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Studies of many-body non-Hermitian parity-time (PT)-symmetric quantum systems are attracting a lot of
interest due to their relevance in research areas ranging from quantum optics and continuously monitored
dynamics to Euclidean wormholes in quantum gravity and dissipative quantum chaos. While a symmetry
classification of non-Hermitian systems leads to 38 universality classes, we show that, under certain
conditions, PT-symmetric systems are grouped into 24 universality classes. We identify 14 of them in a
coupled two-site Sachdev-Ye-Kitaev (SYK) model and confirm the classification by spectral analysis using

exact diagonalization techniques. Intriguingly, in 4 of these 14 universality classes, AIIIν, BDI
†
ν , BDIþþν,

and CI−−ν, we identify a basis in which the SYK Hamiltonian has a block structure in which some blocks
are rectangular, with ν∈N the difference between the number of rows and columns. We show analytically
that this feature leads to the existence of ν robust purely real eigenvalues, whose level statistics follow the
predictions of Hermitian random matrix theory for classes A, AI, BDI, and CI, respectively. We have
recently found that this ν is a topological invariant, so these classes are topological. By contrast,
nontopological real eigenvalues display a crossover between Hermitian and non-Hermitian level statistics.
Similarly to the case of Lindbladian dynamics, the reduction of universality classes leads to unexpected
results, such as the absence of Kramers degeneracy in a given sector of the theory. Another novel feature of
the classification scheme is that different sectors of the PT-symmetric Hamiltonian may have different
symmetries.

DOI: 10.1103/PhysRevD.109.105017

I. INTRODUCTION

One of the most striking features of quantum chaotic
systems is the robust universality of their dynamics. For
sufficiently long times and in the absence of localization
effects [1], quantum chaotic systems relax to an ergodic
state that depends only on global symmetries. For Hermitian
systems, the number of universality classes labeled by these
global symmetries is limited to ten [2,3] and depends on the

existence or not of time-reversal, particle-hole, and chiral
symmetries. A powerful tool to probe the late stages of the
dynamics is the study of level statistics due to the celebrated
Bohigas-Giannoni-Schmit (BGS) conjecture [4] that states
that spectral correlations of quantum chaotic systems are
described by random matrix theory (RMT) [5–10].
The search for RMT fingerprints in the spectrum of

single- and many-body quantum systems, and the identi-
fication of these ten universality classes, the so-called
tenfold way [2,3,11], has been intensively investigated
for more than fifty years in completely different fields.
Initial applications of RMT were focused on nuclear
physics, where it was employed to model excitations of
nuclei [5]. Starting from the establishment of the BGS
conjecture [4], research then focused on studies of non-
interacting single-particle quantum chaotic [12,13] and
disordered systems [1,14,15]. Later, in the nineties, these
ideas found a fertile ground in quantum chromodynamics
(QCD) where it was found that the spectrum of the
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Euclidean QCD Dirac operator was correlated according to
chiral RMT [11], with the global symmetry depending on
the number of colors and the representation of the gauge
fields [3,16].
In recent years, quantum chaos and RMT have experi-

enced a phenomenal revival of interest due to novel
applications in the context of quantum information and
quantum gravity [17,18], starting with the proposal of a
bound on quantum chaos, which is characterized by a
maximal value of the Lyapunov exponent that controls the
exponential growth of certain out-of-time-order correlation
functions for short times (of the order of the Eherenfest
time). This bound may be saturated by field theories with a
gravity dual, for example, the low-temperature limit of the
Sachdev-Ye-Kitaev (SYK) model [18–25], consisting of N
Majoranas in zero spatial dimension with all-to-all q-body
random interactions in Fock space. It was quickly realized
that the SYK model is also quantum chaotic for late times,
with level statistics in agreement with RMT [26], and that,
by tuning q and N [26–35] and considering supersym-
metric [36] and chiral [37] extensions of the model, all ten
universality classes could be reproduced. Moreover, recent
results—showing that the dual field theory of certain near
anti–de Sitter (AdS) configurations in two dimensions is a
random matrix with broken time reversal invariance [38]
and that their dynamics is quantum chaotic [39]—indicate
that the tenfold way found in the SYK model could be
employed to classify quantum black holes. The relation of
the SYK model with quantum gravity is also not restricted
to black-hole configurations. For instance, a two-dimen-
sional traversable wormhole [40] is related to the low-
temperature limit of a two-site SYK model with a weak
inter-site coupling [41]. A recent symmetry classification of
traversable wormholes in the SYK model [42] has revealed
that, unlike the ten RMT symmetry classes, only six
universality classes are allowed.
So far, we have focused our discussion on Hermitian

systems. However, in the past few years, there has been a
major boost of interest in the dynamics of open and dissi-
pative quantum systems encompassing several fields: quan-
tum optics [43], QCD at finite chemical potential [44–49],
quantum information [50–53], dissipative quantum chaos
[54–71], cold atoms [72], superconductivity [73], sensitivity
enhancement of particle detectors [74], and different aspects
of quantum gravity, from the information paradox [75,76] to
wormhole physics [77,78]. Not surprisingly, the late-time
quantum chaotic dynamics of these systems have been
connected to non-Hermitian RMT [79–83], depending on
global symmetries [84–86]. In this case, there are 38 non-
Hermitian universality classes [87–89]. A single-site SYK
model with complex couplings and its extensions has been
shown to reproduce 19 of these classes [90]. Despite this
success, the exact degree of the universality of the quantum
dynamics and its precise relation to RMT still remains much
less understood than in the Hermitian case [66].

Contrary to Hermitian systems, not all non-Hermitian
systems have sensible thermodynamical properties or a
(nonunitary) evolution still consistent with the postulates
of quantum mechanics. As such, the 38-fold classification
of non-Hermitian matrices includes classes describing
unphysical dynamics. Therefore, it would be desirable to
have a symmetry classification of non-Hermitian quantum
systems that describes physically relevant situations only.
A step in this direction has recently be given by proposing
a symmetry classification of Liouvillians [91,92] that
describes quantum many-body systems coupled to a
Markovian environment (see also Refs. [93–95]). This is
not, however, the only non-Hermitian quantum system
consistent with the standard postulates of quantummechan-
ics. It is believed [96,97] that a minimal condition for
nonpathological quantum dynamics and thermodynamics,
despite the non-Hermiticity of the Hamiltonian, is the
existence of parity-time (PT) symmetry. More specifically,
if the spectrum is purely real, such that PT symmetry
is unbroken, it is believed that the resulting quantum
dynamics is unitary, namely, that probability is conserved.
In general, this is not the case if the PT symmetry is
spontaneously broken, leading to a complex spectrum with
complex-conjugation symmetry. However, thermodynamic
properties can, in some cases [98], still be consistent with
those of closed systems. In this paper, we initiate a
symmetry classification of these systems. Assuming some
restrictions on the structure of the Hamiltonian, we propose
a classification scheme resulting in 24 universality classes.
Our main goal is to explicitly implement this symmetry

classification in a simple non-Hermitian, but PT-symmetric,
two-site SYK model with complex couplings and a weak
intersite interaction. This model was recently introduced in
the study of transitions between Euclidean and traversable
wormholes [78]. Interestingly, we identify a total of 14
universality classes by tuning the different parameters of
the model. A subset of them was already investigated in
Ref. [92] in the context of a classification scheme of
Lindbladian quantum chaos, so our classification is a
generalization of it. Moreover, it also enlarges the results
of Ref. [92], since we have found that some symmetry
classes were missed in Ref. [92] because it was not noticed
that different sectors of the theory (i.e., blocks of the
Hamiltonian) may have different symmetries.
Another interesting feature of our results is the observation

in certain universality classes of purely real eigenvalues
whose number ν is robust to changes in the inter-site
couplings and other parameters of the model. We have
shown that the origin of these real modes is traced back to
the existence of a basis in which the many-body SYK
Hamiltonian has rectangular blocks. We have recently
found [99] that the difference in size between the number
of rows and columns is a topological index, closely related to
the index of the Wilson Dirac operator in QCD [100–107].
Intriguingly, the level statistics of these real eigenvalues is
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different from the one expected [108] for the universality
class corresponding to square blocks (ν ¼ 0). In the context
of RMT, some of these ensembles with rectangular blocks
and purely real eigenvalueswere previously studied forQCD
at nonzero chemical potential [47,109,110] and for random
matrix models of the Wilson Dirac operator [102–107].
Our results are of direct relevance not only in dissi-

pative quantum chaos but also in quantum information,
as this SYK setting is also related to the dynamics of
systems under continuous monitoring [111–113]. Quan-
tum gravity is yet another field that can benefit from
our classification as different types of wormhole configura-
tions [41,75,77,78] in near ðAÞdS2 backgrounds [114–117]
have been related to the low-temperature limit of the SYK
setting that we investigate. Although the aforementioned
spectral properties require a comparison with RMT results
and therefore implicitly assume dissipative quantum chaotic
dynamics, the proposed symmetry classification is by no
means restricted to these systems. For Hermitian systems, a
similar symmetry classification for topological insulators
and superconductors [118], or systems at the metal-insulator
transition [119–121], exists without any reference to quan-
tum chaos or quantum ergodicity requirements. Therefore,
we envisage that our classification could also be relevant for
problems where the dynamics is not necessarily quantum
chaotic.
The remainder of the paper is organized as follows.

We establish general results for fermionic PT-symmetric
systems in Sec. II and restrict our attention to the
PT-symmetric SYK Hamiltonian in Sec. III. Its classifica-
tion is then performed in Sec. IV, in all regimes of the
model. In Sec. V, we discuss the consequences of the
rectangular structure, recently related to topology [99],
of the SYK Hamiltonian classified in the previous section.
In Sec. VI we study the quantum chaos properties of the
model and confirm our symmetry classification through
a detailed analysis of level statistics, which allows us
to unambiguously distinguish the identified symmetry
classes. In Sec. VII we discuss examples of applications
of our model, namely to gravitational wormholes in
Sec. VII A, and open quantum systems (coupled to a bath
or subject to continuous monitoring) in Sec. VII B. Finally,
we present our conclusions and outlook in Sec. VIII.

II. GENERAL CLASSIFICATION OF FERMIONIC
PT-SYMMETRIC QUANTUM SYSTEMS

AHamiltonianH is PT symmetric if it commutes with an
antiunitary operator T þ that squares to T 2þ ¼ þ1 [122].
This symmetry allows us [123] to see the system as
composed of two copies, left (L) and right (R), where
the R copy is time-reversed (complex-conjugated) with
respect to the L copy, and assumes a left-right symmetric
interaction, in such a way that a gain (loss) of probability in
L is exactly balanced by a loss (gain) in R. The existence of
this antiunitary symmetry ensures that the eigenvalues ofH

are either real or come in complex-conjugated pairs. The
former case allows us to define meaningful quantum
dynamics despite H being non-Hermitian. As mentioned
earlier, for complex-conjugated pairs, probability is not in
general conserved with the standard definition of scalar
product in quantum mechanics, but thermodynamic proper-
ties may still resemble in many cases those of closed
systems. In this paper, we consider PT-symmetric systems
composed of 2N Majorana fermions. We first derive the
general form of a Majorana PT-symmetric non-Hermitian
Hamiltonian and, then discuss its classification.

A. Majorana fermions and their symmetries

With the above picture in mind, we partition the 2N
Majoranas into two sets, one with N left Majoranas ψL

i
and one with N right Majoranas ψR

i , where, for concrete-
ness, we assume N to be even.1 They satisfy the anti-
commutation relation fψA

i ;ψ
B
j g ¼ δABδij (i; j ¼ 1;…; N

and A;B ¼ L, R). We choose a representation where the
left Majoranas are real and symmetric and the right
Majoranas are purely imaginary and antisymmetric. The
complex-conjugation operator, K, which performs the T
operation (“time reversal”) in PT symmetry, thus acts on
Majoranas as

KψL
i K

−1 ¼ ψL
i ; KψR

i K
−1 ¼ −ψR

i : ð1Þ
We further introduce the unitary operator (exponential of
the spin),

Q ¼ exp

�
−
π

4

XN
i¼1

ψL
i ψ

R
i

�
¼

YN
i¼1

1ffiffiffi
2

p ð1 − 2ψL
i ψ

R
i Þ; ð2Þ

which exchanges the left and right copies up to a sign,

QψL
i Q

−1 ¼ ψR
i ; QψR

i Q
−1 ¼ −ψL

i ; ð3Þ
and, therefore, acts as the P operation (“parity”) in PT
symmetry. Their joint action, implemented by the antiuni-
tary PT symmetry T þ ¼ QK, is, therefore, an exchange
symmetry of left and right Majoranas,

T þψL
i T

−1þ ¼ ψR
i ; T þψR

i T
−1þ ¼ ψL

i : ð4Þ
Moreover, using Eqs. (1) and (2), we find T 2þ ¼ þ1, see
also Eq. (11) below, as required [122]. While the PT
symmetry is implemented by the antiunitary combination
QK, the unitary operator Q itself will play a pivotal role in
our classification.
We also note that all Hamiltonians H must be even in

Majoranas (bosonic), meaning that they commute with the
total parity

1A straightforward, albeit tedious, extension of the contents of
this paper to odd N is possible. Since no new interesting results
arise in this case, we will not consider it any further.
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S ¼ SLSR; ð5Þ

where

SL ¼ iNðN−1Þ=2YN
i¼1

ffiffiffi
2

p
ψL
i and SR ¼ iNðNþ1Þ=2YN

i¼1

ffiffiffi
2

p
iψR

i

ð6Þ

are the left and right parities. They act on Majorana
operators as

SLψL
i S

−1
L ¼ −ψL

i ; SLψR
i S

−1
L ¼ ψR

i ; ð7Þ

SRψL
i S

−1
R ¼ ψL

i ; SRψR
i S

−1
R ¼ −ψR

i ; ð8Þ

SψL
i S

−1 ¼ −ψL
i ; SψR

i S
−1 ¼ −ψR

i : ð9Þ

Some specific Hamiltonians may also conserve SL and SR
individually (we will construct such examples below).
The unitary operators S, SL, SR, and Q and the complex

conjugation operator K play a central role in the symmetry
classification we develop. We collect here their properties,
for later use. As mentioned above, we choose a represen-
tation where the left Majoranas are real and symmetric and
the right Majoranas are purely imaginary and antisymmet-
ric. With this representation, the unitary operators SL;R are
antidiagonal, Q and S are diagonal, and they satisfy the
reality conditions:

KSL ¼ ð−1ÞN=2SLK; KSR ¼ ð−1ÞN=2SRK; ð10Þ

KS ¼ SK; KQ ¼ Q−1K ¼ SQK: ð11Þ

Moreover, they square to

S2L ¼ S2R ¼ S2 ¼ þ1; Q2 ¼ S; ð12Þ

and, hence, have eigenvalues sL;R ¼ �1, s ¼ �1 and
k ¼ �1;�i, respectively. They satisfy the commutation
relations

SLSR ¼ SRSL; ð13Þ

QSL;R ¼ SL;RQ−1 ¼ SSL;RQ; ð14Þ

QS ¼ SQ: ð15Þ

B. PT-symmetric Majorana Hamiltonians

We now write down the most general PT-symmetric
Majorana Hamiltonian. A basis of operators on the
Lþ R space of Majoranas is fΓL

I ΓR
J gI;J, where I; J ¼ 0;

1;…; 2N − 1, and ΓI are all possible products of

Majorana fermions, i.e., Γ0 ¼ 1, Γ1 ¼ ψ1;…;ΓN ¼ ψN ,
ΓNþ1 ¼ ψ1ψ2;…;Γ2N−1 ¼ ψ1 � � �ψN . Note that a con-
served parity restricts the number of independent basis
operators. Denoting the number of Majoranas in ΓL;R

I by jIj,
we have that

ΓL
I ΓR

J ¼ ð−1ÞjIjjJjΓR
JΓL

I : ð16Þ

In this basis, we can write down the most general non-
Hermitian Hamiltonian as

H ¼
X2N−1
I;J¼0

hIJΓL
I ΓR

J ; ð17Þ

where hIJ are arbitrary complex coefficients. The even
fermionic parity of H (½H; S� ¼ 0) implies that jIj and jJj
must have the same parity in each term of the sum.
Under the PT operation, we have that

T þΓL
I T

−1þ ¼ ΓR
I ; T þΓR

I T
−1þ ¼ ΓL

I ; ð18Þ

and, hence, H transforms as

T þHT −1þ ¼
X
I;J

h�IJΓR
I ΓL

J

¼
X
I;J

h�IJð−1ÞjIjjJjΓL
JΓR

I

¼
X
I;J

h�JIð−1ÞjIjΓL
I ΓR

J ; ð19Þ

where in the last line we used that jIj and jJj have the same
parity. To ensure that H is PT-symmetric, T þHT −1þ ¼ H,
we must, therefore, only require that

hIJ ¼ ð−1ÞjIjh�JI; ð20Þ

or, equivalently, that the 2N-dimensional matrix h̃ defined
by h̃IJ ¼ ð−iÞjIjhIJ is Hermitian.
To conclude this discussion, we show that we can write a

PT-symmetric Hamiltonian in a canonical form, reminis-
cent of general Hermiticity-preserving quantum master
equations [124] governing the dynamics of certain open
quantum systems. This relation will be used in Sec. VII.
Because h̃ is Hermitian, it can be diagonalized as
h̃ ¼ UDU†, where U is unitary and D real diagonal. It
is convenient to separate the I ¼ 0 and J ¼ 0 terms from
the remaining ones: The I ¼ J ¼ 0 term is just a constant
(proportional to the identity operator) and can be dropped;
the terms with I ≠ 0, J ¼ 0 (jIj must then be even) and
I ¼ 0, J ≠ 0 (even jJj) give two uncoupled complex-
conjugated single-site Hamiltonians HL and HR; and the
terms with I ≠ 0 and J ≠ 0 describe the coupling between
the two sites, HI. We arrive at a canonical form:
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H ¼ HL þHR þHI; ð21Þ

HL ¼
X2N−1
I¼1

hI0ΓI
L; HR ¼

X2N−1
I¼1

h�I0ΓI
R; ð22Þ

HI ¼
X2N−1
K¼1

DKOK
LO

K
R; OK

L ¼
X2N−1
I¼1

UIKΓI
L;

OK
R ¼

X2N−1
I¼1

ijIjU�
IKΓI

R: ð23Þ

Having established the general form of a fermionic
PT-symmetric Hamiltonian, we now turn to its symmetry
classification. We start by reviewing the classification of
arbitrary non-Hermitian operators, then we establish the
classification of PT-symmetric models of 0d single-flavor
Majorana fermions, and finally we arrive at a conjecture for
the classification of general fermionic PT-symmetric
models.

