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We study two-dimensional N ¼ ð0; 2Þ and N ¼ ð0; 4Þ theories derived from compactifying class S
theories on S2 with a topological twist. We present concise expressions for the elliptic genera of both
classes of theories, revealing the topological quantum field theory structure on Riemann surfaces Cg;n.
Furthermore, our study highlights the relationship between the left-moving sector of the (0,2) theory and
the chiral algebra of the four-dimensional N ¼ 2 theory. Notably, we propose that the (0,2) elliptic
genus of a theory of this class can be expressed as a linear combination of characters of the corresponding
chiral algebra.
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I. INTRODUCTION

The study of quantum field theory (QFT) and string
theory over the years has continually revealed deeper
structures and interconnected webs of relationships. At
the heart of this intricate web lies the six-dimensional (6D)
N ¼ ð2; 0Þ superconformal field theory (SCFT), which
describes the low-energy dynamics on the world volume of
M5-branes in M-theory. The 6D N ¼ ð2; 0Þ SCFT stands
out due to its maximal supersymmetry and the highest
spacetime dimension that hosts a superconformal algebra.
While directly handling the dynamics of 6D N ¼ ð2; 0Þ
SCFT is challenging due to the lack of a Lagrangian
description, it serves as a central hub from which a plethora
of lower-dimensional theories can be derived through
compactifications on various manifolds. When M5-branes
wrap a certain manifoldM with a suitable topological twist,
it effectively gives rise to a lower-dimensional QFT T ½M�
associated with the manifold, leading to a rich interplay
between geometry and QFT. Starting from Gaiotto’s con-
struction [1], subsequent development along this direction
elucidated how various QFTs can be geometrically engi-
neered from M5-branes, revealing a profound geometric
structure underlying the space of QFTs.

A large family of four-dimensional (4D) N ¼ 2 SCFTs
T ½C� was constructed in [1] by considering M5-branes
wrapping Riemann surfaces C with punctures. These
theories are collectively known as theories of class S.
The complex moduli of the surfaces encode the gauge
couplings of the SCFTs, and the punctures on the Riemann
surface prescribing boundary conditions for the M5-brane
determine the flavor symmetry and operator spectrum in
the SCFTs. The class S construction furthers our under-
standing of M5-branes by offering a concrete, lower-
dimensional perspective on the dynamics of M5-branes,
and at the same time offers a geometric viewpoint on the
resulting 4D N ¼ 2 theories.
Exact supersymmetric partition functions play an essen-

tial role in enhancing this geometric viewpoint. In particular,
superconformal indices stand out as simple, yet powerful
observables that count Bogomol’nyi-Prasad-Sommerfield
(BPS) states (states that preserve a portion of supersym-
metry). Since they are invariant under exactly marginal
deformations, they encode crucial information about the
Hilbert space even in the strong-coupling regime. A series
of outstanding works [2–6] unveiled a topological quantum
field theory (TQFT) structure underlying the supercon-
formal indices of T ½C� by identifying the indices with
correlation functions on the Riemann surfacesC. The TQFT
description maps various physical manipulations on the 4D
theory T ½C�, such as gauging, Higgsing, and the insertion of
nonlocal operators, to geometrical operations and objects on
the corresponding Riemann surface C. In this geometric
viewpoint, theories of class S and their indices can be built
by gluing simple building blocks, and generalized S-duality
becomes apparent.
A remarkable development in the study of 4D N ¼ 2

SCFTs is the deep connection to two-dimensional (2D)
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chiral algebra/vertex operator algebra (VOA) [7–10],
referred to as an SCFT/VOA correspondence. In [7], it
was shown that any 4D N ¼ 2 SCFT T 4D contains a
protected subsector consisting of so-called Schur operators
restricted on a 2D plane, which furnishes a 2D chiral algebra
χðT 4DÞ. Two notable examples of Schur operators are the
SUð2ÞR current and the flavor moment map operators, which
represent the stress-energy tensor and Kac-Moody gener-
ators in χðT 4DÞ. Through the correspondence, rich 4D
physics is reincarnated in a 2D context, inspiring deeper
understanding and a new construction of chiral algebras. In
turn, by leveraging the rigidity of chiral algebras, we gain
novel perspectives on 4D SCFTs [11–20]. In particular, the
Schur index, which is a special limit of 4D N ¼ 2 super-
conformal index, gets mapped to the vacuum character of
χðT 4DÞ. As discussed in [15], the fact that the stress-energy
tensor in χðT 4DÞ is not a Higgs branch operator implies
the existence of a certain null state (or descendant of null) in
the Verma module of χðT 4DÞ. Through Zhu’s recursion
formula [21,22], such a state translates to a modular differ-
ential equation that the Schur index should solve. In fact,
additional null states may exist that lead to a set of flavored
modular differential equations that all module characters of
χðT 4DÞ must satisfy [23,24], putting stringent constraints on
both the chiral algebra and the 4D physics.
In this paper, we push forward this research direction

by further compactifying class S theories on S2 with
a topological twist. The 4D N ¼ 2 SCFTs have an
inherent SUð2ÞR × Uð1Þr R-symmetry. A topological twist
on S2 using Uð1ÞR × Uð1Þr results in 2D N ¼ ð0; 2Þ
theories [25,26]. On the other hand, a twist with Uð1Þr
gives rise to 2DN ¼ ð0; 4Þ theories [27]. In this work, we
provide remarkably simple closed-form expressions of the
(0,2) theories analogous to Lagrangian class S theories
and those of the (0,4) theories of all class S theories of
type Awith genus g > 0. Schematically, the elliptic genera
for both classes take the form

I2D
g;n ¼ Hg−1

Yn
i¼1

I λiðbiÞ: ð1:1Þ

Here, H denotes the contribution from a handle on a
Riemann surface Cg;n and Iλi represents the contribution
from the ith puncture. Surprisingly, each of these contri-
butions, both H and I λi , can be expressed as a product of
theta functions. This structure, as we will demonstrate,
naturally unveils the explicit TQFT construction of elliptic
genera on Riemann surfaces Cg;n for both classes of 2D
theories.
Moreover, in the IR, the left-moving sector of a (0,2)

theory from compactifying T 4D exhibits a connection to the
associated chiral algebra χðT 4DÞ. Concretely, we propose
that the (0,2) elliptic genus is a linear combination of
characters of the chiral algebra χðT 4DÞ, which can be

verified using flavored modular linear differential equations.
This relation suggests that the (0,2) theory is endowed
with the VOA χðT 4DÞ as the IR symmetry. Techniques for
studying VOAs can be applied to gain insights into the
Hilbert space and correlation functions of 2D N ¼ ð0; 2Þ
theories at the IR fixed point.
This paper is structured as follows. In Sec. II we explore

2D N ¼ ð0; 2Þ quiver gauge theories analogous to
Lagrangian class S theories. Our primary objective is to
unveil the duality between these theories and Landau-
Ginzburg (LG) models while also exploring their connec-
tion to VOAs. In Sec. II A the focus is on establishing the
relation between 2D (0,2) theories and 4D N ¼ 2 SCFTs.
We consider a twisted compactification of 4D N ¼ 2

SCFTs on S2, which leads to 2D (0,2) quiver gauge theories.
We further discuss the connection between the 4D N ¼ 2
Schur index and the (0,2) elliptic genera. Additionally, we
put forth a conjecture that the (0,2) elliptic genus can be
expressed as a linear combination of characters of the
corresponding chiral algebra. In Sec. II B we examine 2D
(0,2) SUð2Þ × Uð1Þ quiver gauge theories. Here, we inves-
tigate our proposal on a case-by-case basis, demonstrating
that these theories have LG duals. In specific cases, we
identify the elliptic genus as a linear combination of
characters of the associated VOA. When explicit characters
are not available, we check that the elliptic genus solves the
modular linear differential equations that constrain the VOA
characters. In the end, we demonstrate that the (0,2) elliptic
genera exhibit a TQFT structure on Riemann surfaces with a
minimal number of U(1) gauge groups. In Sec. II C we
extend the computation to SUðNÞ × Uð1Þ gauge theories.
Last, Sec. II D collects a few remarks on non-Lagrangian
theories, providing a perspective on this particular area
of study.
In Sec. III we study 2DN ¼ ð0; 4Þ theories from another

twisted compactification of A-type class S theories on S2.
Since theories in this class generally lack Lagrangian
descriptions, we make use of the elliptic inversion formula
to compute their elliptic genera in Secs. III B and III C.
Given that such a (0,4) theory is characterized by a
Riemann surface with punctures decorated by embedding
SUð2Þ ↪ SUðNÞ, in Sec. III D we propose a Higgsing
procedure to derive the contributions to the (0,4) elliptic
genus from the puncture data. We show that the elliptic
genera of all of these theories can be reorganized as simple
products of theta functions, and they exhibit a TQFT
structure under the cut-and-join operations on Riemann
surfaces. We end this section by commenting on future
directions and open problems.
Appendix A consolidates the notations and conventions,

and introduces definitions of special functions and modular
forms used throughout this paper. In Appendix B we revisit
the definitions of Jeffrey-Kirwan (JK) residues, given their
intricate nature and frequent reference in this paper. For
readers interested in in-depth calculations, Appendix C
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offers detailed JK residue computations for (0,2) elliptic
genera, while Appendix D provides those for (0,4) elliptic
genera.

II. N = ð0;2Þ GAUGE/LG DUALITY AND VOAs

In this section, we study 2D N ¼ ð0; 2Þ quiver gauge
theories analogous to 4DN ¼ 2 theories of class S [1] with
Lagrangian descriptions. We construct these (0,2) quiver
gauge theories by gauging a basic building block consisting
of (0,2) chiral multiplets corresponding to a sphere with
two maximal punctures and one minimal puncture. This
family of 2D N ¼ ð0; 2Þ theories includes a class of
theories obtained via a particular twisted compactification
on S2, called Schur-like reductions [25], of class S theories
with Lagrangian descriptions. For this subclass, we study
the relation between the elliptic genus of a (0,2) theory and
characters of the chiral algebra of the corresponding class S
theory. Additionally, we demonstrate that, under certain
conditions, the (0,2) quiver gauge theories are dual to LG
models.

A. Relation between 2D (0,2) theories
and 4D N = 2 SCFTs

1. 4D N = 2 SCFT and Schur index

A 4D N ¼ 2 superconformal theory has the symmetry
algebra SUð2; 2j2Þ, which is generated by supercharges
ðQI

α; Q̃
I
α̇Þ, their superconformal partners ðSαI ; S̃α̇I Þ, and other

bosonic symmetry generators. The 4D N ¼ 2 supercon-
formal index counts the 1=8-BPS states that are annihilated
by one supercharge and its conformal partner, say Q̃1

−̇
and S̃−̇1 . In other words, it provides a measure of the Q̃1

−̇
cohomology, which consists of states that saturate the
bound1

δ̃1−̇ ≔ fS̃−̇1 ; Q̃1
−̇g ¼ E − 2j2 − 2Rþ r:

Here we use the Cartan generators ðE; j1; j2; R; rÞ of
SUð2; 2j2Þ. Note that j1;2 represents the angular momentum
of SOð4Þ ≃ SUð2Þ1 × SUð2Þ2, and ðR; rÞ are quantum
numbers associated with the N ¼ 2 superconformal
R-symmetry SUð2ÞR × Uð1Þr. We refer to Table I for
charges of supercharges under these symmetry groups.
Then, the 4D N ¼ 2 superconformal index, denoted as
I4Dðp; q; tÞ, is defined as follows:

I4Dðp; q; tÞ ¼ Trð−1ÞFe−βδ̃1−̇p−j1þj2−rqj1þj2−rtRþr
Y
a

zfaa :

ð2:1Þ

The variables za correspond to flavor fugacities, and fa
represents flavor charges. Evaluating the 4D N ¼ 2
superconformal index can be done using single-letter
indices [2–5].
The contribution of the half-hypermultiplet with repre-

sentation λ to the multiparticle index yields the elliptic
gamma function (A4), given by

I4D
1
2
H
ðz;p; q; tÞ ¼

Y
w∈ λ

Y∞
i;j¼0

1 − z−wpiþ1qjþ1=
ffiffi
t

p

1 − zw
ffiffi
t

p
piqj

¼
Y
w∈ λ

Γðzw ffiffi
t

p Þ; ð2:2Þ

where w runs over the weights of the representation λ. The
4D N ¼ 2 vector multiplet contributes as follows:

I4D
vecðz;p; q; tÞ ¼

κrkGΓðpqt ÞrkG
jWGj

Y
α∈Δ

Γðzα pq
t Þ

ΓðzαÞ ;

κ ¼ ðp;pÞðq; qÞ; ð2:3Þ

where Δ represents the set of roots associated with the
gauge group G and jWGj is the order of the Weyl group of
G. Then, the 4D N ¼ 2 superconformal index of a quiver
gauge theory can be schematically expressed as the contour
integral

