14).
Absorbing the ultraviolet divergences in a renormaliza-

tion of the bare parameters of the tree level effective
potential at the renormalization scale μ, and for the case
without symmetry breaking, corresponding to M2ðφÞ > 0
with km ¼ 0, we identify

V̄effðφðtÞÞ≡ VR
effðφðtÞ; μÞ; ð5:12Þ

where

VR
effðφðtÞ; μÞ ¼ VRðφ; μÞ þ

ðM2
RðφÞÞ2
64π2

ln

�
M2

RðφÞ
μ2

	
ð5:13Þ

is the renormalized one-loop effective potential, with
VRðφ; μÞ the renormalized tree level potential in terms
of the renormalized parameters.
In the case when the tree level potential admits

symmetry breaking minima and a spinodal region with
M2

RðφÞ < 0, corresponding to the lower momentum cut-
off km ¼ Ks, the contribution from the function F in (5.9)
excises the spinodal region with k2 < jV 00ð0Þj ¼ Ks,
which of course contributes to the fluctuation part as is
explicit in Eq. (5.7). Since Ks > M2ðφÞ it follows that the
effective potential V̄effðφÞ defined by Eq. (5.9) is real and
does not feature the pathologies of the usual effective
potential in the spinodal region. It is straightforward to
confirm that taking km → 0 for M2ðφÞ < 0 in F brings
back the imaginary part, arising from the logarithm
when signðM2ðφÞÞ < 0.
For the case of tree level potential (2.15), the renorm-

alization proceeds exactly as in Eqs. (2.16)–(2.18) yielding
Eq. (2.19) for the first line of (5.9).
The equation of motion for the mean field (5.1) can be

similarly written as a fully renormalized equation. To
achieve this, again we add and subtract the contribution
from the zero adiabatic order, rewriting (5.1) as

φ̈ðtÞ þ V 0
RðφðtÞÞ þ V 000

R ðφðtÞÞ
Z

Λ

0

k2
Θðk − kmÞ
2ωkðtÞ

dk
4π2

þ V 000
R ðφðtÞÞ

Z
Λ

0

dk
4π2

k2
�
jgkðtÞj2 −

Θðk − kmÞ
2ωkðtÞ



¼ 0;

ð5:14Þ

from which we recognize that

V 0
RðφðtÞÞþV 000

R ðφðtÞÞ
Z

Λ

0

k2
Θðk−kmÞ
2ωkðtÞ

dk
4π2

¼ d
dφ

V̄R
effðφ;μÞ;

ð5:15Þ

with V̄R
effðφ; μÞ given by Eqs. (5.6) and (5.9) after absorbing

the ultraviolet divergences into renormalization of the bare
parameters at the renormalization scale μ. We can now
write the energy density and equation of motion for the
mean field and mode functions (up to one loop) in a
manifestly energy conserving (since we added and sub-
tracted the ultraviolet divergent contributions) and fully
renormalized form:

E ¼ 1

2
φ̇2ðtÞ þ V̄R

effðφðtÞ; μÞ þ EfRðtÞ; ð5:16Þ
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φ̈ðtÞ þ d
dφ

V̄R
effðφ; μÞ þ V 000

R ðφðtÞÞ

×
Z

Λ

0

dk
4π2

k2
�
jgkðtÞj2 −

Θðk − kmÞ
2ωkðtÞ



¼ 0; ð5:17Þ

g̈kðtÞ þ ω2
kðtÞgkðtÞ ¼ 0; ω2

kðtÞ≡ ½k2 þ V 00
RðφðtÞÞ�;

ð5:18Þ

with V̄R
effðφ; μÞ is the renormalized effective potential

defined by Eq. (5.6) where the ultraviolet divergences have
been absorbed into a renormalization of the bare parameters
of the tree level potential at the renormalization scale μ, and
VRðφðtÞÞ is the tree level potential in terms of renormalized
parameters. The renormalized fluctuation contributions
EfRðtÞ, given by Eq. (5.7) and the last term in (5.17) are
ultraviolet finite and account for all of the particle pro-
duction processes resulting from spinodal and parametric
instabilities.
Initialization. The set of equations (5.17) and (5.18)

forms a self-consistent, energy conserving closed set of
equations that describe an initial value problem amenable
to numerical implementation, upon appending initial con-
ditions on the mean field and mode functions. The initial
conditions on the mean field are simple:

φðt ¼ 0Þ≡ φð0Þ; φ̇ðt ¼ 0Þ≡ φ̇ð0Þ; ð5:19Þ

those of the mode functions are subject to the Wronskian
condition (3.15) and depend on whether the mean field
initially is within the spinodal region or outside it.
(i) V 00

Rðφð0ÞÞ > 0: In this case all modes can be initial-
ized as

gkð0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkð0Þ
p ; ġkð0Þ ¼

−iωkð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkð0Þ

p ;

ωkð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ V 00

Rðφð0ÞÞ
q

: ð5:20Þ

This initial condition implies that the adiabatic number
Ñ kð0Þ ¼ 0, and is compatible with the renormalization
procedure described above because

jġkð0Þj2 þ ω2
kð0Þjgkð0Þj2 ¼ ωkð0Þ; ð5:21Þ

therefore the renormalized energy density from fluctuations
in Eq. (5.7) is ultraviolet finite initially and the renormal-
ization of ultraviolet divergences is the same as during the
time evolution, regardless of whether the (renormalized)
tree level potential features symmetry breaking or not.
(ii) V 00

