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We study representations of the Poincaré group that have a privileged transformation law along a p-
dimensional hyperplane, and uncover their associated spinor-helicity variables in D spacetime dimensions.
Our novel representations generalize the recently introduced celestial states and transform as conformal
primaries of SOðp; 1Þ, the symmetry group of the p-hyperplane. We will refer to our generalized states as
“partially celestial.” Following Wigner’s method, we find the induced representations, including spin
degrees of freedom. Defining generalized spinor-helicity variables for every D and p, we are able to
construct the little group covariant part of partially celestial amplitudes. Finally, we briefly examine the
application of the pairwise little group to partially celestial states with mutually nonlocal charges.
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I. INTRODUCTION

The classification of particles into representations of the
Poincaré group is the basis of particle physics and quantum
field theory (QFT): it allows for the definition of the
S-matrix and scattering amplitudes and the easy identifi-
cation of the propagating degrees of freedom of QFTs.
The little group appearing in Wigner’s method of induced
representations is essential for building proper scattering
amplitudes and forms the basis of modern scattering
amplitude methods. While little group methods have by
now become commonly used for particle scattering, it has
not been widely applied to the description of the dynamics
of branes. In this paper we initiate the first steps toward
this direction. While we do not consider the seemingly
formidable task of quantizing p-branes, we will consider a
simpler situation where branelike objects appear and their
general states can be constructed using Wigner’s method.
To achieve this we will define a new eigenbasis of ordinary
quantum fields in D dimensions that have privileged
transformation properties on a p-hyperplane. We call this
state a p-sheet or a p partially celestial state, for reasons that
will become obvious below. Though not quite a p-brane, the
p-sheet does serve as an interesting toy model for p-branes,
as it highlights the importance of SOðD − p − 1Þ transverse
rotations, a feature thatwe expect to play a key role in a future
“Wigner” quantization of p-branes.

Our starting point will be to look for states that (a) have
well-defined SOðp; 1Þ transformation properties, reflecting
the symmetry of a pþ 1-worldsheet, and (b) are not zero-
energy eigenstates. In fact, these two requirements imply
that our p-sheet states are not energy eigenstates at all.
As we shall see in detail below, the SOðp; 1Þ covariance
of our p-sheets makes them the analogs of the celestial
states considered in [1–7], except only along p directions;
hence they are “partially celestial.” We will find the
appropriate eigenbasis of these states, and also find the
correct labels for characterizing p-sheet quantum states.
With our knowledge of the little group and canonical
Lorentz transformations we can use Wigner’s method of
induced representations to build up the full p-sheet Hilbert
space. We are also able to present for the first time the
generalized spinor-helicity variables in any spacetime
dimension, which has applications far beyond those pre-
sented here and is the most far reaching result in this paper.
These variables allow us to construct the most general
three-point amplitudes for partially celestial states. We also
briefly consider how the recently introduced pairwise little
group [8–11] can be generalized to p-sheets. For the case of
mutually nonlocal sheets of dimension p andD − p − 4we
show that the pairwise little group is just a Uð1Þ, providing
a new example of pairwise helicity, which can be dynami-
cally realized if pþ 1-form electrodynamics is electrically
coupled to the p-sheet and magnetically coupled to the dual
D − p − 4 sheet.
The paper is organized as follows. First, we briefly

review the celestial solutions [1–7] of the Klein-Gordon
(KG) equation, which are solutions that transform cova-
riantly with respect to SOðD − 1; 1Þ, viewed as the
Euclidean conformal group. Using celestial solutions as
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an inspiration, we then present solutions of the d-dimen-
sional KG equation which are SOðp; 1Þ covariant, reflect-
ing the symmetry of a pþ 1-world volume. In their “rest”
frame, these solutions are also manifestly SOðD − p − 1Þ
rotationally invariant and RD−p−1 translationally invariant
in the space orthogonal to the p-sheet. Next, we show how
to interpret these SOðp; 1Þ covariant solutions of the KG
equation as the wave functions of p partially celestial
quantum states, thus constructing their Hilbert space. The
generalization to spinning p-sheets is then achieved using
Wigner’s method of induced representations. We then
construct spinor-helicity variables that allow us to write
the most general three-point amplitudes. Finally, we present
the pairwise little group of two parallel sheets and argue
that for mutually nonlocal sheets the pairwise little group
reduces to a Uð1Þ pairwise helicity.

II. PLANE WAVES AND CELESTIAL SCALARS

In preparation for presenting our p-sheet states we will
first review the construction of the celestial scalars and their
relation to plane waves. Consider first a massive classical
scalar field ϕðxÞ inD-dimensions. Its equation of motion is
the KG equation (in a mostly plus signature as is commonly
used in the celestial literature)

½−∂2t þ∇2 þm2�ϕðxÞ ¼ 0: ð1Þ
The most commonly used basis of solutions is the plane
wave basis ϕpðxÞ ¼ e�ip·x. Each solution ϕpðxÞ in this
basis is translationally invariant in D − 1 directions xμ →
xμ þ Δxμ orthogonal to pμ, p · Δx ¼ 0. One could instead
look for solutions of (1) which are SOðD − 1; 1Þ covariant
—these are the massive celestial scalars [1,12] ϕΔðx; w⃗Þ.
Instead of the pμ labels, these solutions are labeled by a
conformal dimension Δ and a vector w⃗ on Rd, where
d≡D − 2. Explicitly, they are given by

ϕ�;PS
Δ ðx; w⃗Þ ¼ 2

d
2
þ1π

d
2

ðimÞd2
ðisÞα

½−qðw⃗Þ · x ∓ iϵ�Δ KαðmsÞ

s ¼ ffiffiffiffiffiffiffiffiffi
x · x

p
; α ¼ Δ −

d
2
: ð2Þ

The label PS here is to remind us that these are the celestial
wave functions defined in [1]. Here

qμðw⃗Þ ¼ ð1þ jw⃗j2; 2w⃗; 1 − jw⃗j2Þ ð3Þ

is a D ¼ dþ 2 dimensional vector. A Lorentz transforma-
tion Λ acting on qμ induces a nonlinear map Λ∶w⃗ → w⃗0 via

qμðw⃗0Þ ¼
���� ∂w⃗0

∂w⃗

����1=dΛμ
νqνðw⃗Þ: ð4Þ

The map Λ∶w⃗ → w⃗0 nonlinearly realizes SOðd − 1; 1Þ
as the Euclidean conformal group acting on w⃗∈Rd−2.

