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Sonoluminescence is a well-known laboratory phenomenon where an oscillating gas bubble in the
appropriate environment periodically emits a flash of light in the visible frequency range. In this work, we
study the system in the framework of analog gravity. We model the oscillating bubble in terms of analog
geometry and propose a nonminimal coupling prescription of the electromagnetic field with the geometry.
The geometry behaves as an analogous oscillating time-dependent background in which repeated flux of
photons are produced in a wide frequency range through parametric resonance from quantum vacuum. Due
to our numerical limitation, we could reach the frequency up to ∼105 m−1. However, we numerically fit the
spectrum in a polynomial form including the observed frequency range around ∼107 m−1. Our current
analysis seems to suggest that parametric resonance in analog background may play a fundamental role in
explaining such phenomena in the quantum field theory framework.
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I. INTRODUCTION

In this article, we propose a model of nonperturbative
photon production in an analog system. We build up the
formalism considering a very special laboratory system
consisting of an oscillating gas bubble immersed in water.
This system has been extensively studied experimentally
[1–5] and observed to emit repeated flashes of photon flux,
popularly known as sonoluminescence in the literature.
Despite the significant effort put in over the years the origin
of the photon flux is still not understood completely.
Emission from hot ionized gas in the framework of the

classical hydrodynamical model has been one of the
extensively discussed mechanisms to explain the phenom-
ena. Due to the rapidly collapsing bubble, the gas inside is
assumed to be partially ionized caused by the adiabatic
heating. During the process, the produced accelerating free
electrons may emit thermal photons through the brems-
strahlung process. This was first proposed by Bradley P.
Barber et al. [6]. Later on, such a mechanism has been
further investigated in detail [7–12]. In this hydrodynamical
formalism, there are Speculations [13] as to whether a
nonlinearly collapsing bubble would be able to account for
the focusing of the shockwave into such a micrometer
length scale, that is required for the bremsstrahlung to
happen.

A purely quantummechanical approach was first adopted
by J. Schwinger. Using the idea of dynamical Casimir effect
[14],which applies between twodynamical boundaries in the
quantum field theory framework, J. Schwinger first con-
structed the formalism of photon production [15–21] under
the instantaneous collapse approximation. Following the
same direction S. Liberati et al. [22–25] further extended the
formalism and calculated the photon spectrum in terms of
the Bogoliubov coefficients modeling the oscillating bubble
in terms of time-dependent refractive index for an infinite
homogenous dielectric medium. In a somewhat different
approach, Eberlin [26,27] used the idea of the Unruh effect
[28] and modeled the surface of the collapsing bubble as an
accelerating mirror. The photon flux was generated by
solving the Schrödinger equation applying time-dependent
perturbation theory. However, to match the experimental
photon spectrum thevelocity of the bubble surface turned out
to be superluminal, and perturbative approximation may not
be applicable as pointed out in [29,30]. The subsequent
studies, therefore, [30–33] have raised questions on the
appropriateness of the approach of the formalisms based
on the dynamical Casimir effect, which may not be able to
properly account for sonoluminescence effect.
Important to note that in all the stated quantum mechani-

cal formulations (also look at [34]) except the model based
on the bremsstrahlung process, typical photon energy flux
turned out to be divergent in wave number. Hence, ad hoc
cutoff has been introduced to account for the phenomena.
However, Milton later argued ([31,32]) that such divergent
contributions in the quantum theory framework must
vanish upon renormalization.
In this paper, wewill again stress the quantummechanical

production discussed before. Theoretical models discussed
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earlier can be viewed in the framework of quantum field
theory where fields, such as photons, are excited from the
quantum vacuum due to time-dependent background. We
argue that in the perturbative framework, the vacuum
production usually comes with k2 divergence if the con-
formal property of the electromagnetic (EM) field is not
properly taken into account. In the conformal frame, how-
ever, we show that it is the nonperturbative parametric
resonance which may be an appropriate mechanism that
can explain the sonoluminescence. We utilize the well-
known analog spacetime formalism [35] taking into account
the actual temporal evolution of the bubble surface by
solving the well-known Rayleigh-Plesset (RP) [6,36,37]
equation. We couple the Ricci scalar curvature, R, of the
analog geometry with an EM field preserving Lorentz
symmetry following the idea that has been widely used in
cosmology. This scalar curvature acts as a conformal break-
ing factor leading to the production of photons, which is
otherwise absent in conformal spacetime [38].
Though we do not claim to explain sonoluminescence in

the observed frequency range [1–4], present theoretical
results, however, seem to suggest that our framework for
quantum mechanical particle production in time-dependent
analog spacetime may well be an interesting avenue to
explore. Due to our present numerical limitation, we could
not reach the actual frequency range of observation.
However, we certainly obtained the photon spectrum in
the lower frequency with reasonable magnitude which
could be extrapolated to match the observation.
The rest of the paper has been assembled as follows. We

first discuss the characteristics of sonoluminescence phe-
nomena in Sec. II and study the dynamics of the air bubble in
water. Next, we construct the analog background geometry
representing the fluctuation in the fluid in Sec. III. With the
nonminimal coupling, built upon theRicci scalar curvature of
the analog metric, we have demonstrated the canonical
quantization procedure in Sec. III A 1. Subsequently, we
derive the expression for spectral number density in terms of
the EM fields and presented our results characterizing the
growth of the number density, by which we have interpreted
the photon production. In Sec. III C we evaluate the energy
flux of the emitted photons from the number density and
compared it with the experimental results. In Sec. IV, our
analytical estimation in high-frequency regime justifies the
need to follow the formalism for nonperturbative production.
Finally, we conclude with a future outlook.

II. SONOLUMINESCENCE: EXPERIMENTAL
RESULTS

It has been experimentally observed [1–5] that if an
acoustic disturbance acts on a gas bubble in water in such a
way that it starts to oscillate quasiperiodically, then this
bubble emits repeated flashes of light. Generally, the
experimental setup to obtain sonoluminescence consists
of a sealed spherical quartz flask, filled with water, as

shown in Fig. 1. The acoustic drive through the piezo-
electric (PZT) ceramic material will induce the perturbation
to the air bubble. For stable sonoluminescence, it is found
that the required voltage across the PZT is of the order of
50 − 150V, which will drive the air bubble into resonance
with the sound field. Eventually, the bubble will shrink to
the minimum radius and the flash of photons will come out.
The observed flux [1–4] exhibits a broadband spectrum
starting from the visible range to the far ultraviolet range
with increasing intensity, as can be seen in the Fig. 2, which
consists of data from experimental measurement with
acoustic frequency ∼27 kHz. A sudden cutoff appears near
∼200 nm, which matches with the ultraviolet cutoff of
water. Sonoluminescence at temperature 22° C fits the
blackbody spectrum which corresponds to the temperature
of 25,000 K. The efficiency of the light emission heavily
depends on the temperature of the water, for example, at
10° C, the spectrum of sonoluminescence corresponds to
black body temperature ∼50000 K. As already elaborated
on in the Introduction whether the bubble acquired this
temperature during the collapse and produced the thermal

FIG. 1. A schematic sketch of a typical experimental setup for
sonoluminescence, inspired from the review [6,8].