Rðφð0ÞÞ < 0: In this case the renormalized tree
level potential features symmetry breaking minima and a
spinodal region. If φð0Þ is within the spinodal region, a
suitable set of initial conditions is

gkð0Þ ¼
8<
:

1ffiffiffiffiffiffiffiffiffiffiffi
2ϖkð0Þ

p for k2 ≤ jV 00
Rðφð0ÞÞj

1ffiffiffiffiffiffiffiffiffiffi
2ωkð0Þ

p for k2 > jV 00
Rðφð0ÞÞj;

ð5:22Þ

ġkð0Þ ¼
8<
:

−iϖkð0Þffiffiffiffiffiffiffiffiffiffiffi
2ϖkð0Þ

p for k2 ≤ jV 00
Rðφð0ÞÞj

−iωkð0Þffiffiffiffiffiffiffiffiffiffi
2ωkð0Þ

p for k2 > jV 00
Rðφð0ÞÞj;

ð5:23Þ

with ϖkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ jV 00

Rðφð0ÞÞj
p

. These initial conditions
imply that the interpolating and adiabatic particle numbers
N̄ kð0Þ ¼ 0; Ñ kð0Þ ¼ 0. Furthermore, at t ¼ 0 the inte-
grand in Eq. (5.7) vanishes identically for k > km, yielding
an ultraviolet finite renormalized energy density of fluctu-
ations at all times, including at t ¼ 0. Therefore, this set of
initial conditions is explicitly compatible with the renorm-
alization procedure, because the ultraviolet divergences at
the initial time are renormalized in the same manner as the
ultraviolet divergences at any other time during the time
evolution.
Although different initial conditions for the mode func-

tions subject to the Wronskian conditions (3.15) may be
chosen, the compatibility with the renormalization pro-
cedure described in the previous section must be carefully
assessed for alternative initial conditions. The set above is
fully compatible with the renormalization procedure,
thereby guaranteeing that there are no new ultraviolet
divergences associated with the initial value problem [51]
and that the renormalization framework is consistent all
throughout the time evolution, namely the same counter-
terms remove the ultraviolet divergences at the initial and at
any later time.
The set of renormalized Eqs. (5.17) and (5.18) along

with the initial conditions (5.19)–(5.23) thus describes
completely a self-consistent initial value problem which
is manifestly energy conserving and fully consistent with
the renormalization prescription at all times that is ame-
nable to straightforward numerical implementation.

A. Consequences of energy conservation:
Asymptotic stationary fixed points?

Energy conservation entails that instabilities must even-
tually shut off since exponential growth of fluctuations
cannot continue indefinitely. Particle production via insta-
bilities combined with energy conservation leads us to the
conjecture of emerging asymptotic highly excited sta-
tionary states as fixed points of the dynamical evolution
described by the closed set of equations (5.16)–(5.18). Both
spinodal and parametric instabilities must shut off asymp-
totically as a consequence of energy conservation, implying
that φðtÞ is below the spinodal and must approach a
constant because any oscillatory behavior results in para-
metric instabilities, however small the amplitude of the
oscillation. Therefore asymptotically φðtÞ → φð∞Þ with
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φð∞Þ a constant so that V 00ðφð∞ÞÞ > 0. Therefore, it
follows that ωkðtÞ → ωkð∞Þ and the mode functions
gkðtÞ approach the asymptotic solution,

gkðtÞ →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkð∞Þp ½αke−iωkð∞Þt þ βkeiωkð∞Þt�: ð5:24Þ

The relations (4.16) and (4.17) yield in this asymptotic limit

ÃkðtÞ → αkeiγA ; B̃kðtÞ → βkeiγB ; ð5:25Þ

with γA;B constant phases, and from (4.21) it also follows
that

ckðtÞ → ckð∞Þ; c†kðtÞ → c†kð∞Þ; ð5:26Þ

hence the annihilation and creation operators of the
instantaneous zero adiabatic order Fock states become
constant. To understand clearly the underpinnings of this
conjecture let us consider separately the cases without and
with spontaneous symmetry breaking.
(i) Without symmetry breaking. Let us focus on the case

of the simple tree level potential (4.1) (with renormalized
parameters) as a paradigmatic example, and an initial
condition on φð0Þ; φ̇ð0Þ allowing for large amplitude
oscillations around the minimum of the tree level potential
at φ ¼ 0. With M2ðφÞ > 0 and km ¼ 0, the contribution
from the function F in (5.9) vanishes and V̄R

eff ¼ VR
eff , the

one-loop effective potential [see Eq. (5.12)].
The total energy density is conserved and the mode

functions obey the Eq. (5.18), although for large amplitudes
the analysis based on Mathieu’s equation is no longer valid;
we still expect resonances leading to instability bands
within which the mode functions gkðtÞ grow as a conse-
quence of parametric instabilities. The fluctuation contri-
bution to the energy density, the last term in Eq. (5.16) for
km ¼ 0 [no spontaneous symmetry breaking, see Eq. (5.5)],
describes the production of adiabatic particles and is
positive definite. Therefore, as a consequence of conser-
vation of energy the growth of the fluctuations associated
with particle production must result in a drain of energy
from the first two terms in (5.16), thereby resulting in
damping of the amplitude of φðtÞ. As the amplitude
diminishes, the width of the unstable bands diminishes
and parametric amplification becomes less efficient but
continues until the amplitude vanishes, this is the case for
small oscillations as shown by the analysis of Mathieu’s
equation. Hence, we conjecture that this behavior leads to
an asymptotic fixed point of Eqs. (5.17) and (5.18) with
φ̈ ¼ 0; φ̇ ¼ 0. As the amplitude φðtÞ diminishes, the
analysis based on Mathieu’s equation becomes more
reliable. As the width of the unstable bands diminishes
as a consequence of a diminishing amplitude, the mode
functions approach linear combinations of adiabatic mode
functions and the Bogoliubov coefficients (4.16) and (4.17)

become slowly varying functions of time asymptotically
becoming constants. In this asymptotic long time limit
ωkðφðtÞÞ → ωkð∞Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