I4Dða;qÞ¼
I
jzj¼1

Y
gauge

dz
2πiz

I4D
vecðz;p;q;tÞ

Y
matter

I4D
1
2
H
ðz;p;q;tÞ:

ð2:4Þ

The 4D N ¼ 2 superconformal index has various
specializations [4,5]. Among them, the Schur index can
be obtained at the specialization of t ¼ q, and it counts
1=4-BPS operators consisting of Higgs-branch operators
annihilated by ðQ1

−; S−1 Þ and ðQ̃1
−̇; S̃

−̇
1 Þ. In the Schur limit,

the hypermultiplet contribution is reduced to

I4D
H ¼ Γðz� ffiffi

t
p Þ ≔ Γðz ffiffi

t
p ÞΓðz−1 ffiffi

t
p Þ⟶t→q

ISchur
H ¼ ηðqÞ

ϑ4ðzÞ
;

ð2:5Þ

where ηðqÞ is the Dedekind eta function (A6) and the vector
multiplet contribution is reduced to

I4D
vec ¼

κrkGΓðpqt ÞrkG
jWGj

Y
α∈Δ

Γðzα pq
t Þ

ΓðzαÞ ⟶
t→q

ISchur
vec

¼ ηðqÞ2rkG
jWGj

Y
α∈Δ

i
ϑ1ðzαÞ
ηðqÞ : ð2:6Þ

Leveraging the state/operator correspondence, a Schur
state can be obtained from a Schur operatorOð0Þ applied to

1Compared with the notation in [7], the supercharges Q1
−; Q̃

1
−̇

in this paper are identified with Q1
−; Q̃2−̇ there.
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the vacuum. The Schur operator at the origin (anti)commutes
with the set of the four supercharges. While shifting the
operator from this point generally disrupts the BPS con-
dition, one can change the position of the operator across
the R2

34 ¼ Cz;z̄ plane using the twisted translation proposed
in [7]:

Oðz; z̄Þ ≔ e−zL−1−z̄L̂−1Oð0ÞeþzL−1þz̄L̂−1a;

where

L−1 ¼ Pþþ; L̂−1 ¼ P−− þ R2
1:

The twisted translated Schur operator Oðz; z̄Þ is also
annihilated by the two supercharges

Q1 ≔ Q1
− þ S̃−̇1 ; Q2 ≔ Q̃1

−̇ − S−1 : ð2:7Þ

Moreover, the z̄ dependence of Oðz; z̄Þ turns out to be Q1;2

exact. Consequently, at the level of Q1;2 cohomology, the
cohomology classOðzÞ ≔ ½Oðz; z̄Þ� depends on the location
holomorphically in z. Furthermore, the operator product
expansion coefficients of these Schur operators (as coho-
mology classes) are also holomorphic, forming a 2D VOA/
chiral algebra on the plane Cz;z̄, as discussed in [7].
The space of Schur operators defines the space of states

of the associated VOA, and thus the Schur limit of the
superconformal index, which counts the Schur operators
with signs, equals the vacuum character of the associated
VOA. The associated chiral algebra and the vacuum
character are interesting and powerful invariants of 4D
N ¼ 2 SCFTs, which capture various aspects of 4D
physics. Nonperturbative dynamics in four dimensions
can be probed by surface defects [28]. To study the relation
of the chiral algebra, one can introduce half-BPS surface
operators in T preserving the same nilpotent supercharges
Q1;2 where the support of the surface defect transversely
intersects with the chiral algebra plane Cz;z̄ at the origin.
From the perspective of the chiral algebra, such a surface
defect introduces a nontrivial boundary condition at the
origin, and the defect operators are acted on by the Schur
operators in the 2D bulk through bulk-defect operator
product expansion. Therefore, it is believed that such
surface defects introduce nonvacuum modules of the
associated chiral algebra.
Similar to the original Schur index, one can count defect

operators in theQ1;2 cohomology to obtain the defect Schur
index. In general, it is difficult to compute graded dimen-
sions of such operators from first principles. However, a
superconformal index in the presence of a surface defect
can be evaluated with suitable manipulations [29,30]. A
notable example of the manipulations involves vortex
defects, which can be derived using the Higgsing procedure
on a 4D N ¼ 2 SCFT [29]. The vortex defect index can be
computed by an appropriate residue computation on the

superconformal index of the theory T UV. For example, a
vortex defect with vorticity k in an A1-type class S theory
T 2½Cg;n� can be computed by (up to some factors q)

Idef
g;nðb1;…; bnÞ ¼ Res

bnþ1→q
kþ1
2

ηðτÞ2
bnþ1

Ig;nþ1ðb1;…; bnþ1Þ:

ð2:8Þ

Here bi denote the SU(2) flavor fugacities that are manifest
in the class S construction.
In particular, the techniques to evaluate the Schur index

with a surface defect have been developed to study the
relation to the chiral algebra [23,31,32]. The original Schur
index of T can be viewed as a supersymmetric partition
function on S3φ;χ;θ × S1t (with suitable background fields
turned on),2 and it localizes to a multivariate contour integral
of an elliptic integrand ZðaiÞ, where the integration
variables ai capture the holonomy of the dynamical gauge
field along the temporal S1 [33,34]. To define a surface
defect, one can also specify a BPS singular boundary
condition of the gauge fields at the defect plane R2 ⊂ R4

or, equivalently, at a particular T2 in S3 × S1. Such a
singular background shifts the corresponding integration
variables ai → ai þ λiτ, where the λi reflect the singular
boundary condition. As the values of λi vary, the shifted
integration variables eventually cross the integral contour.
Consequently, the Schur index with a surface defect is given
by integration around a different contour, instead of the unit-
circle integral like (2.4). The resulting defect Schur index is
expected to be a linear combination of nontrivial characters
of the associated chiral algebra.

2. 2D (0,2) theory and elliptic genus

2D N ¼ ð0; 2Þ supersymmetric field theories have
attracted considerable attention due to their importance in
theoretical and mathematical physics. In a 2D N ¼ ð0; 2Þ
gauge theory, the matter content generically consists of
chiral multiplets, Fermi multiplets, and vector multiplets. A
chiral multiplet ðψþ;ϕÞ contains a complex scalar field and
a right-moving Weyl fermion ψþ, while a vector multiplet
ðAμ; λ−Þ contains a gauge field Aμ and gauginos λ−; λ̄−. A
Fermi multiplet ðψ−; EðϕÞÞ consists of a left-moving Weyl
fermion ðψ−Þ and an E term which is a holomorphic
function of some chiral multiplets. For a comprehensive
explanation, we refer the reader to [35].
In the analysis of 2D supersymmetric theories, a funda-

mental tool is the elliptic genus [36], which counts BPS
states protected under renormalization group flow.
Conceptually, the elliptic genus can be understood as a
partition function defined on a torus with a complex

2Here the S3 is viewed as a T2
φ;χ fibering over an interval

½0; π=2�θ. The points with θ ¼ 0 and θ ¼ π=2 form two
special tori.

SATOSHI NAWATA, YIWEN PAN, and JIAHAO ZHENG PHYS. REV. D 109, 105015 (2024)

105015-4



structure parameter τ, where fermions exhibit periodic
boundary conditions along the temporal circle. Moreover,
the spatial circle allows for two distinct types of boundary
conditions, Ramond and Neveu-Schwarz (NS), both appli-
cable to the left- and right-moving sectors. For the sake of
simplicity, we focus on the Ramond-Ramond and NS-NS
sectors, referring to them as the Ramond and NS sectors,
respectively.
In the context of N ¼ ð0; 2Þ gauge theory, the elliptic

genus in the Ramond and NS sectors can be defined,
respectively, by

I ð0;2ÞRðq; zÞ ¼ TrRð−1ÞFqHLq̄HR

Y
a

zfaa ;

I ð0;2ÞNSðq; zÞ ¼ TrNSð−1ÞFqHLq̄ðHR−R
2
ÞY

a

zfaa ; ð2:9Þ

where the left- and right-moving Hamiltonians are 2HL ¼
H þ iP and 2HR ¼ H − iP, respectively, in the Euclidean
signature and R represents the Uð1ÞR R charge. In a
superconformal theory, these operators correspond to the
zero-mode generators L0, L̄0, and J̄0 of the superconformal
algebra.
Due to supersymmetry, only right-moving ground states

(HR ¼ 0) contribute to the elliptic genus in the Ramond
sector, while right-moving chiral primary states (HR ¼ R

2
)

in the right-moving sector contribute to the elliptic genus in
the NS sector. Consequently, the elliptic genera in both
sectors are holomorphic functions of q.
For N ¼ ð0; 2Þ theories described by a Lagrangian, the

computation of the elliptic genus depends on the specific
details of the gauge theory and its matter content, as
outlined in [37,38]. Let us consider the contributions from
different types of multiplets.

Chiral multiplet: The contribution of an N ¼ ð0; 2Þ
chiral multiplet in a representation λ of the gauge and
flavor group is

I ð0;2ÞR
chi ðq; zÞ ¼

Y
w∈ λ

i
ηðqÞ
ϑ1ðzwÞ

;

I ð0;2ÞNS
chi ðτ; uÞ ¼

Y
w∈ λ

ηðqÞ
ϑ4ðqr−1

2 zwÞ : ð2:10Þ

Fermi multiplet: The contribution of an N ¼ ð0; 2Þ
Fermi multiplet in a representation λ of the gauge
and flavor group is given by

I ð0;2ÞR
fer ðq; zÞ ¼

Y
w∈ λ

i
ϑ1ðzwÞ
ηðqÞ ;

I ð0;2ÞNS
fer ðτ; uÞ ¼

Y
w∈ λ

ϑ4ðqr
2zwÞ

ηðqÞ : ð2:11Þ

Vector multiplet: The contribution of an N ¼ ð0; 2Þ
vector multiplet with gauge group G is

I
ð0;2ÞRjNS
vec ðq; zÞ ¼ ηðqÞ2rkG

jWGj
Y
α∈Δ

i
ϑ1ðzαÞ
ηðqÞ : ð2:12Þ

Note that the elliptic genera in the NS sector for chiral and
Fermi multiplets depend on the R charge r of the multiplet.
Then, the elliptic genus of a quiver gauge theory can be

schematically expressed as the Jeffrey-Kirwan (JK) residue
integral [38–41]

I ð0;2ÞRjNS ¼
Z
JK

Y
gauge

dz
2πiz

I
ð0;2ÞRjNS
vec ðq; zÞ

×
Y
matter

I
ð0;2ÞRjNS
chi ðq; zÞI ð0;2ÞRjNS

fer ðq; zÞ: ð2:13Þ

In this section, our computation focuses on NS elliptic
genera to compare with characters of the associated VOA.
Nevertheless, Ramond elliptic genera can be obtained from
the NS ones simply by replacing ϑ4 by ϑ1.
Since (0,2) theories are chiral theories, one must pay

attention to anomalies. Let us consider a (0,2) theory with
a global symmetry F described by a simple Lie algebra.
The ’t Hooft anomaly coefficient kF associated with this
symmetry can be determined by

Trγ3fafb ¼ kFδab: ð2:14Þ

Here, fa represents the generators of F, γ3 denotes the
gamma matrix that quantifies chirality, and the trace is
taken over Weyl fermions in the theory. For a global
anomaly, the computation involves evaluating the differ-
ence between the sums over the sets of (0,2) chiral and
Fermi multiplets:

kF ¼
X

Φ∈ ð0;2Þ chiral
TðRΦ

F Þ −
X

Ψ∈ ð0;2Þ Fermi

TðRΨ
FÞ; ð2:15Þ

where TðRFÞ represents the index of the representation RF
of F. Note that the (0,2) supermultiplet of the gauge-
invariant field strength can be treated as a Fermi multiplet,
and the gaugino contributes to the anomaly if it is charged
under F. In this paper, we focus solely on SUðNÞ groups as
instances of non-Abelian symmetries. For these groups, the
indices are given by Tð□Þ ¼ 1

2
and TðadjÞ ¼ N. In cases

where the theory possesses two U(1) symmetries, Uð1Þ1
and Uð1Þ2, with charges f1 and f2, respectively, a mixed
’t Hooft anomaly can emerge:

k12 ¼ Trðγ3f1f2Þ: ð2:16Þ
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Certainly, any gauge anomaly must vanish for the theory to
be well defined.
In particular, the anomaly associated with the Uð1ÞR

symmetry is related to the right-moving central charge cR as

cR ¼ 3Trðγ3R2Þ: ð2:17Þ

To determine Uð1ÞR charges of various fields, the c
extremization is performed if the theory meets the following
two assumptions [42,43]:
(1) The theory is bounded and the energy spectrum is

bounded from below.
(2) The classical vacuum moduli space is normalizable.