FIG. 2. A typical sonoluminescence spectrum has been dem-
onstrated here. The dotted points represent the experimentally
measured values which have been extracted from [2] and plotted
here in k-space.
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photon or it is the quantum mechanical phenomena
originating from time-dependent background is still an
unresolved issue [39]. However, our focus will be on the
quantum mechanical production.

A. Dynamics of the bubble

Experimental measurements suggest the necessary pres-
ence, even with a small amount, of an admixture of noble
gases such as He, Ar, or Xe in the medium inside the
bubble. The air medium typically contains a small amount
of such inert gases, while the dominant presence of nitro-
gen and oxygen gas will be dissociated during the collapse
due to large temperature and subsequently get absorbed in
the water through the chemical reactions as has been argued
in [8]. Thus, the bubble, finally, is left with only the inert
gas necessary for the sonoluminescence to happen. This
made us motivated to consider air as a suitable medium
within the bubble as a starting point for our present
analysis. However, to this end, we would like to point
out that our final result in the present paper does not depend
strongly on the characteristics of the medium. In order the
take into account the effect of the medium we need to
consider photon-medium interaction which we discuss in
future.
The air bubble inside water perturbed under the acoustic

wave undergoes rapid oscillation. The dynamics are well-
captured by the RP equation [6,36,37], arising from the
balancing of pressure between the inside and outside
medium of the bubble (also see Appendix A for elaborate
discussion), and is given as

RR̈þ 3

2
Ṙ2 ¼ 1

ρ

�
PðR; tÞ − P0 þ PaðtÞ

þ R
cs

d
dt

½PgðR; tÞ þ PaðtÞ�
�
; ð1Þ

where RðtÞ is the radius of the bubble, PðR; tÞ is the
pressure at the bubble surface, P0 is the constant ambient
pressure above the liquid, PaðtÞ ¼ Pa cosωt is the acoustic
drive at the bubble, PgðRÞ is the pressure of the gas inside
the bubble (as discussed before, we have considered air as
the gas medium inside the bubble and corresponding values
of the parameters will be given in a moment), ρ is the fluid
density, and cs is the speed of sound in the fluid. The
appropriate boundary condition accompanies this above
equation,

PðR; tÞ þ 4
ηṘ
R

þ 2
σ

R
¼ PgðR; tÞ; ð2Þ

which arises from the balancing of pressures on either side
of the bubble interface. Gas pressure inside the bubble
PgðRÞ is

PgðRÞ ¼
P0R

3γ
0

ðR3 − a3Þγ ; ð3Þ

where the adiabatic index γ ¼ Cp=Cv ¼ 1.4 (for air).
Experimental values of other parameters mentioned above
are shear viscosity of the fluid, η ¼ 0.003 Kg=ðm − secÞ,
coefficient of the surface tension, σ ¼ 0.03 Kg= sec2, the
density of the fluid ρ ∼ 1000 Kg=m3, pressure-amplitude
of the acoustic drive, Pa ¼ 1.35 atm, frequency of the
acoustic drive, ωa ¼ 2πð26.5Þ kHz, the minimum radius of
the bubble, R0 ¼ 4.5 μm, speed of sound in water,
cs ¼ 1481 m= sec, ambient pressure P0 ¼ 1 atm at the
minimum radius of the bubble, for an air bubble, van der
Waals hard core radius, a ¼ 0.5 μm. It is important to note
here that a small change in γ, η, and σ does not significantly
affect the radial dynamics of the bubble as per our
numerical analysis (in conformity with the discussion
given in Sec. II. C of [8]). Nevertheless, the final form
of the RP equation, taking into account the damping of the
bubble due to the release of acoustic energy, in terms of the
dynamical variable RðtÞ and the above fluid parameters can
be expressed as follows [6,8]:

− RR̈

�
1 −

2Ṙ
cs

�
−
3

2
Ṙ2

�
1 −

4

3

Ṙ
cs

�

þ 1

ρ

�
P0R3

0γ

ðR3 − a3Þγ −
4ηṘ
R

−
2σ

R

�

þ 1

ρc

�
−3γR3P0R

3γ
0

ðR3 − a3Þγþ1
Ṙþ 2σ

R
Ṙ −

4η

R
ðRR̈ − Ṙ2Þ

�

þ P0R
3γ
0 cosωt

ρðR3 − a3Þγ −
R
ρc

Paω sinωt −
P0

ρ
¼ 0: ð4Þ

We set the initial conditions Rðt ¼ 0Þ ¼ 4.5 μm (ambient
radius of the bubble) and R0ðt ¼ 0Þ ¼ 0, although the very
nature of the graph does not depend on the initial condition.
Using the parameters given above we obtain the dynamics
of the bubble radius as plotted in Fig. 3, which happens to
agree with experimental measurements [6]. It is obvious
from Fig. 3 that the bubble undergoes repeated quasiperi-
odic oscillation. Utilizing this time profile of the bubble
dynamics, we will now discuss the analog spacetime
formalism following [35].

III. CONSTRUCTION OF THE EFFECTIVE
METRIC

In the year 1980, Unruh [35] established that the behavior
of the sound on a fluid mimics a field propagating in
spacetime background endowed with an effective metric.
In this section, we derive this analog metric sometimes
referred to as acoustic metric. For an incompressible and
irrotational fluid, the corresponding energy-momentum ten-
sor satisfies the following covariant conservation equation,
∇μTμν ¼ 0, where,
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Tμν ¼ ðρþ PÞuμuν þ Pημν; ð5Þ

with ρ and P symbolizing density and pressure respectively
and ημν is the Minkowski metric describing the flat space-
time. Whereas, the four-velocity uμ ≡ ð1; v0Þ. Now, as per
the consideration, the curl of the velocity being zero leads to
the fact that the velocity can be written as v ¼ ∇ψ0, with ψ0

as the velocity-potential for the given fluid. Having the set of
fluid equations in hand, we introduce fluctuation as

ψ → ψ0 þ ψ̄ : ð6Þ

For other fluid parameters, to simplify the computation, we
define the following quantity:

gðζÞ ¼
Z

eξ 1

ρ0
dpðρ0Þ
dρ0

dρ0; ð7Þ

where ζ ≡ log ρ. Similar to the previous consideration we
take the fluctuation on other fluid parameters in terms of ζ as,
ζ → ζ0 þ ζ̄. Substituting these perturbed fields in the covar-
iant conservation equation one can derive [40,41] the
fluctuation equation for ψ̄ as