R

p
[for the tree level poten-

tial (4.1)] and it follows from Eqs. (4.14) and (4.15) that

jġkðtÞj2 þ ω2ðtÞjgkðtÞj2 !
t→∞

ωkð∞Þ½1þ 2Ñ kð∞Þ�; ð5:27Þ

where we have used Eqs. (4.18) and (4.26). This
assumption leads to the following asymptotic form of
the energy density (5.16) (setting ℏ ¼ 1):

E ¼ Veffðφð∞ÞÞ þ
Z

d3k
ð2πÞ3 ωkð∞ÞÑ kð∞Þ: ð5:28Þ

The occupation numbers Ñ kð∞Þ are large for the range of
k corresponding to the unstable bands.
This result is expected as a corollary of the main

conjecture: dissipative damping from particle production
results in the relaxation of the mean field towards stationary
value φð∞Þ. Furthermore, in the asymptotic long time limit

jgkðtÞj2 →
t→∞

1

2ωkð∞Þ ½1þ 2Ñ kð∞Þ�; ð5:29Þ

where rapidly oscillating terms ∝ e�2iωkð∞Þt average out by
dephasing and have been neglected.
The asymptotic value φð∞Þ is the solution of the

equation of motion with φ̈ ¼ φ̇ ¼ 0, namely,

d
dφ

VR
effðφð∞Þ; μÞ þ V 000

R ðφð∞ÞÞ
Z

d3k
ð2πÞ3

Ñ kð∞Þ
2ωkð∞Þ ¼ 0:

ð5:30Þ

In the case without symmetry breaking, there is the
obvious solution φð∞Þ ¼ 0. The relaxation of the mean
field leads to an asymptotic stationary state, with all the
energy of the nonequilibrium initial state transferred to a
highly excited state described by a distribution function
Ñ kð∞Þ. This distribution function is large in k space within
the unstable resonant bands where adiabatic particles are
produced via parametric amplification with larger ampli-
tudes and bandwidths for smaller k. Notice that the
asymptotic state must truly be stationary; any small
amplitude oscillation will result in parametric amplification
and particle production with the concomitant damping of
the mean field.
(ii) With symmetry breaking. Many of the features of the

dynamical evolution described above also apply in the case
where the (effective) potential allows for symmetry break-
ing minima away from φ ¼ 0, with the addition of spinodal
instabilities and the concomitant particle production.
Let us consider first the case wherein the initial values of

the mean field φ̇ð0Þ;φð0Þ lead to oscillations around one of
the broken symmetry minima, possibly with excursions
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into the spinodal region but not over the hump of the
potential at its maximum. As the mean field samples the
spinodal region in its evolution, the spinodal instabilities
lead to the growth of the modes gkðtÞ with k < Ks thus
draining energy from the first two terms in Eq. (5.16) and
damping the amplitude of φðtÞ. As the amplitude dimin-
ishes, the oscillations no longer probe the spinodal region
but while the mean field oscillates around the broken
symmetry minimum, there are still parametric instabilities
that lead to the growth of gkðtÞ. Particle production from
these instabilities will continue until the φðtÞ stops oscil-
lating at the stable minimum at φð∞Þ, with
φ̈ð∞Þ ¼ 0; φ̇ð∞Þ ¼ 0. Because the minima are stable it
follows that M2ðφð∞ÞÞ > 0, and the oscillation frequen-
cies around these minima ωkð∞Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2ðφð∞ÞÞ

p
are real. In the asymptotic long time limit,

jġkðtÞj2 þ ω2ðtÞjgkðtÞj2 !
t→∞

ωkð∞Þ½1þ 2Ñ kð∞Þ�; ð5:31Þ

therefore

EfRðtÞ !
t→∞

Z
d3k
ð2πÞ3 ωkð∞ÞÑ kð∞Þ þ

Z
km

0

k2ωkð∞Þ dk
4π2

;

ð5:32Þ

the last term cancels exactly the contribution from the
function F in Eq. (5.9), yielding

E ¼ Veffðφð∞ÞÞ þ
Z

d3k
ð2πÞ3 ωkð∞ÞÑ kð∞Þ: ð5:33Þ

In this case the asymptotic adiabatic particle number
Ñ kð∞Þ will also have a large population within the
spinodally unstable band k < Ks, along with the parametric
amplified bands.
In the long time limit, the relation (5.29) holds, where

contributions from fast oscillating terms average out, and
the term 1=2ωkð∞Þ in (5.29) when input into Eq. (5.17)
cancels the contribution from the function F to dV̄R

eff=dφ
yielding the asymptotic solution form of the equation of
motion (5.17),

d
dφ

VR
effðφð∞Þ; μÞ þ V 000

R ðφð∞ÞÞ
Z

d3k
ð2πÞ3

Ñ kð∞Þ
2ωkð∞Þ ¼ 0;