These conditions imply several standard properties in
CFTs, including the holomorphicity of the conserved
currents and the existence of an operator with a lowest
and positive dimension in a conformal family. Once the
central charge cR is determined, the left-moving central
charge can be obtained from the gravitational anomaly,
which is the difference between the number of chiral and
Fermi multiplets,

cR − cL ¼ Trðγ3Þ: ð2:18Þ

The presence of anomalies can be observed directly at
the level of (0,2) elliptic genera [27]. Let us focus on an
SUðNÞ global symmetry whose fugacities are denoted by
b1;…;N , with

Q
N
i¼1 bi ¼ 1 in an elliptic genus. Then, the

corresponding ’t Hooft anomaly can be seen in the shift of
the elliptic genus as

I ð0;2ÞðbÞ → ðqbi=bjÞ2kFI ð0;2ÞðbÞ
as bi → qbi; bj → bj=q: ð2:19Þ

For a U(1) ’t Hooft anomaly, the elliptic genus behaves as

I ð0;2ÞðcÞ → ð−q1=2cÞkFI ð0;2ÞðcÞ as c → qc; ð2:20Þ

where c is the corresponding U(1) fugacity. In particular,
for a theory to be gauge anomaly free, the integrand of its
elliptic genus (2.13) must be invariant under shifts of the
gauge fugacities zi → qzi.

3. Twisted compactifications of 4D N = 2 SCFTs on S2

A 2D N ¼ ð0; 2Þ theory can be obtained from a 4D
N ¼ 1 gauge theory and, in particular, a 4D N ¼ 2

Lagrangian SCFT by a compactification on S2 with a
certain topological twist. Such a reduction was referred to
as a Schur-like reduction in [25]. (See also Sec. Vof [26].)
The first explicit supersymmetric localization of 4D

N ¼ 1 theories on T2 × S2 was carried out in [44]. Sub-
sequently, its relationship with the 2D N ¼ ð0; 2Þ elliptic
genera was explored around the same time [25–27,45,46].

In this context, let us summarize the key aspects involved in
the twisted compactification of 4D N ¼ 1 theories on S2.
First of all, the generic holonomy group Spinð4Þ ¼

SUð2Þ1 × SUð2Þ2 reduces to Uð1ÞT2 × Uð1ÞS2 on the back-
ground T2 × S2, where Uð1ÞT2 [Uð1ÞS2] is the U(1) sub-
group of the diagonal [antidiagonal] subgroup of
SUð2Þ1 × SUð2Þ2. In order to define covariant constant
supercharges on S2, we perform a topological twist of
Uð1ÞS2 along with a global Uð1ÞR symmetry. Additionally,
in a Lagrangian theory, the Uð1ÞR charge of a 4D N ¼ 1
chiral multiplet must be an integer to ensure a well-defined
compactification on S2.
Under this compactification, a 4D N ¼ 1 chiral multi-

plet with Uð1ÞR charge r decomposes into ð1 − rÞ (0,2)
chiral multiplets if r < 1, or ðr − 1Þ (0,2) Fermi multiplets
if r > 1. When r ¼ 1, the 4D chiral multiplet does not
contribute to the 2D theory.
In general, the T2 × S2 partition function involves

the summation of magnetic fluxes of gauge fields.
Nevertheless, if the Uð1ÞR charges of all chiral multiplets
are non-negative, then the contributions from all nonzero
flux sectors vanish and only the zero flux contribution
remains.
The R symmetry of 4D N ¼ 2 superconformal theory is

SUð2ÞR × Uð1Þr. To perform the twisted compactification
above, we treat the theory as an N ¼ 1 theory by selecting
a Uð1ÞR ⊂ SUð2ÞR × Uð1Þr. Let us consider the choice
R ¼ Rþ r

2
. As in Table I, only the superchargesQ1

−; Q̃
2
−̇ are

neutral under Rþ 2ðj1 − j2Þ and therefore survive under
this twist. These two supercharges share the same Uð1ÞT2

charge 2ðj1 þ j2Þ ¼ −1, and hence this twist leads to an
N ¼ ð0; 2Þ supersymmetry. The symmetry R ¼ Rþ r

2
is

referred to as the 2D (0,2) Uð1ÞR symmetry.
With the choice of R, the adjoint chiral Φ in an N ¼ 2

vector multiplet has r ¼ 1, which does not contribute to the
2D theory. Consequently, anN ¼ 2 vector multiplet simply
reduces to a (0,2) vector multiplet. On the other hand, the
hypermultiplet (q; q̃) is assigned a fractional charge r ¼ 1

2
.

In order for their R charges to be integers, we further twist
with the flavor symmetry Uð1Þf, which acts on the two
chirals (q; q̃) with opposite charges. Under the resulting
R ¼ Rþ 1

2
ðr − fÞ, the scalars q and q̃ acquire charges

r ¼ 0 and r ¼ 1, respectively. Hence, an N ¼ 2 hyper-
multiplet reduces to a (0,2) chiral multiplet in the repre-
sentation of q (see Table I). In this paper, the above process
of compactification on S2 with the topological twist is
referred to as the (0,2) reduction.
For a Lagrangian theory, an interesting observation

emerges when comparing the Schur limit (2.5) and (2.6)
with the contributions of the (0,2) chirals (2.10) and the
vector multiplet (2.12) to the elliptic genus. The integrand of
the elliptic genus for the 2D (0,2) theory after the reduction
coincides with that of the Schur index of the original 4D
N ¼ 2 SCFT, upon suitable shifts of U(1) flavor fugacities.
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However, it is important to note that the computation of the
(0,2) elliptic genus involves the JK residue integral, whereas
the Schur index is evaluated by a contour integral along the
unit circles. We provide a more detailed account of this
comparison in the subsequent discussion.

4. Relation to VOAs

In the following analysis, we explore the 2D (0,2) quiver
gauge theories obtained by gauging the free 2D (0,2)
theories associated with the three-punctured spheres.
This includes, as a subclass, the theories from the (0,2)
reduction of Lagrangian class S theories. We demonstrate
that under a certain condition, surprisingly, these quiver
theories including the reduced class S theories are dual to
LG models.
Let us discuss the central charges of the (0,2) reduction of

Lagrangian class S theories. As illustrated below (2.17), if
the two assumptions are satisfied, the central charges are
determined by the c extremization. However, the vacuum
moduli space of the (0,2) reduction of a class S theory is
noncompact, so the second assumption of the c extremiza-
tion is violated. Specifically, in such situations, a flavor
current related to a noncompact direction is nonholomorphic
so that it does not mix with the R-symmetry current [43,47].
Consequently, the naive application of the c extremization to
a (0,2) theory of this class can yield negative central charges.
Nonetheless, the left-moving central charge turns out to
coincide with that of the VOA of the parent class S theory
(see Sec. 5.2 of [26]),

cnaiveL ¼ −12c4D; ð2:21Þ

if we assign the “wrong” Uð1ÞR charges to chiral multiplets
as a result of the naive application of the c extremization

rΦ ¼ 1: ð2:22Þ

To get the physical central charge, we must enforce no
mixing with any nonholomorphic flavor current arising
from noncompact directions in the moduli space. At a
practical level, we assign zero Uð1ÞR charges,

rΦ ¼ 0; ð2:23Þ

to the chiral multiplets which parametrize the noncompact
directions. This procedure yields the correct positive central
charges where the left-moving cL is shifted from cnaiveL of the
VOA associated with the 4D theory [26,48] by

cL ¼ cnaiveL þ 3nh ¼ cnaiveL þ 12ð5c4d − 4a4dÞ; ð2:24Þ

where nh represents the number of hypermultiplets and
a4d; c4d are the anomaly coefficients in the corresponding
class S theory. This suggests that the (0,2) theory flows to an
SCFT fixed point despite the noncompact moduli space.
Exploring 2D (0,2) theories at the IR fixed point through

the viewpoint of associated VOA is of significant impor-
tance because the BPS operators in the (0,2) IR CFT
constitute a VOA. As elucidated in [49], the VOA asso-
ciated with a (0,2) theory of this type arises from a Bechi-
Rouet-Stora-Tyutin reduction of the bcβγ system at zero
gauge coupling, where the βγ systems in the corresponding
gauge representations come from the free (0,2) chiral
multiplets, and small bc ghosts in the adjoint of the gauge
group come from the free vector multiplets. The conformal
weights of an involved βγ system are ðhβ; hγÞ ¼ ð1 − λ; λÞ,
where λ is related to the correct R-charge assignment of the
IR CFT. The state space of the resulting VOA is indepen-
dent of the parameter λ, but the parameter affects the stress-
energy tensor T of the (0,2) IR CFT. In fact, the shift (2.24)

TABLE I. Symmetries of 4D N ¼ 2 supercharges and fields. The 4D N ¼ 1 chirals ðq; q̃Þ constitute N ¼ 2

hypermultiplets and Φ represents the N ¼ 1 adjoint chiral in an N ¼ 2 vector multiplet. The fifth column denotes
the Uð1Þf flavor symmetry that distinguishes q and q̃. The topological twist of Uð1ÞS2 with Uð1ÞRþ1

2
ðr−fÞ results in

the N ¼ ð0; 2Þ supersymmetry, whereas the twist with Uð1Þr yields the N ¼ ð0; 4Þ supersymmetry.

SUð2Þ1 SUð2Þ2 SUð2ÞR Uð1Þr Uð1Þf Uð1ÞT2 Uð1ÞS2 Uð1Þð0;2Þ Uð1Þð0;4Þ

Q1
− − 1

2
0 1

2
1 0 −1 −1 0 0

Q1þ 1
2

0 1
2

1 0 1 1 2 2
Q2

− − 1
2

0 − 1
2

1 0 −1 −1 −1 0
Q2þ 1

2
0 − 1

2
1 0 1 1 1 2

Q̃1
−̇ 0 − 1

2
1
2

−1 0 −1 1 1 0

Q̃1
þ̇ 0 1

2
1
2

−1 0 1 −1 −1 −2
Q̃2

−̇ 0 − 1
2

− 1
2

−1 0 −1 1 0 0

Q̃2
þ̇ 0 1

2
− 1

2
−1 0 1 −1 −2 −2

q 0 0 1
2

0 1 0 0 0 0
q̃ 0 0 1

2
0 −1 0 0 1 0

Φ 0 0 0 2 0 0 0 1 2
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in central charge can be traced back to the difference
between the stress-energy tensor T and Tχ of the VOA
associated with the 4D theory by the derivative of the Uð1Þ
flavor current J of the βγ system; schematically [48,49],

T ¼ Tχ þ
�
1

2
− λ

�
∂J: ð2:25Þ

Therefore, the deviation from λ ¼ 1
2
reflects the noncom-

pact nature of the vacuum moduli space, which invalidates
the naive application of the c extremization.
From our previous discussions, we observed that the

integrand of the (0,2) elliptic genus of the reduction of 4D
N ¼ 2 Lagrangian SCFT agrees with the integrand of the
Schur index [upon appropriate redefinitions of U(1) flavor
fugacities], albeit with distinct contour choices. As dis-
cussed at the end of Sec. II A 1, a different contour of the
integrand is expected to provide the Schur index with a
surface defect, which is intrinsically tied to nonvacuum
characters of the corresponding VOA χðT 4DÞ. Hence, we
investigate the relationship between the (0,2) reduction of
the class S theory and the corresponding VOA from this
perspective.
There are two primary tools for us to investigate this

relation: the elliptic genus [37,38] and modular (linear)
differential equations [24,50,51]. Combining these tools,
we present an intriguing conjecture proposing that the NS
elliptic genus of the (0,2) reduction of a Lagrangian class S
can be expressed as a linear combination of characters

ch
χðT N ½Cg;n�Þ
λi

of the corresponding VOA:

I ð0;2Þ;N
g;n ¼

X
i

aich
χðT N ½Cg;n�Þ
λi

; ð2:26Þ

where ai ∈Q and λi represent the highest weights of
representations of χðT N ½Cg;n�Þ. We remark that the U(1)
flavor fugacities in the elliptic genus need to be appropri-
ately redefined to precisely align with the characters of the
VOA. Moreover, since the theory is dual to an LG model,
the elliptic genus can be simply expressed as a product of
theta and eta functions, which can be viewed as free field
characters of suitable 2D bcβγ systems. Consequently,

it forms a Jacobi form with its index determined by the
’t Hooft anomaly of the global symmetry.