1

ρ0

�
∂t

�
ρ0

g0ðζ0Þ
�
∂tψ̄ þ ∂t

ρ0v0
g0ðζ0Þ

· ∇ψ̄ þ∇ ·

�
ρ0v0
g0ðζ0Þ

∂tψ̄

�

−∇ · ðρ0∇ψ̄Þ þ∇ ·

�
v0

ρ0
g0ðζ0Þ

v0 ·∇ψ̄

��
¼ 0; ð8Þ

which can be expressed in terms of an analogmetric (AM) on
which ψ̄ is dynamical, and the metric is expressed as [35]

ds2AM ¼
�
ρ̃0
c2

�
−1
�ðρ0=c2Þ
ðc0=cÞ2

�
−
�
c20
c2

−
v20
c2

�
c2dt2

− 2
vi
c
dxicdtþ δijdxidxj

��
: ð9Þ

Here, we have used, g0ðζ0Þ ¼ g0ðln ρ0Þ ∼ c20, where c0
denotes the local velocity of the sound wave in the medium,
e.g., for air c0 ∼ 343 m=s. Whereas, ρ̃0 is a new parameter
which is introduced to make the dsAM of dimensions length.
Moreover, it can also be thought of as a tuning parameter to
be adjusted as per the final results. Of course, this overall
factor leads to the same fluctuation equation (8).Wehave two
main fluid parameters to be evaluated, the background
velocity v0 and the fluid density ρ0. Our interest is to look
for the radial behavior of those parameters for the gas
contained inside the bubble.
Since the system is spherically symmetric, only the radial

velocity component will survive, and v0 the velocity of the
fluid inside the bubble can be approximately taken as [6]

v0 ¼
Ṙ
R
r; ð10Þ

with physical boundary conditions v0ðr ¼ 0Þ ¼ 0 and
v0ðr ¼ RÞ ¼ Ṙ. The continuity equation,

∂ρ0
∂t

þ ρ0
r2

∂ðr2v0Þ
∂r

¼ 0; ð11Þ

upon using the expression for the background velocity v0
yields,

ρ0 ¼ ρeq
R3
0

R3ðtÞ ; ð12Þ

where ρeq ¼ ρ0ðt → t0Þ, at the minimum radius of the
bubble say R0 ¼ Rðt → t0Þ. The above expression is con-

sistent with the ideal gas equation ρ0 ¼ P0R3
0

c2
0

1
R3, where, as it

turns out, P0 ¼ ρeqc20. Therefore, we rewrite the factor

involving density as ρ̃
−1
0
ρ0

c2
0

¼ ξ3

RðtÞ3, where ξ is the new arbitrary

parameter, incorporating the old ones.
Our goal is to utilize the analog geometry derived in

Eq. (9) to couple with the EM field. In all the previously
discussed quantum models, to the best of our knowledge
analog geometric approach has not been taken into account.
It is important to note that electromagnetism in four
dimensions is a conformal invariant. Despite nontrivial
time dependence any conformal modification to the back-
ground, therefore, should not lead to any physical produc-
tion of photons from the quantum vacuum. One such
modification that has been discussed is to introduce the
time-dependent dielectric constant (ϵ) [22–25] through
refractive index. Typically such modification appears in

FIG. 3. Dynamics of the oscillating bubble is described in terms
of the temporal profile of the bubble surface. One can see that the
RP equation correctly provides for the dynamics of the bubble,
which undergoes a repeated quasiperiodic oscillation.

RAJESH KARMAKAR and DEBAPRASAD MAITY PHYS. REV. D 109, 105016 (2024)

105016-4



the time part of the spacetime which is of conformal type.
Naive application of such an approach usually leads to
divergent results [31,32]. Such divergence can be done
away with by conformal transformation in the background.
In our present proposal, we conjecture that the EM field

perceives such analog metric as a fluctuation on the usual
flat spacetime geometry as follows:

ds2 ¼
�
−
dt2

ϵ
þ dr2 þ r2dΩ2

�

þ ξ3

RðtÞ3 ½−ðc
2
0 − v20Þdt2 − 2v0drdtþ dr2 þ r2dΩ2�

¼ ðgð0Þμν þ hμνÞdxμdxν: ð13Þ

Note that we have used the natural unit, c ¼ 1, which will
be followed in the later sections unless otherwise stated.
Here, ϵ ∼ 1 represents the dielectric constant of the air
medium, as the above metric effectively describes the
medium inside the bubble. Hence, there is no significant
change in the dielectric constant. We argue in the later
sections that it is not the dynamical boundary separating
two different mediums, but the quasioscillation of the fluid
parameters inside the bubble that is solely responsible for
sonoluminescence. In this respect, we significantly differ
from the existing formalisms [15–27] of sonoluminescence
based on the dynamical Casimir effect.
We consider the inverse of the fluctuation metric as,

hμν ¼ gμα0 gνβ0 hαβ, so that, any raising and lowering of

indices should be with respect to gð0Þμν . The total metric
can be expressed as

ds2 ¼ −fðt; rÞdt2 þ 2gðt; rÞdrdtþ pðtÞðdr2 þ r2dΩ2Þ;
ð14Þ

with the essential matrix elements taking the following
form,

pðtÞ ¼ 1þ ξ3

R3
;

fðt; rÞ ¼ 1þ ξ3

R3

�
c20 −

Ṙ2

R2
r2
�
;

gðt; rÞ ¼ −
Ṙξ3

R4
r: ð15Þ

To simplify our task we can diagonalize the above metric
making use of the following transformation for the radial
coordinate to bring it to a more convenient form,

dr̄

1=p1=6 ¼
ffiffiffiffi
p

p
drþ gffiffiffiffi

p
p dt; ð16Þ

which translates to the rescaling of the radial coordinate,
one can derive, r̄ ¼ rp1=3 (for details of this derivation, see
appendix B). Using this redefinition, the metric reduces to

ds2 ¼ −
�
f þ g2

p

�
dt2 þ p1=3ðdr̄2 þ r̄2dΩ2Þ: ð17Þ

In our subsequent analysis, we will just replace the bar sign
in the radial coordinate and treat it as usual, r. As argued
before the photon production essentially occurs due to the
dynamics of the fluid medium inside the bubble.
Furthermore, experimentally the photon flux is observed
to originate when the oscillating bubble is nearly at its
minimum radius [1,6,42]. Inspired by this observation, we
impose the r → 0 limit throughout our analysis. Thanks to
this limit which leads the fluctuation part (hμν) transformed
into a simplified form, so that the metric coefficients (15)
become,

pðtÞ ¼ 1þ ξ3

R3
;

fðtÞ ¼ 1þ ξ3

R3
c20;

g ¼ 0: ð18Þ

In the following discussion, we will consider the metric
(17) with the above metric coefficients.