ð5:34Þ

which coincides with (5.30) for the case without symmetry
breaking. However, in the case with symmetry breaking,
φð∞Þ ¼ 0 is not a self-consistent solution becauseV 00

Rð0Þ <
0 and the mode functions would grow exponentially
preventing a stationary solution, which is possible only
when V 00ðφð∞ÞÞ > 0. Equation (5.34) clearly displays one
of the main results: the asymptotic equilibrium value φð∞Þ

is not a minimum of the effective potential, but includes a
substantial contribution from particle production.
A similar analysis holds in the case of large initial

amplitude φð0Þ. Consider an initial condition wherein the
mean field is released from high up in the potential
allowing it to roll down the hill and up through the
spinodal, over the hump at the maximum and over to
the other side, rolling down through the spinodal on the
other side and up again the potential. Every excursion of the
mean field through the spinodal results in a burst of particle
production from spinodal instabilities thereby draining
energy from the mean field, which eventually will undergo
small oscillations around either one of the minima. During
the oscillation around the minima parametric amplification
also leads to particle production until the mean field settles
at this minimum with φ̇ ¼ φ̈ ¼ 0 and the gkðtÞ bound in
time. The asymptotic solutions (5.33) and (5.34) also
describe this case with large initial amplitudes sampling
the broken symmetry minima during the evolution until
settling down in one of them. The only difference with the
small(er) amplitude case described above is in the total
energy density and the asymptotic value of Ñ kð∞Þ which
reflects the different energy densities.
This analysis leads us to suggest a new kind of phase

diagram: the asymptotic equilibrium order parameter φð∞Þ
versus energy density as a characterization of the broken
symmetry phases with high energy density.
The results (5.33) and (5.34) taken together have a

simple and clear physical interpretation: in absence of
particle production Ñ kð∞Þ ¼ 0 ∀ k, the equilibrium
states correspond to

d
dφ

VR
effðφð∞Þ; μÞ ¼ 0; E ¼ Veffðφð∞ÞÞ; ð5:35Þ

namely the minimum of the effective potential which
includes radiative and renormalization corrections; in fact
this was the rationale for the static effective potential in the
first place. However, under the constraint of conserved
energy density, the actual asymptotic state must account for
the energy transfer from the mean field that has relaxed to
equilibrium, to excited states (fluctuations) which are
described by the adiabatic particle numbers Ñ kð∞Þ ≠ 0.
The asymptotic expectation value is no longer the mini-
mum of the effective potential but is modified by particle
production, which in turn depends on the energy density.
Of course the conjectures on the asymptotic dynamics

and emerging stationary states must be confirmed by a
thorough numerical analysis, which is clearly beyond the
scope of this article.

B. Asymptotic excited states: Highly entangled
two-mode squeezed states

As argued above, the asymptotic stationary state is
characterized by a distribution function of produced
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adiabatic particles, Ñ kð∞Þ. As the evolution of the mean
field and quantum fluctuations is described by an initial
value problem, we can consider the initial state, determined
by the initial conditions (5.19), (5.20), (5.22), and (5.23) as
the “in” state with vanishing occupation number, and the
asymptotic stationary state as the “out” state. In the
transition from the “in” to the “out” state, the mean field
relaxes to a minimum of the effective potential and the
energy density, originally stored in the mean field, is
transferred to excited states (fluctuations), in the form of
particle production. At long time, as the mean field relaxes
to the asymptotic equilibrium value φð∞Þ solution of the
equation (5.34) [similar to (5.30)], the oscillation frequen-
cies are real and evolve in time slowly as the amplitude of
the mean field relaxes to equilibrium, therefore the zero
order adiabatic definition of particles described by
Eqs. (4.16)–(4.25) reliably describes particles in the
“out” state, as discussed in Sec. IV C.
The Bogoliubov transformation (4.21) is implemented

by a unitary transformation, which is obtained as follows.
First write

ÃkðtÞ ¼ coshðϑkðtÞÞei
2
ðθþk ðtÞþθ−k ðtÞÞ;

B̃kðtÞ ¼ sinhðϑkðtÞÞei
2
ðθþk ðtÞ−θ−k ðtÞÞ ð5:36Þ

ãk ¼ ake
i
2
θ−k ðtÞ; ã†−k ¼ a†−ke

−i
2
θ−k ðtÞ ð5:37Þ

c̃kðtÞ ¼ ckðtÞe−i
2
θþk ðtÞ; c̃†−kðtÞ ¼ c†−kðtÞe

i
2
θþk ðtÞ; ð5:38Þ

where we have used that ÃkðtÞ; B̃kðtÞ are functions solely of
k2. In terms of these definitions and canonically trans-
formed operators, the Bogoliubov transformation (4.21)
becomes

c̃k⃗ðtÞ ¼ ãk⃗ coshðϑkðtÞÞ þ ã†
−k⃗

sinhðϑkðtÞÞ: ð5:39Þ

This transformation is implemented by the following
unitary operator:

S½ϑðtÞ� ¼ Πk⃗ expfϑkðtÞ½ã−k⃗ãk⃗ − ã†
k⃗
ã†
−k⃗
�g;

S−1½ϑðtÞ� ¼ S†½ϑðtÞ� ¼ S½−ϑðtÞ�; ð5:40Þ

yielding

S½ϑðtÞ�ãk⃗S−1½ϑðtÞ� ¼ c̃k⃗ðtÞ; ð5:41Þ

which can be confirmed by expanding the exponentials,
using the identity

eXYe−X ¼ Y þ ½X; Y� þ 1

2!
½X; ½X; Y�� þ � � � ð5:42Þ

and the canonical commutation relations.

