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By leveraging the physics of the Higgs branch, we argue that the conformal central charges a and ¢ of an
arbitrary 4D N = 2 superconformal field theory (SCFT) are rational numbers. Our proof of the rationality
of ¢ is conditioned on a well-supported conjecture about how the Higgs branch of an SCFT is encoded in its
protected chiral algebra. To establish the rationality of a, we further rely on a widely believed technical
assumption on the high-temperature limit of the superconformal index.
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I. INTRODUCTION

Four-dimensional conformal field theories (CFTs) with
eight real supercharges possess rich sectors of observables
protected by supersymmetry. These sectors often organize
themselves into tightly constrained but highly nontrivial
mathematical structures which render many aspects of their
physics tractable. A prime example is that the algebra of
Schur operators is encoded in an auxiliary two-dimensional
chiral algebra, also known as a vertex operator algebra (VOA)
[1]. The relative ease with which one may carry out various
computations within these protected sectors has lead to an
abundance of data pertaining to 4D N = 2 superconformal
field theories (SCFTs), which has correspondingly inspired
many conjectures concerning their properties. Itis certainly of
interest to produce physical arguments for such conjectures or
to at least draw the logical arrows between them in the cases
that full proofs are beyond reach.

In this paper, we study the most basic invariants of a 4D
CFT: its central charges. In particular, we consider the a
and ¢ trace anomalies which, as the name suggests, can be
defined through the trace of the stress tensor:
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where W and E are the Weyl and Euler curvature invariants,
respectively, of the spacetime manifold:
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If the theory has a flavor symmetry with a non-Abelian
simple factor g, we may also study the corresponding
flavor central charge k, which is diagnosed through the
leading behavior of the two-point function of the conserved
currents as

2
(JA(x)JE(0)) = 3_125ABWW—82XW Fo (3)
4r X
where A and B are adjoint indices for g. The central charges
a, ¢, and k of a CFT play starring roles in various physical
applications. For example, a famously decreases under
renormalization group flow [2]. When we want to empha-
size the four-dimensional nature of these quantities, we will
write them as ayp, cip, and kyp.

In CFTs with at least ' = 1 supersymmetry, it is often
possible to determine the anomalies exactly via a variety of
methods [3—10]. Computations in large classes of examples
support the lore that all N' = 2 SCFTs have rational central
charges, while in A/ =1 SCFTs they are generally irra-
tional (though conjecturally algebraic [5]). In addition to its
general intrigue, this lore, if true, has practical applications:
For example, it furnishes a necessary condition for a 4D
N =1 Lagrangian to have enhanced A" = 2 superconfor-
mal symmetry in the IR, a phenomenon which has been put
to good use [11-13] in determining the superconformal
indices of strongly interacting isolated SCFTs like Argyres-
Douglas theories [14]. We henceforth refer to the assertion
that a, ¢, and k are rational in 4D N =2 SCFTs as the
rationality conjecture.

The plausibility of the rationality conjecture is bolstered
by a number of insights which have come from the
beautiful program of leveraging the geometry of the
Coulomb branch to classify 4D A/ = 2 SCFTs (see, e.g.,
[10,15-20], and [21] for a recent review). In particular, by
applying anomaly-matching arguments to the low-energy
effective action on the Coulomb branch, it is possible to
derive explicit formulas for the central charges a, ¢, and k in
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alarge class of theories [see Egs. (1.1a)—(1.1¢) in [10] ]. For
example, a celebrated formula of Shapere and Tachikawa
[9] gives the relation

1 r
2a—c:Z;(2A@i - 1), (4)

where r is the rank of the theory and the O; are the
generators of the Coulomb chiral ring, whose vacuum
expectation values parametrize the Coulomb branch. When
supplemented with the rationality of the scaling dimensions
Ao, [22,23], Eq. (4) implies the rationality of 2a — ¢, and it
turns out that the more general formulas in [10] are
sufficient to establish the rationality of a, ¢, and k
separately. (These arguments are unavailable when the
Coulomb branch is empty, but in these cases one may
appeal to the belief that all rank-zero SCFTs are theories of
free hypermultiplets and discrete gaugings thereof.)