By substituting (4) in (2), one can easily check that these
solutions have the property that

ϕΔðΛμ
νxν; w⃗0ðw⃗ÞÞ ¼

���� ∂w⃗0

∂w⃗

����−
Δ
d

ϕΔðxν; w⃗Þ; ð5Þ

The solutions (2) form a complete eigenbasis for the KG
equation for either Δ ¼ d

2
þ iR or 0 < Δ < 1, also called

the principal series and complementary series representa-
tions of SOðD − 1; 1Þ, respectively.
The celestial wave functions for massless scalars were

obtained in [1] by taking themassless limit of (2). In [13], an
equivalent construction of the celestial states for massless
particles in Four-dimensional (4D) was presented. The latter
followed Wigner’s method of induced representations, by
starting from a reference quantum state whose little group is
the “lower triangular” group fJ3;K3; J2−K1;−J1 −K2g.
Inspired by this construction, we present a slightly modified
derivation of the solution (2) using little group methods (see
also a parallel discussion for the massless case in the very
recent [14]), which will be easily generalized to our partially
celestial p-sheet solutions. First, we redefine the expression
in (2), as a function of qμ rather than w⃗,

ϕ�
Δðx; qÞ ¼

2
d
2
þ1π

d
2

ðimÞd2
ðisÞα

½−q · x ∓ iε�Δ KαðmsÞ

s ¼ ffiffiffiffiffiffiffiffiffi
x · x

p
; α ¼ Δ −

d
2
: ð6Þ

Note that this is a solution to the KG equation only for null
qμ. Naturally, we define a reference value of qμ as

qμref ≡ ð1; 0;…; 0; 1Þ; ð7Þ

and note that this is a lightlike LorentzD-vector as opposed
to the D − 2 vector w⃗. Accordingly, a “reference wave
function” is

ϕ�;ref
Δ ðxÞ≡ ϕ�

Δðx; qrefÞ: ð8Þ
Here qμref is chosen so that ϕ�;ref

Δ ðxÞ is SOðD − 2Þ rotation-
ally invariant, but it is also manifestly invariant under the
linear combinations Mi;D−1 −M0;i; i∈ f1;…; D − 1g of
SOðD − 1; 1Þ generators. Overall, the little group under
which ϕ�;ref

Δ ðxÞ is invariant is given by

LGD ¼ ISOðD − 2Þ; ð9Þ

where dimðLGDÞ ¼ ðD−1ÞðD−2Þ
2

. Under general transforma-
tions in the Poincaré group PD ¼ RD⋊SOðD − 1; 1Þ, the
celestial scalar transforms as

Ω ¼ ðΛ; vÞ∈PD∶

ϕ�;ref
Δ ðxÞ → ϕ�;Ω

Δ ðxÞ ¼ ϕ�;ref
Δ ðΛðxþ vÞÞ

¼ ϕ�
Δðxþ v;Λ−1qÞ: ð10Þ
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Without loss of generality, we perform the translation
before the Lorentz transformation. Note also that we
could further Taylor-expand the last line of (10) in vμ,
and see that the action of an internal translation Pμ shifts
Δ → Δþ 1 [15–17], but we will not do it explicitly in this
paper. Importantly, not all Poincaré transformations actually
lead to inequivalent solutions for ϕ—to label inequivalent
solutionswe have tomod out by the action of the little group.
This is the same as finding canonical transformations
O∈PD=LGD. From (10), we can see that the generic
partially celestial scalar solution is parametrized by all
possible qμ that can be reached from qμref by Lorentz
transformations. These are one boost and p − 1 rotations
with angles αk that take qμ to a generic value ðγ; γβ⃗Þ. Hence,
the canonical Lorentz transformations are

qμ ¼ ½Lq�μνqνref ;

Lq ¼
YD−3

k¼1

Rk;kþ1ðαkÞ × BpðβÞ: ð11Þ

Here Rk;kþ1ðαkÞ is a rotation by the angle αk in the plane
spanned by the k and kþ 1 directions,whileBpðβÞ is a boost
with velocity β along the p direction. Thus, the partially
celestial scalar solution is parametrized by one boost,D − 2
angles, and D translations, for a total of 2D − 1 parameters
of the coset PD=LGD. One can easily check that this is
indeed the correct dimension of this coset. There is a one-to-
one correspondence between the originalϕ�;PS

Δ andϕ�;O
Δ ðxÞ

for O∈PD=LGD. To see this, note that every qμ in (11)
uniquely defines a w⃗, and vice versa.