C. Symmetry classification
of non-Hermitian Hamiltonians

The non-Hermitian symmetry classification follows from
the behavior of the irreducible blocks of a non-Hermitian
Hamiltonian under involutive antiunitary and unitary sym-
metries, summarized in Table I. There are four types of
antiunitary symmetries (T � and C�) that can square to
either þ1 or −1 and three types of unitary involutions
(P and Q�) that always square to þ1. The fourth column
of Table I denotes the pairing of the complex eigenvalues,
which follows from considering the secular equation
(and whose associated eigenstates are connected by the
symmetry), which will prove important in Sec. VI.
More precisely, if there is a unitary U that commutes with

the Hamiltonian H,

UHU−1 ¼ H; ð24Þ

we can block diagonalize (reduce) H into blocks (sectors)
of fixed eigenvalue of U. Since different sectors are
independent, we consider a single one. Inside this block,
the unitary symmetry U has a fixed eigenvalue and,
therefore, acts trivially as the identity (up to a phase). If
no further unitary symmetries exist, the block is irreducible.
The symmetry class of an irreducible block of H is
determined by the antiunitary symmetries and unitary
involutions that either map that block into itself or its
adjoint (up a sign).
We look for the existence of antiunitary operators T �,

such that H satisfies

T þHT −1þ ¼ þH; T 2þ ¼ �1; ð25Þ

T −HT −1
− ¼ −H; T 2

− ¼ �1: ð26Þ

Since H is non-Hermitian, it can also be related to its
adjoint H† ≠ H through antiunitary operators. To this end,
we look for the existence of antiunitaries C� implementing:

CþH†C−1þ ¼ þH; C2þ ¼ �1; ð27Þ

C−H†C−1− ¼ −H; C2− ¼ �1: ð28Þ

In the presence of a commuting unitary symmetry that
block diagonalizes H, the transformations in Table I must
act within a single block to define a symmetry class. As
such, only one transformation of each type can exist, as the
composition of two of the same type gives a commuting
unitary symmetry of the Hamiltonian, leading to further
block diagonalization. Moreover, any three antiunitary
symmetries determine the fourth, and hence, a class has
either zero, one, two, or four antinunitary symmetries.
The combined action of antiunitaries of different types

gives rise to unitary involutions: the composition of T þ
and T − (or Cþ and C−) is a unitary transformation that
anticommutes with H (chiral symmetry); the composition
of T þ and Cþ (or T − and C−) is a unitary similarity
transformation between H and H† (pseudo-Hermiticity);
and the composition of T þ and C− (or T − and Cþ) unitarily
mapsH to −H† (antipseudo-Hermiticity). In the absence of
antiunitary symmetries, these unitary involutions can still
act on their own and we look for unitary operators P and
Q�, such that H transforms as

PHP−1 ¼ −H; P2 ¼ 1; ð29Þ

QþH†Q−1þ ¼ þH; Q2þ ¼ 1; ð30Þ

Q−H†Q−1
− ¼ −H; Q2

− ¼ 1: ð31Þ

Similarly to before, any two unitary involutions determine
the third, and, hence, we have classes with either zero, one,
or three unitary involutions.

TABLE I. Antiunitary and involutive symmetries of non-
Hermitian Hamiltonians. The first column gives the transforma-
tion relation of the Hamiltonian under the symmetry, the second
column, its square, and the third specifies whether it is unitary or
antiunitary. The last column indicates the spectral symmetry
implied by each symmetry transformations.

T þHT −1þ ¼ þH T 2þ ¼ �1 T þiT −1þ ¼ −i ζk; ζ�k
T −HT −1

− ¼ −H T 2
− ¼ �1 T −iT −1

− ¼ −i ζk;−ζ�k
CþH†C−1þ ¼ þH C2þ ¼ �1 CþiC−1þ ¼ −i ζk
C−H†C−1− ¼ −H C2− ¼ �1, C−iC−1− ¼ −i ζk;−ζk
PHP−1 ¼ −H P2 ¼ þ1 PiP−1 ¼ þi ζk;−ζk
QþH†Q−1þ ¼ þH Q2þ ¼ þ1 QþiQ−1þ ¼ þi ζk; ζ�k
Q−H†Q−1

− ¼ −H Q2
− ¼ þ1 Q−iQ−1

− ¼ þi ζk;−ζ�k
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In principle, besides the square of its symmetries, the
labeling of a symmetry class can depend on their commu-
tation relations. In the case of antiunitary symmetries, it is
possible to show [125] that this information is already
contained in their squares. Indeed, we can always choose
one of the four antiunitary symmetries to commute with the
other three, while the remaining commutation relations
are fixed by the squares of the symmetries. Finally, in the
absence of antiunitary symmetries, we consider unitary
involutions, in which case one commutation relation is an
independent label. Taking the independent unitary involu-
tions to be P and Qþ, we find that they either commute or
anticommute [125].
The non-Hermitian classes are determined by the anti-

unitary symmetries and unitary involutions. Following
closely the discussion in [125], we have the following
possibilities:

(i) No symmetries. One class.
(ii) One antiunitary symmetry. The four possible anti-

unitary symmetries are T � and C�, each squaring to
�1. This gives 4 × 2 ¼ 8 classes.

(iii) Two antiunitary symmetries. The four antiunitary
symmetry operators give 6 combinations with each
of the antiunitary operators squaring to �1. This
results in 6 × 22 ¼ 24 classes.

(iv) Three antiunitary symmetries. This is not possible
because the product of three antiunitary symmetries
is another antiunitary symmetry, resulting in four
antiunitary symmetries.

(v) Four antiunitary symmetries. This gives only one
choice for the operators, but each of them squares to
�1, adding 24 ¼ 16 classes.

(vi) One unitary involution. Each of theP andQ� can be
the unitary involution. They can only square to the
identity resulting in three classes.

(vii) Two unitary involutions. The combination of two
different unitary involutions gives the third one, so
that this case is not possible.

(viii) Three unitary involutions. Because PQþQ− ¼ α1
with jαj ¼ 1, using that the operators square to the
identity, we can derive ðPQþÞ2 ¼ α21. This gives
P ¼ α2QþPQþ. Since P2 ¼ Q2þ ¼ 1, it follows
that α2 ¼ �1, and P and Qþ either commute or
anticommute. The same argument can be applied to
P and Q−, and to Qþ and Q−. From PQþQ− ¼ α1
it also follows that the three pairs have to either all
commute or all anticommute. Therefore, we can
have only two classes with three unitary involutions.

As was already observed in Refs. [126,127], the total
number of classes adds up to 1þ 8þ 24þ 16þ 3þ
2 ¼ 54. Tables II and III show the classes with and without
antiunitary symmetry (note that our notation is slightly
different from the nomenclature in [88]). Other equivalent
possibilities to label the classes have appeared in the
literature, see Refs. [87–89,127]. More discussion of the
classification can be found in Ref. [125].

TABLE II. Classification of non-Hermitian Hamiltonians by
antiunitary symmetries T � and C�. The columns of the table give
the square of each symmetry operator and the name of the class
introduced in Ref. [88]. The subscript � of the classes is the
product C2þC2− and/or T 2þT 2

−. The value of these products can also
be related to commutation relations of the P symmetry and the
antiunitary symmetries, see Ref. [88]. In case the class does not
have a standard name, we use the name under H ∼ iH (see
Table IV). Other classes have two names, both of which we have
included for completeness (see Ref. [88]).

Number T 2þ C2− C2þ T 2
− Class

1 � � � � � � � � � � � � A
2 þ1 � � � � � � � � � AI
3 −1 � � � � � � � � � AII
4 � � � þ1 � � � � � � D
5 � � � −1 � � � � � � C
6 � � � � � � þ1 � � � AI†

7 � � � � � � −1 � � � AII†

8 � � � � � � � � � þ1 D†

9 � � � � � � � � � −1 C†

10 þ1 þ1 � � � � � � BDI
11 þ1 −1 � � � � � � CI
12 −1 þ1 � � � � � � DIII
13 −1 −1 � � � � � � CII
14 þ1 � � � þ1 � � � no name (≡BDI†)
15 þ1 � � � −1 � � � no name (≡DIII†)
16 −1 � � � þ1 � � � no name (≡CI†)
17 −1 � � � −1 � � � no name (≡CII†)
18 þ1 � � � � � � þ1 AIþ=D

†
þ

19 þ1 � � � � � � −1 AI−=C†
−

20 −1 � � � � � � þ1 AII−=D†
−

21 −1 � � � � � � −1 AIIþ=C
†
þ

22 � � � þ1 þ1 � � � Dþ=AI
†
þ

23 � � � þ1 −1 � � � D−=AII†−
24 � � � −1 þ1 � � � C−=AI†−
25 � � � −1 −1 � � � Cþ=AII

†
þ

26 � � � þ1 � � � þ1 no name (≡BDI)
27 � � � þ1 � � � −1 no name (≡DIII)
28 � � � −1 � � � þ1 no name (≡CI)
29 � � � −1 � � � −1 no name (≡CII)
30 � � � � � � þ1 þ1 BDI†

31 � � � � � � þ1 −1 CI†

32 � � � � � � −1 þ1 DIII†

33 � � � � � � −1 −1 CII†

34 þ1 þ1 þ1 þ1 BDIþþ=BDI
†
þþ

35 þ1 þ1 þ1 −1 BDI−þ=CI
†
þ−

36 þ1 þ1 −1 þ1 BDIþ−=DIII
†
−þ

37 þ1 þ1 −1 −1 BDI−−=CII†−−
38 þ1 −1 þ1 þ1 CIþ−=BDI

†
−þ

39 þ1 −1 þ1 −1 CI−−=CI†−−
40 þ1 −1 −1 þ1 CIþþ=DIII

†
þþ

41 þ1 −1 −1 −1 CI−þ=CII
†
þ−

42 −1 þ1 þ1 þ1 DIII−þ=BDI
†
þ−

43 −1 þ1 þ1 −1 DIIIþþ=CI
†
þþ

44 −1 þ1 −1 þ1 DIII−−=DIII†−−

(Table continued)
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For our purposes, it proves convenient to identify the
matrices H and iH, which only changes the eigenvalues by
i but does not affect the eigenvectors. This multiplication
interchanges the role of T þ and T − and of Qþ and Q− but
does not change the action of the other symmetry operators.
As is shown in Table IV we find 16 equivalence relations
between classes, reducing the total number of classes to
54 − 16 ¼ 38 [88], the Bernard-LeClair (BL) classes.
The previous considerations are completely general. For

a Majorana system as the one described in Sec. II A, the
unitary symmetry operators are given by compositions of
the available unitary operators (Q, S, and SL;R), while
the antiunitary symmetries further include a product
with the complex conjugation operator K. The precise
expressions depend on the details of the system, and will be
considered in depth in what follows. A natural question is
how the 38-fold classification of arbitrary non-Hermitian
Hamiltonians is affected by the presence of PT symmetry,
which we examine next.

D. Symmetry classification of 0d PT-symmetric
Majorana Hamiltonians

As discussed above, PT-symmetric systems have an
antiunitary symmetry T þ ¼ QK, satisfying T 2þ ¼ þ1,
and their eigenvalues come in complex-conjugated pairs.
Nevertheless, PT symmetry of the Hamiltonian can be
broken, either explicitly (in which case not all its irreduc-
ible blocks are PT-symmetric) or spontaneously (in which

case some or all eigenstates are not PT-symmetric).
Regarding the first, H always admits one or more unitary
symmetries, which can, in some cases, break PT symmetry
explicitly. That is, while the full Hamiltonian H is PT-
symmetric, it is not guaranteed that individual parity
sectors, or blocks of the Hamiltonian, are also PT-sym-
metric, because T þ can connect different irreducible blocks
of H instead of acting inside a single one. Even if the PT
symmetry is not explicitly broken, the eigenstates of H are
not necessarily invariant under T þ. Indeed, if there is at
least one complex-conjugated (nonreal) eigenvalue pair, PT
symmetry is spontaneously broken. If, instead, all eigen-
states are invariant under T þ, then all eigenvalues are real
and PT symmetry is unbroken. We note that the ground
state of the Hamiltonian, corresponding to the steady state
of the evolution of the density matrix by means of the
Lindblad equation (see Sec. VII B), never spontaneously
breaks PT symmetry. The phase transition between the PT-
broken and unbroken phases was studied in Ref. [128] for a
four-body non-Hermitian two-site SYK model for which
the transition occurs at a large inter-site coupling.
From the preceding discussion, it is clear that the

existence of PT symmetry does not preclude or enforce
the presence (and the sign of the square) of any antiunitary
symmetry of an irreducible block of the Hamiltonian.
Nevertheless, we conjecture that classes with T 2þ ¼ −1
and C2þ ¼ −1 do not occur in PT-symmetric systems.
Starting with the 54 classes without the identification
H ∼ iH [126,127], this restriction excludes 25 classes,
leaving 29 allowed ones. Performing the identification
H ∼ iH leads to a set of 24 admissible classes out of

TABLE III. The classification of non-Hermitian Hamiltonians
without antiunitary symmetries by the unitary involutions P
and Q�. We list the square of each of them as well as the value
of ϵPQþ in PQþ − ϵPQþQþP ¼ 0, and the name of the class
adopted in Ref. [88]. Class 52 has no name, but it is equivalent to
AIII under multiplication by i (see Table IV).

# P2 Q2þ Q2
− ϵPQþ Class

50 þ1 � � � � � � � � � AIII†

51 � � � þ1 � � � � � � AIII
52 � � � � � � þ1 � � � no name (≡AIII)
53 þ1 þ1 þ1 þ1 AIIIþ
54 þ1 þ1 þ1 −1 AIII−

TABLE II. (Continued)

Number T 2þ C2− C2þ T 2
− Class

45 −1 þ1 −1 −1 DIIIþ−=CII
†
−þ

46 −1 −1 þ1 þ1 CII−−=BDI†−−
47 −1 −1 þ1 −1 CIIþ−=CI

†
−þ

48 −1 −1 −1 þ1 CII−þ=DIII
†
þ−

49 −1 −1 −1 −1 CIIþþ=CII
†
þþ

TABLE IV. This table shows the 16 classes classes that are
equivalent to another class under H ∼ iH. Therefore we have 38
inequivalent classes. The numbering of the classes is as in
Tables II and III. This and the previous two tables are taken
from the thesis [125].