One shortcoming of the Coulomb branch formulas is that
they rely on several geometric assumptions and physical
arguments whose range of validity is not always completely
clear. For example, the standard analysis assumes that the
Coulomb chiral ring is freely generated, and easy counter-
examples to the Coulomb branch formulas can be obtained
by lifting this assumption by gauging discrete symmetries
[24]. Although such theories clearly still obey the ration-
ality conjecture, it is not obvious that all theories which
violate the Coulomb branch formulas must take this form.
For this reason, we consider it worthwhile to revisit the
problem using alternative methods.

In this spirit, we offer a complementary approach to the
rationality conjecture as it pertains to a and ¢, which is
based on the analysis of observables, like the Schur limit
of the superconformal index, which are sensitive to the
physics of the Higgs branch. A Higgs branch approach to
the rationality of flavor central charges k is largely left to
future work, though we offer a few parting thoughts in this
direction at the end of the paper. Throughout our analysis,
we clearly articulate our assumptions, which we believe are
comparatively conservative. A pleasant by-product of our
investigation is that, when suitably interpreted as state-
ments about VOAs, our arguments become mathematically
rigorous. For example, we are able to prove that, for any
quasi-lisse vertex operator algebra (with additional stan-
dard technical conditions assumed), the conformal central
charge and the holomorphic scaling dimensions of ordinary
simple modules are all rational. We begin by reviewing the
relationship between 4D N = 2 SCFTs and chiral algebras.

II. REVIEW OF THE PROTECTED
CHIRAL ALGEBRA

In 4D SCFTs, operators in short representations are
counted (up to equivalence relations that account for the
possible recombinations of short multiplets into long ones)

by the superconformal index [25]. The superconformal
index can equivalently be defined as the partition function
of the theory on a continuous family of backgrounds with
$3 x S! topology. The index admits many interesting
special limits. The one useful for our purposes is the
Schur limit [26,27]:

ISchur(Q) = Tr(_l)FqE_Rv (5)

where E is the generator of dilatations and R is the
generator of the Cartan of the 81(2); symmetry. In this
limit, the index receives contributions only from Schur
operators which, by definition, satisfy the shortening
conditions

E—(ji+j2)—-2R=0,
Ji=ja=r=0, (6)

where r is the generator of 1(1), and j; and j, are the
Cartan generators of the 81 (2); x 8u(2), isometries of the
spatial S®. The expectation values of Schur operators with
Jj1 = j» =r =0 parametrize the Higgs branch moduli
space, and such operators are correspondingly referred to
as Higgs branch operators.

The vector space of Schur operators is endowed with a
surprising additional structure [1]. “Twisted-translated”
Schur operators (on a two-dimensional plane away from
the origin) reside in the cohomology of a certain nilpotent
supercharge, and their operator algebra within this coho-
mology furnishes the structure of a two-dimensional chiral
algebra or VOA V(7). The chiral algebra V(7) is half-
integer graded by the conformal dimensions /i of its
operators:

V(T) = @ V(T), (7)

helz
which are related to the quantum numbers in 4D as

1

h=5(E+ji + ). (8)

The central charge c¢,p of V(7) is related to the central
charge c4p of the SCFT 7 as

cop = —12¢4p. )

If 7 possesses a flavor symmetry which has a non-Abelian
simple factor g with central charge k4, the VOA contains
an affine Kac-Moody subalgebra (g), ~C V(7) with

1

kop = _§k4D- (10)
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This VOA “‘categorifies” the Schur index in the sense that its
vacuum character recovers Z g, (¢), up to a factor of gCw/%
coming from the Casimir energy of the chiral algebra.