A. General formalism

Simply keeping the Lorentz invariance intact, generi-
cally, one can couple the EM field to the background
spacetime in the linear order in curvature as [43,44]

L ¼ −
ffiffiffiffiffiffi−gp
4

½FμνFμν þ χμναβðq1FμνFαβ þ q2FμνF̃αβÞ�;
ð19Þ

with

χμναβ ¼ α1Rðgμαgνβ − gμβgναÞ
þ α2ðRμαgνβ − Rμβgνα þ Rνβgμα − RναgμβÞ
þ α3Rμναβ; ð20Þ

where Fμν is the field strength tensor of the EM field, F̃μν ¼
ϵμναβFαβ=2 is the dual tensor and ðq1; q2Þ and ðα1; α2;α3Þ
are arbitrary constants that need to be fixed. Here, R; Rμν,
and Rμναβ represent the Ricci scalar, Ricci tensor and
Riemann tensor of the background metric (17) and (18),
respectively. Now the metric (17) with (18) can be recast
into a conformally flat form as

ds2 ¼ pðτÞ13ð−dτ2 þ dx2 þ dy2 þ dz2Þ; ð21Þ

with conformal time dτ ¼ dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f=p1=3

p
. Keeping the sym-

metry intact, we have used Cartesian coordinate to describe
the spatial part of the metric to simplify the analysis.
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Throughout our analysis, we will work assuming the
parameter ξ ¼ 10−6 (given in unit of R), such that
ξ=RðtÞ < 1, which compels us to consider τ ≃ t, i.e.,
conformal time approximated as real time. It is important
to note that having this conformally flat metric, the first
term in the given Lagrangian does not lead to any real
particle production as the minimally coupled action of the
EM field in this spacetime is conformally invariant [45,46].
The rest of the terms in the Lagrangian represent non-
minimal coupling and lead to particle production.
Furthermore, the coupling with the dual tensor (FF̃)
signifies a parity breaking term that leads to the production
of the helical EM field (one may look at [47–50], where
such considerations are often studied in the context of
magnetogenesis in early Universe cosmology). We do not
consider such terms leading to nonzero helicity which may
interesting in the context of observation, and we will
consider this in our future course of study. Therefore,
we will put q2 ¼ 0 for the present work. The coupling with
Reimann tensor and Ricci tensor, however, is equally
important as the Ricci coupling with the FF. For the
simplification of the numerical computation, we restrict
ourselves to the Ricci coupling only, for the present
analysis, keeping α2 ¼ α3 ¼ 0 (otherwise, the equation
of motion of the EM field will involve four nonzero
components of the Ricci tensor and 12 nonzero components
of the Riemann tensor for the metric under consideration).
The analysis with consideration of these other couplings,
we leave for our future work.

1. Quantization of the electromagnetic field

We consider the following Lagrangian for the Maxwell
field with conformal symmetry breaking coupling,

L ¼ −
ffiffiffiffiffiffi−gp
4

�
FμνFμν þRðtÞ

α2
FμνFμν

�
; ð22Þ

where α2 ≡ 1=ðα1q1Þ from (19). The Ricci scalar of the
background metric turns out to be

RðtÞ ≃ −3
ξ3

R3

�
∂
2
t R
R

− 4

�
∂tR
R

�
2
�
; ð23Þ

which captures the oscillating features of the bubble, as can
be seen from Fig. 4. α is a controlling parameter of mass
dimension unity. We ignore all the higher-order ξn, n > 3
coupling. We symbolize the conformal breaking coupling
factor as IðtÞ ¼ 1þRðtÞ=α2. We should also mention that
breaking the conformal invariance, considering such a
coupling prescription is not totally new, as one may find
in [47–50], and the formulations of nonperturbative pro-
duction in curved spacetime are also well-studied [51].
However, to the best of our knowledge, we have not found
any work where such analyses have been performed in the
context of analog systems.

Throughout our analysis, we fix α ¼ 3 × 108 in the unit
of Ricci scalar,R, such that jIðtÞ − 1j < 1. With this setup,
one obtains the equation of motion by varying the action as

∂μð
ffiffiffiffiffiffi
−g

p
gμαgνβIðtÞFαβÞ ¼ 0: ð24Þ

The spatial part of the metric being flat, we can suitably
choose the Coulomb gauge condition,

At ¼ 0; ∇ ·A ¼ 0: ð25Þ

Only with time-dependent coupling can we expand the
vector potential in Fourier mode in the following manner,

Aiðt;xÞ¼
Z

d3k
ð2πÞ3 ½ckAiðt;kÞeik·xþc�kA

�
i ðt;kÞe−ik·x�; ð26Þ

where ck, and c�k are some arbitrary constants for the time
being. Substituting the above mode expansion of the EM
field in (24) we arrive at,

∂
2
t Aiðt; kÞ þ

∂tIðtÞ
IðtÞ ∂tAiðt; kÞ þ jkj2Aiðt; kÞ ¼ 0; ð27Þ

where we have used gnl∂nAl ¼ 0, i.e., the gauge condition
and k2 ¼ jkj2 ¼ δnlknkl denotes the square of the amplitude
of wave vector, k. In the following discussion, we demon-
strate the quantization procedure of this classical field.

B. Calculation of Bolgoliuobov coefficients

We now write the classical EM field (26) in polarization
basis and promote it to the quantum field operator by
making the constants, ck; c�k, as creation and annihilation
operator, respectively,

Aiðt;xÞ ¼
X
λ¼1;2

Z
d3k
ð2πÞ3 ϵ

λ
i ðkÞ½ĉλkAλðt; kÞ þ ĉλ†−kA

�
λðt; kÞ�

× e−ik·x; ð28Þ

FIG. 4. Evolution of the curvature scalar of the analog metric
with time.
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where, ĉλk and ĉλ†k satisfy the usual harmonic oscillator
commutation relation,

½ĉλk; ĉλ
0
k0 � ¼ 0; ½ĉλ†k ; ĉλ

0†
k0 � ¼ 0;

½ĉλk; ĉλ
0†
k0 � ¼ ð2πÞ3δλλ0δ3ðk − k0Þ; ð29Þ

and the orthonormalized polarization basis vectors satisfy
the following relation:

ϵλi ðkÞ · ki ¼ 0; ϵλi ðkÞϵλ0i ðkÞ ¼ δλλ0 ;X
λ¼1;2

ϵλi ðkÞϵjλðkÞ ¼ δji −
kikj

k2
: ð30Þ

From the action (22) the canonically conjugate momentum
of Aiðt;xÞ turns out to be

Πi ¼ −
ffiffiffiffiffiffi
−g

p
IðtÞg00gij∂ηAj ¼ IðtÞδij∂tAj: ð31Þ

Imposing the equal-time canonical commutation relation
between the EM potentials and their conjugate momentum
we obtain,

½Aiðt;xÞ;Πjðt; yÞ� ¼ i
Z

d3k
ð2πÞ3 e

ik·ðx−yÞϵλi ðkÞϵjλðkÞ; ð32Þ

where, ϵλi ðkÞϵjλðkÞ ¼ ðδji − kikj

k2 Þ. From this commutation
relation we can deduce the quantization condition for the
EM potentials as [52]

Aλðt; kÞA0�
λðt; kÞ − A�

λðt; kÞA0
λðt; kÞ ¼

i
IðtÞ ; ð33Þ

where A0
λðt; kÞ ¼ ∂tAλðt; kÞ also δijϵλi ðkÞϵλ0j ð−kÞ ¼ δλλ0 .