Equivalence Classes

2≡ 8 AI≡ D†

3≡ 9 AII≡ C†

10≡ 26 BDI
11≡ 28 CI
12≡ 26 DIII
13≡ 27 CII
14≡ 30 BDI†

15≡ 32 DIII†

16≡ 31 CI†

17≡ 33 CII†

19≡ 20 AI−=C†
− ≡ AII−=D†

−
35≡ 42 BDI−þ=CI

†
þ− ≡ DIII−þ=BDI

†
þ−

37≡ 44 BDI−−=CII†−− ≡ DIII−−=DIII†−−
39≡ 46 CI−−=CI†−− ≡ CII−−=BDI†−−
41≡ 48 CI−þ=CII

†
þ− ≡ CII−þ=DIII

†
þ−

51≡ 52 AIII
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the 38 of the BL classification. These classes are conven-
tionally named A, AI, D, C, AI†, BDI, CI, DIII, CII, BDI†,
CI†, CII†, AIþ, AI−, Dþ, C−, BDIþþ, BDI−þ, CIþ−, CI−−,
AIII†, AIII, AIIIþ, and AIII−, see Tables II and III. This
24-fold classification constitutes our main statement on the
general classification of PT-symmetric systems and we
proceed by giving arguments for its validity.
In the case of 0d single-flavor Majorana fermions (where

the Majorana fermions have no additional indices besides
i ¼ 1;…; N and A ¼ L, R, in particular, no spatial or flavor
indices), and which constitutes the main focus of the
present paper, the statement above can be checked explic-
itly. Indeed, in this case, there are no other symmetry
operations available besides K, Q, S, SL;R and combina-
tions of them. Of these, as follows from Eqs. (10)–(15), the
only antiunitaries that can square to −1 are SLK andQSLK.
However, using the results of Sec. III, these operators only
act as T − or C− on irreducible blocks of H. We, therefore,
cannot construct a block with T 2þ ¼ −1 and C2þ ¼ −1. In
Sec. III we perform this calculation in detail for a
paradigmatic two-site SYK model. The more general result
follows from combining several of these SYK models.

E. Toward a symmetry classification of arbitrary
PT-symmetric Hamiltonians

The absence of commuting antiunitary symmetries that
square to −1 is true for any PT-symmetric systems where
all L operators involved in the classification commute with
all R operators,2 which can be mapped (see Sec. VII B)
to the Liouvillians of Ref. [91]. There, it was shown that
C2þ ¼ −1 and T 2þ ¼ −1 symmetries are excluded, as these
symmetries are not possible inside a single block of H.
The argument consists of (i) showing that a C2þ ¼ −1
(or T 2þ ¼ −1) symmetry of the full Hamiltonian can exist;
but (ii) because of PT symmetry, it always induces an
additional commuting unitary symmetry, with respect to
which H has to be reduced; and (iii) the C2þ ¼ −1 (or
T 2þ ¼ −1) symmetry always connects different blocks with
respect to the induced symmetry. Therefore, the C2þ ¼ −1
(or T 2þ ¼ −1) symmetry of H does not define a symmetry
class of the blocks of H with C2þ ¼ −1 (or T 2þ ¼ −1).
Fermionic systems in higher dimensions, nonfully con-

nected, or with additional flavors (indices) pose greater
challenges. While we believe the argument of Ref. [91] can
be extended to this case, we were not able to do so because
of the large number of different possibilities that have to be
checked. In any case, as far as we know, there is no known
example outside the 24-fold classification.

Having discussed the general classification of PT-
symmetric quantum systems, in the remainder of the paper
we consider a specific paradigmatic example, namely, a
non-Hermitian two-site SYK model. By varying its param-
eters, we find that it realizes 14 of the 24 allowed symmetry
classes, which are tabulated in Table XVIII in Sec. VI.

III. PARADIGMATIC EXAMPLE:
THE PT-SYMMETRIC TWO-SITE SYK MODEL

A. Definition of the Hamiltonian

We restrict the general Hamiltonian Eq. (21) to have
q-body intra-site and 2r-body inter-site interactions (q and
2r are even natural numbers). The Hamiltonian reads

H ¼ HLðκÞ þ αð−1Þq=2HRðκÞ þ λHI; ð32Þ

with non-Hermiticity parameter 0 ≤ κ ≤ 1, PT-symmetry-
breaking parameter α, and coupling constant λ. The
two single-site q-body SYK Hamiltonians HL;R and the
2r-body Hamiltonian HI coupling them are given by

HL ¼ −iq=2
XN

i1<���<iq

ðJi1���iq þ iMi1���iqÞψL
i1
� � �ψL

iq
;

HR ¼ −iq=2
XN

i1<���<iq

ðJi1���iq − iMi1���iqÞψR
i1
� � �ψR

iq
;

HI ¼ ir
N1−r

r

XN
i1<���<ir

ψL
i1
� � �ψL

ir
ψR
i1
� � �ψR

ir
; ð33Þ

where the couplings Ji1���iq and Mi1���iq are real Gaussian
random variables with zero mean and variance

hJ2i1���iqi ¼ ð1 − κÞ 2
q−1ðq − 1Þ!
qNq−1 and

hM2
i1���iqi ¼ κ

2q−1ðq − 1Þ!
qNq−1 : ð34Þ

For α ¼ 1, the Hamiltonian Eq. (32) is, by construction,
PT-symmetric, with the PT symmetry implemented by the
antiunitary T þ ¼ QK. In our study, we will also address
the effect of weakly explicitly broken PT symmetry,
controlled by a parameter α ≈ 1. There are two special
values of κ, for which H has an additional symmetry. For
κ ¼ 0 [42], the uncoupled two-site Hamiltonian,

H0 ¼ HL þ αð−1Þq=2HR; ð35Þ

is Hermitian, and since the coupling Hamiltonian
HI is always Hermitian, the full Hamiltonian H is also
Hermitian. H can then be taken as a standard Hamiltonian
of an isolated two-site quantum system. The PT symmetry
reduces to an ordinary time-reversal symmetry that allows

2This includes, obviously, bosonic and spin systems. It includes,
moreover, some fermionic systems, e.g., those with inter-site
couplings quadratic in L and R fermions, since a product of two
L fermions commutes with a product of two R fermions.
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to establish a duality to a traversable wormhole in the
low-temperature limit [41,42], see Sec. VII A for a more
detailed discussion. For κ ¼ 1, H0 is instead anti-
Hermitian. If we interpret the L and R copies as acting,
respectively, on the ket and bra of a density matrix (i.e., H
acting in the so-called vectorized Liouville space), then H
can be mapped [129] into a quantum Markovian generator
of Lindblad type [130–132], see Sec. VII B for more
details. For these reasons, in what follows we will dub the
three regimes κ ¼ 0, 0 < κ < 1, and κ ¼ 1 as Hermitian,
general PT-symmetric, and Lindbladian, respectively. In
these three regimes, the symmetry classification proceeds
differently. In the Hermitian case (κ ¼ 0), H is Hermitian
and, in Ref. [42], we found that it belongs to six out of the ten
AZ classes, depending on the choice of parameters. When
κ ≠ 0, the Hamiltonian is non-Hermitian and belongs to a
non-Hermitian BL class. For the Lindbladian case (κ ¼ 1),
the set of classes realized by H is enlarged compared to the
general non-Hermitian situation (0 < κ < 1) because of the
anti-Hermiticity of H0. For this special case, a symmetry
classification was put forward in Ref. [92], but we shall
see that some classes were missed as it was not noticed
that different blocks of H can belong to different classes.
The classification depends not only on κ but also on
N mod 4 [42,92], the parities of q=2 and r,3 and whether
α ¼ 1 or α ≠ 1. Below, we develop a classification scheme

that allows for a unified treatment of all three regimes of the
PT-symmetric two-site SYK models.

B. Action of symmetry operators

As discussed in Sec. II A, the symmetry properties of H
are based on the action of the complex-conjugation
operator K and the unitary operatorsQ [defined in Eq. (2)],
S Eq. (5), and SL;R Eq. (6). Using Eqs. (1)–(3) and (7)–(9),
we find the transformation relations of the Hamiltonian
Eq. (32) under the unitary and antiunitary transformations.
Since the inter-site coupling Hamiltonian HI in Eq. (32)
is independent of κ, it always has the transformation
properties:

SL;RHIS−1L;R ¼ ð−1ÞrHI; ð36Þ

QHIQ−1 ¼ HI; ð37Þ

KHIK−1 ¼ HI; ð38Þ

H†
I ¼ HI: ð39Þ

On the other hand, the transformation properties of the
decoupled HamiltonianH0 depend on κ. For the three cases
discussed above (κ ¼ 0, κ ¼ 1, and 0 < κ < 1), they are:

κ ¼ 0∶ κ ¼ 1∶ 0 < κ < 1∶
SL;RH0S−1L;R ¼ H0; SL;RH0S−1L;R ¼ H0; SL;RH0S−1L;R ¼ H0;

ð40Þ

QH0Q−1 ¼ ð−1Þq=2H0; QH0Q−1 ¼ −ð−1Þq=2H0; QH0Q−1 ¼ ð−1Þq=2H†
0; ð41Þ

KH0K−1 ¼ ð−1Þq=2H0; KH0K−1 ¼ −ð−1Þq=2H0; KH0K−1 ¼ ð−1Þq=2H†
0; ð42Þ

H†
0 ¼ H0; H†

0 ¼ −H0; ð43Þ

where the transformation underQ Eq. (41) holds only in the
left-right symmetric point α ¼ 1.4 In the following sections,

we shall show that the sought symmetry classification
follows naturally from a systematic consideration of
Eqs. (10)–(15) and (36)–(43). We first search for unitary
symmetries commuting with the Hamiltonian. These do not
specify the symmetry class, but they define the block
structure of the Hamiltonian, within which antiunitary
symmetries and unitary involutions must act. Later, we
define projector operators that enable us to investigate the
symmetries of each block. With this information at hand,
we finally identify all symmetries of the Hamiltonian,
separating the cases of κ ¼ 0, already investigated in
Ref. [42], κ ¼ 1, and 0 < κ < 1.

C. Commuting unitary symmetries and block structure
of the Hamiltonian

The irreducible blocks of the Hamiltonian (to which we
also refer as symmetry sectors of the theory) are defined by

3Since the classification depends on r only through its parity, it
coincides with the one of the slightly different Hamiltonian of
Ref. [42], where HI was given by (up to an overall constant)
ðiPN

i¼1 ψ
L
i ψ

R
i Þr. The two interacting Hamiltonians differ by

s-body terms, where s < r has the same parity of r and, thus,
belong to the same class. Moreover, in the large-N limit, these
extra terms are subleading in 1=N (they are suppressed as
1=Nr−s) and the resulting phenomenology also coincides for
both models. We choose the current model because of its clearer
connection to the Lindbladian, see Sec. VII B, and the Keldysh
wormhole model of Ref. [78].

4Strictly speaking, it is also satisfied for the antisymmetric
point α ¼ −1, but this only exchanges the role of even and odd
q=2. As such, the classification for α ¼ −1 follows straightfor-
wardly from the one we give for α ¼ 1.
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the maximal set of mutually commuting unitary operators
that also commute with the Hamiltonian.

(i) For all values of the parameters N, q, r, and κ, S
commutes with H, i.e., the total fermionic parity is
always conserved. Since S has eigenvalues s ¼ �1,
the Hamiltonian H has always at least two blocks,
indexed by s.

(ii) For even r, H commutes with both SL and SR
independently. Since SL and SR always commute
with each other (for even N), in this case, there are
four symmetry blocks, indexed by the eigenval-
ues sL;R ¼ �1.

(iii) For the general PT-symmetric situation, 0 < κ < 1,
there are no further unitary symmetries, as the
remaining unitary operator Q maps H0 into H†

0.
(iv) For the left-right symmetric case (α ¼ 1), in the

Hermitian (κ ¼ 0) and Lindbladian (κ ¼ 1) regimes,
Q maps H0 into �H0. Therefore, Q is an additional
unitary symmetry when the plus sign holds. In this
case, the existing blocks of the Hamiltonian corre-
sponding to fixed S or SL;R [42] may be further split.

(v) For κ ¼ 0, QH0Q−1 ¼ H0 when q=2 is even.
(a) If, r is odd, since S and Q always commute,

Eq. (15), Q splits the two existing blocks
(labeled by s ¼ �1) into two subblocks each,
leading to four blocks indexed by the eigenval-
ues of Q, k ¼ �1;�i.

(b) If, instead r is even, it follows from Eq. (14) that
Q and SL;R commute only in sectors with
s ¼ þ1, i.e., sL ¼ sR. The blocks sL ¼ sR ¼
�1 thus get split into two subblocks indexed
by k ¼ �1. The two blocks with sL ¼ −sR do
not get split by Q. In total, we thus have six
blocks.

For odd q=2, H and Q do not commute and the block
structure is the same as in the generic case (0 < κ < 1).
(vi) For κ ¼ 1, QH0Q−1 ¼ H0 when q=2 is odd. The

block structure for even and odd q=2 is thus
interchanged with respect to κ ¼ 0 case.

(vii) For α ≠ 1, left-right asymmetric case, Q is not a
symmetry of the Hamiltonian for any κ since
Eq. (41) holds only for α ¼ 1. The block structure
is, therefore, the same as in the 0 < κ < 1 regime.

The number of blocks and the eigenvalues by which they
are indexed for each case is summarized in Table V.

D. Antiunitary symmetries and projectors
into symmetry sectors

We now proceed to characterize the antiunitary
symmetries inside the blocks identified previously, which
will result in the full symmetry classification of the
Hamiltonian. Since S is always a conserved quantity of
H, the relevant antiunitary operators are taken to be K,QK,
SLK, and QSLK. Using Eqs. (10)–(15), we find their
squares to be

K2 ¼ ðQKÞ2 ¼ þ1;

ðSLKÞ2 ¼ ð−1ÞN=2;

ðQSLKÞ2 ¼ ð−1ÞN=2S: ð44Þ
The action of these operators on the Hamiltonian will
determine the type of symmetry (T � or C�) they represent,
which we shall show depends on the value of κ (κ ¼ 0,
κ ¼ 1, or 0 < κ < 1) under consideration, see Sec. IV.
As mentioned above, in order to define a universality

class by a set of antiunitary symmetries, they must act
within a single block of the Hamiltonian. To check this, we
need the commutation relation of the unitary operators and
the complex-conjugation operator with the projectors into
sectors of fixed eigenvalues of SL;R, S, and Q, defined,
respectively, as

PsL;R
L;R ¼ 1

2
ð1þ sL;RSL;RÞ; ð45Þ

Ps
S ¼

1

2
ð1þ sSÞ; ð46Þ

Pk
Q ¼ 1

4

�
1þQ

k
þQ2

k2
þQ3

k3

�
; ð47Þ

where the subscript denotes the symmetry being projected
and the superscript the eigenvalue labeling the block.
Using the commutation relations of the unitary operators,

Eqs. (13)–(15), we find:

SL;RPs
S ¼ Ps

SSL;R; SL;RPk
Q ¼ Psk

Q SL;R; ð48Þ

SPsL;R
L;R ¼ PsL;R

L;RS; SPk
Q ¼ Pk

QS; ð49Þ

QPsL;R
L;R ¼ PssL;R

L;R Q; QPs
S ¼ Ps

SQ; ð50Þ

where used that S always commutes with the Hamiltonian
and we can, therefore, replace it by its eigenvalue s.
We conclude that SL and SR always act within blocks of
fixed S (for even N), but within blocks of fixed Q only
when s ¼ þ1 (i.e., k ¼ �1). On the other hand, S always
acts within blocks of fixed SL;R or Q. Lastly, Q always acts

TABLE V. Block structure of the Hamiltonian, for different
parities of q=2 and r. The block structure differs for the following
three cases: κ ¼ 0 and α ¼ 1; κ ¼ 1 and α ¼ 1; and 0 < κ < 1 or
α ≠ 1. For each possibility and set of parities, we list the number
of blocks and, in parentheses, the conserved quantum numbers
(eigenvalues of commuting unitary operators) labeling them.

ð−1Þq=2 ð−1Þr
κ ¼ 0

and α ¼ 1
κ ¼ 1

and α ¼ 1
0 < κ < 1
or α ≠ 1

þ1 þ1 6 (sL; sR; k) 4 (sL; sR) 4 (sL; sR)
þ1 −1 4 (k) 2 (s) 2 (s)
−1 þ1 4 (sL; sR) 6 (sL; sR; k) 4 (sL; sR)
−1 −1 2 (s) 4 (k) 2 (s)
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within blocks of fixed S but only inside blocks of fixed SL;R
when s ¼ þ1 (i.e., sL ¼ sR).
The commutation relations of the projectors with the

complex conjugation operators depend on the reality of
both the unitary operators themselves and their eigenvalues.
Since S is real with real eigenvalues, the projector PS is also
real and, accordingly,

KPs
S ¼ Ps

SK: ð51Þ

PQ also commutes with K,

KPk
Q ¼ 1

4

�
1þQ−1

k�
þQ−2

k�2
þQ−3

k�3

�
K ¼ Pk

QK; ð52Þ

where we have used KQ ¼ Q−1K [Eq. (11)], Q4 ¼ 1

[Eq. (12)], and k4 ¼ 1. We see that K always acts within
blocks of fixed S or fixed Q. Finally, the projector PL;R

commutes with K only when SL;R is real. Using Eq. (10)
we have

KPsL;R
SL;R

¼ 1

2
ð1þ ð−1ÞN=2sL;RSL;RÞK ¼ Pð−1ÞN=2sL;R

SL;R
K; ð53Þ

i.e., K acts within blocks of fixed SL;R only when
N mod 4 ¼ 0.
Finally, combining Eqs. (48)–(53), the commutation

relations of the antiunitary operators with the projectors are

QKPk
Q ¼ Pk

QQK; QKPs
S ¼ Ps

SQK; QKPsL;R
L;R ¼ Pð−1ÞN=2ssL;R

L;R QK ð54Þ

SLKPk
Q ¼ Pð−1ÞN=2sk

Q SLK; SLKPs
S ¼ Ps

SSLK; SLKP
sL;R
L;R ¼ Pð−1ÞN=2sL;R

L;R SLK; ð55Þ

QSLKPk
Q ¼ Psk

QQSLK; QSLKPs
S ¼ Ps

SQSLK; QSLKPsL;R
L;R ¼ PssL;R

L;R QSLK: ð56Þ

From these equations, we can read off immediately whether
the antiunitary symmetries act with a symmetry sector
or not.
We now have all the ingredients to determine the

symmetries of the Hamiltonian Eq. (32) depending on
the value of κ.