An important identity yields the following factorization
of the exponential [52]:

S½ϑ� ¼ Πk⃗ expf− lnðcoshðϑkÞÞg expf− tanhðϑkÞã†k⃗ã
†
−k⃗
g

× expf−2 lnðcoshðϑkÞÞã†k⃗ãk⃗g
× expftanhðϑkÞã−k⃗ãk⃗g; ð5:43Þ

where ϑk ≡ ϑkðtÞ.
The inverse Bogoliubov transformation is given by

ãk⃗ ¼ c̃k⃗ coshðϑkÞ − c̃†
−k⃗

sinhðϑkÞ
ã†
−k⃗

¼ c̃†
−k⃗

coshðϑkÞ − c̃k⃗ sinhðϑkÞ: ð5:44Þ

The unitary operator that implements it is

T½ϑ�¼Πk⃗ expf−ϑk½c̃k⃗c̃−k⃗− c̃†
−k⃗
c̃†
k⃗
�g; T−1½ϑ�¼T½−ϑ�;

ð5:45Þ

so that

T½ϑ�c̃k⃗T−1½ϑ� ¼ ãk⃗

T½ϑ�c̃†
−k⃗
T−1½ϑ� ¼ ã†

−k⃗
: ð5:46Þ

The factorized form of T½ϑ� is

T½ϑ� ¼ Πk⃗ expf− lnðcoshðϑkÞÞg expftanhðϑkÞc̃†k⃗c̃
†
−k⃗
g

× expf−2 lnðcoshðϑkÞÞc̃†k⃗c̃k⃗g
× expf− tanhðϑkÞc̃−k⃗c̃k⃗g; ð5:47Þ

with the instantaneous (zeroth-order) adiabatic vacuum
state j0aðtÞi defined such that

ckðtÞj0aðtÞi ¼ 0 ∀ k; t: ð5:48Þ

The operator T½ϑ� allows us to relate the adiabatic
vacuum state j0aðtÞi to the coherent state jΦi (annihilated
by ak). Premultiplying (5.48) by T½θ� and inserting
T−1½θ�T½θ� ¼ 1 yields

ðT½ϑ�ck⃗T−1½θ�Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ak⃗

ðT½ϑ�j0aðtÞiÞ ¼ 0; ð5:49Þ

from which the relation between vacua follows, namely,

jΦi ¼ T½ϑ�j0aðtÞi: ð5:50Þ

Therefore, we find
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jΦi ¼ Πk⃗

�
½coshðϑkÞ�−1

X∞
nk⃗¼0

ðeiθþk tanhðϑkÞÞnk⃗ jnk⃗; n−k⃗i
�
;

ð5:51Þ

where the adiabatic particle-pair states

jnk⃗; n−k⃗i ¼
ðc†

k⃗
Þnk⃗ffiffiffiffiffiffiffi
nk⃗!

p ðc†
−k⃗
Þnk⃗ffiffiffiffiffiffiffi
nk⃗!

p j0ai; nk⃗ ¼ 0; 1; 2…: ð5:52Þ

In quantum optics these correlated states are known as
two-mode squeezed states [52], where as discussed in
Sec. IV C the Fock states,

jnk⃗ðtÞi ¼
ðc†

k⃗
ðtÞÞnk⃗ffiffiffiffiffiffiffi
nk⃗!

p j0aðtÞi; ð5:53Þ

are instantaneous eigenstates of the Hamiltonian (4.22)
with eigenvalue ℏωkðtÞðnkðtÞ þ 1=2Þ.
We note that the Fock pair states (5.52) are eigenstates of

the pair number operator

η̂k⃗ ¼
X∞
mk⃗¼0

mk⃗jmk⃗;m−k⃗ihmk⃗;m−k⃗j; ð5:54Þ

namely,

η̂k⃗jnk⃗; n−k⃗i ¼ nk⃗jnk⃗; n−k⃗i; nk⃗ ¼ 0; 1; 2…: ð5:55Þ

Several checks are in order:

hΦjΦi ¼ Πk⃗

1

cosh2ðϑkÞ
X∞
nk¼0

ðtanh2ðϑkÞÞnk

¼ Πk⃗

1

cosh2ðϑkÞ
1

1 − tanh2ðϑkÞ
¼ 1; ð5:56Þ

hΦjc†p⃗cp⃗jΦi ¼ 1

cosh2ðϑpÞ
X∞
np¼0

npðtanh2ðϑpÞÞnp

¼ sinh2ðϑpÞ ¼ jB̃pj2 ¼ Ñ p: ð5:57Þ

Therefore, in terms of the asymptotic adiabatic “out”
particle states, the coherent state jΦi is a strongly corre-
lated, entangled state of back-to-back pairs of particles with
occupation numbers Ñ k populated in bands: for k ≤ Ks for
spinodally produced particles and the unstable bands for
the particles produced by parametric amplification.