We assume each mode starts its journey from the quantum
vacuum with no particle state at an initial time, ĉλ

0†
k0 j0i ¼ 0,

which same as Bunch-Davies [38,53] vacuum considered
in cosmology. The associated mode function takes the
form, Aλðt; kÞ ∼ Nke−ikt, with positive frequency outgoing
mode, and the initial normalization can be fixed using
Eq. (33), as Nk ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kIðt0Þ

p
. Let us write the Fourier

mode terms of (28) as

B̂λðt;kÞ ¼ ĉλkAλðt; kÞ þ ĉλ†−kA
�
λðt; kÞ;

π̂λðt;kÞ ¼ IðtÞ½ĉλkȦλðt; kÞ þ ĉλ†−kȦ
�
λðt; kÞ�: ð34Þ

Introducing another set of time-dependent creation and
annihilation operators in terms of the above field operators as

d̂λkðtÞ≡
ffiffiffiffiffiffiffiffiffiffiffi
IðtÞk
2

r
B̂λðt;kÞ þ

iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2IðtÞkp π̂λðt;kÞ;

d̂λ†k ðtÞ≡
ffiffiffiffiffiffiffiffiffiffiffi
IðtÞk
2

r
B̂λðt;−kÞ −

iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2IðtÞkp π̂λðt;−kÞ; ð35Þ

we define late time creation and annihilation operators
expressed in terms of respective initial time operators and
time-dependent Bogoliubov coefficients [38] in the follow-
ing manner:

d̂λkðtÞ ¼ αλkðtÞĉλk þ βλ
�
k ðtÞĉλ†−k;

d̂λ†k ðtÞ ¼ αλ�k ðtÞĉλ†k þ βλkðtÞĉλ−k: ð36Þ

The time-dependent Bogoliubov coefficients are given
by [54,55],

αλkðtÞ ¼
ffiffiffiffiffiffiffiffiffi
IðtÞ

p � ffiffiffi
k
2

r
Aλðt; kÞ þ

iffiffiffiffiffi
2k

p A0
λðt; kÞ

�
;

βλkðtÞ ¼
ffiffiffiffiffiffiffiffiffi
IðtÞ

p � ffiffiffi
k
2

r
Aλðt; kÞ −

iffiffiffiffiffi
2k

p A0
λðt; kÞ

�
: ð37Þ

From the quantization condition (33) one can derive
the following constrained relation of the Bogoliubov
coefficients,

jαλkðtÞj2 − jβλkðtÞj2 ¼ 1: ð38Þ

Now using the expression of βλkðtÞ (37) and with the relation
(33) we obtain,

jβλkðtÞj2 ¼
IðtÞ
2

�
kjAλðt; kÞj2 þ

jA0
λðt; kÞj2
k

�
−
1

2
; ð39Þ

which physically represents the photon number density
produced from the quantum vacuum due to time-dependent
background [56–58].
In the following discussion, we will analyze the time

evolution of this quantity and present the interpretation of the
produced photon flash from the growth of jβλkðtÞj2. In our
framework, we have introduced two arbitrary parameters α
and ξ. Depending upon those parameter values, we show
particles can be produced both through perturbative and
nonperturbative processes. However, it is generically true
and also we show that for the perturbative process, the
particle production is insignificant, and it is the nonpertur-
bative resonance due to the oscillating bubble background
which will contribute the most. To study this analogy, we
proceed by numerically finding out the solution of the EM
field from the equation of motion (27). It is important to note
that the extreme stiffness of the Ricci scalar and its time
derivative, make this equation very stiff. When dealing with
stiff ordinary differential equations, it is well-known that
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implicit numerical methods, characterized by a greater
number of discretization steps, work better than explicit
methods in ensuring stable solutions [59,60]. Naturally, this
advantage comes at the cost of increased time consumption.
For our present analysis, we have used such an implicit,
Cranck-Nicholson method [61,62] (see also Appendix C).
Using the solution of the EM field in the expression (39)

we have plotted jβλkðtÞj2 with time in Fig. 5 for a fixed
frequency. It is indeed observed that at the moment say
t ¼ 50 μs when the bubble comes to its minimum radius
(Fig. 3) a sudden enhancement in the photon number
density appears. Most importantly, the enhancement gets
repeated with the time period of the bubble shrinking to its
minimum radius. This indeed indicates parametric reso-
nance due to the breakdown of adiabaticity. We interpret
this enhancement of the energy density at each successive
period as the indicator of the periodically emitted photon
flux as observed in the experiment [1–3]. The sudden
growth of number density at the time of collapse is
expected to occur within a specific frequency band which
is a typical feature of the Floquet system [63], and this is
indeed a significant result of our present proposal account-
ing for the experimental findings [2]. The particle produc-
tion happens at the moment when the bubble comes to its
minimum radius. Therefore, by tuning ðα; ξÞ values where
the effect is maximized, surprisingly we obtain the magni-
tude of the number spectrum jβkj2 very close to that of the
experimentally observed value, as we will see in a moment.
Under our adopted numerical method, we could get the

spectrum in the range ð1; 105Þ m−1 of k, as shown in blue
dotted points Fig. 6.On the sameplotwe also provide data for
the experimentally observed frequency ranges [2] around
107 m−1 that extend from visible to ultraviolet range reviling
the broadband nature of the spectrum, and is shown in purple
dots. As previously stated, the implicit numerical method
might be the most effective approach. However, even
following such a numerical technique, the Crank-
Nicholson method, we could not get a reliable solution for
k > 105 m−1. Nevertheless, the trend of the numerically

obtained photon number appears to indicate that our analog
metric framework could explain the actual observation. This
motivated us to extrapolate our results taking into account the
experimentally measured data using the Polynomial fit (look
at Appendix D for the fitting function), which is highlighted
in red colored line in Fig. 6. The nice fitting of the
extrapolated curve accounting for the experimental data
seems to suggest that vacuum production through parametric
resonance could be a possible mechanism of sonolumines-
cence. To this end, we should mention that addressing the
relevant numerical challenges requires a thorough investi-
gation into more robust numerical analysis techniques, such
as implementations of the implicit methods discussed in
[64–66]. In particular, the parallelization technique presented
in [64], aimed at addressing time consumption in the implicit
method, could be a suitable approach. By employing these
methods, it may become possible to address the stiffness
problem in the model equations, thereby obtaining a stable
solution within the experimentally observed frequency
range. Then, it will be possible to confirm whether the
current formulations are capable of accurately reproducing
the fitted line in the high-frequency range, aligning with the
actual measured data, or if they might deviate from it. In the
next section we calculate photon energy flux that has also
been experimentally measured.

C. Photon energy flux

To connect with the experimental observation we evalu-
ate the spectral energy density (energy density per k mode)
from the Hamiltonian that can be calculated from the
Lagrangian (22). The final expression for Hamiltonian in
terms of creation and annihilation operators [with the help
of (35)] can be expressed as

H ¼
X
λ¼1;2

Z
d3k
ð2πÞ3 kd̂

λ†
k ðtÞd̂λkðtÞ: ð40Þ

FIG. 5. Spectral number density has been plotted with time for
a fixed k ¼ 0.3 × 103 m−1. In the y-axis we have used a log scale.