IV. SYMMETRY CLASSIFICATION
OF THE PT-SYMMETRIC SYK MODEL

A. Hermitian regime (κ= 0)

The symmetry classification of the two-site SYK
Hamiltonian Eq. (32) in the Hermitian regime (κ ¼ 0)
was performed in Ref. [42]. Here, we reproduce it for
pedagogical purposes, in preparation of the more challeng-
ing non-Hermitian case (κ > 0).
As mentioned above, for Hermitian matrices, the two

transformations T þ and Cþ coincide and are denoted as
T—time reversal symmetry (TRS)—and the coinciding
symmetries T − and C− are denoted as C—particle-hole
symmetry (PHS). If α ¼ 1, the PT-symmetry operator plays
the role of TRS, T ¼ QK. However, if the left-right
symmetry is broken (α ≠ 1), there is still a residual TRS
T̃ ¼ K for the case of odd q=2. Moreover, if both q=2
and r are odd, there is an antiunitary PHS, given by
C ¼ SLK (regardless of α). From Eq. (44), we have that
T2 ¼ T̃2 ¼ þ1, while C2 ¼ ð−1ÞN=2. In order to determine
the symmetry class, it remains to check whether the
antiunitary symmetries act within a single block of the
Hamiltonian, resorting to Eqs. (51)–(56). By evaluating

them for the different block structures of the Hamiltonian in
the first (α ¼ 1) and third (α ≠ 1) columns of Table V, we
fill out Tables VI–IX.
An in-depth analysis of the classification is given in

Ref. [42]. Let us highlight the most salient features. Of the
ten classes in the Hermitian RMT classification [2,3,11],
only six are realized in the two-site model (A, AI, BDI,
CI, D, and C). As a general result of left-right symmetric
two-site models, there are no classes with T2 ¼ −1
(AII, CII, and DIII). This restriction prevents both the
occurrence of Kramers degeneracy inside a fixed block of

TABLE VI. Symmetry classification of the two-site SYK
Hamiltonian Eq. (32) in the Hermitian regime (κ ¼ 0), for even
q=2 and even r. Each line corresponds to a block of the
Hamiltonian, labeled by the eigenvalues of the conserved
quantities: SL;R and Q (α ¼ 1) or SL;R (α ≠ 1). For each block,
we give the Hermitian random matrix symmetry class as a
function of N mod 4 and α.

N mod 4 ¼ 0 N mod 4 ¼ 2

SL SR Q α ¼ 1 α ≠ 1 α ¼ 1 α ≠ 1

þ1 þ1 þ1 AI AI A A
−1 AI A

−1 −1 þ1 AI AI A A
−1 AI A

þ1 −1 � � � AI AI AI A

−1 þ1 � � � AI AI AI A
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the Hamiltonian and the independence of a state and its
time-reversal. We have seen in Sec. II E that a similar
statement is believed to hold also for non-Hermitian
systems [91]. The absence of the remaining class (AIII)
is not fundamental and could, in principle, be realized in
some modified two-site model. Moreover, remarkably,
different blocks of the same Hamiltonian can belong to
different symmetry classes, a result that also carries over to
the non-Hermitian setting.

B. Lindbladian regime (κ= 1)

Next, we turn to the classification of the two-site SYK
Hamiltonian Eq. (32) in the Lindbladian regime (κ ¼ 1)
where, at least for α ¼ 1, the Hamiltonian can be inter-
preted as the vectorized Lindbladian describing a Hermitian
system coupled to a Markovian bath.
Since this model is non-Hermitian, we must consider the

four antiunitary transformations listed in Table I. Let us
start with the explicitly PT-symmetric case, α ¼ 1. We
have the following antiunitary symmetries. T þ is always
present and is implemented by the PT-symmetry operator
T þ ¼ QK. If q=2 is even, there is a Cþ symmetry

implemented by Cþ ¼ K. If r is odd, there is a C− symmetry
implemented by C− ¼ QSLK. Naturally, if q=2 is even and
r is odd, there is also a T − symmetry, given by the
composition of the previous three symmetries, T − ¼ SLK
(up to a factor S, which is constant inside each block).
If PT symmetry is explicitly broken, α ≠ 1, the antiunitary
transformations involving the Q operator (T þ and Cþ)
cease to be symmetry transformations. There is still Cþ ¼
K for even q=2, and T − ¼ SLK for even q=2 and odd r.
There are also residual antiunitary symmetries, namely,
T̃ þ ¼ K for odd q=2, and C̃− ¼ SLK for odd q=2 and odd
r. The squares of the antiunitary symmetries are given by
Eq. (44):

T 2þ ¼ T̃ 2
þ ¼ C2þ ¼ þ1;

C2− ¼ ð−1ÞN=2S;

T 2
− ¼ C̃2− ¼ ð−1ÞN=2: ð57Þ

Note that the square of C− depends explicitly on S, giving
the first hint that different parity sectors can belong to
distinct symmetry classes. In the Hermitian regime, this
was solely due to symmetries being broken in some sectors
and not in others. However, in this case, the square of one
of the antiunitaries depends explicitly on the sector. By
evaluating Eqs. (51)–(57) for the different block structures
of the Hamiltonian in the second (α ¼ 1) and third (α ≠ 1)
columns of Table V, we can fill out Tables X–XIII.
We note that if either (i) α ¼ 1, r is even, N mod 4 ¼ 2,

and s ¼ þ1, or (ii) α ≠ 1, q=2 is odd, r is even, and
N mod 4 ¼ 2, then none of the antiunitary symmetries act
within a single block. However, before assigning these
cases to non-Hermitian class A, we must check for the
unitary involutions (compositions of antiunitary sym-
metries, P and Q�), which could have nontrivial actions
on H despite the antiunitary symmetries being individually
broken. Indeed, for one case, namely, α ¼ 1, even q=2 and
r, andN mod 4 ¼ 2, for the two sectors with s ¼ þ1, there

TABLE VII. Same as Table VI, but for even q=2 and odd r. The
blocks are labeled by the eigenvalues of S and Q (α ¼ 1) or S
(α ≠ 1).

N mod 4 ¼ 0 N mod 4 ¼ 2

S Q α ¼ 1 α ≠ 1 α ¼ 1 α ≠ 1

þ1 þ1 AI AI AI AI
−1 AI AI

−1 þi AI AI AI AI
−i AI AI

TABLE VIII. Same as Table VI, but for odd q=2 and even r.
The blocks are labeled by the eigenvalues of SL;R.

N mod 4 ¼ 0 N mod 4 ¼ 2

SL SR α ¼ 1 α ≠ 1 α ¼ 1 α ≠ 1

þ1 þ1 AI A A A
−1 −1 AI A A A

þ1 −1 A A AI A
−1 þ1 A A AI A

TABLE IX. Same as Table VI, but for odd q=2 and odd r. The
blocks are labeled by the eigenvalues of S.

N mod 4 ¼ 0 N mod 4 ¼ 2

S α ¼ 1 α ≠ 1 α ¼ 1 α ≠ 1

þ1 BDI D CI C
−1 BDI D CI C

TABLE X. Symmetry classification of the two-site SYK
Hamiltonian Eq. (32) in the Lindbladian regime (κ ¼ 1), for even
q=2 and even r. Each line corresponds to a block of the
Hamiltonian, labeled by the eigenvalues of the conserved quan-
tities, SL;R. For each block, we give the non-Hermitian Bernard-
LeClair class as a function of N mod 4 and α. The subscript ν
denotes the index ν ¼ TrPLPRQ of AIIIν and BDI†ν, which we
have recently shown [99] to also be a topological invariant.

N mod 4 ¼ 0 N mod 4 ¼ 2

SL SR α ¼ 1 α ≠ 1 α ¼ 1 α ≠ 1

þ1 þ1 BDI†ν AI† AIIIν A
−1 −1 BDI†ν AI† AIIIν A

þ1 −1 AI† AI† AI A
−1 þ1 AI† AI† AI A
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is a unitary involution Qþ ¼ Q. As such, this particular
block of the Hamiltonian belongs to non-Hermitian class
AIII. The remaining cases belong to class A.
In the Hermitian regime, there were no classes with

T2 ¼ −1. Likewise, in the Lindbladian regime, there are no
classes with T 2þ ¼ −1 or C2þ ¼ −1. The absence of classes
with C2þ ¼ −1, in particular, precludes the existence of non-
Hermitian Kramers degeneracy inside fixed sectors of the
Hamiltonian. In order to illustrate our remarks about the
generality of this result (made in Sec. II) and to understand
more explicitly the absence of these classes in the concrete
model of this paper, we note that the only antiunitary
symmetries that can square to −1 are SLK and QSLK and
these always implement only type T − or C− symmetries.
Some classes in Tables X and XI (even q=2) come with

an index ν ¼ TrPQ, where PQ denotes an appropriate
projection of Q, since the left-right exchange operator Q,

while not being a symmetry of H, still induces a finer
substructure of its blocks. To understand this, we note that,
in the sectors with s ¼ þ1 (i.e., k ¼ �1), Q acquires an
anomalous trace:

TrPðþ1Þ
S Q ¼ 2N=2; ð58Þ

TrPðþ1Þ
L Pðþ1Þ

R Q ¼ TrPð−1Þ
L Pð−1Þ

R Q ¼ 2N=2=2: ð59Þ

As a consequence, a block ofH with s ¼ þ1 acquires itself
a substructure of the form�

A B

C D

�
: ð60Þ

Here, A contains the matrix elements of the block of H that
connect eigenstates of Q with k ¼ þ1, D connects two
eigenstates with k ¼ −1, while B andC connect eigenstates
with k ¼ 1 to eigenstates with k ¼ −1. Since there are ν
more eigenstates with k ¼ þ1 than with k ¼ −1, A and D
have different dimensions and B and C are rectangular. In
Sec. V, we will discuss in detail how this anomalous trace
results in ν exactly real eigenvalues of H, which are robust
and cannot become pairs of complex-conjugated eigenval-
ues by a collision at an exceptional point. On the other
hand, Q has the same number of eigenstates with eigen-
values k ¼ �i and, hence, ν ¼ 0 for sectors with s ¼ −1.
Moreover, for odd q=2, Q is a symmetry of H and hence,
determines the block structure of H itself and not the finer
substructure of the blocks. In these two cases there are,
therefore, no classes with a nontrivial block substructure.
We have shown recently [99] that the rectangular block
structure and the anomalous trace are signatures of topo-
logical behavior characterized by the class dependent
topological invariant νðNÞ. Therefore, the combination
of these two facts points to the existence of an index
theorem in this case equating the topological invariant νðNÞ
and the analytic index TrPQ, with P a projection on a
subspace as discussed earlier in this section. Likewise, as
mentioned in Ref. [99], the anomalous trace is then a
signature of a pseudo-Hermitian quantum anomaly.
As shall be discussed in detail in Sec. VII B, the PT-

symmetric SYK Hamiltonian Eq. (32) for κ ¼ 1 and α ¼ 1
can be mapped onto an SYK Lindbladian with a Hermitian
dissipator. This particular case of the model coincides with
the one employed in Ref. [92] to classify dissipative
quantum chaos. Although the two classifications agree in
many cases, there are still important differences stemming
from the fact that the classification of Ref. [92] did account
neither for the modifications to the block structure due to
the Q symmetry (leading, for example, to the mentioned
topological features [99]) nor for the possibility that blocks
of the Hamiltonian with opposite parity S can, in some
cases, belong to different symmetry classes (either because
the square of an antiunitary depends explicitly on S or
because a symmetry is broken in one of the parity blocks

TABLE XI. Same as Table X, but for even q=2 and odd r. The
blocks are labeled by the eigenvalues of S. In this case, the index
of classes BDIþþν and CI−−ν is given by ν ¼ TrPSQ.

N mod 4 ¼ 0 N mod 4 ¼ 2

S α ¼ 1 α ≠ 1 α ¼ 1 α ≠ 1

þ1 BDIþþν BDI† CI−−ν CI†

−1 CIþ− BDI† BDI−þ CI†

TABLE XII. Same as Table X, but for odd q=2 and even r. The
blocks are labeled by the eigenvalues of SL;R and Q (α ¼ 1) or
SL;R (α ≠ 1).

N mod 4 ¼ 0 N mod 4 ¼ 2

SL SR Q α ¼ 1 α ≠ 1 α ¼ 1 α ≠ 1

þ1 þ1 þ1 AI AI A A
−1 AI A

−1 −1 þ1 AI AI A A
−1 AI A

þ1 −1 � � � AI AI AI A
−1 þ1 � � � AI AI AI A

TABLE XIII. Same as Table X, but for odd q=2 and odd r. The
blocks are labeled by the eigenvalues of S and Q (α ¼ 1) or S
(α ≠ 1).

N mod 4 ¼ 0 N mod 4 ¼ 2

S Q α ¼ 1 α ≠ 1 α ¼ 1 α ≠ 1

þ1 þ1 BDI BDI CI CI
−1 BDI CI

−1 þi AI BDI AI CI
−i AI AI
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but not in the other). These two results are some of the
main novel features of our work and, arguably, the most
interesting characteristics of the model. More specifically,
the classification of Ref. [92] should be corrected in the
following cases (α ¼ κ ¼ 1 in all instances):
(1) q=2 even, r even, N mod 4 ¼ 0. In the two sectors

with s ¼ −1, T þ is broken. These blocks belong to
class AI† (instead of BDI†).

(2) q=2 even, r even, N mod 4 ¼ 2. In the two sectors
with s ¼ −1, T þ is unbroken and Qþ is broken.
These blocks belong to class AI (instead of AIII).

(3) q=2 even, r odd. The square of C− is C2− ¼ ð−1ÞN=2S,
while Ref. [92] incorrectly uses C2− ¼ þ1, resulting
in the misidentification of the classes when
ð−1ÞN=2s ¼ −1. For N mod 4 ¼ 0, the block with
s ¼ −1 thus belongs to class CIþ− (instead of
BDIþþ). For N mod 4 ¼ 2, the s ¼ þ1 block be-
longs to class CI−−ν (instead of BDI−þ).

(4) q=2 odd, r even, N mod 4 ¼ 2. In the two sectors
with s ¼ −1 (i.e., k ¼ �i), T þ is unbroken, because
these blocks are not labeled by sL;R but instead by k.
These blocks belong to class AI (instead of A).

(5) q=2 odd, r odd. In the two sectors with s ¼ −1 (i.e.,
k ¼ �i), C− is broken, because it does not commute
with the projector PQ. These blocks belong to class
AI (instead of BDI for N mod 4 ¼ 0 and CI
for N mod 4 ¼ 2).

The numerical checks of the classification in Ref. [92]
were performed only for q ¼ 4 (i.e., even q=2), for which
the block structure is not modified by the operator Q.
Moreover, for the cases 1., 2., and 3. enumerated above with
even q=2, the numerical indicators used in Ref. [92] are
unable todistinguish the different classes. InSec.VI,we show
explicitly that these different universality classes in different
blocks of the Hamiltonian can indeed be distinguished by
employing a more complete set of spectral observables.
In summary, the PT-symmetric Hamiltonian Eq. (32) in

the Lindbladian regime (κ ¼ 1) realizes 12 non-Hermitian
symmetry classes (A, AIII, AI, BDI, CI, AI†, BDI†, CI†,
BDIþþ, BDI−þ, CIþ−, and CI−−), three of which (AIII,
BDIþþ, and CI−−) always come with an index ν > 0 (by
convention), and one (BDI†) forwhich the index ν is nonzero
in some cases only. We have found [99] that this index
νðNÞ > 0 is indeed a topological invariant, so these four
classes are topological since they describe systems with
topologically nontrivial features. Remarkably, this list of 12
classes includes eight classes of the Lindbladian tenfoldway
with unbrokenT þ symmetry [91] realized by a singlemodel
(only classes AIþ and AI− are missing), further illustrating
the richness of the SYK Lindbladian [78,92,133–135].