C. Decoherence and entropy

For large energy density, the occupation numbers in the
bands of instability are expected to be large with a
continuum distribution in each band as the energy is

transferred from the mean field to the excitations described
by the adiabatic particle states. This transfer of energy from
a single mode, the mean field, to a continuum of states in
the various bands, each with finite bandwidth in momen-
tum, intuitively suggests the emergence of entropy.
However, the density matrix,

ρ̂ ¼ jΦihΦj; ð5:58Þ

describes a pure state and is time independent in the
Heisenberg picture. In the basis of the asymptotic “out”
adiabatic particle states, it is given by

ρ̂ ¼ Πk⃗Πp⃗

X∞
nk⃗¼0

X∞
mp⃗¼0

C�mp⃗
ðp⃗ÞCnk⃗ðk⃗Þjnk⃗; n−k⃗ihmp⃗;m−p⃗j;

ð5:59Þ

where

Cnk⃗ðk⃗Þ ¼
ðeiθþk tanhðϑkÞÞnk⃗

coshðϑkÞ
; ð5:60Þ

and the angles θþk ; ϑk correspond to the asymptotic values
with φð∞Þ.
The diagonal elements of the density matrix are given by

the probabilities of finding a back-to-back pair of nk⃗
adiabatic particles, namely,

Pnk⃗
¼ jCnk⃗ðk⃗Þj2 ¼

ðfN kð∞ÞÞnk⃗
ð1þ fN kð∞ÞÞ1þnk⃗

: ð5:61Þ

Remarkably, this form of the diagonal matrix elements is
similar to that of a thermal density matrix in the basis of
(free) Fock quanta, but with Ñ k⃗ð∞Þ replaced by the Bose
Einstein distribution function.
Consider a Heisenberg picture operator OδðtÞ associated

with an observable related to the fluctuation operator δ̂,
which by dint of the expansion (4.19) at long time is
associated with the asymptotic “out” adiabatic particle
states. Asymptotically when the mean field has relaxed
to its equilibrium value φð∞Þ the Hamiltonian HδðtÞ given
by (4.22) becomes time independent, therefore the
time evolution of the Heisenberg picture operator OδðtÞ
is given by

OδðtÞ ¼ eiHδðt−t0ÞOδðt0Þe−iHδðt−t0Þ; ð5:62Þ

where t0 is a late time at which the mean field has relaxed to
equilibrium, and t ≫ t0. The expectation value ofOδ in the
density matrix (5.58) is given by

hΦjOδðtÞjΦi ¼ TrOδðt0Þρ̂ðtÞ; ð5:63Þ
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where the time dependent density matrix in the Schrödinger
picture is given by

ρ̂ðtÞ¼e−iHδðt−t0Þρ̂ðt0ÞeiHδðt−t0Þ; ρ̂ðt0Þ¼ jΦihΦj: ð5:64Þ
Since the zeroth-order adiabatic “out” states are (instanta-
neous) eigenstates of Hδ it follows that

ρ̂ðtÞ ¼ Πk⃗Πp⃗

X∞
nk⃗¼0

X∞
mp⃗¼0

C�mp⃗
ðp⃗ÞCnk⃗ðk⃗Þjnk⃗; n−k⃗i

× hmp⃗;m−p⃗je−iWn;mðt−t0Þ; ð5:65Þ

where

Wn;m ¼ 2ðnkωkð∞Þ −mpωpð∞ÞÞ: ð5:66Þ

The off-diagonal matrix elements in the adiabatic “out”
basis are a manifestation of coherence, and unitary time
evolution.
At long time t ≫ t0, the off diagonal terms with nk ≠

mp; k ≠ p oscillate very rapidly, the continuum of modes
within each band fall out of phase leading to rapid
dephasing and averaging out. In fact, taking a long time
average of the expectation value (5.63),

1

T

Z
T

t0

TrOδðt0Þρ̂ðtÞdt !
T→∞

TrOδðt0Þρ̂ðdÞ; ð5:67Þ

where ρ̂ðdÞ is diagonal in the Fock “out” basis of correlated
—entangled—pairs, namely,

ρ̂ðdÞ ¼ Πk⃗

X∞
nk⃗¼0

Pnk⃗
jnk⃗; n−k⃗ihnk⃗; n−k⃗j; ð5:68Þ

with the probabilities (5.61). The diagonal density matrix
ρ̂ðdÞ describes a mixed state. The main ingredient in this
analysis is that the “out” adiabatic particle states are
(instantaneous) eigenstates of Hδ and that each band has
a continuum of modes each evolving in time with different
frequency, leading to dephasing and decoherence in the
long time limit.
This argument, based on decoherence by dephasing at

long time yielding a density matrix diagonal in the
“energy” basis underpins the eigenstate thermalization
hypothesis [53–55] and is at the heart of the arguments
on thermalization in closed quantum systems, a subject of
much current theoretical and experimental interest.
The entropy associated with this mixed state can be

calculated simply by establishing contact between the
density matrix ρðdÞ and that of quantum statistical mechan-
ics in equilibrium described by a fiducial Hamiltonian,

Ĥ ¼
X
k⃗

Ekη̂k⃗; ð5:69Þ

with η̂k⃗ the pair number operator (5.54) with eigenvalues
nk⃗ ¼ 0; 1; 2…, and the fiducial (dimensionless) energy

Ek ¼ − ln½tanh2ðϑkÞ�; ð5:70Þ

which suggestively yields the distribution function

Ñ k⃗ð∞Þ ¼ 1

eEk − 1
: ð5:71Þ

This fiducial Hamiltonian (5.69) is diagonal in the
correlated basis of particle-antiparticle pairs, it should
not be confused with the Hamiltonian Hδ of Eq. (4.22),
they act on different Hilbert spaces and feature different
eigenvalues. The main purpose of the fiducial Hamiltonian
Ĥ is to identify