FIG. 6. The spectral number density is plotted with frequency
using a log scale for both axes. The experimental data is given
along with the data numerically calculated from our model for
comparison. We have fitted both results using “Polynomial fit” in
Mathematica.
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The expectation value of this Hamiltonian operator on the
initial vacuum state discussed in Sec. III A 1, turns out as

hHi ¼
X
λ¼1;2

Z
d3k
ð2πÞ3 kjβ

λ
kðtÞj2δ3ð0Þ; ð41Þ

where δ3ð0Þ ¼ volume in the above equation appears from
the commutators of the creation and annihilation operators,
signifies infinite spatial volume emerging due to the
quantization of the EM field throughout the spacetime
[56]. Therefore, the energy density comes out to be

E ¼ hHi
δ3ð0Þ ¼

X
λ¼1;2

Z
dk4πk3jβλkðtÞj2; ð42Þ

and the associated spectral energy density assumes the
following form,

∂E
∂ ln k

¼
X
λ¼1;2

4πk4jβλkðtÞj2: ð43Þ

The dimension of the above quantity is simply energy per
unit volume. Converting this into the unit of experimentally
measured quantity as

Flux
s × nm

¼ ∂E
∂ ln k

×
4πð0.2 μmÞ2

50 ps

�
Watt
nm

�
; ð44Þ

where, the typical radius of the bubble at the time of the
emission is considered as ∼200 nm [5], and we have used
experimentally measured pulse width ∼50 ps [2,4]. we
numerically evaluate the above expression using (39), and
plotted in Fig. 7. Interestingly, one can see the increasing
trend in the flux, shown in blue dotted points, with the wave
number k. The nature of the spectrum indicates that it
sufficiently produces the required amount of flux which is

close to the observed one, shown in purple dotted points. For
example, we obtained themaximum numerical value of flux,
1.5 × 10−14 Watt=nm for a frequency ∼0.7 × 105 m−1. The
upward trend of the flux seems to suggest that by invoking an
improvednumericalmethod one can indeed reach the level of
experimentally observed amplitude ∼5 × 10−12 Watt=nm
near around k ∼ 107 m−1 since the production is mainly
driven by parametric resonance. It might also happen that in
the observed frequency range, our model could not reach the
measured amplitude of the photon flux (the same issue
discussed in the previous subsection with the possible way
out). Whether or not the nature of our results can have the
potential tomatch the experimentally observed flux, we have
extrapolated our results including measured data points,
utilizing the polynomial fit used in Fig. 6, and highlighted the
fitting function with a red solid line in Fig. 7.

IV. PERTURBATIVE SPECTRUM AT
HIGH-FREQUENCY: ANALYTICAL

ESTIMATION

In this section, we discuss perturbative photon produc-
tion in the high frequency limit. We use the well-known
WKB method to get the analytic spectrum and also show
the emergence of divergent contributions if the conformal
property of the EM field is not appropriately taken into
account. To use the WKB method we rewrite the EM mode
Eq. (27) in terms of newly defined field, Ãiðt; kÞ ¼ffiffiffiffiffiffiffiffiffi
IðtÞp

Aiðt; kÞ, and obtain the modified field equation as

∂
2
t Ãiðt; kÞ þ ω2

kðtÞÃiðt; kÞ ¼ 0; ð45Þ

where the time-dependent frequency is expressed as

ω2
kðtÞ ¼

İ2ðtÞ
4I2ðtÞ −

İðtÞ
2IðtÞ þ ϵðtÞk2 ≡ J ðtÞ þ ϵðtÞk2; ð46Þ

with J ðtÞ≡ İ2ðtÞ
4I2ðtÞ −

ÏðtÞ
2IðtÞ. While the factor ϵðtÞ multiplied

with k is the time-dependent dielectric constant of the fluid
inside the oscillating bubble. In our previous analysis, we
assumed it to be unity. This particular time-dependent term
can be identified with the conformal modification of the flat
Minkowski background, as it can always be absorbed into
the modified time. However, without any time modifica-
tion, we argue that the presence of such a term will always
lead to divergent contributions indicating the nonphysical
contribution to the photon flux.
Remembering the well-known WKB method in the high

frequency limit, the temporal part of the EM field Ãiðt;kÞ is
expressed as [67]

Ãλðt;kÞ¼
γλkðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkðtÞ

p e−i
R
ωkðtÞdtþ ρλkðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðtÞ
p ei

R
ωkðtÞdt: ð47Þ

FIG. 7. The power spectrum of the photon emission from the
sonobubble is demonstrated using a log scale for both axes. The
experimental data is given along with the data numerically
calculated from our model for comparison. We have fitted both
results using “Polynomial fit” in Mathematica.
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Utilizing this the original EM field mode assumes,

Aλðt; kÞ ¼
γλkðtÞe−i

R
ωkðtÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2IðtÞωkðtÞ
p þ ρλkðtÞei

R
ωkðtÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2IðtÞωkðtÞ
p : ð48Þ

Comparing the above expression with (37) we deduce the
expression for the Bogoliubov coefficients as

αλkðtÞ ¼ γλkðtÞ
ffiffiffiffiffiffiffiffiffiffiffi
k

ωkðtÞ

s
e−i

R
ωkðtÞdt;

βλkðtÞ ¼ ρλkðtÞ
ffiffiffiffiffiffiffiffiffiffiffi
k

ωkðtÞ

s
ei
R

ωkðtÞdt: ð49Þ

Finally, the EM field equation can be equivalently written
in terms of WKB functions from (45) as the following first
order differential equations [67]:

γ̇λkðtÞ ¼
ω̇kðtÞ
2ωkðtÞ

e2i
R

t
ωkðt0Þdt0ρλkðtÞ;

ρ̇λkðtÞ ¼
ω̇kðtÞ
2ωkðtÞ

e−2i
R

t
ωkðt0Þdt0γλkðtÞ: ð50Þ

The initial no particle state (Bunch-Davis vacuum) can be
identified by assuming the condition γλkðt0Þ ¼ 1,
ρλkðt0Þ ¼ 0. As time evolves due to time-dependent back-
ground particles will be produced. In the perturbative limit,
at later time we can assume ρλkðtÞ ≪ 1, and γλkðtÞ ≈ 1. With
this approximation, we get