B. SUð2Þ × Uð1Þ gauge theories, LG duals, and VOAs

In this subsection, we consider 2D N ¼ ð0; 2Þ gauge
theories with SU(2) and U(1) gauge groups. Analogous
to the 4D N ¼ 2 superconformal theories of class S, the
2D theories we consider will have the building blocks
depicted in Fig. 1.
The basic building block in class S is the theory

corresponding to a three-punctured sphere C0;3. In the
case of type A1, the 4D N ¼ 2 theory T2 is a free theory
of eight half-hypermultiplets with the flavor symmetry
SUð2Þa × SUð2Þb × SUð2Þc. (See the left side of Fig. 16.)
We use Uð1Þc ⊂ SUð2Þc for the topological twist on S2,
and the (0,2) reduction of T2 using this flavor symmetry
leads to the theory of free (0,2) chiral multiplets in the
representation (2; 2; 1) of SUð2Þa × SUð2Þb × Uð1Þc flavor
symmetry. This (0,2) theory, akin to T2, serves as the
fundamental building block and is denoted asU2. In quiver
notation, we depict this theory as a vertex with three
external legs corresponding to SUð2Þa × SUð2Þb × Uð1Þc
flavor groups (see Fig. 1).
It follows from (2.10) that the NS elliptic genus of theU2

theory is

I ð0;2Þ
U2

ða;b;cÞ ¼ ηðqÞ
ϑ4ðq−1

2a�1b�1c̃Þ ¼
ηðqÞ

ϑ4ða�1b�1cÞ : ð2:27Þ

As emphasized in (2.23), the Uð1ÞR charge of the (0,2)
chiral multiplet is zero r ¼ 0, but we shift the Uð1Þc flavor
fugacity by c ¼ q−

1
2c̃. Note that the factors with a repeated

sign � in the arguments are all multiplied [see (A2)]. On
the other hand, as seen in (2.5), the Schur limit of the
superconformal index of the T2 theory is given by [2]

I4D
T2

¼ Γð ffiffi
t

p
a�1b�1c�1Þ ⟶

t→q
ISchur
T2

¼ ηðqÞ
ϑ4ða�1b�1cÞ :

ð2:28Þ

Therefore, the redefinition of the Uð1Þc flavor fugacity in
(2.27) ensures that the elliptic genus of the U2 theory
coincides with the Schur index of the T2 theory. In this way,
the elliptic genus can be decomposed into characters of the
corresponding VOA.
Moreover, the contribution of a vector multiplet is the

same in both the Schur index (2.6) and the elliptic genus
(2.12). The SUð2Þ vector multiplet contribution is

I ð0;2Þ
vec ðaÞ ¼ −

ϑ1ða�2Þ
2

; ð2:29Þ

and the SUð2Þ gauging leads to no gauge anomaly.

FIG. 1. Basic building block U2 for SU(2) theory.
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As a Riemann surface Cg;n can be constructed by gluing
pants, the corresponding 4DN ¼ 2 theory T 2½Cg;n� can be
obtained by gauging the T2 theories. However, as observed,
the distinction between the 4D T2 theory and 2D U2 theory
lies in the global symmetry. To construct (0,2) quiver gauge
theories using the U2 building block, we outline the U(1)
gauging method.
Given a Uð1Þc1 × Uð1Þc2 global symmetry, we gauge the

antidiagonal part a ¼ ðc1 − c2Þ=2 with keeping the diago-
nal d ¼ ðc1 þ c2Þ=2 as a global symmetry. See Fig. 2 for
an illustration, where the circle denotes a gauge node.
To cancel gauge anomaly during the gauging process, we
include Fermi multiplets with Uð1Þa gauge charges �2.
The Uð1ÞR charge for these Fermi multiplets is taken to
be r ¼ 0, a value determined by the c extremization. At
the level of the elliptic genus, the gauging procedure is
given by

ηðqÞ
ϑ4ðc1 � � �Þ

ηðqÞ
ϑ4ðc2 � � �Þ

→ ηðqÞ2
Z
JK

da
2πia

ηðqÞ
ϑ4ðda � � �Þ

ηðqÞ
ϑ4ðda−1 � � �Þ

ϑ4ða�2Þ
ηðqÞ2 : ð2:30Þ

The details of U(1) gauging will be seen in examples in
Secs. II B 4 and II B 6 and below.
Through U(1) gauging, one can construct a family of

(0,2) quiver gauge theories. However, when a U(1) gauge
group is involved, a (0,2) theory is no longer the (0,2)
reduction of a class S theory in general. Nonetheless, as we
will demonstrate, (0,2) theories of genus g > 0 with (g − 1)
Uð1Þ gauge groups are dual to each other, making them
frame independent. We further propose that the (0,2)
reduction of the class S theory T 2½Cg>0;n� of type A1 on
S2 is closely related to the corresponding (0,2) quiver theory
of genus g with (g − 1) Uð1Þ gauge groups. Notably, if one
replaces ϑ4ða�2Þ by ϑ1ða�2Þ in the U(1) gauging, then the
integrand of the elliptic genus is the same as that of the
corresponding Schur index (up to a factor of 2g−1), though
their integration contours differ; the elliptic genus uses the
JK prescription, while the Schur index uses the maximal tori
of the gauge groups. Additionally, the (0,2) theory of this
class turns out to be dual to an LG model.
Furthermore, we explore generalized quiver gauge the-

ories by gluing the U2 theories, extending the (0,2)
reduction of the class S theories. Specifically, we demon-
strate that a quiver gauge theory with g loops and g U(1)
gauge nodes is dual to an LG model.

1. SU(2) supersymmetric QCD

First, let us consider the SU(2) gauge theory with four
fundamental chiral multiplets, whose quiver diagram is
presented in Fig. 3. As described in [47], the naive
application of the c extremization leads to the “wrong”
central charges of the theory,

cnaiveL ¼ −14; cnaiveR ¼ −9; ð2:31Þ
while the enforcement of the zero R charge to the chiral
multiplets results in the “correct” positive central charges,

cL ¼ 10; cR ¼ 15: ð2:32Þ
Nevertheless, the “wrong” left-moving central charge cnaiveL
is equal to the central charge of the corresponding
VOA soð8Þ−2
This theory was first studied in [27] and its elliptic genus

was evaluated there as

I ð0;2Þ;2
0;4 ¼

Z
JK

da
2πia

I ð0;2Þ
U2

ðb1; a; c1ÞI ð0;2Þ
vec ðaÞI ð0;2Þ

U2
ðb2; a; c2Þ

¼ ηðqÞ5ϑ1ðc21c22Þ
ϑ1ðc21Þϑ1ðc22Þϑ1ðc1c2b�1 b�2 Þ

: ð2:33Þ

As pointed out in [25,27,47,49], the theory exhibits an LG
dual description. This dual description involves two chiral
multiplets Φ1;2, and one chiral meson multiplet Φ̃i;j¼1;2

with Uð1ÞR charge of 0, as well as a Fermi multiplet Ψ with
Uð1ÞR charge of 1, and they form a J-type superpotential

W ¼ ΨðΦ1Φ2 þ det Φ̃Þ:

The six chiral multipletsΦ can be regarded as the ∧2 4 ¼ 6
representation of SUð4Þ so that the superpotential can be

FIG. 3. Quiver diagram for SU(2) SQCDwith four fundamental
chirals. In the diagram, a circle node represents a gauge group and
square nodes denote flavor groups. The number N within a node
means SUðNÞ for N > 1 and U(1) for N ¼ 1.

FIG. 2. U(1) gauging.
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expressed as W ¼ ΨPfðΦÞ. Then, the expression (2.33)
can be naturally understood as the elliptic genus of the
LG model.
More remarkably, it was revealed in [48,49] that the

space of BPS states in the SU(2) supersymmetric QCD
(SQCD) has a relation to the VOA soð8Þ−2, which is
the VOA χðT 2½C0;4�Þ of the corresponding 4D N ¼ 2

theory [7]. Concretely, it was found [48] that the elliptic
genus (2.33) can be written as a linear combination of
characters of soð8Þ−2,

I ð0;2Þ;2
0;4 ðq; b; cÞ ¼ chsoð8Þ−20 ðq; b; cÞ − chsoð8Þ−2−2ω4

ðq; b; cÞ;
ð2:34Þ

where ch0 is the vacuum character and ch−2ω4
is one of the

three nonvacuum characters of soð8Þ−2. Therefore, the
space of BPS states furnishes a nontrivial representation of
the associated chiral algebra χðT 2½C0;4�Þ.
The VOA soð8Þ−2 contains many null states in its

vacuum module. For example, the Sugawara condition
T − TSug ¼ 0 is a trivial null state, simply stating that the
stress-energy tensor T is given by the Sugawara stress-
energy tensor. The Sugawara condition is part of the
so-called Joseph relations

ðJAJBÞjR ¼ 0; ðJAJBÞ1 ∼ T; ð2:35Þ

which correspond to more null states or descendants of null
states. Using Zhu’s recursion relations [21], the null states
(or their descendants) that are uncharged under the Cartan
of soð8Þ may lead to flavored modular differential

equations that any soð8Þ−2 character must satisfy.
Concretely, there are ten equations of weight-two, four
equations of weight-three and one equation of weight-four
that together constrain the characters of soð8Þ−2 [23,24]. In
particular, the above elliptic genus I ð0;2Þ;2

0;4 ðq; b; cÞ is a
linear combination of characters and therefore a solution to
the set of equations. Reversing the logic, the fact that

I ð0;2Þ;2
0;4 ðq; b; cÞ solves the set of modular differential equa-

tions predicts that it must be some linear combination of
VOA characters.

2. SU(2) linear quivers

Consider the SU(2) linear quiver theory with (n − 1) SU(2)
gauge nodes as in Fig. 4. The theory has manifest flavor
symmetry SUð2Þ2 × Uð1Þn. Its central charge is given by

cL ¼ 2ðnþ 3Þ; cR ¼ 3ðnþ 3Þ: ð2:36Þ

As explained in Appendix D of [27], (2.33) can be
interpreted as the elliptic inversion formula:

ηðqÞ5ϑ1ðc21c22Þ
ϑ1ðc21Þϑ1ðc22Þϑ1ðc1c2b�1 b�2 Þ

¼
Z
JK

da
2πia

ηðqÞ8ϑ1ða�2Þ
2ϑ4ðc1b�1 a�Þϑ4ðc2b�2 a�Þ

: ð2:37Þ

Therefore, starting from a collection of U2 theories we can
repeatedly gauge the SUð2Þ flavor symmetries to construct
a linear quiver theory, and the elliptic genus takes the
following simple form:

I ð0;2Þ;2
0;nþ2 ¼

Z
JK

da
2πia

I ð0;2Þ
U2

ðb1; a1; c1ÞI ð0;2Þ
vec ða1ÞI ð0;2Þ

U2
ðb2; an−1; cnÞ

Yn−2
i¼1

I ð0;2Þ
U2

ðai; aiþ1; ciþ1ÞI ð0;2Þ
vec ðaiþ1Þ

¼ ηðqÞnþ3ϑ1ð
Q

n
i¼1 c

2
i Þ

ϑαðb�1 b�2
Q

n
i¼1 ciÞ

Q
n
i¼1 ϑ1ðc2i Þ

;

�
α ¼ 1 n even;

α ¼ 4 n odd:
ð2:38Þ

As also found earlier in Sec. 4.3 of [47], the above linear quiver theory has an LG description, which consists of n chiral
multipletsΦk¼1;…;n and one chiral meson multiplet Φ̃i;j¼1;2 with Uð1ÞR charge r ¼ 0, and one Fermi multipletΨwith Uð1ÞR
charge r ¼ 1, forming a J-type superpotential

FIG. 4. SU(2) linear quiver.
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W ¼ Ψ
�Yn

i¼1

Φi þ det Φ̃
�
:

It is worth mentioning that with the shift of the Uð1Þci
flavor fugacities in (2.27), one must take this shift into
account to correctly read off the Uð1ÞR charges of the
superfields in the LG model from (2.38).