III. THE PARTIALLY CELESTIAL
SCALAR SOLUTION

In this paper, we are interested in representations of the
D-dimensional Poincaré group PD ¼ RD⋊SOðD − 1; 1Þ
which transform covariantly under a pþ 1-dimensional
Lorentz subgroup SOðp; 1Þ ⊂ PD. These correspond to
ordinary quantum fields on p-dimensional hypersurfaces in
d dimensions, which we call p-sheets for short. As a first
step, we would like to construct the most general SOðp; 1Þ
covariant solutions to (1), drawing inspiration from the
celestial solutions (2). These would be akin to celestial
solutions in p “sheet-parallel” dimensions, while being
translationally invariant in D − p “external” directions. To
this end, we define p partially celestial scalars as

ϕ�
Δ;pðx; q; AÞ ¼

2
p−1
2
þ1π

p−1
2

ðimÞp−12
ðisÞα

½−q · x ∓ iϵ�ΔKαðmsÞ;

s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xμAμνxν

p
; α ¼ Δ −

p − 1

2
; ð12Þ

where qμ is a null D-dimensional vector and Aμν is a
D-dimensional two-index tensor. The latter is required

to specify the embedding of a pþ 1-worldsheet in
D-dimensional space. Similar to our little group construc-
tion of fully celestial scalars in the previous section, here we
need to specify reference values for both Aμν

p;ref and qμp;ref .
We choose

ϕ�;ref
Δ;p ðxÞ≡ ϕ�

Δ;pðx; qp;ref ; Ap;refÞ; ð13Þ

where

Aμν
p;ref ≡ diagð−1; 1;…; 1; 0;…; 0Þ;

qμp;ref ≡ ð1; 0;…; 0; 1; 0;…; 0Þ; ð14Þ

where the 1’s are repeated p-times in Aμν
p;ref , while in qμp;ref

the 1 is in the pþ 1 entry. Aμν
p;ref is the projection tensor into

the world volume of a p-hyperplane at rest, lying along
the first p dimensions, while qμp;ref is chosen so that

ϕ�;ref
Δ;p ðxÞ is SOðp − 1Þ rotationally invariant, but it is also

manifestly invariant under Mip −M0i; i∈ f1;…; p − 1g. It
is also manifestly invariant under RD−p−1×SOðD−p− 1Þ
corresponding to “external” translations and rotations.
Overall, the little group under which ϕ�;ref

Δ ðxÞ is invariant
is given by

LGD
p ¼ RD−p−1 × ISOðp − 1Þ × SOðD − p − 1Þ; ð15Þ

where dimðLGD
p Þ ¼ D − p − 1þ pðp−1Þ

2
þ ðD−p−1ÞðD−p−2Þ

2
.

For future reference, we also define for every Λ∈ SO
(d − 1, 1) the Lorentz transformed tensor and vector,

qμ
p;Λ−1 ≡ ½Λ−1�μνqνp;ref ;
Aμν
p;Λ ≡ Λμ

αΛν
βA

αβ
p;ref : ð16Þ

Under Poincaré transformations, the partially celestial
scalar transforms as

Ω ¼ ðΛ; vÞ∈PD∶

ϕ�;ref
Δ;p ðxÞ → ϕ�;Ω

Δ;p ðxÞ ¼ ϕ�;ref
Δ;p ðΛðxþ vÞÞ

¼ ϕ�
Δ;pðxþ v; qp;Λ−1 ; Ap;ΛÞ: ð17Þ

Without loss of generality, we do the translation first in
the Poincaré transformation. Importantly, not all Poincaré
transformations actually lead to inequivalent solutions ϕ—
to label inequivalent solutions we have to mod out by the
action of the little group. This is the same as finding
canonical transformations O∈PD=LGD

p . From (17), we
can see that the generic partially celestial scalar solution is
parametrized by all possible ðqμ; AμνÞ that can be reached
from ðqμp;ref ; Aμν

p;refÞ by Lorentz transformations.
To find the most generic ðqμ; AμνÞ we start from their

reference values and perform a fixed set of independent
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Lorentz transformations. We start with transformations that
act on qμ within the pþ 1 dimensional reference hyper-
plane along time and the first p spatial directions, while
leaving Aμν invariant. Since qμ is a massless vector (even
though our irreps are massive), we can get to a generic qμ

with one boost with velocity β and p − 1 rotations with
angles αk. From now on, we can perform further trans-
formations that act on Aμν, with qμ going along for the ride.
First, we can boost Aμν by β0 to give it velocity (nonzero
first row/column) in the xD direction. Without changing this
velocity, we can perform rotations between all spatial
directions orthogonal to xD. However, out of these rota-
tions, the ones outside the p-hyperplane leave the con-
figuration invariant and are in fact part of the little group
that leaves pðD − p − 2Þ rotation angles φij. At this point
both qμ and Aμν are aligned in arbitrary directions orthogo-
nal to xD and the velocity is in the xD direction. Finally, we
can rotate the entire configuration arbitrarily in D − 1
spatial directions, with D − 2 angles θi. In other words,
the most general values for ðqμ; AμνÞ are ðqμp;LALq

; Aμν
p;LA

Þ
where

Lq ¼
Yp−2
k¼1

Rk;kþ1ðαkÞ × BpðβÞ:

LA ¼
YD−2

k¼1

Rk;kþ1ðθkÞ ×
Yp
i¼1

YD−2

j¼pþ1

Ri;jðφijÞ × BDðβ0Þ: ð18Þ

Hence, the partially celestial scalar solution is parametrized
by ðD − p − 1Þðpþ 1Þ − 3 angles, two boosts, and pþ 1
translations, for a total of pðD − pÞ þD parameters of the
coset PD=LGD

p . One can easily check that this is indeed the
correct dimension of this coset. To summarize, p partially
celestial scalar solutions are solutions of theD-dimensional
KG equation that are invariant under the little group (15)
and are labeled by ðD − pÞðpþ 1Þ parameters of the
coset PD=LGD

p .
Finally, we note that in the massless limit, the depend-

ence of p partially celestial scalars on the reference plane A
drops out, as can be checked by explicit expansion of (13).

IV. PARTIALLY CELESTIAL SCALARS:
EXPLICIT EXAMPLES

A. Fully celestial state in D dimensions

This is the case discussed in Sec. II. One can easily check
that setting p ¼ D − 1 in (13)–(18), we have Aμν ¼ ημν

which is Lorentz invariant, and so the partially celestial
solution coincides with the definitions in Sec. II.