C. General PT-symmetric regime (0 < κ < 1)

Finally, we consider the classification of the two-site
SYK Hamiltonian Eq. (32) in the general PT-symmetric
regime (0 < κ < 1). The model is still non-Hermitian and

the classification proceeds similarly to the previous case.
However, because the decoupled Hamiltonian H0 is no
longer anti-Hermitian, the antiunitary symmetries are more
restricted. The block structure is also simpler, sinceQ is not
a unitary symmetry for any choice of q, see Sec. III C.
We start again with the explicitly PT-symmetric case,

α ¼ 1. As before, there is always a T þ (PT) symmetry
implemented by T þ ¼ QK and a Cþ symmetry for even
q=2 implemented by Cþ ¼ K. The antiunitary operator
QSLK is no longer a symmetry operation and a C−
symmetry is instead implemented by C− ¼ SLK, but only
for simultaneously odd q=2 and r. Finally, there is no T −
symmetry for any choice of parameters. When the PT
symmetry is explicitly broken by α ≠ 1, the T þ ¼ QK
antiunitary operator ceases to be a symmetry operation
because it involves the operator Q. However, the C�
symmetries continue to hold. Using Eq. (44), the squares
of the antiunitary symmetries are

T 2þ ¼ C2þ ¼ þ1 and C− ¼ ð−1ÞN=2: ð61Þ
By evaluating Eqs. (51)–(55) and (61) for the different
block structures of the Hamiltonian in the third column of
Table V, we can fill out Tables XIV–XVII.
As was the case in the Lindbladian regime, once again

there are no classes with T 2þ ¼ −1 or C2þ ¼ −1. Moreover,
there are again classes with a nontrivial topological
structure. For even q=2 and r, BDI†ν and AIIIν retain their
topological features from the more symmetric point κ ¼ 1.
For even q=2 and odd r, classes BDIþþν and CI−−ν for
κ ¼ 1 become BDI†ν here. Therefore, no further topological
classes arise.
In summary, the Hamiltonian Eq. (32) in the general PT-

symmetric case realizes nine non-Hermitian symmetry
classes (A, AIII, AI, BDI, CI, D, C, AI† and BDI†), of
which seven are also realized in the Lindbladian regime and
two (D and C) are exclusive to the general PT-symmetric

TABLE XIV. Symmetry classification of the two-site SYK
Hamiltonian Eq. (32) in the general PT-symmetric regime
(0 < κ < 1), for even q=2 and even r. Each line corresponds
to a block of the Hamiltonian, labeled by the eigenvalues of the
conserved quantities, SL;R. For each block, we give the non-
Hermitian Bernard-LeClair class as a function of N mod 4 and α.
The subscript ν denotes the index ν ¼ TrPLPRQ of AIIIν and
BDI†ν, which we have recently shown [99] to also be a topological
invariant.

N mod 4 ¼ 0 N mod 4 ¼ 2

SL SR α ¼ 1 α ≠ 1 α ¼ 1 α ≠ 1

þ1 þ1 BDI†ν AI† AIIIν A
−1 −1 BDI†ν AI† AIIIν A

þ1 −1 AI† AI† AI A
−1 þ1 AI† AI† AI A
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regime. Of these nine, two (AIII and BDI†) can have, for
some parameters, a rectangular block representation which
we have recently found to be related to topologically
nontrivial features [99]. Combining this with the results
of previous section, we conclude that the two-site SYK
Hamiltonian Eq. (32) realizes, in total, six Hermitian and 14
non-Hermitian symmetry classes.
The confirmation of this symmetry classification by a

spectral and eigenvector analysis using exact diagonalization
techniques is discussed in Sec. VI, while applications of
the classification are addressed in Sec. VII. Before that, we
discuss in more detail the relation alluded above between
the observed rectangularization of the SYK Hamiltonian for
classes AIIIν, BDI

†
ν, BDIþþν, and CI−−ν and the existence of

robust νðNÞ purely real modes with distinct level statistics
that agree with the predictions for an Hermitian random
matrix ensemble with the corresponding symmetry.

V. RECTANGULAR BLOCKS AND REAL
EIGENVALUES IN NON-HERMITIAN

RANDOM MATRIX THEORY
AND IN THE PT-SYMMETRIC SYK MODEL

In the previous section, we have shown that the symmetry
of classes AIII, BDI†, BDIþþ, andCI−− can be altered by the

existence of rectangular blocks in the Hamiltonian charac-
terized by TrQ ¼ νðNÞ > 0. We have recently shown [99]
that νðNÞ is a topological invariant so that these four classes
are topological. In this section, we will give a perturbative
characterization of these symmetry classes and the
differences from the ν ¼ 0 case. We will first do this in
detail for class AIIIν and then show how to adapt the
discussion to the remaining classes. The presence of rec-
tangular blocks in non-Hermitian randommatrix theory was
first found in the context of QCD at nonzero chemical
potential [47,109] and for the QCDDirac operator ofWilson
fermions [102–107].

A. Class AIIIν
The simplest example is AIII, which is well known from

the analysis of Wilson fermions in QCD [100–107,136]. Its
block structure is

H ¼
�

aA C

−C† aB

�
; ð62Þ

where A and B are Hermitian matrices of dimension n and
nþ ν, respectively, with ν the difference between the
number of rows and columns of the matrix that we term
the index, C is a complex n × ðnþ νÞmatrix, and a is a real
parameter that in lattice QCD is the lattice spacing. For
a ¼ 0, the matrix H is anti-Hermitian and has ν zero
modes. This ensemble will be denoted by AIIIν.
If we define the operator

γc ¼ diagð1;…; 1|fflfflffl{zfflfflffl}
n

;−1; � � � − 1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
nþν

Þ ð63Þ

then γcH ¼ H†γc because

�
γc;

�
aA 0

0 aB

�	
¼ 0 and

�
γc;

�
0 C

−C† 0

��
¼ 0:

ð64Þ

In a chiral basis fϕjþ;ϕj−gj with γcϕj� ¼ �ϕj�, the
matrix C only connects states of opposite chirality (eigen-
values of γc). Note that H has rectangular blocks when the
index ν ¼ Trγc ≠ 0.
The operator γcðH þm1Þ with m real is Hermitian with

eigenvalue Ej. For a ¼ 0, the spectral flow of its zero
modes as a function of m goes as m, while the nonzero

modes flow as �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
j þm2

q
. Interestingly, for a ≠ 0, the

flow lines will generically intersect the real axis at mj ≠ 0.
As a increases, flow lines may have one or more pairs of
additional intersections with the real axis. The intersection
points mj satisfy

γcðH þmj1Þϕj ¼ 0: ð65Þ

TABLE XV. Same as Table XIV, but for even q=2 and odd r.
The blocks are labeled by the eigenvalues of S. The index of class
BDI†ν is given by ν ¼ TrPSQ.

N mod 4 ¼ 0 N mod 4 ¼ 2

S α ¼ 1 α ≠ 1 α ¼ 1 α ≠ 1

þ1 BDI†ν AI† BDI†ν AI†

−1 BDI† AI† BDI† AI†

TABLE XVI. Same as Table XIV, but for odd q=2 and even r.
The blocks are labeled by the eigenvalues of SL;R.

N mod 4 ¼ 0 N mod 4 ¼ 2

SL SR α ¼ 1 α ≠ 1 α ¼ 1 α ≠ 1

þ1 þ1 AI A A A
−1 −1 AI A A A

þ1 −1 A A AI A
−1 þ1 A A AI A

TABLE XVII. Same as Table XIV, but for odd q=2 and odd r.
The blocks are labeled by the eigenvalues of S.

N mod 4 ¼ 0 N mod 4 ¼ 2

S α ¼ 1 α ≠ 1 α ¼ 1 α ≠ 1

þ1 BDI D CI C
−1 BDI D CI C
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Therefore,

Hϕj ¼ −mjϕj; ð66Þ

so that the intersection points of the spectral flow lines of
γcðH þm1Þ with the real axis correspond to purely real
eigenvalues of the non-Hermitian (but pseudo-Hermitian)
operator H. Therefore, the zero modes at a ¼ 0 become
purely real eigenvalues at finite a. In addition, it has been
shown analytically in the a ≪ 1 region that the level
statistics of the ν > 0 real eigenvalues originating from
the zero modes at a ¼ 0 have Gaussian unitary ensemble
(GUE) statistics, while for ν ¼ 0 the statistics of real
eigenvalues is close to Poisson. The full joint probability
distribution of AIIIν random matrices, worked out in
Ref. [104–106], is ν-dependent.
Next, we show that, to leading order in a, the character-

istic polynomial factorizes into the product of the character-
istic polynomial of an 2n × 2n non-Hermitian matrix with
the same antiunitary symmetries ofH and the characteristic
polynomial of an Hermitian ν × ν matrix, which, hence,
determines the statistics of the ν real eigenvalues. In order
to prove this result, we decompose the complex matrix C as

C ¼ U†
1ðC0 0n×νÞU2; ð67Þ

where C0 is an n × n square complex matrix, 0n×ν is a n × ν
matrix with all entries equal to zero, and U1 and U2 are
unitary matrices of dimension n and nþ ν, respectively.
Writing also A ¼ U†

1A
0U1 and

aB ¼ U†
2

�
aB0 af

af† ab

�
U2; ð68Þ

where A0, B0, and b are Hermitian matrices of dimension n,
nþ ν, and ν, respectively, and f is an n × ν complex
matrix, the Hamiltonian acquires the form

H ¼
�
U†

1 0

0 U†
2

�0B@
aA0 C0 0

−C0† aB0 af

0 af† ab

1
CA
�
U1 0

0 U2

�
: ð69Þ

To order a, the secular equation factorizes as

detðH − ζ1Þ ¼ det

��
aA0 C0

−C0† aB0

�
− ζ1

	
det½ab − ζ1�:

ð70Þ

After the unitary rotation (68), the Hermitian matrix b is a
block of the matrix B. Its eigenvalues are continuously
connected to the zero modes of γcH at a ¼ 0. The matrix b
has no symmetries beyond being Hermitian, and thus
belongs to Hermitian class A (GUE). The local level
statistics of its ν eigenvalues (the ν real eigenvalues of
H) are those of the GUE, both in the bulk and at the origin.

If B is taken to be a random matrix, then so is b, and we
expect the real eigenvalues to have a semicircular distri-
bution. The matrix in the first determinant in Eq. (70) is a
2n × 2n non-Hermitian matrix with the same symmetries
of H but only square blocks. In general, this matrix will
also have real eigenvalues, but with different spectral
correlations, which were studied in Ref. [108].
Next, we show that, for the parameters corresponding to

the AIIIν universality class, these RMT results are also a
feature of the SYK model studied in this paper. As a first
step, we split H0 Eq. (35) into its Hermitian and anti-
Hermitian parts, H0J and H0M, respectively:

H0 ¼ H0J þH0M: ð71Þ

The operator Q takes the role of γc in RMT, since (recall
that q=2 is even for an SYK in class AIIIν)

½Q;H0J þHI� ¼ 0 and fQ;H0Mg ¼ 0: ð72Þ

The operatorH0J þHI does not mix states with differentQ
quantum numbers (i.e., eigenvalues k), while H0M only
couples states with opposite k. The rectangular structure
arises when the index

νðNÞ ¼ TrPSQ ≠ 0: ð73Þ

This is the case in the sector s ¼ 1 (when k ¼ �1), for
both odd and even r. In the former case, SL and SR are
individually conserved and an additional projection, say
with PL, is required. By a careful analysis of the states, ν is
given by Eqs. (58) and (59). Using this result, where Q
plays the role of γc in the AIIIν random matrix ensemble
above, the SYK Hamiltonian with κ ¼ 1 and λ ¼ 0 has
νðNÞ ¼ 2N=2=2 zero modes. At small but nonzero λ and
1 − κ, equivalent to small a in the AIIIν random matrix
above, these zero modes become real modes that have GUE
statistics.
As was mentioned earlier, in the analysis of the PT-

symmetric SYK models we have found three more non-
Hermitian ensembles with an index ν: BDI†ν, BDIþþν, and
C−−ν. We have shown recently [99] that this index ν is
indeed topological. In the following, we adapt the analysis
of AIIIν to each of the three remaining topological classes.
The mapping to the SYK results proceeds as before.

B. Class BDI†ν

For class BDI†ν, the block structure is still given by

H ¼
�

aA C

−C† aB

�
; ð74Þ

but with A, B, and C real (A and B are also still Hermitian,
and all matrices have the same dimension as before).
Performing exactly the same procedure as for AIIIν,
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we arrive again at Eq. (70), but where b is now a real
symmetricmatrix, with no further symmetries, i.e., it belongs
to Hermitian class AI (Gaussian orthogonal ensemble,
GOE). The ν real eigenvalues are thus correlated according
to the GOE, both in the bulk and near the origin. If B is a
randommatrix,b belongs to theGOEand the eigenvalues are
distributed according to the semicircle distribution.

C. Class BDI+ + ν

For class BDIþþν, the block structure is given by

H ¼

0
BBB@

aA B

C aD

aA† −C†

−B† aD†

1
CCCA≡

�
H1

H2

�
ð75Þ

where the matrices A, B, C, and D are real with size n × n,
n × ðnþ νÞ, ðnþ νÞ × n, and ðnþ νÞ × ðnþ νÞ, respec-
tively. The Hamiltonian H has a chiral structure and its
characteristic polynomial reads:

det ðH − ζ1Þ ¼ detðζ2 −H1H2Þ
¼ ð−1Þν det ðH1H2 − ζ21Þ: ð76Þ

We have

H1H2 ¼
�

a2AA† − BB† −aðAC† − BD†Þ
aðAC† − BD†Þ† a2DD† − CC†

�
; ð77Þ

where AA† and BB† are n × n matrices, AC† and BD† are
n × ðnþ νÞ matrices, and DD† and CC† are ðnþ νÞ ×
ðnþ νÞmatrices. We now modify the procedure of AIIIν as
follows. First, we introduce an ðnþ νÞ × ðnþ νÞ unitary V
such that

CC† ¼ V†
�
C0C0† 0n×ν

0ν×n 0ν×ν

�
V; ð78Þ

where C0 is an n × n matrix, and then, as in the AIIIν case,
an n × n unitary matrix U1 and an ðnþ νÞ × ðnþ νÞ
unitary matrix U2 such that

−ðAC† − BD†ÞV† ¼ U†
1ðG 0n×νÞU2; ð79Þ

where G is an n × n matrix. We further write a2AA† −
BB† ¼ U†

1FU1 and

U2VD ¼
�
d1 d2
d3 d4

�
⇒ U2VDD†V†U†

2 ¼
�
d1d

†
1 þ d2d

†
2 d1d

†
3 þ d2d

†
4

d3d
†
1 þ d4d

†
2 d3d

†
3 þ d4d

†
4

�
≡

�
D0D0† f

f† dd†

�
; ð80Þ

where d1, d2, d3, and d4 are n × n, n × ν, ν × n, ν × ν matrices, respectively. Putting everything together, we obtain

H1H2 ¼
�
U†

1 0

0 V†U†
2

�0B@
F aG 0

−aG† a2D0D0† − C0C0† a2f

0 a2f† a2dd†

1
CA
�
U1 0

0 U2V

�
; ð81Þ

and, hence, to leading order in a, we have the factorization of the characteristic polynomial

det ðH − ζ1Þ ¼ ð−1Þν det
��

F aG

−aG† a2D0D0† − C0C0†

�
− ζ21

	
det ½a2dd† − ζ21�: ð82Þ

Therefore, the squares of the topological real eigenvalues
coincide with the eigenvalues of the matrix dd† with d real,
which belongs to Hermitian class BDI (chGOE). In the
bulk, its eigenvalues are correlated according to the GOE,
but there is chGOE universality in the microscopic regime.

D. Class CI− − ν
Finally, we consider the case of CI−−ν, whose block

structure is given by

H ¼

0
BBB@

aA B

−B⊤ aD

aA† −B�

−B† aD†

1
CCCA; ð83Þ

where the dimensions of A, B, and D are the same as for
BDIþþν, but A and D are now complex symmetric and B is
arbitrary. The computation follows exactly the same steps
as for BDIþþ, with the replacement C → −B⊤. We arrive at
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the factorized characteristic polynomial Eq. (82), but where
d is now a complex symmetric matrix. Correspondingly,
dd† belongs to the Hermitian class CI. The eigenvalues of
H have GOE correlations in the bulk and CI correlations
near the origin, namely, eigenvalues close to zero.