The protected chiral algebra of a 4D N =2 SCFT
satisfies a number of conditions that are typically assumed
in mathematical treatments of vertex operator algebras. For
example, it follows from Eq. (8) that 4 > 0 and from the
uniqueness of the vacuum of 7 that V(7), = C. As is
standard, we also assume that the 4D spectrum is compact
so that dimV(7'), < co. A VOA which satisfies these three
properties together is said to be of CFT type. We also
always assume that we have quotiented out by any null
vectors in the chiral algebra, so that V(7') is simple when
thought of as a module over itself. Finally, a technical
hypothesis that we make throughout this work, which holds
in all known chiral algebras which come from four
dimensions, is that V(7') is strongly finitely generated,
which by definition means that there are only finitely many
operators which do not appear in the nonsingular part of
any operator product expansion.

The two-dimensional chiral algebra V(7)) witnesses
many features of the physics of its four-dimensional parent
theory 7. For example, the entire Higgs branch My (7)),
which by definition is the subspace of the full moduli space
of 7 on which 8u(2), is broken, can conjecturally be
recovered from V(7') as its associated variety [28]. We now
define this notion. Our convention is that the modes of an
operator in a VOA V are defined through

p(z) =Y @ (11)

nezZ

Then, one introduces the subspace

Cy(V) = span{g_;, _1x|lp.x €V} C V. (12)
The quotient Ry, :=1V/C,(V) inherits the structure of a
commutative, associative Poisson algebra, where the prod-
uct is given by normal ordering

NO(¢.x) = @-n,x-1,10) (13)

and the bracket is defined as

{o.x} =01 (14)

We write (Ry).q for the quotient of Ry, by the ideal
generated by its nilpotent elements. By definition, the
associated variety of V is then [29]

Xy = Spec(Ry) (15)

red*
Conjecture (Higgs branch reconstruction) [28]. The ring
(Ry(7))rea 1s the coordinate ring of the Higgs branch

Mpy(T) of T. In other words, My(7) = Xy(7).

See Ref. [30] for a proof of Higgs branch reconstruction
in the special case of genus zero class S theories.

The significance of this conjecture for our analysis is that
it immediately implies a useful finiteness condition on
V(7). AVOA V is said to be quasi-lisse if its associated
variety Xy, has finitely many symplectic leaves; it is said to
be lisse (or C, cofinite [29], which is believed to be a
necessary condition for rationality) if the associated variety
Xy is a point. The Higgs branch of an SCFT will always
have finitely many symplectic leaves, and so we learn that a
VOA coming from four dimensions is quasi-lisse if we
assume the Higgs branch reconstruction conjecture. As
a special case, an SCFT without a Higgs branch has a
C,-cofinite VOA. To avoid word salads, when we say that a
VOA is quasi-lisse, we will implicitly assume that it is also
simple, strongly finitely generated, and of CFT type.

Quasi-lisse VOAs are well-behaved generalizations of
rational VOAs. In particular, they retain some of the
distinctive properties of rational VOAs which make them
so tractable. Crucially for our purposes, Arakawa and
Kawasetsu [31] have shown that, for any quasi-lisse chiral
algebra V with integer conformal dimensions, there exists a
finite-order monic modular differential equation (MDE)
which annihilates the character of any ordinary }-module
M [32], including the character of V itself. (See, e.g., [34]
for early work on MDEs in 2D conformal field theory.)
That is, there exist an integer n and holomorphic modular
forms g,(z) of weight 2¢ such that

(D(”) + z”: gf(r)D("‘f)) chy(7) = 0. (16)
/=1

Here, chy,(7) is the character of the ordinary V-module M:
chy(7) = Try (= 1)" gromew/>* (17)
and

D) = dap_3) © Oaray © =+~ © I,

d ¢
opy=q———=E 18
(’/p) qdq 12 2<T>’ ( )

where E,(z) =1+4--- is the normalized weight 2
Eisenstein series. In the case that ) contains operators
with half-integer conformal dimensions, a similar statement
can be shown to be true [35], except one must take the g,(7)
in Eq. (16) to be holomorphic modular forms for the
congruence subgroup

rQ2) = {(j Z) € SL,(Z)|b =0 mod 2}. (19)

105018-3



LEONARDO RASTELLI and BRANDON C. RAYHAUN

PHYS. REV. D 109, 105018 (2024)