B. Partially celestial line in D dimensions

A partially celestial line in D dimensions corresponds
to a partially celestial solution (17) with p ¼ 1. Its little
group is

LGD
1 ¼ R2 × SOðD − 2Þ; ð19Þ

whose dimension is 2þ ðD − 2ÞðD − 3Þ=2. For D ¼ 4 we
getR2 × SOð2Þ. The cosetPD=LGD

1 has dimension 2D − 1,
and it is parametrized byD − 3 angles φij,D − 2 angles θk,
two boost parameters β; β0, one spatial translation, and one
time translation. The most generic ϕline is given by

ϕlineðxÞ ¼ ϕ�
Δ;p¼1ðxþ a; q; AÞ;

aν ¼ ða0; a1; 0;…; 0Þ;

qν ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
LAqp¼1;ref;ν;

Aμν ¼ Aμν
p¼1;LA

;

LA ¼
YD−2

k¼1

Rk;kþ1ðθkÞ ×
YD−2

j¼2

R1;jðφijÞ × BDðβ0Þ: ð20Þ

C. Massive particle in D dimensions

A massive particle in D dimensions corresponds to a
partially celestial solution (17) with p ¼ 0. Since qμ is ill-
defined for p ¼ 0, the particle solution necessitates taking
Δ ¼ 0 rather than Δ ¼ D−2

2
þ iR. In this case the little

group (in Poincaré) is

LGD
0 ¼ RD−1 × SOðD − 1Þ; ð21Þ

whose dimension is D − 1þ ðD − 1ÞðD − 2Þ=2. For D ¼
4 we get spatial translations R3 times the usual SOð3Þ ≃
SUð2Þ little group for massive particles in 4D. The coset
PD=LGD

0 has dimension D − 1, and it is parametrized by
D − 2 angles θk, one boost parameter β0, and one time
translation. The reference wave function ϕparticle

ref is given by

ϕparticle
ref ðxÞ ¼ ϕ�

Δ;0ðx; q0;ref ; A0;refÞ ¼ ie−imt: ð22Þ

This is simply a plane wave in the rest frame of the particle
(up to an irrelevant constant phase). In any other frame, we
have

ϕparticleðxÞ ¼ ie−imγ0ðtþdtþβ0x⃗·n̂Þ;

n̂ ¼
YD−2

k¼1

Rk;kþ1ðθkÞð0;…; 0; 1ÞT: ð23Þ

V. FROM PARTIALLY CELESTIAL SCALARS
TO PARTIALLY CELESTIAL QUANTUM STATES

The SOðp; 1Þ invariance of partially celestial scalars is
suggestive of a new class of quantum states representing a
p-sheet. To make this correspondence more concrete, we
can interpret the p partially celestial solution ϕðxÞ as the
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wave function of a single p partially celestial state. First,
we set up some notation. We denote canonical Poincaré
transformations by ðL;aÞ≡O∈PD so that ½O�∈PD=LGD

p .
As shown above, each canonical Poincaré transformation is
labeled by ðD − pÞðpþ 1Þ parameters. For every canonical
transformation there is a unique partially celestial scalar
solution ϕOðxÞ ¼ ϕrefðLðxþ aÞÞ. We can now identify

ϕOðxÞ ¼ h0jaOΦðxÞj0i
¼ h0jΦðxÞa†Oj0i�; ð24Þ

where j0i is the vacuum, a†O (aO) is the creation (annihi-
lation) operator for a p partially celestial scalar which is
related to the reference scalar by the canonical Poincaré
transformation O. ΦðxÞ is the field operator for a (real)
scalar field, which we can expand as

ΦðxÞ≡
Z
PD=LGD

p

dO½ϕOðxÞa†O þ H:c:�: ð25Þ

As for the field operator for particles, we require the
field operator transforms covariantly under the Poincaré
group [18],

Ω ¼ ðΛ; vμÞ∈PD∶

ΦðxÞ → U½Ω�ΦðxÞU−1½Ω� ¼ ΦðΛðxþ vÞÞ: ð26Þ

In particular, ΦðxÞ is invariant under little group trans-
formations Ω∈LGD

p . Similar to particles, this requirement
fixes the Poincaré transformation properties of the creation
and annihilation operators (see derivation in Appendix A),

a†O → U½Ω�a†OU−1½Ω� ¼ a†ΩO;

aO → U½Ω�aOU−1½Ω� ¼ aΩO; ð27Þ

where the product ΩO is just the group product of the
Poincaré group PD. In other words, a p partially celestial
scalar state jOi≡ a†Oj0i transforms as

U½Ω�jOi ¼ jΩOi: ð28Þ

By construction, the reference state jrefi ¼ jO ¼ identityi
is invariant under Ω∈LGD

p . This concludes our definition
of the quantum state of a single p partially celestial scalar.

VI. PARTIALLY CELESTIAL STATESWITH SPIN:
WIGNER’S METHOD

In the previous section we defined p partially celestial
scalar states by starting from a p partially celestial scalar
solution and interpreting it as the wave function of a
quantum state. Here we generalize our construction to p
partially celestial states with spin. A direct generalization of
our previous derivation would have been to start with a

partially celestial solution with spin, ϕðxÞi1;…;il , and inter-
pret it as the wave function for a spinning p partially
celestial state (see, for example, the constructions of
fully celestial spinors in [1,19,20]) and massless p-forms
in [14]. Instead, we will follow a simpler route, using
Wigner’s method of induced representations. Similar
to the scalar case, spinning states are labeled by jO; σi
where O∈PD=LGD

p and σ is a composite spin index. The
reference state is defined as usual as jref; σi ¼ jO ¼
identity; σi, and it is annihilated by all of the generators
of the little group LGD

p . Clearly, LGD
p is generated by the

Poincaré algebra generators Gn ¼ fM0i;Mip; Pk;Mklg
where i∈ ½1;…; p − 1� and k; l∈ ½pþ 1;…; d�, so that
Gnjref; σi ¼ 0. Consequently, the reference p partially
celestial state jrefi transforms in a representation of
LGD

p , i.e.