ρλkðtÞ ∼
1

2

Z
t
dt0

ω̇kðt0Þ
ωkðt0Þ

e−2i
R

t0
ωkðt00Þdt00 ¼ 1

2

Z
t ω̇kðt0Þ
ωkðt0Þ

1

ð−2iωkðt0ÞÞ
dðe−2iΩkðt0ÞÞ

¼ 1

k
1

2

ω̇kðt0Þ
ωkðt0Þ

1

ð−2iÞ ðe
−2iΩkðt0ÞÞjtt0 −

1

k

Z
t d
dt0

�
1

2

ω̇kðt0Þ
ωkðt0Þ

1

ð−2iÞ
�
e−2iΩkðt0Þdt0

≃
1

k
1

4

J̇ ðt0Þ þ ϵ̇ðt0Þk2
ω2
kðt0Þ

1

ð−2iÞ ðe
−2iΩkðt0ÞÞjtt0 −

1

k

Z
t d
dt0

�
1

4

J̇ ðt0Þ þ ϵ̇ðt0Þk2
ω2
kðt0Þ

1

ð−2iÞ
�
e−2iΩkðt0Þdt0; ð51Þ

where we have defined Ωkðt0Þ≡ R
t0 ωkðt00Þdt00. For such

integrals, the leading contribution usually comes from the
stationary-phase approximation. However, we numerically
checked that the phase factor Ωkðt0Þ does not have any
stationary point within the integration limit of one bubble
oscillation. In such a case, integration by parts leading to a
series in 1=k in the high frequency limit (the Riemann-
Lebesgue lemma, look at Page 439 of [68]). Therefore, the
number density in the high-frequency limit up to sublead-
ing order turns out as

jβλkðtÞj2 ∼ jρλkðtÞj2 ∼
ϵ̇2ðtÞ
ϵ2ðtÞk2 þ

2ϵ̇ðtÞJ̇ ðtÞ
ϵ2ðtÞk4 eiχðt;kÞ þ J̇ 2ðtÞ

ϵ2k6
;

ð52Þ

where, the phase factor, χðt; kÞ, arises due to quantum
interference [69]. This immediately leads to the following
form of the spectral energy density,

∂E
∂lnk

∼
ϵ̇2ðtÞk2
ϵ2ðtÞ þ 2ϵ̇ðtÞJ̇ ðtÞ

ϵ2ðtÞ eiχðt;kÞ þ J̇ 2ðtÞ
ϵ2ðtÞk2 : ð53Þ

As stated earlier we indeed see the diverging spectral energy
density ∝ k2 contribution originated from the time-depen-
dent dielectric constant, ϵðtÞ which is due to nonconformal
time coordinate.However, if one chooses the conformal time,
for example, the case when ϵ ¼ 1, leading-order spectral

energy density falls as 1=k2 in large k. This is the case we
discussed previously.
This particular decaying behavior of the spectral energy

density with the frequency, k, in the high frequency limit
infers that the perturbative approach is not sufficient to
produce the required amplitude of the sonoluminescence flux
that demands an increasing trend with the frequency up to
the ultraviolet range. From our crude estimate, in the
experimental range, k ∼ 107 m−1, the spectral energydensity
turns out as ∂E

∂lnk ∼ 10−30 Watt=nm. This estimated amount of
flux is much less compared to the nonperturbative produc-
tion, which we have obtained in the high-frequency regime
near the experimentally observed frequency range.

V. CONCLUSION

Particle production in time-dependent background is an
intriguing and well-known phenomenon in quantum field
theory (QFT) [70–72]. It has been successfully applied in
the early Universe cosmological scenario. It would indeed
be interesting if such phenomena could be observed in a
real laboratory system. Sonoluminescence is one such
phenomena where quantum photon production is believed
to be one of the possible mechanisms. A large number of
attempts have been made towards this direction in the past
with their own pros and cons. In the present analysis, we
made an attempt to revisit this to understand the photon
production mechanism better. We have to say that in the
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QFT framework if the phenomena is of quantum mechani-
cal origin the underlying mechanism of production should
be nonperturbative in nature.
We have modeled the oscillating bubble as an analog

geometric system and proposed a nonminimal coupling
prescription of the EM field with the analog geometry
through the Ricci scalar. Due to oscillating bubble dynamics,
the Ricci scalar plays the role of periodic time-dependent
coupling, and that also breaks the underlying conformal
invariance of the EM field. Due to the periodic nature of the
Ricci scalar source, and the appropriate values of the
coupling parameters, the EM field is observed to show
parametric amplification and that can seen as the production
of photons flux from the quantum vacuum. Throughout our
analysis, we stress the fact that it is this parametric resonance
which could be the potential mechanism to explain the
observed sonoluminescence phenomena.
We have computed the photon flux in the parametric

resonance regime in the experimental unit. The experimen-
tally observed frequency is around k ∼ 107 m−1, due to our
numerical limitation and high stiffness of the Ricci scalar
function, we could obtain the flux in the low-frequency
region up to ∼105 m−1. Interestingly, the magnitude of the
produced flux in terms of frequency (k) turned out to be in
the required order which may reach the experimental value
with good numerical technique. For completeness, we
further computed the analytic photon spectrum in the
perturbative framework and showed that the produced
amplitude of the flux is very low as expected.
Our model thus suggests that quantum production might

be the actual mechanism responsible for photon production
in contrast to the existing model on thermal production.
Hence, the promising next step would be to analyze the
quantumness of the produced spectrum by defining quan-
tum observables, such as Poincaré’s sphere [73,74], which
utilizes time-dependent squeezing parameter (one may look
at [73]) for such dynamical systems. Squeezing parameters
are connected to the Bogoliuobov coefficients, however,
the analysis could be performed in a somewhat, indepen-
dent manner (see [75,76]), which can also provide for a
consistency check of our model.
In the end, we should mention that the phenomena of

sonoluminescence is sensitive to the nature of the gas

inside the bubble. In this regard, we want to point out
that the theory proposed here is very much dependent on
the bubble dynamics including all the parameters (see
Sec. II A) of the medium inside the bubble. Hence, it will
be our next task to take into account different experi-
mental issues in the future [1–3].
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APPENDIX A: DERIVATION OF THE
RAYLEIGH-PLESSET EQUATION

The Rayleigh-Plesset equation governing the dynamics of
the gas-filled bubble in a medium under acoustic disturbance
can be derived in two ways; using the energy balancing
between the medium inside and outside of the bubble, and a
more advanced way utilising the Navier-Stokes equation. In
the following discussion, we will particularly, present the
derivation using the approach of energy balancing. For in-
compressible fluid flow the velocity of the medium can be
considered in the form of inverse square law [36,37], given as

uðt; rÞ
Uðt; rÞ ¼

R2ðtÞ
r2

; ðA1Þ

whereUðt; rÞ denotes the velocity at the surface of the bubble
and uðt; rÞ represents the velocity at r > R. With the con-
sideration, U ∼ Ṙ, we obtain

uðt; rÞ ¼ R2ðtÞ
r2

ṘðtÞ: ðA2Þ

By equating the kinetic energy of the fluid with thework done
by the net pressure on the bubble surface, we arrive at

1

2
ρ

Z
R

r¼∞
4πr2u2dr ¼

Z �
PðRÞ − P0 þ PaðtÞ þ

R
cs

d
dt

½PgðRÞ þ PaðtÞ�
�
4πR2dR;

⇒ 2πρR3Ṙ2 ¼
Z �

PðRÞ − P0 þ PaðtÞ þ
R
cs

d
dt

½PgðRÞ þ PaðtÞ�
�
4πR2dR; ðA3Þ

where all the physical quantities have been described in Sec. II A. Now integrating both sides of the above equation with
respect to RðtÞ, we get