III. RATIONALITY OF ¢

An important implication of the MDE in Eq. (16) is
that the characters chy,(z) of simple ordinary modules M
participate as the components of a finite-dimensional vector-
valued modular form. In the context of two-dimensional
rational conformal field theory, Anderson and Moore [36]
demonstrated that it is essentially this fact which implies that
the central charge and conformal dimensions are rational
numbers. One salient difference between rational VOAs and
quasi-lisse VOAs is that the vector-valued modular form in
which the characters chy,(r) participate generally has
components with logarithmic contributions, a fact which
owes its origins to the nonsemisimplicity of the matrix
assigned to T = (1) by the modular representation with
respect to which the characters transform. We will show that
the argument of Anderson and Moore, with modest mod-
ifications, survives in the presence of these logarithmic
contributions [37].

A complex number x which lies outside of Q can be
detected using algebraic automorphisms. An algebraic
automorphism is a map ¢:C — C which preserves multi-
plication and addition, ¢(x+y) =¢(x) +¢(y) and ¢(xy) =
P(x)p(y). Tt follows straightforwardly from the definition
that an algebraic automorphism fixes the rational numbers,
ie., dp(p/q) = p/qforall p/qe€Q. In fact, the converse is
true as well: If x is any nonrational complex number, then
there always exists an algebraic automorphism ¢ such
that ¢(x) # x

Algebraic automorphisms can be used to detect nonra-
tional exponents in the components of a vector-valued
modular form as well. To proceed, we follow Anderson and
Moore in calling a holomorphic function f:H — C quasi-
automorphic if

(1) Span{f(y - 7)},es1,(z) is finite dimensional and

(2) f satisfies a particular growth condition. Namely, for

all real numbers a < b and C > 0, there exist real
numbers A, B > 0 such that

If(7)] <AeP™0) g <Re(r) <b m(z) > C.

(20)

Note that any solution of a finite-order MDE is quasi-
automorphic, even when the coefficient functions g,(z) of
the MDE are only modular with respect to the congruence
subgroup I'°(2). Furthermore, it is possible to show
(Proposition 2 in [36]) that if f is quasi-automorphic
and admits a nonlogarithmic ¢ expansion,

= E siQWiv
i

@)

then its conjugate with respect to an algebraic automor-
phism ¢,

)g?@) (22)

Zaﬁ

is also quasi-automorphic.

We apply these considerations to the character chy,(7) of
an ordinary simple module M of a quasi-lisse VOA V.
Because it is a solution to an MDE, it is quasi-automorphic,
and it moreover admits a nonlogarithmic g expansion of
the shape

ChM<T) — q—CZD/24+hM Z dn/zqn/Z’

ne”Zs

(23)

where h,, is the conformal dimension of M and the
coefficients d,/, are integers, as they are dimensions of
graded components of M. Now, assume by way of contra-
diction that the combination 0 = —c,p/24 + hy,; is not a
rational number. Then there exists some algebraic auto-
morphism ¢ which is capable of detecting the irrationality
of 6, in the sense that ¢(0) # 6. Conjugating the character
of M by this automorphism leads to the relation

chy, (7) = echy(7), (24)
where a = 27i(¢(0) — 6) # 0. On the other hand, perform-
ing a modular transformation on both sides of Eq. (24)
recovers

ch?,(z) = e=/*chy, (7). (25)

where we have defined f(z) = f(—1/z) for any function
f:H — C. Because both chy(7) and ch? (z) are quasi-
automorphic, it follows that their ¢ — —1/7 transformations

are as well and, hence, admit logarithmic g expansions of the
form

ZP (1)q.
Z Qk \/VA s

where the P; and Q; are polynomials whose degrees are
bounded from above by some non-negative integer A and the
zj=x;+iy; and wy =uy +iv; are complex numbers
whose real parts are bounded from below. (See, e.g., [39]
for a review.) We argue that these logarithmic g expansions
are incompatible with Eq. (25), unless a = 0 for all algebraic
automorphisms ¢, in which case 6 is rational.