3. Genus one with one puncture and SU(2)
with adjoint chiral

Let us consider the theory corresponding to the Riemann
surface of genus one with one Uð1Þ puncture. See Fig. 5
for an illustration of the quiver structure. Because of
2 ⊗ 2 ¼ 3 ⊕ 1, the theory is a product of an SUð2Þ gauge
theory with one adjoint chiral and a free chiral. The naive
application of the c extremization leads to the “wrong”
central charges,

cnaiveL ¼ −9 − 1; cnaiveR ¼ −9; ð2:39Þ

while the correct treatment provides

cL ¼ 3 − 1; cR ¼ 3; ð2:40Þ

where the SU(2) adjoint chiral contributes 3 and the free
chiral contributes −1 to the left central charge. The elliptic
genus can be evaluated as

I ð0;2Þ;2
1;1 ¼

Z
JK

da
2πia

I ð0;2Þ
U2

ða; a−1; c1ÞI ð0;2Þ
vec ðaÞ

¼ ηðqÞ
ϑ1ðc21Þ

¼ ηðqÞ
ϑ4ðc1Þ

·
ϑ4ðc1Þ
ϑ1ðc21Þ

: ð2:41Þ

The first factor is the contribution of the free chiral, which
is the vacuum character of the βγ ghost, while the second
factor is the elliptic genus of the SUð2Þ theory with one
adjoint chiral. Following this computation, the SU(2) gauge
theory with one adjoint chiral has an LG dual given by one
chiral and one Fermi multiplet. We note that the elliptic
genus enjoys the symmetry c1 ↔ c−11 , which is the SU(2)
Weyl group. Moreover, the elliptic genus admits the
expansion with SU(2) characters

I ð0;2Þ;2
1;1 ¼ iq−

1
12

c1 − c−11

�
1þ chSUð2Þ1

2

ðc21Þqþ chSUð2Þ2 ðc21Þq2

þ
h
1þ chSUð2Þ1

2

ðc21Þ þ chSUð2Þ3
2

ðc21Þ
i
q3 þ � � �

�
;

ð2:42Þ

where chSUð2Þj is the spin-j character of SUð2Þ. Hence, one
can observe that the Uð1Þc1 flavor symmetry gets enhanced
to SUð2Þc1 in the IR.
The 4D N ¼ 4 theory with the SUð2Þ gauge group has

the small N ¼ 4 superconformal algebra as its associated
VOA [7]. First of all, the central charge of the VOA is
c2D ¼ −9, which agrees with the naive left-moving central
charge of the SU(2) adjoint chiral (2.39). Moreover, the
elliptic genus of the SU(2) adjoint chiral can be viewed as a
special bcβγ system [19],3 and is also a linear combination
of the characters of the associated VOA,

iϑ4ðc1Þ
ϑ1ðc21Þ

¼ chN¼4
0 ðq; c1Þ þ chN¼4

1 ðq; c1Þ: ð2:43Þ

Here chN¼4
0 is the vacuum character and chN¼4

1 is the
character of the nonvacuum irreducible module of the
VOA [52], and both characters are shown to satisfy three
common flavored modular differential equations from null
states in the VOA [31]. Note that the flavor symmetry
enhancement to SU(2) is supported from the viewpoint of
the VOA since both the small N ¼ 4 superconformal
algebra and the bcβγ-ghost VOA are endowed with an
SU(2) flavor symmetry.4

An N ¼ ð0; 2Þ vector multiplet and an N ¼ ð0; 2Þ
adjoint chiral multiplet form anN ¼ ð2; 2Þ vector multiplet.
Consequently, there is no distinction between the left- and
right-moving sectors in the SU(2) adjoint chiral. This is
supported by the equality of central charges for both sectors,
which are both cL ¼ cR ¼ 3. Moreover, the elliptic genus of
this theory can be expressed using characters of the small
N ¼ 4 superconformal algebra, as in (2.43). This suggests
that the IR limit of the N ¼ ð2; 2Þ SU(2) vector multiplet
is equipped with the small N ¼ 4 superconformal algebra
in both the left- and right-moving sectors, suggesting the
supersymmetry enhancement. It deserves further investiga-
tion to determine the exact IR Hilbert space on a torus by
modular invariance, as demonstrated in [53–55].

4. Genus one with two punctures

Now consider the (0,2) reduction of the class S theory
T 2½C1;2�, which is an SUð2Þ2 gauge theory coupled to two
bifundamentals. The central charges are given by

FIG. 5. Genus one with one puncture for SU(2).

3The conformal weights of b, c, β, γ are 3=2;−1=2, 1, 0.
4The SUð2Þ current of this particular bcβγ system is given by

Jþ ¼ β, J0 ¼ bcþ 2βγ, J− ¼ βγγ þ γbc − 3=2∂γ [19].
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cL ¼ 4; cR ¼ 6: ð2:44Þ

The quiver diagram is given in Fig. 6.
The elliptic genus of this theory is computed by the JK

residue computation of the integral

I ð0;2Þ;2
1;2 ðc1; c2Þ ¼

Z
JK

da
2πia

I ð0;2Þ
U2

ða1; a2; c1Þ

× I ð0;2Þ
U2

ða−11 ; a−12 ; c2ÞI ð0;2Þ
vec ða1ÞI ð0;2Þ

vec ða2Þ

¼ −
ηðqÞ2Q

2
i¼1 ϑ1ðc2i Þ

: ð2:45Þ

The elliptic genus implies the presence of an LG dual for
the theory. This LG dual might comprise two free chiral
multiplets. In additional to the two free chirals, there could
be equal numbers of chiral and Fermi multiplets with
identical charges which is not directly visible from the
elliptic genus. As seen in (2.42), both of the Uð1Þci flavor
symmetries get enhanced to SUð2Þci in the IR.
Although the module structure of the corresponding

VOA χðT 2½C1;2�Þ is not explicitly known, we argue that the
elliptic genus is a linear combination of the module
characters. One crucial piece of evidence is that the elliptic
genus is a solution to the same flavored modular differential
equations [23] that the Schur index of T 2½C1;2� satisfies.
For instance, the elliptic genus satisfies a weight-two
differential equation,

0 ¼
�
Dð1Þ

q −
1

4

X
i¼1;2

D2
ci −

1

4

X
αi¼�

E1

�
1

cα11 cα22

	X
i¼1;2

αiDci

−
X
i¼1;2

E1

�
1

c2i

	
Dci þ 2

�
E2 þ

1

2

X
αi¼�

E2

�
1

cα11 cα22

	

þ
X
i¼1;2

E2

�
1

c2i

	�	
I ð0;2Þ;2
1;2 : ð2:46Þ

The definition of the twisted Eisenstein series is given in
Appendix A 2.
Furthermore, by gauging the antidiagonal of the Uð1Þ

flavor symmetry of the two U2 theories, one can construct
two other quiver theories as SUð2Þ × Uð1Þ gauge theories,
corresponding to the genus-one Riemann surface with two
punctures, as in Fig. 7. Notably, these theories do not
originate from class S. Nonetheless, the central charges of
these theories are computed as

cL ¼ 10; cR ¼ 12: ð2:47Þ

Let us first consider the left theory in Fig. 7. The elliptic
genus of this theory is

I 0
1;2ðb1;b2;d1Þ ¼ ηðqÞ2

Z
JK

da
2πia

I ð0;2Þ
U2

ða1;b1;d1a2Þ

×I ð0;2Þ
U2

ða−11 ;b2;d1a−12 ÞI ð0;2Þ
vec ða1Þ

ϑ4ða�2
2 Þ

ηðqÞ2 :

Here we introduce the Uð1Þd flavor symmetry, which

rotates the two chiral multiplets Uð0;2Þ
2 with the same phase

and has a fugacity d1. The detailed calculations of the JK
residues can be found in Appendix C 1 b, and the final
result is neatly summarized in the more simplified form

I 0
1;2ðb1; b2; d1Þ ¼ −2

ηðqÞ2ϑ4ðd21Þ2
ϑ1ðd21b�1 b�2 Þ

¼ 2
ϑ4ðd21Þ2

ηðqÞϑ1ðd41Þ
·
ηðqÞ3ϑ1ðd−41 Þ
ϑ1ðd21b�1 b�2 Þ

: ð2:48Þ

FIG. 7. SUð2Þ × Uð1Þ gauge theories corresponding to the genus-one Riemann surface with two punctures.

FIG. 6. (0,2) reduction of the class S theory T 2½C1;2�.
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The first factor always appears when the quiver gauge
theory has a U(1) gauge node. This can be understood as
the contribution of two Fermi fields Γ1;2 with Uð1Þd1 flavor
charge 2 and one chiral fieldΦ with Uð1Þd1 flavor charge 4.
The second factor of the elliptic genus can be interpreted as
the contribution from one Fermi field Ψ and one chiral
meson field Φ̃ with SUð2Þb1 × SUð2Þb2 flavor symmetry.
The field content and their charges are summarized as
follows:

Γ1;2 Ψ Φ Φ̃
Uð1Þd1 2 −4 4 2

SUð2Þbi 0 0 0 2

ð2:49Þ

Therefore, a generic J-type superpotential is

W ¼ ΨðΦþ det Φ̃Þ:

The coefficient 2 in (2.48) means that the theory is dual to
two (decoupled) copies of this LG model.
The elliptic genus of the right theory in Fig. 7 can be

computed as the JK residue of the integrand

I 00
1;2ðb1; b2; d1Þ ¼ ηðqÞ2

Z
JK

da
2πia

I ð0;2Þ
U2

ða2; a−12 ; da1Þ

× I ð0;2Þ
U2

ðb1; b2;da−11 ÞI ð0;2Þ
vec ða2Þ

ϑ4ða�2
1 Þ

ηðqÞ2 :

The detailed computations of the JK residues are provided
in Appendix C 1 c, while the total residue is presented in
the compact form

I 00
1;2ðb1; b2; d1Þ ¼

ϑ4ðd21Þ2
ηðqÞϑ1ðd41Þ

·
ηðqÞ3ϑ1ðd81Þ

ϑ1ðd−41 b�2
1 b�2

2 Þ

·
Y2
i¼1

ϑ1ðb4i Þ
ϑ1ðb−2i Þ : ð2:50Þ

The elliptic genus is different from (2.48) so that the two
theories in Fig. 7 are not dual to each other. When the
number of U(1) gauge nodes is equal to the genus, the
theory is contingent on the quiver diagram, unlike class S
theories.
Since (2.50) is expressed as a product of theta functions,

the theory is also dual to the following LG model. The
Fermi multiplets Γ1;2 and Ψ and the chiral multiplets Φ and
Φ̃�� are similar to the aforementioned LG theory. A key
distinction arises from the inclusion of two additional
Fermi multiplets, Ξ1;2, and two chiral multiplets, Σ1;2.
Because of these additions, the manifest flavor symmetry is
Uð1Þb1 × Uð1Þb2 at UV. The charges of these fields are
summarized as follows:

Γ1;2 Ψ Ξj Φ Φ̃ϵ1ϵ2 Σj

Uð1Þd1 2 8 0 4 −4 0

Uð1Þbi 0 0 4δij 0 ϵi2 −2δij

where ϵi ¼ �. Then, a generic J-type superpotential is

W ¼ Ψ det Φ̃þ Ξ1ΦΦ̃−þΣ1Σ2 þ Ξ2ΦΦ̃þ−Σ1Σ2:

The expansion of the elliptic genus (2.50) in terms of q
reveals that the fugacities b1;2 arrange themselves as
characters of SUð2Þb1 × SUð2Þb2 , implying the symmetry
enhancement from Uð1Þb1 × Uð1Þb2 → SUð2Þb1 × SUð2Þb2
at IR.
For the quiver theories in Fig. 7, the corresponding VOA

for the IR CFT is yet to be identified. Given their duality to
the LG models, the technique in [56] offers a potential
method for identifying the VOA. This remains an area for
further study.

5. Genus one with three punctures

Now let us consider quiver theories of genus one with
three punctures. The (0,2) reduction of the class S theory
T 2½C1;3� is the SUð2Þ × SUð2Þ × SUð2Þ gauge theory in
Fig. 8. The central charges of the theory are given by

cL ¼ 6; cR ¼ 9: ð2:51Þ

The elliptic genus is the JK residue of the integrand

I ð0;2Þ;2
1;3 ¼

Z
JK

da
2πia

I ð0;2Þ
U2

ða−11 ; a2; c2ÞI ð0;2Þ
U2

ða−12 ; a3; c1Þ

× I ð0;2Þ
U2

ða−13 ; a1; c3Þ
Y3
i¼1

I ð0;2Þ
vec ðaiÞ

¼ ηðqÞ3Q
3
i¼1 ϑ1ðc2i Þ

; ð2:52Þ

FIG. 8. (0,2) reduction of the class S theory T 2½C1;3�.

CLASS S THEORIES ON S2 PHYS. REV. D 109, 105015 (2024)

105015-13



which signals the existence of an LG dual which includes
three free chiral multiplets, associated with the three
punctures. In addition to them, there could be equal
numbers of chiral and Fermi multiplets with the same
charges. All of the U(1) flavor symmetries get enhanced to
SU(2) in the IR, as illustrated in (2.42).
Let us now consider SUð2Þ × SUð2Þ × Uð1Þ gauge

theories for genus one with three punctures, as illustrated
in Fig. 9. The central charges of the theory are given by

cL ¼ 12; cR ¼ 15: ð2:53Þ

The elliptic genus of the left quiver theory of Fig. 9 is

I 0
1;3 ¼ ηðqÞ2

Z
JK

da
2πia

I ð0;2Þ
U2

ða2; c−12 ;d1a1ÞI ð0;2Þ
U2

ða−12 ; a3;c1Þ

× I ð0;2Þ
U2

ða−13 ; c3;d1a−11 Þϑ4ða
�2
1 Þ

ηðqÞ2
Y3
i¼2

I ð0;2Þ
vec ðaiÞ

¼ 2
ϑ4ðd21Þ2

ηðqÞϑ1ðd41Þ
·

ηðqÞ4ϑ1ðc21d41Þ
ϑ1ðc21Þϑ4ðc1d21b�1 b�2 Þ

: ð2:54Þ

The computational details are given in Appendix C 2 b. The
form of the elliptic genus signals an LG description. The
LG model is similar to (2.49), but there is an additional
chiral multiplet Φ2 and Uð1Þc1 flavor symmetry:

Γ1;2 Ψ Φ1 Φ2 Φ̃
Uð1Þd1 2 4 −4 0 −2
Uð1Þc1 0 2 0 −2 −1
SUð2Þbi 0 0 0 0 2

Therefore, a generic J-type superpotential is

W ¼ ΨðΦ1Φ2 þ det Φ̃Þ:

The coefficient 2 in (2.54) means that the theory is dual to
two (decoupled) copies of this LG model.