VI. COMPARISON BETWEEN SYK AND RMT:
LEVEL STATISTICS

AND EIGENVECTOR OVERLAPS

In order to confirm the symmetry classification
proposed in Sec. IV, we now carry out a comparison

between the spectral and eigenvector properties of the
two-site SYK model Eq. (32) for the reported fourteen
symmetries classes and the predictions of RMT in each
case. The block structure of the 14 random matrix
ensembles is shown in Table XVIII. This allows for
an easy comparison with the corresponding RMT, which
is obtained by replacing the blocks in Table XVIII by
random matrices with Gaussian distributed entries sub-
jected to the constraints mentioned in the table. Each of
the 14 classes is realized by the SYK model for a suitable
choice of its parameters, see Table XIX. In each of these
cases, we confirm the predicted agreement with the level

TABLE XVIII. Matrix structure corresponding to the 14 symmetry classes realized in the PT-symmetric SYK
model. The letters A, B, C, and D in the second column denote complex random matrices subject to the listed
constraints. The antiunitary and involutive operators used to construct the block structure are listed in the third
column. In the case of four antiunitary symmetries we give only three of them—the fourth one is given by their
product. We indicate with an index ν the classes that allow for a rectangular block structure. However, in some cases
(BDIν and CIþ−ν), while ν ≠ 0 is allowed in principle, the SYK model only realizes the ν ¼ 0 case.

Class Matrix Realization Symmetry operator

A A

AI† A, A ¼ A⊤ Cþ ¼ K

AI A, A ¼ A� T þ ¼ K

AIIIν
�

A C
−C† B

�
, A ¼ A†, B ¼ B† Qþ ¼ σz

D A, A ¼ −A⊤ C− ¼ K

C
�
A B
C −A⊤

�
, B ¼ B⊤, C ¼ C⊤ C− ¼ iσyK

BDIν
�

A B
B† C

�
, A ¼ −A⊤ ¼ −A†, B� ¼ −B, C ¼ −C⊤ ¼ −C† T þ ¼ σzK ,

C− ¼ K

CI
�
A B
C −A†

�
, A ¼ A�, B ¼ −B� ¼ −B†, C ¼ −C� ¼ −C† T þ ¼ σzK ,

C− ¼ iσyK

BDI†ν
�

A B
−B† C�

�
, A ¼ A⊤ ¼ A†, B ¼ B�, C ¼ C⊤ ¼ C† T þ ¼ K ,

Cþ ¼ σzK

CI†
�

A B
B� −A�

�
, A ¼ A⊤, B ¼ B† T − ¼ iσyK ,

Cþ ¼ K

BDI−þ
�

0 B
B⊤ 0

�
, B ¼ B† T þ ¼ σxK ,

T − ¼ iσyK,
Cþ ¼ K

BDIþþν
0
BB@

0 0 A B
0 0 C D
A⊤ C⊤ 0 0

B⊤ D⊤ 0 0

1
CCA, A ¼ A�, B ¼ −B�, C ¼ −C�, D ¼ D�

T þ ¼ ð1 ⊗ σzÞK ,
C− ¼ ðσz ⊗ 1ÞK,

Cþ ¼ K

CIþ−ν
�
0 A
B 0

�
, A ¼ A� ¼ A⊤, B ¼ B� ¼ B⊤ T þ ¼ K ,

C− ¼ iσyK,
Cþ ¼ σxK

CI−−ν
0
BB@

0 0 A B
0 0 −B⊤ C
A� B� 0 0

−B† C� 0 0

1
CCA, A⊤ ¼ A, C⊤ ¼ C

T þ ¼ ðσx ⊗ 1ÞK ,
T − ¼ ðiσy ⊗ 1ÞK,
Cþ ¼ ðσx ⊗ σzÞK
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statistics of the RMT ensemble with the corresponding
symmetry.

A. Bulk level fluctuations

We first consider the level statistics in the bulk of the
complex spectrum, which is only sensitive [90,91] to the
sign of C2þ, namely, statistics of class A (no Cþ), AI†

(C2þ ¼ 1), and AII† (C2þ ¼ −1). In our classification
scheme, we do not have classes with C2þ ¼ −1 and, hence,
no AII† statistics, so the 14 universality classes are split into
two groups, A and AI†, with seven elements each:
(a) Broken Cþ: A, AIII, AI, D, C, BDI, and CI;

(b) C2þ ¼ 1: AI†, BDI†, CI†, BDIþþ, BDI−þ, CIþ−,
and CI−−.

We probe the bulk spectral correlations by computing the
complex spacing ratios (CSRs) [86]:

zi ¼
ζNNi − ζi
ζNNNi − ζi

; ð84Þ

where ζi denotes the ith complex eigenvalue of the
Hamiltonian Eq. (32) and NN/NNN refers to the nearest
and next-to-nearest neighboring eigenvalues with respect to
ζi. The complex eigenvalues were obtained numerically by

TABLE XIX. Numerical confirmation of the 14 universal classes realized in the PT-symmetric non-Hermitian SYK model Eq. (32).
The entries marked with “� � �” indicate that we have checked that quantity, but it does not display special properties. We first classify all
cases into three classes using C2þ, using the average complex spacing ratio hzi. Second, we use the global symmetry of the spectrum to
distinguish different reflection symmetries. Third, we compute the eigenvector overlaps Oab and ωζζ , where a; b∈ fζ; ζ�;−ζ;−ζ�g and
ζ are complex eigenvalues of H, to uniquely determine the symmetry class. We note that the last eight lines of the table correspond to
only four SYK Hamiltonians thus illustrating that different sectors of a given Hamiltonian, in this case labeled by the eigenvalues of the
parity operator, can have different symmetries.

Example Class T 2þ C2− C2þ T 2
− CSR hzi

Spectrum
Symmetry Eigenvector Overlap

N ¼ 14; q ¼ 6; r ¼ 2; α ¼ 1.1,
SL ¼ −SR ¼ 1; λ ¼ 0.424; κ ¼ 0.5

A 0 0 0 0 A 0.738 � � � � � �

N ¼ 14; q ¼ 8; r ¼ 2; α ¼ 1,
SL ¼ SR ¼ −1; λ ¼ 0.141; κ ¼ 0.5

AIIIν 0 0 0 0 A 0.738 D1ðReÞ ωζζ ≠ 0

N ¼ 16; q ¼ 6; r ¼ 1; α ¼ 1.1,
S ¼ −1; λ ¼ 0.113; κ ¼ 0.5

D 0 þ1 0 0 A 0.738 Cπ ImðO−ζζÞ ¼ 0 ReðO−ζζÞ > 0

N ¼ 14; q ¼ 6; r ¼ 1; α ¼ 1.1,
S ¼ −1; λ ¼ 0.0424; κ ¼ 0.5

C 0 −1 0 0 A 0.738 Cπ ImðO−ζζÞ ¼ 0 ReðO−ζζÞ < 0

N ¼ 16; q ¼ 6; r ¼ 1; α ¼ 1,
Q ¼ −1; λ ¼ 0.12; κ ¼ 1

BDI þ1 þ1 0 0 A 0.738 D2 ImðO−ζζÞ ¼ 0 ReðO−ζζÞ > 0

N ¼ 14; q ¼ 4; r ¼ 1; α ¼ 1.1,
S ¼ −1; λ ¼ 0.15; κ ¼ 1

CI† 0 0 þ1 −1 AI† 0.719 D1 (Im) O−ζ�ζ ¼ 0

N ¼ 16; q ¼ 8; r ¼ 2; α ¼ 1,
SL ¼ −SR ¼ 1; λ ¼ 0.32; κ ¼ 1

AI† 0 0 þ1 0 AI† 0.720 � � � � � �

N ¼ 16; q ¼ 8; r ¼ 2; α ¼ 1,
SL ¼ SR ¼ −1; λ ¼ 0.32; κ ¼ 1

BDI†ν þ1 0 þ1 0 AI† 0.720 D1 (Re) � � �

N ¼ 14; q ¼ 6; r ¼ 1; α ¼ 1,
Q ¼ i; λ ¼ 0.06; κ ¼ 1

AI þ1 0 0 0 A 0.737 D1 (Re) ωζζ ¼ 0

N ¼ 14; q ¼ 6; r ¼ 1; α ¼ 1,
Q ¼ −1; λ ¼ 0.1; κ ¼ 1

CI þ1 −1 0 0 A 0.737 D2 ImðO−ζζÞ ¼ 0 ReðO−ζζÞ < 0

N ¼ 16; q ¼ 4; r ¼ 1; α ¼ 1,
S ¼ 1; λ ¼ 0.06; κ ¼ 1

BDIþþν þ1 þ1 þ1 þ1 AI† 0.719 D2 ImðO−ζζÞ ¼ 0 ReðO−ζζÞ > 0

N ¼ 16; q ¼ 4; r ¼ 1; α ¼ 1,
S ¼ −1; λ ¼ 0.06; κ ¼ 1

CIþ− þ1 −1 þ1 þ1 AI† 0.718 D2 ImðO−ζζÞ ¼ 0 ReðO−ζζÞ < 0

N ¼ 14; q ¼ 4; r ¼ 1; α ¼ 1,
S ¼ 1; λ ¼ 0.12; κ ¼ 1

CI−−ν þ1 −1 þ1 −1 AI† 0.720 D2 ImðO−ζζÞ ¼ 0 ReðO−ζζÞ < 0 O−ζ�ζ ¼ 0

N ¼ 14; q ¼ 4; r ¼ 1; α ¼ 1,
S ¼ −1; λ ¼ 0.2; κ ¼ 1

BDI−þ þ1 þ1 þ1 −1 AI† 0.720 D2 ImðO−ζζÞ ¼ 0 ReðO−ζζÞ > 0 O−ζ�ζ ¼ 0
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exact diagonalization techniques. For a given set of
parameters, we obtained a minimum of 5 × 105 eigenval-
ues. By definition, the CSRs are distributed inside the
complex unit circle. For uncorrelated eigenvalues, corre-
sponding to Poisson statistics, the distribution is uniform.
By contrast, as shown in Fig. 1, the CSR distribution has a
characteristic half-eaten doughnut shape with a radial and
angular distribution that fully characterizes the statistics of
classes A and AI†.
In order to proceed, we first compare the average CSR,

hzi, with the RMT predictions hziA ¼ 0.7384, hziAI† ¼
0.7222, hziAII† ¼ 0.7486, and hziPoisson ¼ 2=3 [90]. As is
shown in Table XIX, the numerical average of the bulk
CSR agrees with the RMT prediction of either A or AI for
all 14 classes. Second, we also compare the RMT pre-
dictions with the full radial and angular distributions of the

CSR, ρðjzjÞ and ρðθðzÞÞ, where z ¼ jzjeiθðzÞ, see Figs. 1(c)
and 1(d), respectively. The agreement is also excellent in
both cases with only small deviations near θðzÞ ¼ π, likely
due to finite-size effects. We note that the coupling strength
λ cannot be set too small because the spectral degeneracy at
λ ¼ 0 is not fully lifted for finite system sizes, but not too
large either because the dynamics is then controlled by the
nonrandom inter-site interaction. We also note that in the
analysis of the bulk spectral correlations we have excluded
the spectral region on the real axis because, as we show
later, real eigenvalues have qualitatively different spectral
correlations.
In summary, in all cases, the bulk spectral correlations

agree with the RMT prediction according to the predic-
ted symmetry classification, summarized in Table XIX.
Therefore, assuming that the BGS conjecture applies to this
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FIG. 1. Complex spacing ratios, Eq. (84), of the spectrum of the PT symmetric SYK model Eq. (32). In the upper row, we show the
distribution of the complex spacing ratio z in the complex unit disk for N ¼ 14; κ ¼ 1; r ¼ 1; α ¼ 1, and q ¼ 4 (a) or q ¼ 6 (b). From
Table XIX, when q=2 is odd, there exists no Cþ symmetry, corresponding to class AI (bulk class A); when q=2 is even, C2þ ¼ 1,
corresponding to class BDI−þ (bulk class AI†). In the lower row, we show the angular (c) and radial (d) distributions of z for cases (a) and
(b). We compare the SYK results (points) to the RMT predictions (curves) of bulk classes A, AI†, and AII†. The agreement with the
random matrix result of the predicted class is excellent. For q ¼ 4, we employ 5 × 103 disorder realizations, λ ¼ 0.2, and s ¼ −1, while
for q ¼ 6 we have 104 realizations, λ ¼ 0.06 and k ¼ i.
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non-Hermitian setting in all cases, something which is not
yet entirely clear [66], the dissipative dynamics is quantum
chaotic. However, because bulk spectral correlations only
distinguish two universality classes, this does not fully
confirm the validity of our classification, which has 14
classes. In the next section, we will characterize these
additional universality classes by a combination of spectral
symmetries and eigenvector overlaps.

B. Spectral symmetry and eigenvector overlaps

In order to fully identify each of the universality classes,
we have to go beyond the bulk level statistics studied in the
previous section. For that purpose, we first use the global
spectral symmetry [91] to help identify the symmetry in
each case. The spectral symmetries given in the fourth

column of Table I are shown in Table XIX in terms of the
corresponding discrete symmetry group. The spectrum
can either have a reflection symmetry across the real axis
(T þ and Qþ), denoted as D1ðReÞ; the imaginary axis
(T − and Q−), denoted D1ðImÞ; or the origin (C−), denoted
as Cπ . If any two of these symmetries is present, the third
automatically also is, and the spectrum has dihedral
symmetry D2. In Fig. 2, we give four examples of SYK
models belonging to classes BDI†, CI†, D, and BDIþþ, see
Table XIX for the corresponding symmetries. In the inset of
each figure, we highlight the symmetry relation by drawing
lines between eigenvalues connected by the global
symmetries.
Since the bulk correlations and the spectral symmetries

do not yet fully resolve the 14 classes, we use the
eigenvector overlap method [91] to further distinguish

FIG. 2. Global spectral symmetry for a single disorder realization. The yellow dashed-dotted lines in the main plots denote the axes of
the reflection symmetry and the insets show a magnification around these axes. In every inset, pairs of levels related by reflection and
point symmetry are connected by dashed-dotted lines of orange and green respectively. The parameters of the Hamiltonian Eq. (32) for
the four figures are: (a) N ¼ 16, q ¼ 8, r ¼ 2, κ ¼ 1, λ ¼ 0.32, SL ¼ SR ¼ −1, α ¼ 1 (BDI†), (b) N ¼ 14, q ¼ 4, r ¼ 1, κ ¼ 1,
λ ¼ 0.15, S ¼ −1, α ¼ 1.1 (CI†), (c) N ¼ 16, q ¼ 6, r ¼ 1, κ ¼ 0.5, λ ¼ 0.113, S ¼ −1, α ¼ 1.1 (D), (d) N ¼ 16, q ¼ 4, r ¼ 1, κ ¼ 1,
λ ¼ 0.06, r ¼ 1, S ¼ 1, α ¼ 1 (BDIþþ).
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them. For non-Hermitian operators, the left and right
eigenvectors are defined by

HϕR
ζ ¼ ζϕR

ζ ; and ϕL
ζ
�H ¼ ζϕL

ζ
�; ð85Þ

respectively. The left eigenvector can also be expressed as a
right eigenvector of H† corresponding to eigenvalue ζ�:

H†ϕL
ζ ¼ ζ�ϕL

ζ : ð86Þ

In the case of a symmetry that relates H and H† (C� and
Q�), we can relate left and right eigenvectors. For anti-
unitary symmetries C�, we have that

ϕL
ζ ¼ CþϕR

ζ ; ð87Þ

ϕL
ζ ¼ C−ϕR

−ζ: ð88Þ

Similarly, for the involutive symmetries Q�, the left and
right eigenvectors are related by

ϕL
ζ ¼ QþϕR

ζ� ; ð89Þ

ϕL
ζ ¼ Q−ϕ

R
−ζ� : ð90Þ

On the other hand, a T � symmetry relates right eigenvec-
tors of H according to

ϕR
ζ ¼ T þϕR

ζ� ; ð91Þ

ϕR
ζ ¼ T −ϕ

R
−ζ� ; ð92Þ

and equivalent relations apply to left eigenvectors. Note
that, for an antiunitary operator A and vectors ϕ and ψ , we
have that

ϕ�Aψ ¼ ðA2ψÞ�Aϕ ¼ A2ψ�Aϕ: ð93Þ

In particular, for A that squares to −1, the vectors ϕ and Aϕ
are linearly independent, so that ϕ�Aϕ ¼ 0.
We consider the normalized overlap matrix [137]

Oab ¼
ϕL�
a · ϕL

bϕ
R�
b · ϕR

a

ϕL�
a · ϕR

bϕ
R�
b · ϕL

a
; ð94Þ

where ϕL
a and ϕR

b are the left and right eigenvectors
corresponding to a and b, and a; b∈ fζ; ζ�;−ζ;−ζ�g,
are eigenvalues of H Eq. (32). These overlaps were
discussed in detail in Ref. [91], but for completeness,
we summarize the main points here.
For a T − symmetry, we have that T −ϕ