Let J = {j|x; <x;, Vj'} and let j, €J be the unique
index such that y; <y; for all j€J. Define k, similarly.
We take 7 = (cos¢ + ising)r with ¢ < 1 and ¢ >> 1 both
real numbers. In this limit, up to exponentially small
corrections, Eq. (25) reads (after dividing by 72) as

ChM

ch?, (¢ (26)
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P (1/7)g%0 + -+ = &= 0y (1/7)q"™0 + -+, (27)

where P; (1/7) = P; (z)/7*, and similarly for Oy (1/7).
Consistency of this equation requires that z;, = wy, and
that P; (1/7) = e‘“/TQkO(l/T) when expanded to any
finite order in 1/7. However, the second condition is
impossible, because ¢~%7 is not a rational function of
1/7, and so we reach a contradiction.

Therefore, it must be the case that @ = —c,p /24 + hy, is
rational. Because the vacuum has conformal dimension
hy =0, we find that ¢4p = —c,p/12 and the conformal
dimensions h,, of simple ordinary modules are all
rational separately. This proof applies not just to VOAs
which descend from four dimensions, but also to any quasi-
lisse VOA.

Summary. Any (simple, CFT-type, strongly finitely
generated) quasi-lisse VOA provably has a rational central
charge ¢, and rational conformal dimensions 4,, for its
ordinary simple modules. Assuming the Higgs branch
reconstruction conjecture, or more conservatively that
the Schur index has a finite orbit under modular trans-
formations, it follows that c4p is rational in any 4D NV = 2
SCFT as well.

IV. RATIONALITY OF a

Having established the rationality of c,p, we now turn to
the ayp central charge. Di Pietro and Komargodski [40]
have argued using high-temperature effective field theory
that the asymptotics of the Schur index are universally
controlled by the anomalies of the theory, namely,

lim log Zscpu (7) ~M. (28)

On the other hand, standard Cardy-like arguments [41]

invoking modular covariance can be brought to bear as

well. Indeed, the fact that Zgu,,(7) is annihilated by an

MDE implies that there is a vector-valued modular form
with components f;(7) and fy(7) = Zgenu(7) such that

fi(—l/f) = Zsijfj(f)- (29)

In particular, this implies that the high-temperature behav-
ior is governed by the equation

T[i(CZD - 24h*)

30
127 ’ (30)

111’13 log Zschur (7) ~

where £, is the smallest exponent among those arising in
the ¢ expansions of the components f;(z) with Sy # 0.
Comparing Eq. (30) to Eq. (28), one finds the relation

1
asp = 4_8 (24”1* - 5C2D). (31)

Actually, while this equation is believed to be true when
C4p > ay4p, there are known counterexamples in the more
general case [42]. However, in Lagrangian theories one can
show [43] that Eq. (31) always holds for some &, which is
congruent to one of the exponents of the f;(z) modulo 1/2.
With this modification, it is obeyed in all known N = 2
SCFTs (Lagrangian and non), and we take it as a technical
assumption from now on.

Now, one might be tempted to declare victory on the
grounds that both ¢, and the conformal dimensions £, of
simple ordinary modules M were proved to be rational in the
previous section. However, this is slightly too quick. While
the existence of a monic MDE is sufficient to determine that
the characters chy,(z) participate as the components of a
vector-valued modular form, it does not show that they are
the only components. Indeed, there are known examples [28]
where the solution space of an MDE which annihilates
Zsenur(7) is polluted by functions f;(z) with nonrational
coefficients and exponents which are, therefore, unrelated to
any ordinary simple module M. Conjecturally, these f;(7)
are not in the modular orbit of the vacuum character Z g ., (7)
and so would not spoil the approach of using Eq. (31) to
deduce the rationality of a,p. However, to the best of our
knowledge, this conjecture has yet to be established.