There is yet another quiver gauge theory with gauge
group SUð2Þ × SUð2Þ × Uð1Þ, as on the right side of Fig. 9,
whose elliptic genus is

I 00
1;3¼ηðqÞ2

Z
JK

da
2πia

I ð0;2Þ
U2

ða1;a−11 ;d1a2ÞI ð0;2Þ
U2

ðb1;a3;d1a−11 Þ

×I ð0;2Þ
U2

ða−13 ;b2;c2Þ
ϑ4ða�2

1 Þ
ηðqÞ2

Y3
i¼2

I ð0;2Þ
vec ðaiÞ

¼ ϑ4ðd21Þ2
ηðqÞϑ1ðd41Þ

·
ηðqÞ4ϑ1ðc41d81Þ

ϑ1ðc21Þϑ1ðc−21 d−41 b�2
1 b�2

2 Þ ·
Y2
i¼1

ϑ1ðb4i Þ
ϑ1ðb−2i Þ;

ð2:55Þ

suggesting an LG description of the theory.
Since (2.55) is expressed as a product of theta functions,

the theory is also dual to the following LG model. The
Fermi multiplets Γ1;2 and Ψ and the chiral multiplets Φ1;2

and Φ̃�� are similar to the aforementioned LG theory. A
key distinction arises from the inclusion of two additional
Fermi multiplets, Ξ1;2, and two chiral multiplets, Σ1;2.
Because of these additions, the manifest flavor symmetry is
Uð1Þb1 × Uð1Þb2 at UV. The charges of these fields are
summarized as follows:

Γ1;2 Ψ Ξj Φ1 Φ2 Φ̃ϵ1ϵ2 Σj

Uð1Þd1 2 8 0 4 0 −4 0

Uð1Þc1 0 4 0 0 2 −2 0

Uð1Þbi 0 0 4δij 0 0 ϵi2 −2δij

where ϵi ¼ �. Then, a generic J-type superpotential is

W ¼ Ψ det Φ̃þ Ξ1Φ1Φ2Φ̃−þΣ1Σ2 þ Ξ2Φ1Φ2Φ̃þ−Σ1Σ2:

Like (2.50), the expansion of the elliptic genus (2.55)
shows that a flavor symmetry is enhanced to SUð2Þb1 ×
SUð2Þb2 at IR.

FIG. 9. SUð2Þ × SUð2Þ × Uð1Þ gauge theories corresponding to the genus-one Riemann surface with three punctures.
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6. Genus two

For the genus-two case (with no puncture), we have two
different quiver descriptions, as depicted in Fig. 10. The
central charges of this theory are

cL ¼ 4; cR ¼ 3: ð2:56Þ

It is straightforward to show that the two different
descriptions are dual to each other. Certainly, the
Lagrangian descriptions provide the different expressions
of the elliptic genera

ð2:57Þ

where the last factors ϑ4ðc�2Þ correspond to the contri-
butions from the U(1) vector multiplet and the two Fermi
multiplets. Both JK residues can be straightforwardly
evaluated, and the results agree, suggesting that the two
theories are dual to each other.
Alternatively, the two elliptic genera can be computed

from other building blocks. The former theory can be
obtained by gluing two copies of the theory of genus one
with one puncture whose elliptic genus is given in (2.41).
Similarly, the latter can be obtained by gluing the two
punctures in the theory of genus one with two punctures
whose elliptic genus is given in (2.45). In this approach, it
becomes more evident that they are identical and, more-
over, the JK residue provides the remarkably simple result

I ð0;2Þ;2
2;0 ¼ ηðqÞ2

Z
JK

dc
2πic

ϑ4ðc�2Þ
ϑ1ðd2c�2Þ ¼

2ϑ4ðd2Þ2
ηðqÞϑ1ðd4Þ

: ð2:58Þ

This can be compared to the S duality in class S theories.
While the process of U(1) gauging may not naturally fit in
the context of the (0,2) reduction of the class S theory, as
explained below (2.30), the gluing procedure explained
above is analogous to the class S construction. In fact, since
the flavor symmetries get enhanced to SU(2) for genus one
theories, we can gauge the antidiagonal SU(2) to obtain the
(0,2) reduction of the class S theory T 2½C2;0� of genus two,
whose elliptic genus is

−
Z
JK

dc
2πic

I ð0;2Þ;2
1;1 ðcdÞ ϑ1ðc

�2Þ
2

I ð0;2Þ;2
1;1 ðc−1dÞ

¼ −
Z
JK

dc
2πic

I ð0;2Þ;2
1;2 ðcd; c−1dÞ ϑ1ðc

�2Þ
2

¼ −
ηðqÞ2
2

Z
JK

dc
2πic

ϑ1ðc�2Þ
ϑ1ðd2c�2Þ ¼

ϑ1ðd2Þ2
ηðqÞϑ1ðd4Þ

: ð2:59Þ

Recalling that the Jacobi theta functions ϑ1 and ϑ4 are
related by (A8), the result differs from (2.58) merely by the
shift d → q1=4d of the Uð1Þd flavor fugacity, up to a factor.
Indeed, comparing the SU(2) vector multiplet contribution
(2.29) and U(1) gauging (2.30) at the level of elliptic
genera, the difference appears only in ϑ1ða�2Þ and ϑ4ða�2Þ,
up to a factor of 2, which is the order of the Weyl group of
SU(2). Hence, the duality between the two (0,2) theories in
Fig. 10 is analogous to the S duality in the class S
theory T 2½C2;0�.
As a result, one can expect the relation between the

elliptic genera (2.58) and (2.59) and characters of the VOA
χðT 2½C2;0�Þ. In 4D, the associated VOA of the genus-two
A1 theory T 2½C2;0� of class S was studied in [57,58]. In
particular, null states are present at levels four and six,
which are expected to give rise to a weight-four and a
weight-six flavor differential equation [23]. The above
elliptic genus (2.59) is indeed a solution to these two
equations once the U(1) fugacity d is rescaled d → d1=2.
Therefore, it is natural to argue that the elliptic genus is

FIG. 10. Genus two for SU(2).
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some linear combination of module characters of
χðT 2½C2;0�Þ,

ϑ1ðdÞ2
ηðqÞϑ1ðd2Þ

¼
X
i

ai ch
χðT 2½C2;0�Þ
λi

ðdÞ; ai ∈Q: ð2:60Þ

Likewise, we can argue that, upon rescaling d → d1=2, the
elliptic genus (2.58) of the genus-two theory constructed
from the U2 theories can be written in a similar way as

2ϑ4ðdÞ2
ηðqÞϑ1ðd2Þ

¼ 2q1=4d
X
i

ai ch
χðT 2½C2;0�Þ
λi

ðq1=2dÞ: ð2:61Þ

7. General Riemann surfaces and TQFT structure

For a (0,2) quiver theory of genus g > 0 constructed
from the U2 theory, the minimal number of U(1) gauge
groups is g − 1. Hence, based on the previous results, we
can consider a (0,2) quiver theory analogous to the class S
theory T 2½Cg>0;n�, where the numbers of SU(2) and U(1)

gauge groups are 2ðg − 1Þ þ n and g − 1, respectively. The
central charges of the theory are

cL ¼ 2ð2ðg − 1Þ þ nÞ; cR ¼ 3ðg − 1þ nÞ: ð2:62Þ

Regardless of their quiver descriptions (or frames), these
theories all flow to the same IR theory. By introducing U(1)
flavor fugacities ci for the external punctures and di for the
U(1) gauging in the quiver gauge theory, the elliptic genus
of the theory can be expressed in the simple form

I ð0;2Þ;2
g>0;n ðc1;…; cnÞ ¼

Yg−1
j¼1

2ϑ4ðd2jÞ2
ηðqÞϑ1ðd4jÞ

Yn
i¼1

ηðqÞ
ϑ1ðc2i Þ

: ð2:63Þ

Therefore, the flavor symmetry associated with each
puncture gets enhanced to SU(2) at low energy, as seen
in (2.42). Remarkably, the integral formula (2.58) guaran-
tees that the above form of the (0,2) elliptic genera is
consistent with the TQFT structure, as in Fig. 11,

I ð0;2Þ;2
g¼g1þg2;n1þn2−2 ¼

Z
JK

da
2πia

I ð0;2Þ;2
g1;n1 ð…; dg−1aÞI ð0;2Þ;2

g2;n2 ðdg−1a−1;…Þϑ1ða�2Þ;

I ð0;2Þ;2
gþ1;n−2 ¼

Z
JK

da
2πia

I ð0;2Þ;2
g;n ð…; dga; dga−1Þϑ1ða�2Þ: ð2:64Þ

As we recall, the elliptic genus of the (0,2) reduction of a
class S theory of genus one with n punctures is

I ð0;2Þ;2
1;n ðc1;…; cnÞ ¼

Yn
i¼1

ηðqÞ
ϑ1ðc2i Þ

; ð2:65Þ

which exhibits the enhancement to SU(2) for each
puncture in the IR. To construct the (0,2) reduction of
the class S theory T 2½Cg>0;n� of type A1, we can repeatedly
gauge antidiagonal SU(2) of genus one theories with
multiple punctures. Upon the rescaling d → q1=4d, the
resulting elliptic genus differs from (2.63) by merely a
factor of ð2q1=2d2Þg−1. In this sense, the TQFT structure of
the elliptic genus can be attributed to the class S
construction.

From the perspective of the chiral algebra, we observe a
connection to class S theories. The VOA corresponding
to any Lagrangian N ¼ 2 SCFT can be constructed using
the gauging method described in [7]. However, putting
this method into practice is intricate. Detailing the VOA
structure and its representation theory is notably challeng-
ing, even for class S theories of type A1. Nevertheless, if we
change ϑ4ða�2Þ to ϑ1ða�2Þ for the Uð1Þ gauging (2.30), the
JK integrand of the elliptic genus, when derived from the
UV Lagrangian, coincides with that of the Schur index of
T 2½Cg>0;n� up to a factor, and the JK residue gives

Yg−1
j¼1

2ϑ1ðd2jÞ2
ηðqÞϑ1ðd4jÞ

Yn
i¼1

ηðqÞ
ϑ1ðc2i Þ

: ð2:66Þ

Building upon the results in [23,31,32], certain residues of
the integrand correspond to the Schur index with surface

FIG. 11. Gluing minimal punctures leads to a new Riemann surface, and (0,2) elliptic genera are consistent with the cut-and-join
procedure on Riemann surfaces Cg;n.
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defects of Gukov-Witten type.5 Given its role as a surface
defect index, one expects (2.66) to satisfy all of the flavored
modular differential equations associated with the VOA
χðT 2½Cg;n�Þ. In light of these observations, we propose that
the elliptic genus (2.63) can be written in terms of a linear
combination of characters of the VOA χðT 2½Cg>0;n�Þ upon
an appropriate redefinition of the U(1) fugacities and a
certain overall factor.
When the number of U(1) gauge groups is g for a theory

of genus g, it admits an LG dual, but it depends on the
quiver description, as we saw in the examples of Secs. II B 4
and II B 5. It would be interesting to study the VOA
structures for theories of this type.

C. SUðNÞ × Uð1Þ gauge theories, LG duals, and VOAs

Now let us move on to cases of higher rank. For class S
of type AN−1, punctures are classified by a partition of N
and theories do not admit a Lagrangian description in
general. As seen in Sec. II A 3, we perform the (0,2)
reduction for 4D N ¼ 2 Lagrangian theories of class S.
Consequently, the basic building block is a sphere with two
maximal punctures and one minimal puncture, correspond-
ing to N2 hypermultiplets. (See the right side of Fig. 16.) Its
(0,2) reduction yields (0,2) N2 chiral multiplets, with the
flavor symmetry represented as UðN2Þ and includes the
subgroup SUðNÞa × SUðNÞb × Uð1Þx. This particular (0,2)
theory, labeled as UN , serves as our fundamental building
block, with its quiver illustrated in Fig. 12. As highlighted
in (2.23), the c extremization is invalid for theories of this
class, and the Uð1ÞR charge of the (0,2) chiral multiplet is
r ¼ 0. The NS elliptic genus of UN is given by

I ð0;2Þ
UN

ða;b;cÞ¼
YN
i;j¼1

ηðqÞ
ϑ4ðq−1

2c̃aibjÞ
¼

YN
i;j¼1

ηðqÞ
ϑ4ðcaibjÞ

; ð2:67Þ

where we redefine the Uð1Þc flavor fugacity by c ¼ q−
1
2c̃.