ρ̂ðdÞ ¼ e−Ĥ

Z
; Z ¼ Tre−Ĥ ≡ e−F ; ð5:72Þ

with F the fiducial (dimensionless) free energy, and the
partition function

Z¼Πk⃗Z k⃗; Z k⃗¼
1

½1−e−Ek �¼
1

½1− tanh2ðϑkÞ�
; ð5:73Þ

thereby establishing a direct relation to a problem in
quantum statistical mechanics.
Since Ĥ is diagonal in the basis of the pair Fock states, so

is ρ̂ðdÞ, and obviously the matrix elements of (5.72) in the
pair basis are identical to those of (5.68), with the
identification of the pair probability (5.61) as

Pnk⃗
¼ e−Eknk⃗

Zk⃗

¼ ðfN kð∞ÞÞnk⃗
ð1þ fN kð∞ÞÞ1þnk⃗

: ð5:74Þ

The von Neumann entropy associated with this mixed
state is

S ¼ −TrρðdÞ ln ρðdÞ: ð5:75Þ

The eigenvalues of ρðdÞ are the probability for each state
of nk⃗ pairs of momenta ðk⃗;−k⃗Þ, namely, Pnk⃗

therefore the
von Neumann entropy is given by

S ¼ −
X
k⃗

X∞
nk⃗¼0

Pnk⃗
lnPnk⃗

: ð5:76Þ

A straightforward calculation yields the entropy density,2

2The entropy can also be calculated with the analogy
F ¼ U − S, with U ¼ TrHρ̂ðdÞ as in statistical mechanics.
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s ¼
Z �ð1þ Ñ k⃗ð∞ÞÞ lnð1þ Ñ k⃗ð∞ÞÞ

− Ñ k⃗ð∞ÞÞ ln Ñ k⃗ð∞Þ� d3k
ð2πÞ3 : ð5:77Þ

Remarkably the entropy features the same form as in a
quantum free thermal Bose gas but with the equilibrium
distribution functions replaced by the asymptotic distribu-
tion functions of the produced “out” adiabatic particles.
Although the similarity with quantum statistical mechan-

ics in thermal equilibrium is striking, we emphasize that the
distribution functions are nonthermal and localized in
bands in momentum.
This entropy is a direct corollary of the conjecture on the

emergence of an asymptotic stationary state with a large
population of adiabatic “out” particles. These are the
eigenstates of the evolution Hamiltonian for the fluctua-
tions, which asymptotically becomes time independent.
Decoherence by dephasing in the basis of energy eigen-
states is one of the main arguments towards the description
of microcanonical quantum statistical mechanics, and as
mentioned above the cornerstone of the eigenstate thermal-
ization hypothesis, which describes thermalization in
closed quantum systems.
The diagonal form of the density matrix (5.68) also

emerges from tracing over one member of the correlated
pair states in the full density matrix (5.65), therefore
formally the entropy (5.76) is equivalent to the entangle-
ment entropy. Although in the cases studied above we
focused on neutral scalar fields, if instead the fields feature
a charge quantum number, and the pair states are of particle
and antiparticle, tracing over either of them would yield an
entanglement entropy similar to (5.76).

VI. CONCLUSION AND FURTHER QUESTIONS

The effective potential is a very useful concept to
understand the equilibrium phase structure of a theory,
in particular spontaneous symmetry breaking, including
quantum and thermal corrections. Although it is defined to
describe static phenomena, it is often used to study the
dynamical evolution of the expectation value of a field.
Motivated by its ubiquitous use in phenomenological
approaches to dynamical evolution, including in cosmol-
ogy, our objectives in this article are to critically examine
whether using the effective potential to study the dynamics
of a coherent mean field, or expectation value, is warranted,
and to provide a consistent framework to study its evolution
when it is not. We implemented a Hamiltonian formulation
to obtain the energy functional up to one loop which yields
the static effective potential and extended it to obtain the
equation of motion for the expectation value of a scalar
field in the dynamical case. This formulation is manifestly
energy conserving and renormalizable. We introduced an
adiabatic approximation to establish if a quasistatic

evolution warrants the use of the static effective potential
in the equations of motion and found that doing so implies
an explicit violation of energy conservation. Furthermore,
the regime of validity of such an adiabatic approximation is
severely restricted. Breakdown of adiabaticity is recognized
in two ubiquitous instances of fundamental and pheno-
menological relevance: parametric amplification associated
with instabilities from resonant excitations by oscillating
mean fields and spinodal decomposition, instabilities stem-
ming from the growth of correlations during phase tran-
sitions in the case of spontaneous symmetry breaking.
The breakdown of adiabaticity is directly linked to the

production of adiabatic particles, which we show to
describe the asymptotic “out” state at long time. A self-
consistent, energy conserving and renormalizable frame-
work that is amenable to numerical implementation is
introduced. Energy conservation implies the emergence of
asymptotic stationary states described by highly excited
entangled adiabatic particle states. Their distribution func-
tions are localized in momentum space in regions of
spinodal or parametric instabilities. In the case when the
tree level potential admits broken symmetry minima, the
asymptotic value of the order parameter is not the minima
of the effective potential, but receives corrections from the
excited states, and the energy density transferred to these
via particle production. This led us to conjecture on the
characterization of phases in terms of novel phase diagrams
of asymptotic expectation values of the scalar field, namely
the order parameter, versus energy density.
Although we considered simple examples of tree level

potentials to anchor the discussions, the results are of far
broader significance. Parametric and spinodal instabilities
are ubiquitous in theories without and with symmetry
breaking, and generally call into question the applicability
of the effective potential to study the dynamics of coherent
mean fields.
The asymptotic stationary states are fixed points of the