U½W�jref; σi ¼ Dσ0σ½W�jref; σ0i; ð29Þ

for any W ∈LGD
p . Here Dσ0σ½W� is some representation

matrix of LGD
p and σ is a collective index denoting a “spin”

label for LGD
p representations. For particles, p ¼ 0, and

D ¼ 4, the representation matrices reduce to the normal
spin representation matrices.
As in Wigner’s method for particles, for any

O∈PD=LGD
p we can define the quantum state in a general

frame as

jO; σi≡U½O�jref; σi: ð30Þ

This also serves as a definition of U½O� that can be
uniquely extended to all U½Ω�;Ω∈PD acting on generic
states. But first, let us ask ourselves which generators
annihilate jOi. The answer is straightforward. Take O ¼
ðL; aÞ∈PD=LGD

p and define MO
μν and PO

μ so that

Mμν ¼ Lμ
αLν

βðMO
αβ − a½αPO

β�Þ;
Pμ ¼ Lμ

νPO
ν : ð31Þ

From chapter 2 of Weinberg’s QFT book [18], we have

Mμν ¼ U−1½O�MO
μνU½O�;

Pμ ¼ U−1½O�PO
μ U½O�: ð32Þ

Then GO
n jO; σi ¼ 0.

Next, we can ask how the state jO; σi transforms under a
generic Poincaré transformation Ω∈PD. This is uniquely
defined using Wigner’s method. Explicitly,

U½Ω�jO; σi ¼ U½Ō�U½Ō−1ΩO�jref; σi
¼ U½Ō�U½W�jref; σi
¼ Dσ0σ½W�jŌ; σ0i; ð33Þ
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where Ō∈PD=LGD
p is unique canonical Lorentz trans-

formation defined by

Ōμ
αŌν

βA
αβ
p;ref ¼ Aμν

p;ΩO;

Ōμ
αqαp;ref ¼ qμp;ΩO: ð34Þ

Note that generically ΩO is not a canonical Lorentz
transformation in and of itself, and so Ō ≠ ΩO. To
conclude, in this section, we have straightforwardly applied
Wigner’s method of induced representations to single p
partially celestial states with spin. The spin here is given by
the representation Dσ0σ of the little group LGD

p .

VII. SPINOR-HELICITY VARIABLES
FOR p-SHEET SCATTERING

Once we have fixed the little group for p-sheets we
can construct the generalizations of the spinor-helicity
variables, which are the key for the construction of the
scattering amplitudes. Consider the compact part of the
little group (15):

cLGD
p ¼ SOðp − 1Þ × SOðD − p − 1Þ: ð35Þ

Our task is to defineD-dimensional massive spinor-helicity
variables that transform under cLGD

p . We define two kinds
of Minkowski spinors under the full D-dimensional
Lorentz group, which also carries spinor indices under
the (Euclidean) SO factors of the cLGD

p . The first jLAiα
transforms with the little group SOðD − p − 1Þ spinor
index, while the second jLa⟫α transforms with an SOðp −
1Þ spinor index. For even D the spinor representation is
chiral, and we also have spinors of the opposite chirality
jLA�α̇ and jLa⟧α̇. For evenD − p − 1 or p − 1, we also have
spinors with dotted little group indices. Undotted spinor
indices are contracted in the northwest-southeast conven-
tion, while dotted ones are in the southwest-northeast
convention. We begin with a definition of jLAiα; ½LȦjα̇,
where A; Ȧ are SOðD − p − 1Þ spinor indices and α; α̇
are SOðD − 1; 1Þ spinor indices. Defining for any N,
sN ¼ 2bN=2c−1, we have A; Ȧ ¼ f1;…; sD−p−1g and α; α̇ ¼
f1;…; sDg. The reference values for the single angle
spinors are

jrefAiα ¼ δAþs;α; jrefȦiα ¼ δȦþs;α;

½refȦjα̇ ¼ δȦþs;α̇; ½refAjα̇ ¼ δAþs;α̇; ð36Þ

where s ¼ sD − sD−p−1. Note that the dotted Lorentz
indices exist only for even dimensional D and the dotted
little group indices only exist for even dimensional
D − p − 1. For odd D, we can now define Lorentzian
D-dimensional ½Γμ�αβ matrices, while for even D we have
the corresponding ½Σμ�αβ̇; ½Σ̄μ�α̇β matrices. Similarly, for odd

D − p − 1 we have D − p − 1 dimensional Euclidean ½γI�BA
matrices, while for even D − p − 1 we have the corre-
sponding ½σI�AḂ; ½σ̄I�ȦB matrices. We can always choose a
basis so that the bottom right sD−p−1 × sD−p−1 block of the
last D − p − 1 Γ=Σ matrices is numerically identical to the
γ=σ matrices. We can freely raise and lower the indices on
the spinors via

hrefAjα ¼ εαβϵABjrefBiβ;
jrefȦ�α̇ ¼ ½refḂjβ̇ϵḂ Ȧεβ̇ α̇; ð37Þ

where ε ¼ i½ΓD−2� for odd D and ε ¼ i½ΣD−2� for even D
and similarly for ϵ with γ and σ.
Now, we can use these gamma/sigma matrices to

combine the spinors into

Aμν
p;ref ¼ ημν − ½vref �fμI ½vref �νg;I

oddD; oddD − p − 1∶

½vref �μI ¼ hrefAjα½Γμ�αβ½γI�ABjrefBiβ
evenD; evenD − p − 1∶

½vref �μI ¼ hrefAjα½Σμ�αβ̇½σI�AḂjrefḂ�β̇; ð38Þ

and similarly for mixed parityD andD − p − 1. In analogy
with Wigner’s method, we define jLAiα; ½LȦjα̇; in any other
frame as

jLAiα ¼ Lα
βjrefAiβ;