We can instead proceed as follows. Consider first a 4D
N =2 SCFT without a Higgs branch. In this case, it
follows from the Higgs branch reconstruction conjecture
that the protected chiral algebra is lisse or C, cofinite, and
in this case the representation theory is under comparatively
better control [38] (see also [44] for a nice review). In
particular, it is known that

chy(=1/7) =Y Pyn(logg)chy(s)  (32)
N

for any simple module M, where the Py y(x) are poly-
nomials in x. Applying this to M = V(7), one learns that
the modular transformation of Z g, (7) involves only other
characters of V(7'), whose conformal dimensions are all
rational [38]. Therefore, the naive application of Eq. (31)
successfully yields the rationality of ayp.

We may generalize to a 4D N =2 SCFT 7y with a
nonempty Higgs branch as follows. Note that by going to a
generic point on the Higgs branch, the theory flows in the
IR to a (possibly trivial) SCFT 7 g without a Higgs branch,
along with dimy (M (7 yy)) decoupled free hypermultip-
lets. The u(1), symmetry is unbroken on the Higgs branch,
and so we may apply anomaly-matching arguments to it. In
particular, 1(1), possesses a cubic anomaly of the form

3<a4D —C 4D) &y
0,1 = =0y, U, (33)
where J* is the u(1), current and V,, is the field strength of
a background u(1), gauge field. Therefore, ayp — c4p is
matched between the UV and the IR, leading to the relation

105018-5
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(asp)uy = (cap)uv + (asp — cap)r

1
o dimy (Mg (7 uy)), (34)
where we have used the fact that 24(cyp — ayp) = 1 for a
free hypermultiplet. The Weyl anomalies appearing on the
right-hand side are all rational by the results of the previous
section. The Euler anomaly (aup);g is that of a theory
without a Higgs branch and so is rational by the argument
of the previous paragraph. Thus, we can conclude from
Eq. (34) that the Euler anomaly (a4p )y of our UV SCFT is
rational as desired.

Summary. As a technical hypothesis on the high-temper-
ature limit of the Schur index, assume that Eq. (31) is true in
any theory without a Higgs branch for some /i, which is
equal (modulo 1/2) to the conformal dimension of a simple
module of the protected chiral algebra. Then ayp, is rational
in any 4D A/ = 2 SCFT, including theories with nonempty
Higgs branches.

V. FUTURE DIRECTION: RATIONALITY OF k

As mentioned in the introduction, the rationality con-
jecture is expected to also apply to the central charge kyp =
—2k,p of any simple non-Abelian flavor symmetry g of a
4D N =2 SCFT. The methods employed in this paper
suggest two possible approaches to proving this.

The first approach involves studying the modular proper-
ties of the flavored Schur index, i.e., the vacuum character
of the protected chiral algebra refined by fugacities with
respect to the symmetry g. It is expected that, in any quasi-
lisse VOA with an affine Kac-Moody subalgebra (g),, , the
flavored vacuum character participates as a component of a
logarithmic vector-valued Jacobi form, with index which is
sensitive to the level k,p. (See Ref. [45] for a theory of
flavored characters in the setting of strongly rational
VOASs). One may attempt to place this expectation on

firmer mathematical footing, perhaps by arguing that the
vacuum character always satisfies a flavored modular
differential equation using methods similar to those of
[31] (see Refs. [46—48] for recent studies of flavored MDEs
in the context of 4D N = 2 SCFTs). Just as the modularity
of the unflavored Schur index was sufficient to establish the
rationality of c4p, one might hope that the transformation
properties of the flavored Schur index likewise imply the
rationality of kyp.

A second approach involves studying anomaly matching
on the Higgs branch. Any 4D A =2 SCFT with a
continuous global symmetry admits moment map oper-
ators, which are the Higgs branch operators in the same
supermultiplet as the conserved currents. In situations
where one is able to consistently activate vacuum expect-
ation values for just the moment maps without turning on
other moduli (the case of “nilpotent Higgsing”), the flavor
central charge kyp arises in various mixed anomalies
between the R symmetries and flavor symmetries; anomaly
matching then implicates k4 in an equation involving the
UV and IR conformal central charges, which we know to be
rational [50]. It is, however, not clear that such a pattern of
Higgsing is universally available (though we are not aware
of a clear-cut counterexample). One would need to either
establish universality of nilpotent Higgsing or study
anomaly matching in the general geometric situation.
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