R
ζ is a right

eigenvector with eigenvalue −ζ� and we consider the
overlap

Oζ−ζ� ¼
ϕL�
ζ · ϕL

−ζ�ϕ
R�
−ζ� · ϕ

R
ζ

ϕL�
ζ · ϕR

−ζ�ϕ
R�
−ζ� · ϕ

L
ζ

; ð95Þ

which vanishes for T 2
− ¼ −1 because ϕR

−ζ� ∼ T −ϕ
R
ζ and

these two states are orthogonal as discussed above. When
T 2

� ¼ þ1, the overlaps are complex and no useful infor-
mation can be extracted. The case T 2þ ¼ −1 does not occur
in the coupled SYK model.
For a symmetry of the C− type, we consider the overlap

Oζ−ζ ¼
ϕL�
ζ · ϕL

−ζϕ
R�
−ζ · ϕ

R
ζ

ϕL�
ζ · ϕR

−ζϕ
R�
−ζ · ϕ

L
ζ

; ð96Þ

and use that ϕL
−ζ ¼ C−ϕR

ζ (up to an irrelevant constant). The
numerator of the normalized overlap (96) can be written as

ϕL�
ζ · ϕL

−ζϕ
R�
−ζ · ϕ

R
ζ ¼ ϕL�

ζ · C−ϕR
ζ C

2
−ðC−ϕL

ζ Þ� · ϕR
ζ

¼ ϕL�
ζ · C−ϕR

ζ C
2
−ððC2−ϕL

ζ Þ�C− · ϕR
ζ Þ�

¼ C4−jϕL�
ζ · C−ϕR

ζ j2: ð97Þ

and for the denominator of (96) we obtain

ϕL�
ζ · ϕR

−ζϕ
R�
−ζ · ϕ

L
ζ ¼ C2−ϕL�

ζ · C−ϕL
ζ ϕ

R�
−ζ · ϕ

L
ζ

¼ C2−ðC−ϕR
−ζÞ� · C−ϕL

ζ ϕ
R�
−ζ · ϕ

L
ζ

¼ C2−jϕR�
−ζ · ϕ

L
ζ j2: ð98Þ

This shows that the overlap (96) is real with sign equal to
C2−. In Table XX, we enumerate the overlap matrix elements
Oab for eigenvalues with the same absolute value of ζ. The
sign of the overlap matrix elements on the diagonal and
antidiagonal give the value of C2þ and C2−, respectively. The
matrix elements with T − are zero when T 2

− ¼ −1.
As an example of how the universality classes can be

distinguished by a combination of bulk level statistics,
dihedral/point symmetries and eigenvector overlap, we
consider the case N ¼ 14; κ ¼ 1; λ ¼ 0.2;α ¼ 1; q ¼ 4;
r ¼ 1 (see Table XIX for the global symmetries and the
expected symmetry classes). An interesting feature for this
choice, not noted in a recent classification of dissipative
quantum chaotic systems [92], is that two symmetry classes

TABLE XX. Matrix elements of the overlap Oab. We give the
operator that determines the sign of the overlap (C2�) or its value
in case it vanishes (T −).

Oab −ζ −ζ� ζ� ζ

−ζ C2þ T − C2−
−ζ� C2þ C2− T −
ζ� T − C2− C2þ
ζ C2− T − C2þ
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can coexist in different blocks of the same Hamiltonian,
which are characterized by different eigenvalues s ¼ �1 of
the unitary operator S that commutes with the Hamiltonian.
The S ¼ 1 and S ¼ −1 blocks share the same bulk level
statistics (because they have the same C2þ), and the same
dihedral symmetry D2 of the global spectrum. The only
difference is the value of C2−. For S ¼ 1, we have C2− ¼ −1,
while for S ¼ −1, C2− ¼ þ1. This can be seen from the
values of the overlaps of states with eigenvalue ζ and −ζ, as
depicted by the colors in Fig. 3 for S ¼ 1 (left) and S ¼ −1
(right). In these figures, we also show the diagonal over-
laps, which are relevant for the value of C2þ ¼ 1, and
overlaps of states with eigenvalues ζ and −ζ�, which vanish
in both cases because of a T − symmetry with T 2

− ¼ −1.
This is enough to identify twelve universality classes
which so far fully confirms the symmetry classification
of Table XIX, namely, class CI−− for S ¼ 1, and class
BDI−þ for S ¼ −1.
More specifically, we have distinguished classes with the

same C2þ, determined by the CSR, through the use of global
spectral symmetry and overlaps of eigenvectors. Following
this procedure, we were able to uniquely distinguish 12 of
the 14 classes realized in the PT-symmetric SYK model,
see Table XIX: A, AI†, D, C, BDI, CI, BDI†, CI†, BDIþþ,
BDI−þ, CIþ−, and CI−−. Only classes AIII and AI have not
yet been differentiated. For this purpose we consider the
overlap

ωζζ ¼ ϕL
ζ · ϕR

ζ ; ð99Þ

which vanishes for class AI but not for class AIII and can,
thus, be used to distinguish the two classes. To see this, we
consider the expectation value

ζϕL
ζ · ϕR

ζ ¼ ϕL
ζ ·HϕR

ζ : ð100Þ

For matrices in class AI, H† ¼ H⊤, and the left eigenvec-
tors are given by

H⊤ϕL
ζ ¼ ζ�ϕL

ζ ; ð101Þ

so that

ζϕL
ζ ·ϕ

R
ζ ¼ ϕL

ζ ·HϕR
ζ ¼ ðH⊤ϕL

ζ Þ ·ϕR
ζ ¼ ζ�ϕL

ζ� ·ϕ
R
ζ : ð102Þ

This shows that ωζζ ¼ ϕL
ζ · ϕR

ζ ¼ 0 if ζ� ≠ ζ for class AI.
This argument fails for AIII because in that case H† ≠ H⊤.
Combining the overlap ωζζ with CSR, global spectral

symmetry, and eigenvector overlaps, in Table XIX we list
the full classification scheme according to antiunitary and
involutive symmetries of the SYK Hamiltonian Eq. (32),
confirming the existence of fourteen different universality
classes.
As pointed out in Sec. IV, in four of these classes, the

Hamiltonian has a finer structure, parameterized by the
index νðNÞ > 0. The observables employed so far are not
able to detect this additional structure. Indeed, in these
cases, the Hamiltonian Eq. (32) contains rectangular
blocks with ν being the difference between the number
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FIG. 3. Central matrix elements (a 30 × 30 matrix around the center of Oab) of the eigenvector overlap matrix Oab for a single
realization of the Hamiltonian with parameters N ¼ 14; κ ¼ 1; λ ¼ 0.2; α ¼ 1; q ¼ 4 and r ¼ 1. In this case, the S ¼ 1 block (left)
belongs to class CI−−, while the S ¼ −1 block (right) has BDI−þ symmetry. In both cases, the spectrum has dihedral symmetry D2. We
rule out the purely real eigenvalues since they are degenerated. The eigenvalues are ordered, with increasing order, first by the values of
their real parts, then by the values of their imaginary parts. The signatures of the colored elements in matrix Oab correspond to the
symmetries given in Table XX.
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of rows and columns, due to the nonvanishing of the
trace of the operator Q, TrQ ¼ ν which we have recently
shown [99] to have its origin in the existence to a
topological invariant of the same value. As discussed in
Sec. V, the consequence of the rectangularization is the
existence of νðNÞ purely real eigenvalues.We shall see in the
next section that the level statistics of these real eigen-
values characterizes the subclass by comparing it with the
RMT prediction for the corresponding Hermitian class.

C. Level statistics of real eigenvalues

Nine out of the 14 symmetry classes in our SYK model
have purely real and/or purely imaginary eigenvalues
(those with T þ type symmetry with T 2þ ¼ þ1 or a Qþ
type symmetry). It was recently reported [108] that the level
statistics of real eigenvalues in non-Hermitian random
matrices have distinct properties that could be exploited
to fully characterize non-Hermitian universality classes
without having to analyze the complex eigenvalues.
However, as discussed in Sec. V, for some classes, we
have two sources of real eigenvalues: νðNÞ of them coming
from the rectangular structure of the Hamiltonian, which
are robust to changes in λ; plus those, sensitive to λ, that
appear when two complex-conjugated eigenvalues join the
real axis, and which can exit it upon an additional variation
of λ. At least in some cases, this feature is expected to
complicate the spectral characterization of non-Hermitian
universality classes based only on the analysis of level
statistics of purely real eigenvalues. We study next to
what extent this is possible, starting with the Lindbladian
regime κ ¼ 1.

1. Lindbladian regime (κ= 1)

In order to illustrate this point, we begin our study of real
eigenvalues by comparing a case (AI) with νðNÞ ¼ 0—
corresponding to the absence of a topological invariant
[99], so that real eigenvalues are never topological—and a

case (AIIIν) with νðNÞ > 0 real eigenvalues of topological
origin. We consider the SYK Hamiltonian Eq. (32)
with N mod 4 ¼ 2; κ ¼ 1; α ¼ 1; q ¼ 4; r ¼ 2, for S ¼ 1
(AIIIν) and S ¼ −1 (AI). For AI symmetry, we find that the
level statistics does not depend on λ if λ is not too small or
too large and κ ≠ 1. However, this is not the case for the
AIIIν symmetry class.
To understand the difference between the two cases, we

show in Fig. 4 the spectral flow of the real eigenvalues ofH
as a function of λ (we set N ¼ 10 in order to have only a
small number of flow lines). For the AI class, see the left
plot of Fig. 4, we observe that for very small λ < 0.2, the
flow is laminar, so we expect agreement with the Hermitian
symmetry class (GOE) in this region. For larger values of λ,
spectral flow lines start to disappear, resulting in a gap in
the spectrum, and pairs of complex eigenvalues join the real
axis, leading to two very close eigenvalues. Therefore, level
statistics are expected to deviate strongly from the
Hermitian class and approach the non-Hermitian RMT
prediction (AI) [108] characterized by stronger spectral
fluctuations. The situation is different for the flow lines
corresponding to AIIIν, see Fig. 4 (right). For sufficiently
small λ < 0.5, the flow lines do not coalesce, and no new
pairs of flow lines appear. Therefore, we find a spectrum
with no large gaps or close pairs, and, as discussed in
Sec. V, we expect to observe Hermitian GUE statistics. The
reason for that behavior is the recently shown [99]
topological nature, for a not too strong λ, of all real
eigenvalues in this symmetry class.
To make the previous statements more quantitative, we

consider the gap ratio distribution PðrÞ [138,139], where
ri ¼ minðsiþ1=si; si=siþ1Þ and si ¼ Ei − Ei−1 are the spac-
ings of the ordered real eigenvalues of H, Eq. (32). To
eliminate finite size effects, we now choose N ¼ 14, which
is in the same universality class. We also remove one or two
eigenvalues at the edge of the spectrum, which have
nonuniversal properties (see, e.g., Fig. 4, where the lowest
eigenvalues are separated from the rest of the spectrum by a

N = 10, q = 4, r= 2, κ = 1, S = 1
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FIG. 4. Spectral flow of purely real eigenvalues of the SYKHamiltonian Eq. (32) versus λ forN ¼ 10, κ ¼ 1, α ¼ 1, q ¼ 4, and r ¼ 2.
Left: SL ¼ −SR ¼ 1 blocks corresponding to class AI. We observe the creation and annihilation of pairs of real eigenvalues for λ > 0.2.
Right: SL ¼ SR ¼ 1 blocks corresponding to class AIIIν. The number of real eigenvalues does not depend on λ, up to relatively large
values of λ, resulting in GUE statistics in this region, see Fig. 5.
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gap). As predicted, since the SYK model in the AI class
does not have eigenvalues of topological origin [99], we
find good agreement with the non-Hermitian AI random
matrix prediction for the distribution of the gap spacing
ratio PðrÞ when λ ≥ 0.3, see Fig. 5 (left). For very small λ,
the distribution is close to GOE statistics. This can be seen
as follows. For λ ¼ 0, the zero eigenvalues of HL þHR are
due to eigenstates of the form jki ⊗ jki with jki the
eigenstates of a single Hermitian SYK. At nonzero λ, by
degenerate perturbation theory, the zero eigenvalues flow
into the eigenvalues of the matrix hkkjHIjlli. This is a
Hermitian matrix, and because it is in class AI, it must be
real. Therefore, its eigenvalues are correlated according to
the GOE. The situation is different for class AIIIν, see Fig. 5
(right), for which we find good agreement with GUE
statistics for a wide range of λ∈ ½0.005; 0.5�, consistent
with our previous discussion in Sec. V on the AIIIν
university class. The crossover between Hermitian and
non-Hermitian level statistics seen for the nontopological
eigenvalues of AI is absent in this case. It is worth noticing
that, as predicted, the number of real eigenvalues in each
realization of AIIIν is always ν ¼ 2N=2=2 ¼ 64 for not too
large λ, exactly the same as the number of zero modes for
κ ¼ 1, λ ¼ 0.
In order to better understand the crossover between the

level statistics of Hermitian and non-Hermitian RMT for
real eigenvalues of nontopological origin, we discuss
another example of class AI corresponding to N ¼ 14,
q ¼ 6, r ¼ 1, κ ¼ 1, α ¼ 1, in the sector withQ ¼ i. Using
the same perturbative argument as in the previous para-
graph, it is clear that we also expect GOE statistics in λ ≪ 1
limit and a crossover to AI statistics for sufficiently large λ.
The results for the gap spacing distribution PðrÞ depicted in

Fig. 6 confirm this prediction. However, the crossover scale
in λ is one order of magnitude different from the previous
case. An analytical estimation of the crossover point
clarifies the origin of this difference. The crossover point
is approximately given by

λkHIk ¼ ΔE; ð103Þ

whereΔE is the level spacing ofH0 and k…k stands for the
sup norm. For r ¼ 1, we find that

kHIk ¼ N
2
; r ¼ 1; ð104Þ

while for r ¼ 2 the result is

kHIk ¼ 1

4N

��
N
2

�
2

−
N
2

�
; r ¼ 2: ð105Þ

For N ¼ 14, the norm for r ¼ 1 is a factor 8.6 larger than
the norm for r ¼ 2. On the other had, the q dependence of
the norm of H0 is given by

kH0k ∼ 2N
2−q=2

q3=2
: ð106Þ

Therefore, the level spacing for q ¼ 6 is about a factor 4
smaller than the level spacing for q ¼ 4. Altogether, this
results in a crossover point which for q ¼ 6, r ¼ 1 is about
thirty times smaller than for q ¼ 4, r ¼ 2, in agreement
with Fig. 5 (left) and Fig. 6.
We now turn to the study of the level statistics of the real

eigenvalues of the remaining three classes, CI−−ν, BDIþþν,
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FIG. 5. Gap ratio distribution [138], PðrÞ, for the real eigenvalues of the SYK Hamiltonian Eq. (32) withN ¼ 14; κ ¼ 1; α ¼ 1; q ¼ 4,
r ¼ 2, and 2 × 104 disorder realizations. For the sake of clarity, we stress that r in the SYK Hamiltonian and in PðrÞ are completely
unrelated. In the left plot, we show results for class AI (SL ¼ −SR ¼ 1) and in the right plot, we give the results for class AIIIν
(SL ¼ SR ¼ 1). The values of λ are shown in the legend of the figures. As predicted, for class AI (left panel), we observe a crossover
from GOE to AI statistics as λ increases, while for AIIIν (right panel), PðrÞ fits well the GUE result in the broad range of λ∈ ½0.005; 0.5�
considered.
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and BDI†ν which in Sec. V we predicted, by a RMTanalytic
calculation, to belong to the CI, BDI, and GOE Hermitian
symmetry classes, respectively. Results for the distribution
of the gap ratio PðrÞ, depicted in Fig. 7, show an excellent
agreement with the RMT prediction for the corresponding
class. We expect this agreement is robust in a broad range
of not too large values of λ because we have recently shown
these real eigenvalues have topological origin [99].