½LȦjα̇ ¼ ½refȦjβ̇Lβ̇
α̇; ð39Þ

for every L∈ SOðD − 1; 1Þ=cLGD
p . One can readily check

that

Aμν
p;L ¼ ημν − ½vL�fμI ½vL�νg;I

oddD; oddD − p − 1∶

½vL�μI ¼ hLAjα½Γμ�αβ½γI�ABjLBiβ
evenD; evenD − p − 1∶

½vL�μI ¼ hLAjα½Σμ�αβ̇½σI�AḂjLḂ�β̇: ð40Þ

In fact, the first equation can also be thought of as the
definition of the spinor-helicity variables. It is the gener-
alization of the relation p ¼ jpi½pj for the definition of the
ordinary spinors.
By Wigner’s method, jLAiα; ½LȦjα̇ transform under a

generic Λ∈ SOðD − 1; 1Þ as

Λα
βjLAiβ ¼ L̄β

αW
γ
βjrefAiγ

½LȦjβ̇Λβ̇
α̇ ¼ ½LȦjγ̇W γ̇

β̇
L̄β̇

α̇; ð41Þ
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where L̄∈ SOðD − 1; 1Þ=cLGD
p is the unique canonical

Lorentz transformation defined by Ap;ΛL ¼ L̄Ap;refL̄T, and
W ¼ L̄−1ΛL∈ SOðD − p − 1Þ is a little group transforma-
tion. Now, by the definition (36), we have

Wβ
γjrefAiγ ¼ WA

BjrefBiβ;
½refȦjγ̇W γ̇

β̇ ¼ ½refḂjβ̇WḂ
Ȧ: ð42Þ

In other words, when acting on the reference spinors with a
spacetime-index little group transformation, it is the same
as acting on them with the same transformation in the little
group indices. This is the same thing that happens to
massive spinors in 4D [21]. We conclude that

Λα
βjLAiβ ¼ WA

BjL̄Biα;
½LȦjβ̇Λβ̇

α̇ ¼ ½L̄Ḃjα̇WḂ
Ȧ; ð43Þ

i.e. these spinors transform exactly with the correct
SOðD − p − 1Þ little group factor. That makes them the
right building blocks for p partially celestial amplitudes.
Similarly, we can define the spinors jrefa⟫α; ⟦refajα̇

where a is an SOðp − 1Þ little group index. Note that
we do not dot the a index for reasons that will become
apparent momentarily. These are defined as

jrefa⟫α ¼ δaα;

⟦refajα̇ ¼ δaα̇: ð44Þ

They are defined so that

qμp;ref ¼ ⟪refajα½Γμ�αβjrefa⟫β; ð45Þ

for odd D and p − 1, and

qμp;ref ¼ ⟪refajα½Σμ�αβ̇jrefa⟧β̇; ð46Þ

for even D and p − 1. Similar to jLi; ½Lj, the generic
jL⟫; ⟦Lj transform as

Λα
βjLa⟫β ¼ Wa

bjL̄0
b⟫α;

⟦Lajβ̇Λβ̇
α̇ ¼ ⟦L̄0bjα̇Wb

a; ð47Þ

where L̄0 ∈ SOðD − 1; 1Þ=cLGD
p is the unique canonical

Lorentz transformation defined by qp;ΛL ¼ L̄0qp;ref, and
W ¼ L̄0−1ΛL∈ SOðp − 1Þ is a little group transformation.
One can readily check that

qμp;L ¼ ⟪Lajα½Γμ�αβjLa⟫β; ð48Þ

for odd D and p − 1, and

qμp;L ¼ ⟪Lajα½Σμ�αβ̇jLa⟧
β̇; ð49Þ

for even D and p − 1, for any L∈SOðD − 1; 1Þ=cLGD
p .

Again these last two relations can be thought of as the
definitions of double-line SOðp − 1Þ spinors. We then see
that jL⟫; ⟦Lj transform with the correct SOðp − 1Þ little
group transformation and can be used to form p partially
celestial amplitudes.

VIII. CONSTRUCTING PARTIALLY
CELESTIAL AMPLITUDES

Using the spinor-helicity variables defined in the pre-
vious section, we can construct the little group-covariant
part of any partially celestial amplitude, generalizing the
4D massive formalism of [21]. We take all external states
to live in D-dimensional space and have “internal dimen-
sions” pn, with n ¼ 1; 2; 3;…; N and representations
Rin

n ×Rout
n under the compact little group cLGD

pn
¼

SOðpn − 1Þ × SOðD − pn − 1Þ. To saturate the required
little group transformation of the amplitude, we need to
combine the little group indices of the spinor-helicity
variables jnAn

iαn ; ½nȦn
j
α̇n
; jnan⟫αn , and ⟦nan jα̇n . This is

achieved via contractions of the cLGD
pn

indices using the
γ=σ matrices. Once the correct little group transformation is
obtained, all Lorentz indices can be contracted via the
little group invariants εαβ; εα̇ β̇, ½nk�βα ≡ ½nI�αγ̇½kI�γ̇β, and

½nk�α̇β̇ ≡ ½nI�α̇γ½kI�γβ̇ where

½nI�αβ̇ ¼ jnAiαϵABσIBĊϵĊ Ḋ½nḊjβ̇; ð50Þ

as well as their double angle/double square bracket
counterparts.
As an example, consider the (little group covariant part

of) the three-point amplitude for three 3-celestial ampli-
tudes in 10D, transforming as the ð0; 4Þ; ð0; 4̄Þ, and ð0; 6Þ of
cLG10