RR̈þ 3

2
Ṙ2 ¼ 1

ρ

�
PðRÞ − P0 þ PaðtÞ þ

R
cs

d
dt

½PgðRÞ þ PaðtÞ�
�
: ðA4Þ
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APPENDIX B: DIAGONALIZATION
OF THE METRIC

The off-diagonal fluctuation metric discussed in the text
is given by

ds2 ¼ −fðt; rÞdt2 þ 2gðt; rÞdrdtþ pðtÞðdr2 þ r2dΩ2Þ:
ðB1Þ

Now we rewrite the above metric to make it suitable for
diagonalization,

ds2¼−fðt;rÞdt2−g2ðt;rÞ
pðtÞ dt2þ

� ffiffiffiffiffiffiffiffiffi
pðtÞ

p
drþ gðt;rÞffiffiffiffiffiffiffiffiffi

pðtÞp dt

�
2

þpðtÞr2dΩ2: ðB2Þ

Considering the following transformation in the radial
direction (see Chapter 7 of [77] for discussions on
coordinate transformation to diagonalize a spherically
symmetric metric),

dr̄
Xðt; rÞ ¼

ffiffiffiffiffiffiffiffiffi
pðtÞ

p
drþ gðt; rÞffiffiffiffiffiffiffiffiffi

pðtÞp dt; ðB3Þ

where Xðt; rÞ some arbitrary function, will be found out in a
moment. This transformation leads us to deduce the
following relations:

∂r̄
∂r

¼ Xðt; rÞ
ffiffiffiffiffiffiffiffiffi
pðtÞ

p
;

∂r̄
∂t

¼ Xðt; rÞ gðt; rÞffiffiffiffiffiffiffiffiffi
pðtÞp : ðB4Þ

Recall the metric coefficients pðtÞ and gðt; rÞ given in the
main text as

pðtÞ ¼ 1þ ξ3

R3
;

gðr; tÞ ¼ −
Ṙξ3

R4
r: ðB5Þ

Denoting, σðtÞ ¼ ξ3=ðR3Þ, we have the following integral
equations respectively,

r̄ ¼ r
3

Z
dσ

Xðt; rÞffiffiffiffiffiffiffiffiffiffiffi
1þ σ

p þ γðrÞ;

r̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σðtÞ

p Z
drXðt; rÞ þ γ̃ðtÞ: ðB6Þ

To simplify our task we proceed by considering Xðt; rÞ≡
∼XðσðtÞÞ, i.e., dependence of X only on time. This gives us
the following equation for r̄,

r̄ ¼ r
3

Z
dσ

ζðσÞffiffiffiffiffiffiffiffiffiffiffi
1þ σ

p ¼ r
ffiffiffiffiffiffiffiffiffiffiffi
1þ σ

p
XðσÞ; ðB7Þ

where, we have set γðrÞ ¼ γ̃ðtÞ ¼ 0. Differentiating the
later two equations with respect to σ gives us the following
differential equation for X,

−
1

2
X ¼ 3ð1þ σÞ dX

dσ
: ðB8Þ

Integrating both sides of the above equation, we arrive at

XðσÞ ¼ 1

ð1þ σÞ1=6 : ðB9Þ

Now, we know the functional form of the arbitrary function
we assumed. Substituting the function in (B7) we finally
obtain,

r̄ ¼ rð1þ σÞ1=3 ¼ rp1=3: ðB10Þ

This rescaling of the radial coordinate will help one to
diagonalize the metric.

APPENDIX C: DISCRETIZATION OF
SECOND-ORDER ODE USING
CRANK-NICHOLSON METHOD

Having stiffness in the differential equation, arising from
the sudden collapse of the water bubble, we resort to using
those numerical discretization methods, which provide for
better stability. The crank-Nicholson method is a popular
implicit method [61,62], mostly used in the case of partial
differential equations, such as the heat equation, to discretize
the first-order differentiation in the time part. Generically,
one can consider the following model differential equation:

PðxÞ d
2y

dx2
þQðxÞ dy

dx
þ RðxÞy ¼ 0; ðC1Þ

with the initial conditions given as, yðx0Þ and y1ðx0Þ. Now,
we decompose the above second-order ODE into two first-
order ODEs,

dy
dx

¼ y1;
dy1
dx

¼ −
QðxÞy1 þ RðxÞy

PðxÞ : ðC2Þ

The crank-Nicholson method is attributed to the following
discretization scheme,

ynþ1 ¼ yn þ h
2

�
dy
dx

				
xn

þ dy
dx

				
xnþh

�
;

¼ yn þ h
2
ðy1jxn þ y1jxnþhÞ; ðC3Þ

which we can also apply to the second equation of (C2) to
obtain,
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ynþ1
1 ¼ yn1 þ

h
2

�
dy1
dx

				
xn

þ dy1
dx

				
xnþh

�
: ðC4Þ

Where n∈Z, set of integers, and yn ≡ yðxnÞ, yn1 ≡ y1ðxnÞ.
Using the explicit expressions for dy1=dx from (C2), we can
rewrite the above equation as

ynþ1
1 ¼ yn1 −

h
2

�
dy1
dx

				
xn

þQðxnþhÞynþ1
1 þRðxnþhÞynþ1

PðxnþhÞ
�
:

ðC5Þ
Now substituting the discretization of ynþ1 from (C3) we
obtain,

ynþ1
1 ¼yn1þ

h
2

�
dy1
dx

				
xn

−
QðxnþhÞynþ1

1

PðxnþhÞ −
RðxnþhÞ
PðxnþhÞ

×

�
ynþh

2
ðy1jxn þy1jxnþhÞ

��
;

⇒ynþ1
1 ¼

yn1f1−ðh
2
Þ2RðxnþhÞ

PðxnþhÞgþh
2
fdy1dx jxn −RðxnþhÞ

PðxnþhÞyng
½1þh

2

QðxnþhÞ
PðxnþhÞþðh

2
Þ2RðxnþhÞ

PðxnþhÞ�
:

ðC6Þ

In the second step of the above equation, we have rearranged
the terms, such that all the known quantities stay on the right-
hand side. The steps up to the evaluation of the solution
proceed as follows. Starting from the initial conditions yðx0Þ
and y1ðx0Þ, evaluate the y1ðx0 þ hÞ from the above equation,
and substitute in (C3), which will provide for the solution
yðx0 þ hÞ. Now repeat the iteration to generate the solution
for the consecutive points.

APPENDIX D: FITTED POLYNOMIAL
FOR THE NUMBER DENSITY

Having a promising trend (Fig. 6) in the number density
of photons, evaluated through our formalism, with the
experimental measurement, compelled us to fit our results
by utilizing the following polynomial,

y ¼ 93.6x − 105.5x2 þ 51.3x3 − 12.6x4 þ 1.6x5 − 0.08x6

− 0.004x7 þ 0.0008x8 − 5 × 10−6x9 þ 1.4 × 10−6x10

− 1.6 × 10−8x11; ðD1Þ

where x≡ ln k and y≡ ln jβkj2.
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