2. General PT-symmetric regime (0 < κ < 1)

We now move to the study of real modes for the general
PT-symmetric case 0 < κ < 1. For the sake of concision,
we again focus on the two classes AIIIν (with two sources
of real modes since νðNÞ > 0) and AI (for which there is
only one source, as the blocks of the Hamiltonian are never
rectangular, so νðNÞ ¼ 0).
For 0 < κ < 1, we never have exact zero modes for

λ ¼ 0. In this case, we can split H0 into its Hermitian and
anti-Hermitian parts as

H0 ¼ H0J þH0M: ð107Þ

For even q, both HI and H0J commute with Q while H0M
anticommutes with Q. This implies that no symmetries are
restored in the small λ limit, and we are always in a
parameter range with both νðNÞ real eigenvalues and
additional real eigenvalues due to pairs of complex eigen-
values coalescing with the real axis. Therefore, we expect
that, in this case, the spectral statistics for class AIIIν
depend on the mixture of both types of real eigenvalues
which changes as a function of λ. By contrast, in class AI,
νðNÞ ¼ 0, so we expect to observe the predicted AI level
statistics, at least for sufficiently large λ, as real eigenvalues
come only from pairs of complex eigenvalues that diffuse in
and out the real axis already for small λ. Therefore, two new
neighboring real eigenvalues occur when a pair just joins
the real axis, while a large gap is observed when a pair
leaves the real axis. This is illustrated in Fig. 8 for N ¼ 10;
κ ¼ 1=2, α ¼ 1, q ¼ 4, and r ¼ 2, where we show the
spectral flow as a function of λ for symmetry class AI (left),
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FIG. 6. Gap ratio distribution, PðrÞ for the real eigenvalues
of the SYK Hamiltonian Eq. (32) for N ¼ 14; κ ¼ 1; α ¼ 1;
q ¼ 6; r ¼ 1; Q ¼ i, 2 × 104 realizations, and different values of
λ. We observe a crossover in PðrÞ, from GOE to AI as λ increases.
This is consistent with the results of Fig. 5 (left), also for class AI,
but with a different choice of parameters. Notably, the minimum λ
for which agreement with AI class is observed is much smaller.
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FIG. 7. Left: gap ratio distribution [138], PðrÞ, for the real eigenvalues of the SYK Hamiltonian Eq. (32) for
N ¼ 12; κ ¼ 1; λ ¼ 0.02; α ¼ 1; q ¼ 4, r ¼ 2, SL ¼ SR ¼ 1, and 8 × 104 realizations corresponding to the BDI†ν class. Each realization
has 64 exactly real modes, including 16 nonrandom ones which are not affected by the random SYK couplings. We only take the
remaining 48 modes for the PðrÞ computation. We find excellent agreement with the predicted RMT result (GOE), see Sec. V B. Right:
microscopic spectral density ρMðEÞ of the real modes close to E ¼ 0 in units of the mean level spacingΔ for κ ¼ 1, α ¼ 1, q ¼ 4, r ¼ 1,
S ¼ 1. For N ¼ 12; λ ¼ 0.07; 106 realizations (BDIþþν symmetry class) and also for N ¼ 14; λ ¼ 0.02; 2.5 × 105 realizations (CI−−ν
symmetry class). In both cases, we find very good agreement with the BDI and CI Hermitian random matrix predictions, respectively.
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corresponding to the sector S ¼ −1, and for symmetry class
AIIIν (right), corresponding to the sector S ¼ þ1. For class
AI, we do not observe the laminar flow of the κ ¼ 1 case for
λ ≪ 1. Therefore, we do not expect a crossover from
Hermitian to non-Hermitian RMT as λ increases. The
existence of real random couplings prevents us from
carrying out the degenerate perturbation theory that, for
κ ¼ 1, resulted in Hermitian level statistics in this λ ≪ 1
region. Indeed, for λ ≪ 1, the spectral flow shows quasi-
degeneracies that are gradually lifted as λ increases. In
the region of larger λ, all eigenvalues diffuse in and out
of the real axis which is the expectation for a non-
Hermitian RMT.
The spectral flow for AIIIν, Fig. 8 (right), also shows a

similar gradual lifting of (quasi) degeneracies as λ ≪ 1
increases. Unlike the AI flow, however, the region of

eigenvalues diffusing in and out of the real axis is mostly
restricted to relatively small values of λ, while for large λ
the flow is laminar, at least for positive eigenvalues.
Therefore, it may be possible that, for sufficiently large
λ, in the aforementioned laminar region mostly controlled
by the νðNÞ eigenvalues, the level statistics are well
described by the Hermitian RMT prediction, GUE in
this case.
The numerical results depicted in Fig. 9 confirm the

above prediction stemming from the qualitative analysis of
the spectral flow. In both cases, we observe that the spacing
ratio distribution PðrÞ changes gradually from close to
Poisson in the λ → 0 limit to close to GUE (non-Hermitian
AI) for class AIIIν (AI) for sufficiently large λ. For class
AIIIν, the persistence of deviations from the GUE until
large values of λ≳ 1 is consistent with the mentioned
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FIG. 8. Spectral flow of the real eigenvalues of the Hamiltonian Eq. (32) versus λ for N ¼ 10, κ ¼ 1=2, α ¼ 1, q ¼ 4, and r ¼ 2.
Left: SL ¼ −SR ¼ 1 corresponding to class AI. We observe the creation and annihilation of pairs of real eigenvalues all over the
spectrum and uniformly in λ. Right: SL ¼ SR ¼ 1 corresponding to class AIIIν. We observe an asymmetry between positive and negative
real eigenvalues and fewer pairs with positive energy appear or disappear at larger values of λ.

0 0.2 0.4 0.6 0.8 1

r

0

0.3

0.6

0.9

1.2

1.5

P
(r
)

AI
AIII
GOE
GUE

RMT

=0.005
=0.01
=0.02
=0.16

SYK

0 0.2 0.4 0.6 0.8 1

r

0

0.36

0.72

1.08

1.44

1.8

P
(r
)

AI
AIII
GOE
GUE

RMT
=0.01
=0.015
=0.06
=0.32
=2

SYK

FIG. 9. Gap ratio distribution, PðrÞ, for the real eigenvalues of the SYK Hamiltonian Eq. (32) with N ¼ 14; κ ¼ 0.5; α ¼ 1;
q ¼ 4; r ¼ 2, and 2 × 104 realizations. The values of λ are given in the legend of the figure. In the left plot, we show results for class AI
(SL ¼ −SR ¼ 1) and, in the right plot, we present results for class AIIIν (SL ¼ SR ¼ 1). We find that for sufficiently large λ, PðrÞ agrees
well with the RMT prediction for the non-Hermitian AI class (left) and GUE (right) thus confirming that, also for 0 < κ < 1, different
blocks of the same Hamiltonian can have different symmetries with distinct levels statistics properties.
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coexistence of real eigenvalues of different origin: νðNÞ
of them topological, recently reported in Ref. [99], and
additional λ-dependent ones coming from interactions that
push complex eigenvalues in and out of the real axis. We
note that the agreement with GUE statistics starts much
earlier for positive eigenvalues, a feature consistent with the
observed laminar flow in this spectral region. Although we
do not have a complete understanding of the origin of this
asymmetry, we have observed that spectral density in this
region develops a (likely nonuniversal) mouth that prevents
eigenvalues from moving in and out of the real axis.
As a final remark, we note other spectral observables

could also have been used to characterize most of the
universality classes. Some of them may give useful
complementary information but others may require a much
greater computational effort. It is often a matter of trial and
error to find out what works best.

VII. EXAMPLES AND APPLICATIONS
OF PT-SYMMETRIC SYK CONFIGURATIONS

In this section, we apply the classification scheme to
specific physical problems: gravitational wormholes—
solutions of the Einstein equations representing shortcuts in
space-time—and open quantum many-body systems coupled
to a bath or subjected to continuous monitoring [140],
i.e., a situation where unitary time evolution is interrupted
by the repeated process of measurement modeled by the
application of a projection operator, representing the observ-
able which is being measured, on the wave function that
describes the time evolution of the quantum system.

A. Wormholes

The physics of wormholes has attracted a lot of recent
interest after it became possible to construct [40] travers-
able wormhole solutions that did not violate the null-energy
condition—and were, therefore, legitimate physical solu-
tions of the gravity equations—by adding a double-trace
coupling between the boundaries in global AdS. As an
example, wormholes are now believed [75,76] to be
indispensable to render the process of black-hole evapo-
ration unitary, which is central for the resolution of the
information paradox and also important in the so-called
factorization problem [141,142] which poses a challenge
for the application of the holographic principle beyond
tree-level.
In the context of Jackiw-Teitelboim (JT) gravity [114,115],

a near-ðAÞdS2 background [114–117], different types of
wormholes configurations have been intensively studied in
the past few years. Eternal traversable wormholes solutions
where found [41] by perturbing global AdS2 with a weak
double trace deformation coupling the boundaries only.
Euclidean wormholes solutions were found in this context
by solving theEinstein’s equationswith an additionalmassless
scalar with complex sources at the two boundaries of global

AdS2. Similarly, it has been speculated that an analogous
perturbation in a near-global de Sitter background [143,144]
may lead to the so-calledKeldyshwormholes [78] relevant for
the description of late-time features of the dynamics.
The SYK field theory analogue of these different types of

wormholes in Jackiw-Teitelboim gravity has already been
found to correspond to different regions of parameters of
the PT-symmetric SYK model Eq. (32). For traversable
wormholes [41], the field theory analogue is the low-
temperature limit of a two-site Hermitian SYK model with
a weak explicit coupling between the two sites, which
corresponds to the κ ¼ 0, λ ≪ 1 limit of Eq. (32). This
weak intersite coupling in the field theory mimics the
gravitational double-trace deformation mentioned earlier.
Euclidean wormholes have been related [41,77] to the low-
temperature limit of a two-site non-Hermitian SYK model
with no intersite coupling and complex couplings with
complex conjugate symmetry and the requirements that the
variance of the real part of the couplings must be larger than
the one corresponding to the imaginary part, which
corresponds to the λ ¼ 0, κ ≤ 1=2 region of our model.
In the gravitational setting, it is possible [128] to study a

transition from Euclidean to traversable wormholes by
increasing the strength of the double-trace couplings for
a fixed strength of the complex sources, which in the
SYK Hamiltonian Eq. (32) corresponds to an increase
of λ for a fixed κ ≤ 1=2. The latter condition is required
since for κ > 1=2 the thermodynamic properties are patho-
logical [41,77,98], and not related to Euclidean wormholes
configurations. Analytical [128] results for the gap on the
gravity side are available since the low-energy (boundary)
action is a generalized Schwarzian and they are in agree-
ment with the SYK prediction resulting from a saddle
point analysis. In both Euclidean and traversable configu-
rations, the free energy undergoes a thermal first-order
phase transition that separates the low-temperature worm-
hole phase from the high-temperature two-black hole
phase. In the strict Euclidean case (λ ¼ 0), it is possible
to show that the low-temperature wormhole phase is a
consequence of the dominance of off-diagonal replica
configurations [98,145].
Keldysh wormholes [78], namely, wormholes configu-

rations in two-dimensional de Sitter spaces [143,144] have
been conjectured to play an important role in the path
integrals that govern the late time dynamics of a single site
SYK coupled [78] to a Markovian bath. The dynamics of
this model is described by a vectorized Liouvillian which is
formally identical [78] to the limit κ ¼ 1 and small λ ≪ 1
of the SYK Hamiltonian Eq. (32).
In summary, a large variety of gravity settings have been

related to the two-site PT-symmetric SYK model Eq. (32)
we have employed for the symmetry classification, or small
variations of it. Therefore, our classification scheme has the
potential to stimulate research on the role of symmetry in
wormhole physics.
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B. Open quantum systems: Driven-dissipative dynamics
and continuous monitoring

An interesting point of the phase diagram of our model
is κ ¼ 1 with λ > 0. In this case, using either path-
integral [146,147] or operator [78,148] methods, H can
be mapped to a vectorized Liouvillian L that governs the
time-evolution of the density matrix, ∂tρ ¼ Lρ, of a single-
site Hermitian SYK coupled to a Markovian environment
characterized by jump operators Li ∼

ffiffiffi
λ

p
ψ i. Indeed, this is

essentially the model considered in Ref. [92] to classify
dissipative quantum chaotic systems by its global sym-
metries. In the vectorized representation (often called
Liouville space), operators in the left copy correspond to
operators acting from the left of the density matrix (i.e., on
its ket), while operators in the right copy represent
operators acting from the right (i.e., on its bra). The PT
symmetry of the two-site model ensures that the dynamics
generated by L preserves the Hermiticity of the density
matrix [91], while the vanishing of the real part of the
intrasite couplings guarantees that it also preserves the trace
of the density matrix. A especially interesting case is that of
sufficiently small λ (and still κ ¼ 1), where the time-
evolution is still quantum chaotic but the Keldysh path
integral is dominated by the so-called Keldysh wormhole
configuration [78] at late times, see the preceding section
for more details. The dominance of these solutions leads to
an anomalously large gap and, therefore, a much faster
approach to infinite-temperature equilibrium than other-
wise expected. In particular, even in the limit of vanishing
coupling to the bath (λ → 0), there is a finite relaxation rate.
A dissipative system coupled to a bath is not the

only type of system that is effectively described by the
Lindbladian L. Indeed, the time evolution of a system
whose Majorana operators are being continuously moni-
tored is described [111–113], upon averaging over meas-
urement outcomes (i.e., if they are not recorded), by the
same Lindbladian and, hence, can be mapped to our
PT-symmetric model. Other monitoring processes could
also, under certain conditions, be mapped to a model with a
different left-right coupling but the same global sym-
metries. This quantum information setting is, therefore,
another area of direct relevance of our classification
scheme.
Finally, we address the region 1=2 < κ < 1. As we have

seen above, real-time Lindblad dynamics of the density
matrix can be interpreted as PT-symmetric dynamics in
Liouville space. Following the same procedure, for the
more generic situation 1=2 < κ < 1, H is mapped instead
into a nontrace-preserving, so not of Lindbladian type,
but still Hermiticity-preserving, vectorized Liouvillian.
Physically, this corresponds to a non-Hermitian SYK
coupled to a Markovian bath where the non-Hermitian
part has a relatively minor effect.
Moreover, following the previous interpretation in terms

of continuous monitoring, this regime of the PT-symmetric

Hamiltonian could potentially model a many-body system
on which measurements are being performed and that, at
the same time, is experiencing spontaneous decay or
inelastic scattering, so that states acquire a finite lifetime.
We stress once more that this interpretation may require the
use of different jump operators from the ones we are
considering but it could be possible to choose them so that
the symmetry classification is unaltered.

VIII. OUTLOOK AND CONCLUSION

We have proposed a classification of non-Hermitian but
PT-symmetric systems. Putting some relatively mild restric-
tion on the form of the Hamiltonian, which covers SYK
models with Majoranas fermions, we have found that the
38 universality classes [87,88] of general non-Hermitian
systems are reduced to only 24 due to PT symmetry. A
simple two-site non-Hermitian but PT-symmetric SYK
model with N fermions, q-body interactions and a r-body
inter-site coupling has been employed to identify the
different universality classes. By tuning q, r, and N, the
strength of the imaginary couplings and a weak asymmetry
factor, we have found 14 different universality classes.
Interestingly, among the symmetry classes not allowed by
PT symmetry are those leading to Kramers degeneracy in a
fixed sector of the theory. Another salient result of our
analysis is the identification of cases where different blocks
of the Hamiltonian (for fixed parameters) have different
symmetries. This feature had been missed in a recent classi-
fication of dissipative quantum chaotic systems [92], which
partially overlaps with ours. The symmetry classification
has been confirmed by an exhaustive analysis of level
statistics and eigenvector overlaps. An interesting direction
for further work is to investigate modifications of the
present two-site SYK model that realize the remaining
classes from the 24-fold classification.
Another highlight of the PT symmetry classification is

the identification of classes AIIIν, BDI†ν, BDIþþν, and
CI−−ν, characterized by νðNÞ real eigenvalues with level
statistics that agree with the random matrix prediction for
the Hermitian classes GUE, GOE, BDI, and CI, res-
pectively. These spectral results are robust to changes in
the parameters of the models, such as the inter-site
coupling, that preserve the symmetry. These real modes
have their origin in the existence of rectangular blocks
in the Hamiltonian, characterized by ν, which we have
recently [99] found to be of topological origin and so we
refer to these four classes as topological classes. Since this
is not the only source of purely real eigenvalues in non-
Hermitian systems, this finding casts some doubts about the
possibility, recently proposed in Ref. [108], of character-
izing the universality class of certain non-Hermitian ran-
dom ensembles by only looking at their real eigenvalues.
Theproposedclassification isof relevance toabroad range

of problems: from wormhole configurations in gravity
theories with a SYK field theory dual, which for
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nontraversable cases are related to quantum entanglement
through the EPR ¼ ER conjecture [149], to the time evolu-
tion of open systems coupled to a bath or subjected to
continuous monitoring. As an example, we identify
the range of parameters in our SYK for which its gravity
analogue in the low-temperature limit may be a travers-
able, an Euclidean, or a Keldysh wormhole. Likewise,
we identify the range of parameters for which the SYK
Hamiltonian can be mapped onto a vectorized Liouvillian
that generates the dynamics, i.e., governs the dissipative
dynamics of the SYK density matrix. We note that the PT
symmetry of the Hamiltonian guarantees the preservation of
Hermiticity in thedynamicalproblem[91], althoughthe form
of theLiouvillian isnotofLindblad typeunless the realpartof
the intra-site coupling of the SYK Hamiltonian vanishes.
We expect that this symmetry classification will stimu-

late the search of systems with these symmetries in the

context of dissipative quantum chaos, quantum gravity, and
quantum information.
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