dynamics corresponding to equilibria compatible with the
constraint of fixed energy (energy conservation). These
novel equilibria are nonuniversal as they depend on
couplings, parameters and initial conditions on φ; φ̇ and
mode functions that determine the energy density. In the
case of tree level potentials featuring broken symmetry
minima, the asymptotic equilibrium values of the mean
field are very different from that obtained from the effective
potential, a consequence of profuse particle production.
The distribution functions of adiabatic particles are non-
thermal and nonuniversal, peaked at bands corresponding
to spinodally and/or parametrically produced particles,
since at this level (one loop) of approximation there are
no collision terms that would redistribute energy and
momenta away from the instability bands. A direct corol-
lary of the emergence of an asymptotic state is decoherence
by dephasing of the Schrödinger picture density matrix in
the basis of the asymptotic “out” adiabatic particle states,
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and the concomitant emergence of entropy; surprisingly,
the form of the entropy is similar to that of a free quantum
Bose gas but in terms of the distribution function of the
produced particles.
Our study has been restricted to the one-loop approxi-

mation to compare with the familiar one-loop effective
potential and exhibit its shortcomings to describe the
dynamics in the simplest and clearest example. Our main
results are of broader significance and transcend the
particular approximation: (i) the effective potential is ill
suited to study dynamics, (ii) there is a substantial transfer
of energy of the mean field to excitations; these are
described in terms of asymptotic “out” states based on
the zeroth adiabatic modes, (iii) an asymptotic stationary
state must emerge at long time as a consequence of energy
conserving dynamics when parametric and or spinodal
instabilities occur, (iv) the asymptotic equilibrium value of
the mean field is not described correctly by the effective
potential but also receives corrections from the excited
states. This is an unambiguous consequence of energy
conserving dynamics, and (v) a corollary of the asymptotic
stationary state is that there emerges an entropy from
decoherence and dephasing of the Schrödinger picture
density matrix. These are all results that do not depend
on the level of approximation, but stem fundamentally from
energy conserving dynamics associated with particle pro-
duction from the evolution of the mean field.
These results justify the study of its extension beyond

one loop within a manifestly renormalizable and energy
conserving framework both to confirm the main conclu-
sions and also to reveal quantitative characteristics of the
approach to the asymptotic state. A possible avenue would
be to include backreaction self-consistently, for example,
within a Hartree-type approximation [22,42] which, how-
ever, would not include collisions. An alternative would be
to implement the effective action approach advocated in the
seminal work of Ref. [56].
Nonequilibrium fixed points (or nearly fixed points of the

dynamics) have been identified in previous studies within a
different framework [57] including collisional processes, and
more recently the dynamics of condensates have been
included in Boltzmann equations [58]. These approaches
could provide an alternative confirmation of the emergence of
an asymptotic stationary state and of a coarse grained entropy
in the asymptotic regime as a consequence of decoherencevia
dephasing in a closed quantum system with energy conserv-
ing and unitary dynamics [59], and can shed light on the
question if such entropy becomes the thermal entropy.
While our study has been carried out in Minkowski space-

time, we expect that the results also have broad impact in
cosmology: in the equations of motion for a scalar (or
pseudoscalar field), during the time when the Hubble
expansion rate H is much larger than the mass, damping

from cosmological expansion may justify the use of a static
effective potential within this time window. However, when
H becomes much smaller than the mass, oscillations ensue
with the concomitant particle production and parametric
amplification. We highlighted that the breakdown of adia-
baticity is primarily associated with long wavelength exci-
tations; hence, it is important to assess the contribution from
super-Hubble modes to the fluctuation contributions to the
equations of motion, even during the time window when
Hubble friction dominates. Cosmological particle production
arising from the energy transfer from mean fields to
fluctuations has important consequences in cosmology, as
the full energy momentum tensor would feature two
components, a “cold” component from the coherent mean
field, and a “hotter” component from the particles produced
from either spinodal or parametric instabilities. This pos-
sibility warrants further study of the processes described in
this work applied to cosmology and on which we will report
in future work. Furthermore, extending the treatment to
gauge theories will require a clear understanding of gauge
invariance in the dynamics and renormalization aspects;
these are also topics beyond the scope of this article and the
subject of future work.
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APPENDIX: INSTABILITY
BANDS κ2n;�ðαÞ FOR EQ. (4.4)

From the results in Refs. [26–28], we obtain the
following power series expansion in α for the band
edges κ2n;�, valid in the range 0 ≤ α≲ 2; the range of
validity may be extended by including higher orders in the
expansion [26,28]:

κ22;− ¼ 3 − 2α −
α2

12
þ 5α4

13824
−

289α6

79626240
þ � � �

κ22;þ ¼ 3 − 2αþ 5α2

12
−
763α4

13824
þ 1002401α6

79626240
þ � � �

κ23;− ¼ 8 − 2αþ α2

16
−
α3

64
þ 13α4

20480
þ 5α5

16384
−

1961α6

23592960
� � �

κ23;þ ¼ 8 − 2αþ α2

16
þ α3

64
þ 13α4

20480
−

5α5

16384
−

1961α6

23592960
� � �

κ24;− ¼ 15 − 2αþ α2

30
−

317α4

864000
þ 10049α6

2721600000
þ � � �

κ24;þ ¼ 15 − 2αþ α2

30
þ 433α4

864000
−

5701α6

2721600000
þ � � � :

ðA1Þ
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