3 ¼ Uð1Þ × SOð6Þ. This amplitude is given by

AA1;Ȧ2;I3 ¼ ½3Ȧ3
2Ȧ2 �½σ̄I3 �Ȧ3B3h1A13B3

i; ð51Þ

where all the spinors are defined for D ¼ 10 and p ¼ 3.
Another example is the (little group covariant part of) the
three-point amplitude for a line (one partially celestial) state
emitting a massive scalar particle in 4D. We consider
the case in which the 2 one partially celestial legs have
helicity � 1

2
under cLG4

1 ¼ SOð2Þ ≃Uð1Þ (in the all-
incoming convention). The amplitude in this case is

AA1;A2 ¼ h1A12A2i; ð52Þ

where both the spinors are defined for D ¼ 4 and p ¼ 1,
and the values of A1, A2 correspond to different choices of
positive or negative helicity. We can get a direct analytical
expression for this amplitude using the explicit values
of the spinors given in Appendix B. As an illustration,
consider a line at rest along the x-axis emitting a massive
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scalar particle, while remaining at rest and rotating by an
angle φ. The amplitude for this process is

AA1;A2 ¼
�

0 e−
iφ
2

−e
iφ
2 0

�
: ð53Þ

Note that the amplitude is helicity conserving in the all-
incoming convention.
Finally, note that translational invariance should pose

additional constraints on partially celestial amplitudes. In
fact, for particles we know that translational invariance
(i.e. momentum conservation) dictates that three-point
amplitudes are completely fixed by their little group
transformations. In our case, similar to the case of fully
celestial amplitudes [16,17], the generators for translation
assume a nonlinear differential form when expressed in
terms of ðq; A;ΔÞ. We leave the exploration of the con-
straints of translational invariance on partially celestial
amplitudes for future work, including whether three-point
partially celestial amplitudes are fixed by their little group
transformations.

IX. PAIRWISE LITTLE GROUP

Consider a scalar p-sheet parallel to a scalar p0 sheet inD
dimensions. To be parallel, we require that pþ p0 ≤ D − 2.
By applying Poincaré transformations, we can always go to
the “center of velocity” frame of the two sheets, in which
their wave functions are given by

ϕ�;ref
Δ;p ðxÞ ¼ ϕ�

Δ;pðx; qref;p; Bref;pÞ;
ϕ�;ref
Δ0;p0 ðxÞ ¼ ϕ�

Δ0;p0 ðx; qref;p0 ; Bref;p0 Þ;
Bμν
ref;p ¼ diagð0; 1;…; 1; 0;…; 0; 0;…; 0Þ þM⊥ðβÞ;

Bμν
ref;p0 ¼ diagð0; 0;…; 0; 1;…; 1; 0;…; 0Þ þM⊥ð−βÞ;

M⊥ðβÞ ¼ −

0
BBBBBB@

γ2 0 … 0 γ2β

0 0 0 0 0

..

.
0 . .

.
0 ..

.

0 0 0 0 0

γ2β 0 … 0 γ2β2

1
CCCCCCA
: ð54Þ

In analogy with the pairwise little group for particles, we
can ask which subgroup of PD stabilizes both ϕ�;ref

Δ;p ðxÞ and
ϕ�;ref
Δ0;p0 ðxÞ. The answer is

pLGD
p;p0 ¼ ISOðp − 1Þ × ISOðp0 − 1Þ

× RD−p−p0−2 × SOðD − p − p0 − 2Þ: ð55Þ

For particles in 4D, p ¼ p0 ¼ 0, and the pairwise little
group reduces to SOð2Þ ≃Uð1Þ, consistent with [8–11]
(see also [22] for a discussion of pairwise helicity in the

context of 4D celestial amplitudes). In particular, we focus
on the case in which p0 ¼ D − p − 4. This is the case
where the sheets are mutually nonlocal, in the sense that
they source p-form gauge fields that are Electromagnetic
(EM)-dual to each other. In this case the p-form charges of
the two sheets are constrained by Dirac quantization, as
shown in [23],

q≡ eg ¼ n
2
; p ≠ D − p − 4; ð56Þ

where e and g are the charge of the p andD − p − 4 sheets,
respectively. In the self-dual case, p ¼ D−4

2
, the sheets can

be dyonic, and the Dirac quantization condition is gener-
alized to [24]

q≡ e1g2 þ ð−1Þpe2g1 ¼
n
2
; p ¼ D − 4

2
: ð57Þ

In [8–11], the Dirac-quantized quantities q were shown to
play the role of pairwise helicities labeling the representa-
tions of the Uð1Þ little group. Here the situation is similar;
substituting p0 ¼ D − p − 4 in (55), we have

pLGD
p;D−p−4 ¼ ISOðp − 1Þ × ISOðD − p − 5ÞR2 ×Uð1Þ;

ð58Þ

and we see that indeed pLGD
p;D−p−4 has a Uð1Þ factor. We

can naturally identify the pairwise helicities labeling the
representations of this factor of the pairwise little group
with the q given in (56) and (57).
The presence of a Uð1Þ factor for the pairwise little

group for mutually nonlocal partially celestial states hints
that the entire structure exposed in [8–11] generalizes
directly to the present case. This is reminiscent of a pair
of mutually nonlocal branes, which source p-form and p0-
form fields and thus carry extra angular momentum in these
fields. This extra angular momentum modifies the selection
rules for brane scattering, in the same way it modifies them
for monopoles and charges in 4D.

X. OUTLOOK AND FUTURE WORK

In this paper we defined the quantum states for scalar
and spinning p partially celestial states and, notably, the
generalized LGD

p -covariant spinor-helicity variables in D
dimensions. These results allow us to find the little group
covariant part of the most general three-point amplitudes
for partially celestial states. Additionally we found the
corresponding pairwise little group, which has a Uð1Þ
factor for mutually nonlocal states. In a future little group
construction for branes, the helicities under the pairwise
little group should be identified with Dirac quantized
products of charges by examining the Lorentz-transforma-
tion properties of soft-photon-dressed electric and magnetic
states as in Ref. [11]; We expect that the same result can be
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shown for branes by considering their “soft-higher-gauge
field” dressed multibrane states. The generalized spinor-
helicity variables enable the bottom-up construction of (the
little group covariant part of) scattering amplitudes for p
partially celestial states. We give a procedure for construct-
ing the little group covariant part of three-point functions
for three partially celestial states in 10D and for two lines
and a scalar particle in 4D. Unlike in the case of particles, we
cannot be sure whether three-point amplitudes for partially
celestial states are completely fixed by their little group
transformation. We leave that question for future work, in
which we will analyze in detail the constraints from trans-
lational invariance on partially celestial amplitudes.
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APPENDIX A: FROM FIELD OPERATOR TO
LADDER OPERATORS

Here we show that the transformation properties of the
field operator (26) lead to the transformation (27) of the
creation operator. To see this, write for Ω ¼ ðΛ; vÞ∈PD

ΦðΛðxþ vÞÞ ¼
Z
PD=LGD

p

dOfϕOðxÞU½Ω�a†OU−1½Ω�

þ ϕ�
OðxÞU½Ω�aOU−1½Ω�g; ðA1Þ

or in other wordsZ
PD=LGD

p

dO0fϕO0 ðΛðxþ vÞÞa†O0 þ ϕ�
O0 ðΛðxþ vÞÞaO0 g

¼
Z
PD=LGD

p

dOfϕOðxÞU½Ω�a†OU−1½Ω�

þ ϕ�
OðxÞU½Ω�aOU−1½Ω�g: ðA2Þ

Note that ϕO0 ðΛðxþ vÞÞ ¼ ϕΩ−1O0 ðxÞ, and we can change
the integration variable on the left-hand side as O0 ¼ ΩO,Z

PD=LGD
p

dOfϕOðxÞa†ΩO þ ϕ�
OðxÞaΩOg

¼
Z
PD=LGD

p

dOfϕOðxÞU½Ω�a†OU−1½Ω�

þ ϕ�
OðxÞU½Ω�aOU−1½Ω�g; ðA3Þ

from which (27) follows.

APPENDIX B: EXPLICIT PARAMETRIZATIONS

For completeness, we present here the generic Aμν; λ; λ̃
for a massive particle in 4D, and the generic qμ; Aμν; λ; λ̃ for
a line partially celestial state in 4D.

1. Massive particle

As a special case of (20), the generic wave function for a
massive particle in 4D depends on the translation
ða0; 0; 0; 0Þ, one boosts β0 and two angles θ1, θ2. The
most general Aμν is then

Aμν ¼ −uμuν; ðB1Þ
where uμ is defined the same way as (B2), and is the four-
velocity of the particle, given by

uμ ¼ γ0ð−1;β0 sinθ2 sinθ1;β0 sinθ2 cosθ1;β0 cosθ1Þ: ðB2Þ

Finally, we define the spinors jLi; hLj corresponding to a
massive particle in 4D. By the definitions in Sec. VII, they
are given by

jLAiα ¼ ð½LAjα̇Þ�

¼
 

e
iθ1
2 a0− cosðθ22 Þ ie

iθ1
2 a0þ sinðθ2

2
Þ

ie−
iθ1
2 a0− sinðθ22 Þ e−

iθ1
2 a0þ cosðθ2

2
Þ

!
; ðB3Þ

where a0� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ0ð1� β0Þp

. Note that we do not have dotted
little group indices since the little group is SOð3Þ ≃ SUð2Þ
whose 2 and 2̄ are equivalent. One can readily check that
(40) is satisfied.

2. Line

As a special case of (20), the generic wave function for a
line partially celestial state in 4D depends on the trans-
lations ða0; a1; 0; 0Þ, two boosts β; β0, and three angles
θ1; θ2;φ12. The most general ðAμν; qμÞ are then

Aμν ¼ ξμξν − uμuν;

qμ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
ðuμ þ ξμÞ; ðB4Þ

where uμ is the same four-velocity given in (B2), while ξμ is
given by

ξμ ¼ ð0; cos θ1 cosφ12 − sin θ1 cos θ2 sinφ12;

− sin θ1 cosφ12 − cos θ1 cos θ2 sinφ12;

sin θ2 sinφ12Þ: ðB5Þ

Note that ξμ denotes the line’s four-orientation, which is
always transverse to the four-velocity, u · ξ ¼ 0. Finally, we
define the spinors jLi; hLj corresponding to the generic line
in 4D. By the definitions in Sec. VII, they are given by
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jLAiα ¼ ð½LȦjα̇Þ�

¼

0
B@ e

iθ1
2

h
aþa0−e

iφ12
2 cosðθ2

2
Þ − ia−a0þe−

iφ12
2 sinðθ2

2
Þ
i

e
iθ1
2

h
iaþa0þe−

iφ12
2 sinðθ2

2
Þ − a−a0−e

iφ12
2 cosðθ2

2
Þ
i

e−
iθ1
2

h
iaþa0−e

iφ12
2 sinðθ2

2
Þ − a−a0þe−

iφ12
2 cosðθ2

2
Þ
i

e−
iθ1
2

h
aþa0þe−

iφ12
2 cosðθ2

2
Þ − ia−a0−e

iφ12
2 sinðθ2

2
Þ
i
1
CA; ðB6Þ

where a� ¼
ffiffiffiffiffiffi
γ�1
2

q
. Note that we do not have dotted little group indices; the little group is SOð2Þ ≃ Uð1Þ, and so the two-

component spinor representation is reducible and includes both � 1
2
helicities under the Uð1Þ. One can readily check that

(40) is satisfied.
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