Note that we impose the condition
Q

N
i¼1 ai ¼ 1 ¼ Q

N
j¼1 bj

on the SUðNÞ fugacities. On a related note, as seen in (2.5),
the Schur limit of the superconformal index for a sphere
with two maximal punctures and one minimal puncture is
given by

I4D ¼
YN
i;j¼1

Γð ffiffi
t

p ðcaibjÞ�1Þ⟶t→q
ISchur ¼

YN
i;j¼1

ηðqÞ
ϑ4ðcaibjÞ

:

ð2:68Þ

Consequently, by redefining the Uð1Þc flavor fugacity as in
(2.67), the elliptic genus of the UN theory agrees with the
Schur index above.
The gauging procedure of the UN theories is as usual.

The contribution of a vector multiplet is the same in both
the Schur index (2.6) and the elliptic genus (2.12). The
SUðNÞ vector multiplet contribution is

I ð0;2Þ
vec ðaÞ ¼ ηðqÞ2N

N!

Y
A≠B

i
ϑ1ðaA=aBÞ

ηðqÞ ; ð2:69Þ

and the SUðNÞ gauging leads to no gauge anomaly. In this
way, the integrand of the superconformal index and the
(0,2) elliptic genus agree for a class S Lagrangian theory.
However, in 2D (0,2) theories, one can also gauge the

U(1) symmetry of the UN theory. This U(1) gauging is
similar to theU2 case, but the U(1) gauge charges of the two
Fermi multiplets must be �N to avoid gauge anomalies.
Following the c extremization, the Uð1ÞR charge for these
Fermi multiplets is assigned to be r ¼ 0. Consequently, the
gauging procedure is then applied to the elliptic genus as
described:

ηðqÞ
ϑ4ðq;c1 � � �Þ

ηðqÞ
ϑ4ðq;c2 � � �Þ

→ ηðqÞ2
Z
JK

da
2πia

ηðqÞ
ϑ4ðda � � �Þ

ηðqÞ
ϑ4ðda−1 � � �Þ

ϑ4ða�NÞ
ηðqÞ2 : ð2:70Þ

Once a (0,2) quiver theory involves a U(1) gauging of the
UN theories, the theory is no longer the (0,2) reduction of a
class S theory. Nonetheless, one can consider the elliptic
genus of the theory in the IR.

1. Gauge/LG duality for linear quivers

The (0,2) reduction of a class S theory of higher rank is
quite restricted because the class S theory should have a
Lagrangian description. Consequently, the theories that we
focus on are constructed by gauging the SUðNÞ flavor
symmetry of the UN theories. One such example is a linear
quiver, as in Fig. 13. The central charges are given by

cL ¼ 2ðN2 þ n − 1Þ; cR ¼ 3ðN2 þ n − 1Þ: ð2:71Þ

FIG. 12. A building block UN , representing N2 (0,2) chiral
multiplets with SUðNÞa × SUðNÞb × Uð1Þc flavor symmetry.

5Up to some prefactors of q to account for the different stress-
energy tensors involved [59].
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As the simplest example, we can consider the (0,2)
SUðNÞ SQCD with N fundamentals and N antifundamen-
tals. As found in Eq. (4.7) of [27], the computation of its
elliptic genus is equivalent to the higher-rank rendition of
the elliptic inversion formula (2.37),

ηðqÞN2þ1ϑ1ðcN1 cN2 Þ
ϑαðcN1 ÞϑαðcN2 Þ

Q
N
A;B¼1 ϑ1ðc1c2b0;Ab−12;BÞ

¼ ηðqÞ2N2

N!

Z
JK

da
2πia

YN
A;B;i¼1

Q
j≠iϑ1ðai=ajÞ

ϑ4ðc1b0;Aa−1i Þϑ4ðc2b−12;BaiÞ
;

ð2:72Þ

where α ¼ 1 for even N and α ¼ 4 for odd N. To evaluate
the elliptic genus of a linear quiver, we repeatedly apply the
elliptic inversion formula (2.72), and it therefore takes the
simple form

I ð0;2Þ;N
0;n;2 ¼ ηðqÞN2þn−1ϑαð

Q
n
i¼1 c

N
i ÞQ

n
i¼1 ϑβðcNi Þ ·

Q
N
A;B¼1 ϑγðb0;Ab−1n;B

Q
n
i¼1 ciÞ

;

ð2:73Þ

where

α ¼
�
1 n · N even;

4 n · N odd;
β ¼

�
1 N even;

4 N odd;

γ ¼
�
1 n even;

4 n odd:
ð2:74Þ

Taking into account the shift of the Uð1Þci fugacities in
(2.27), the form of the elliptic genus tells us that the theory
is dual to an LG model with one Fermi multipletΨ, n chiral
multiplets Φ, and one chiral meson multiplet Φ̃i;j¼1;…;n,
forming a J-type superpotential

W ¼ Ψ
�Yn

i¼1

Φi þ det Φ̃
�
:

2. Gauge/LG duality for circular quivers

The other class of the (0,2) reduction of class S theories
is a circular quiver, as in Fig. 14. The central charges for
genus 1 with n punctures are given by

cL ¼ 2n; cR ¼ 3n: ð2:75Þ

Some of the explicit JK residue computations of elliptic
genera can be found in Appendices C 5 and C 6.
As the simplest example, let us consider the theory at

genus one with one puncture. In other words, it is an SUðNÞ
gauge theory with one adjoint chiral, which is the (0,2)
reduction of the 4D N ¼ 4 SUðNÞ theory, and an addi-
tional free chiral multiplet. The evaluation of its elliptic
genus can be understood as an elliptic inversion formula of
another kind,

ηðqÞ
ϑαðcNÞ

¼ ηðqÞN
N!ϑ4ðcÞN

Z
JK

da
2πia

Y
j≠i

ϑ1ðai=ajÞ
ϑ4ðcai=ajÞ

; ð2:76Þ

where α ¼ 1 for even N and α ¼ 4 for odd N. We can
remove a free hypermultiplet factor ηðτÞ=ϑ4ðcÞ from the
above expression and obtain

FIG. 13. An SUðNÞ linear quiver where the subscripts are added solely for node numbering purposes.

FIG. 14. An SUðNÞ circular quiver where the subscripts are
added solely for node numbering purposes.
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I ð0;2Þ;N
N¼4

¼ ϑ4ðcÞ
ϑαðcNÞ

: ð2:77Þ

We note that this expression is precisely the vacuum
character of N − 1 copies of bcβγ systems labeled by
i ¼ 1;…; N − 1, with the following conformal weights h
and Uð1Þ charges m:

h m

bi
1
2
ðdi þ 1Þ 1

2
ðdi − 1Þ

ci − 1
2
ðdi − 1Þ − 1

2
ðdi − 1Þ

βi
1
2
di

1
2
di

γi 1 − 1
2
di − 1

2
di

Here di ¼ iþ 1 denotes the degree of the ith invariant of
SUðNÞ. The vacuum character reads (up to a factor of i)

q
1
8
ðN2−1ÞYN−1

i¼1

ðcdi−1qdiþ1

2 ;qÞðc−diþ1q
1−di
2 ;qÞ

ðcdiqdi
2 ;qÞðc−diq1−di

2 ;qÞ
¼ ϑ4ðcÞ
ϑαðcNÞ

: ð2:78Þ

The bcβγ system serves as a free-field realization of the
chiral algebra χN¼4;N of the 4D N ¼ 4 SUðNÞ super-
symmetric Yang-Mills theory [19], and therefore is a
reducible module of χN¼4;N . Hence, the above vacuum
character is naturally a reducible module character
of χN¼4;N .
As discussed at the end of Sec. II B 3, the combination of

a (0,2) vector multiplet and an adjoint chiral multiplet
forms a (2,2) vector multiplet. Consequently, there is no
distinction between the left- and right-moving sectors. The
analysis above suggests that the IR theory is described by
the chiral algebra χN¼4;N .
As a generalization of this case, the circular quiver in

Fig. 14 can be obtained by SUðNÞ gauging of the ends of
the linear quiver in Fig. 13. The elliptic genus is given by

I ð0;2Þ;N
1;n ¼

Yn
i¼1

ηðqÞ
ϑαðcNi Þ

; ð2:79Þ

where again α ¼ 1 for even N and α ¼ 4 for odd N.
Extrapolating from the N ¼ 4 discussion, we conjecture

that the elliptic genus continues to be a module character of
the chiral algebra of the 4D N ¼ 2 circular quiver theory.

3. General Riemann surfaces

Other quiver theories cannot be obtained from the (0,2)
reduction of class S theories because they involve a U(1)
gauge group. Nonetheless, one can consider an SUðNÞ ×
Uð1Þ quiver gauge theory of genus g > 0 with n punctures,
where the numbers of SUðNÞ and U(1) gauge groups are
2ðg − 1Þ þ n and g − 1, respectively, whose central charges
are give by

cL ¼ 2ð2ðg − 1Þ þ nÞ; cR ¼ 3ðg − 1þ nÞ: ð2:80Þ

Compared with (2.62), the central charge depends on the
genus and puncture, but not on the rank of gauge groups for
this specific class of theory.
By introducing U(1) flavor fugacities ci for the external

punctures and di for the U(1) gauging, the elliptic genus of
the theory can be expressed in the simple form (up to a sign)

I ð0;2Þ;N
g>0;n ¼

Yg−1
j¼1

ð−1ÞβNϑβðdNj Þ2
ηðqÞϑ1ðd2Nj Þ

Yn
i¼1

ηðqÞ
ϑαðcNi Þ

; ð2:81Þ

where α ¼ 1, β ¼ 4 for evenN and α ¼ 4, β ¼ 1 for oddN.
This form is independent of quiver descriptions. Therefore,
regardless of the quiver descriptions, we claim that these
theories all flow to the same IR theory. Applying the formula

ηðqÞ2
Z
JK

dc
2πic

ϑ4ðc�NÞ
ϑαðdNc�NÞ ¼

ð−1ÞβNϑβðdNÞ2
ηðqÞϑ1ðd2NÞ

; ð2:82Þ

one can convince oneself that (2.81) is consistent with the
TQFT structure, as in Fig. 11.
The distinctions between SU(2) and SUðNÞ become

evident in theories of genus g that have gU(1) gauge nodes.
As demonstrated in Appendix C 6 b, the elliptic genus
evaluation for the left quiver theory depicted in Fig. 15
reveals that it is dual to an LG model. Contrarily, the
explicit evaluation shows that the elliptic genus of the right
quiver theory in Fig. 15 does not factorize into theta
functions. This observation implies that the right quiver
theory does not possess an LG dual description.

FIG. 15. SUð3Þ × Uð1Þ gauge theories corresponding to the genus-one Riemann surface with two punctures.
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D. Comments on non-Lagrangian cases

The (0,2) reduction described in Sec. II A 3 can poten-
tially be applied to non-Lagrangian class S theories,
including the trinion theories TN and the Argyres-
Douglas theories. However, to perform a consistent reduc-
tion, the (0,2) U(1)R charges, represented asR ¼ Rþ r−f

2
,

must take integer values. This imposes stringent conditions
on which class S theories can undergo consistent reduction.
Upon examining the Higgs and Coulomb branch operators,
the reduction seems possible for simple theories such as the
T3 theory and the ðA1; D4Þ Argyres-Douglas theory. On the
other hand, the ðA1; D2nþ1Þ theories do not admit consistent
reduction since the dimensions of their Coulomb branch
operators are fractional, resulting in a nonintegral value for
Rþ r−f

2
. In the following, we discuss potential candidates

for the (0,2) elliptic genus in these non-Lagrangian cases.
Recall that from Sec. II A 2, the (0,2) elliptic genus in the

Ramond sector6 is expected to be a Jacobi form of weight 0
with a nonzero index which captures the ’t Hooft anomaly
of the flavor symmetry. Additionally, we further conjecture
in (2.26) that the (0,2) elliptic genus for a class S theory
T ½Cg;n� should be some linear combination of the module
characters of the associated VOA χðT ½Cg;n�Þ. These two
conditions are expected to place strong constraints on
candidates of a (0,2) elliptic genus. For example, under
an S transformation, the elliptic genus should transform
back to itself up to a phase.7

The T3 trinion theory of type A2 is endowed with E6

flavor symmetry [60,61]. As uncovered in Fig. 19 of [1], the
SU(2) gauging of the T3 trinion theory leads to the infinite
coupling limit of SU(3)Nf ¼ 6 superconformal theory. The
corresponding VOA is the affine Lie algebra ðê6Þ−3 with
level −3 [7]. The algebra ðê6Þ−3 has irreducible representa-
tions with the following highest weights [62]:

0; −3ω1; −3ω6; ω1 − 2ω3;

ω6 − 2ω5; −2ω2; −ω4: ð2:83Þ

Using the pure spinor formalism [48,63], the following
combination of the ðê6Þ−3 characters is considered:

I e6ðm; qÞ ¼ chðê6Þ−30 ðm; qÞ − chðê6Þ−3−3ω1
ðm; qÞ: ð2:84Þ

We would like to analyze if this partition function is a
candidate of the (0,2) elliptic genus coming from the (0,2)

reduction. Concretely, I e6 can be expressed as a combina-
tion of theta functions as follows:

I e6ðm; qÞ ¼ ηðqÞ10ðΘe6
ω1
ðm̃; qÞ − Θe6

ω6
ðm̃; qÞÞQ

w∈Sϑ1ðmw
d5
Þ ; ð2:85Þ

where the two theta functions Θe6
ω1;ω6

are defined [64,65] as

Θe6
ω1
ðm; qÞ ¼ q1=6

2

X4
k¼1

σkm0ϑkðm3
0qÞ

Y5
j¼1

ϑkðmjÞ;

Θe6
ω6
ðm; qÞ ¼ q1=6

2

X4
k¼1

σkm−1
0 ϑkðm3

0q
−1Þ

Y5
j¼1

ϑkðmjÞ;

with −σ1 ¼ σ2 ¼ σ3 ¼ −σ4 ¼ 1. Here, m ¼ ðm0;md5Þ ¼
ðm0; m1;…; m5Þ are the fugacities for e6 (mi>0 are also
fugacities for the subalgebra d5) in the orthogonal basis.8

In the numerator of (2.85) we use m̃ ¼ ðm2
0; m1;…; m5Þ,

and in the denominator S ¼ ½0; 0; 0; 0; 1� is the spin
representation of d5.
Using the branching rules, one can establish the relation-

ships between the e6 fugacities m and the a3 ⊕ a3 ⊕ a3
fugacities xi, yj, zk (with the usual relation

Q
3
i¼1 xi ¼Q

3
i¼1 yi ¼

Q
3
i¼1 zi ¼ 1) in the fundamental weight basis

(or the omega basis in [66,67]):

m0 ¼ x
1
2

1z
−1
2

2 ; m3 ¼ x
1
2

1y
−1
1 z

1
2

2;

m1 ¼ x
−1
2

1 x−12 z1z
1
2

2; m4 ¼ x
1
2

1y1y
−1
2 ;

m2 ¼ x
1
2

1x2z1z
1
2

2; m5 ¼ x
1
2

1y2z
1
2

2: ð2:86Þ

Recall from (2.19) that the ’t Hooft anomaly can be read off
from the shift property of (2.85). In particular, we focus on
the shift behavior with respect to the SU(3) flavor fugacities
xi, yj, zk:

x1 → x1q; x2 → x2=q; I e6 →
q2x1z22
x32

I e6 ;

y1 → y1q; y2 → y2=q; I e6 → ðqy1=y2Þ9I e6 ;

z1 → z1q; z2 → z2=q; I e6 →
q2z31
x1z2

I e6 : ð2:87Þ

In four dimensions, the E6 theory is related to the SU(3)
SQCD through the Argyres-Seiberg duality, where two of
the SU(3) flavor symmetries of the former theory are
identified with the two SU(3) flavor symmetries of the
latter theory. If the above I e6 truly represents the elliptic
genus of the reduced E6 theory, then its SUð3Þ2 ’t Hooft
anomaly should match with that of the reduced SU(3)

6In the previous subsections, we considered the (0,2) elliptic
genus in the NS sector. Nonetheless, it is straightforward to
transform it to the Ramond sector simply by replacing ϑ4 with ϑ1.

7We will encounter Kac-Moody algebras as the associated
VOAs, which are all bosonic: under the S transformation, the
transformed characters remain within the standard (untwisted)
sector.

8Contrarily, the fugacities in [48] were expressed in the alpha
basis [66,67].
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SQCD. The elliptic genus I ð0;2Þ;3
0;2;2 of 2D (0,2) SU(3) SQCD

with three fundamentals and three antifundamentals is given
by the N ¼ 3 specialization of (2.72), which has the simple
shift property

ci→ciq; I ð0;2Þ;3
0;2;2 →q

9
2c9i I

ð0;2Þ;3
0;2;2 ;

bi;1→bi;1q; bi;2→bi;2=q; I ð0;2Þ;3
0;2;2 → ðqbi;1=bi;2Þ9I ð0;2Þ;3

0;2;2 :

Here ci are the Uð1Þ2 fugacities and bi;j are the two SU(3)
fugacities. However, by comparison, the two shift behaviors
do not match if we identify the SU(3) fugacities as
y1 ¼ b0;1; y2 ¼ b0;2; z1 ¼ b2;1; z2 ¼ b2;2. Hence, when we
perform the SU(2) gauging on the expression given in
(2.85), it appears that we do not arrive at the (0,2) elliptic
genus for SU(3) SQCD with Nf ¼ 6, and I e6 fails to be a
candidate for the desired elliptic genus. Note, however, that
I e6 is not the only candidate. It may be worth exploring
alternative combinations of ðê6Þ−3 characters, distinct from
(2.84), in order to compare with the SU(3) SQCD with
Nf ¼ 6. Indeed, by the logic of [48], a linear combination of
the vacuum character and the character with the highest

weight −ω4 is the most promising starting point. We leave
this to future study.
Argyres-Douglas theories [68,69] constitute another

interesting class of non-Lagrangian theories, whose con-
struction involves a higher-order pole of the Higgs field in
the Hitchin system [70].
Let us first consider the ðA1; D4Þ theory. The rank-one

theory contains a Coulomb branch operator with con-
formal dimension Δ ¼ −3=2, and therefore an integral r
charge r ¼ 2Δ ¼ 3, suggesting a possible S2 reduction and
a corresponding (0,2) elliptic genus. The associated VOA
is given by the Kac-Moody algebra csuð3Þ−3=2 [6,71].
The level k ¼ −3=2 with respect to the SU(3) flavor
symmetry is called boundary admissible in the mathemat-
ics literature [72]. There are four irreducible admissible
highest-weight modules with affine weights:

−
3

2
ω̂0; −

3

2
ω̂1; −

3

2
ω̂2; ρ̂¼ −

1

2

X2
i¼0

ω̂i; ð2:88Þ

where ρ̂ is the affine Weyl vector. The characters are
given by

ch−3
2
ω̂0

¼ ηðτÞϑ1ðb1 − 2b2j2τÞϑ1ð−b1 − b2j2τÞϑ1ð−2b1 þ b2j2τÞ
ηð2τÞϑ1ðb1 − 2b2jτÞϑ1ð−b1 − b2jτÞϑ1ð−2b1 þ b2jτÞ

;

ch−3
2
ω̂1

¼ −
ηðτÞϑ4ðb1 − 2b2j2τÞϑ4ð−b1 − b2j2τÞϑ1ð−2b1 þ b2j2τÞ
ηð2τÞϑ1ðb1 − 2b2jτÞϑ1ð−b1 − b2jτÞϑ1ð−2b1 þ b2jτÞ

;

ch−3
2
ω̂2

¼ −
ηðτÞϑ1ðb1 − 2b2j2τÞϑ4ð−b1 − b2j2τÞϑ4ð−2b1 þ b2j2τÞ
ηð2τÞϑ1ðb1 − 2b2jτÞϑ1ð−b1 − b2jτÞϑ1ð−2b1 þ b2jτÞ

;

ch−1
2
ρ̂ ¼ −

ηðτÞϑ4ðb1 − 2b2j2τÞϑ1ð−b1 − b2j2τÞϑ4ð−2b1 þ b2j2τÞ
ηð2τÞϑ1ðb1 − 2b2jτÞϑ1ð−b1 − b2jτÞϑ1ð−2b1 þ b2jτÞ

;

where the first is the vacuum character of csuð3Þ−3=2 as well
as the Schur index of the ðA1; D4Þ theory. The modular S
matrix is given by

S ¼ −
1

2

0BBB@
1 1 1 −1
1 1 −1 1

1 −1 1 1

−1 1 1 1

1CCCA: ð2:89Þ

An elliptic genus should be a weight-0 Jacobi form and
therefore should transform back to itself under S, up to a
prefactor. We look for linear combinations of the charac-
ters that have such simple behavior. There are four
eigenvectors of S, with eigenvalues ð−1;−1;−1; 1Þ,
respectively,

ch−3
2
ω̂0
− ch−3

2
ρ̂; ch−3

2
ω̂0
þ ch−3

2
ω̂1
; ch−3

2
ω̂0
þ ch−3

2
ω̂2
;

ð2:90Þ

and finally,

ch−3
2
ω̂0

− ch−3
2
ω̂1

− ch−3
2
ω̂2

þ ch−3
2
ρ̂: ð2:91Þ

Unfortunately, neither the þ1 eigenvector nor any linear
combination of the −1 eigenvectors behaves consistently
under the shift of both SU(3) flavor fugacities b1 and b2
that can reflect the ’t Hooft anomaly. Consequently, no
linear combination of the csuð3Þ−3=2 characters appears as a
valid candidate of the desired elliptic genus.
Let us also consider the ðA1; D2nþ1Þ Argyres-Douglas

theories, which enjoy SUð2Þ flavor symmetry. Since these
theories contain Coulomb branch operators with fractional
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r charge, a valid (0,2) reduction is not anticipated. Below,
we contend that from the VOA perspective a (0,2) elliptic
genus does not exist. The associated VOAs are given bycsuð2Þk¼− 4n

2nþ1
[6,71]. In this case, the level k ¼ − 4n

2nþ1
¼

−2þ 2
2nþ1

is also boundary admissible, and the VOA has
admissible affine weights given by (where u ≔ 2nþ 1)
[72,73]

λ̂k;j ¼
�
kþ 2j

u

�
ω̂0 −

2j
u
ω̂1; j ¼ 0; 1; 2;…; u − 1 ¼ 2n:

ð2:92Þ

They are the highest weights of irreducible highest-weight
modules Lðλ̂k;jÞ of csuð2Þk¼− 4n

2nþ1
, whose characters are

given by the simple formula

chLðλ̂k;jÞ ¼ z−
2j
u q

j2

2u
ϑ1ð2z − jτjuτÞ

ϑ1ð2zjτÞ
: ð2:93Þ

Here z is the flavor SU(2) fugacity. The modular Smatrix is
given by

Sjj0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

u2ðkþ 2Þ

s
eπiðjþj0Þeπiðjj0ðkþ2ÞÞ sin

�
π

kþ 2

�
: ð2:94Þ

However, none of the eigenvectors of the S matrix
transform themselves (up to a factor) under the shift z →
zþ τ since each character transforms in the following
manner (the subscript follows a cyclic rule such that
j ∼ jþ 2nþ 1):

chðλ̂k;jÞ⟶z→zþτ ðb2qÞ−kchðλ̂k;j−2Þ: ð2:95Þ

This implies that a Jacobi form from chðλ̂k;jÞ must take
the form

const ·
X2n
j¼0

chðλ̂k;jÞ; ð2:96Þ

which is never an eigenvector of the S matrix (2.94).
Therefore, we conclude that no linear combination of thecsuð2Þk¼− 4n

2nþ1
characters satisfies the expected properties of

a (0,2) elliptic genus. To summarize, we have been unable
to identify a (0,2) elliptic genus for non-Lagrangian
theories.

III. N = ð0;4Þ ELLIPTIC GENERA FOR CLASS S
THEORIES ON S2

In this section, we studyN ¼ ð0; 4Þ theories obtained by
a distinct twisted compactification of class S theories of type
A on S2. In these theories, we perform a topological twist on

Uð1ÞS2 with 4D N ¼ 2 superconformal R symmetry
Uð1Þr ⊂ SUð2ÞR × Uð1Þr, as discussed in [27,74]. Refer-
encing Table I, the four supercharges QI

−; Q̃
I
−̇ (I ¼ 1, 2)

survive under this twist and they possess the same Uð1ÞT2

charge. Therefore, this twist preserves 2D N ¼ ð0; 4Þ
supersymmetry and thus we refer to this twisted compacti-
fication as the (0,4) reduction of class S theories. For 4D
N ¼ 2 SCFT, Uð1Þr charges of operators are integral,
eliminating the need for an additional twist by a flavor
symmetry. The 2D N ¼ ð0; 4Þ supersymmetry has
SOð4ÞR ≅ SUð2Þ−R × SUð2ÞþR as the UVR symmetry, where
4D SUð2ÞR is identified with 2D SUð2Þ−R ⊂ SOð4ÞR. This
subgroup subsequently evolves into the affine csuð2Þ Lie
algebra within the small N ¼ 4 superconformal algebra in
the IR. Given the (0,4) reduction of a class S theory, we
consider its IR SCFT on the Higgs branch where SUð2ÞþR
becomes the small N ¼ 4 superconformal R symmetry in
the right-moving sector. For a detailed analysis of the
symmetries within this context, readers are directed to [27].
In the (0,4) reduction, a 4D N ¼ 2 hypermultiplet

reduces to a 2D N ¼ ð0; 4Þ hypermultiplet [two (0,2)
chirals with opposite charges]. Likewise, a 4D N ¼ 2
vector multiplet reduces to a 2D N ¼ ð0; 4Þ vector multi-
plet [(0,2) vector þ (0,2) adjoint Fermi]. Consequently, for
a Lagrangian theory, the basic building blocks in 2D are as
follows.
For type A1, it corresponds to a sphere with three

punctures. For type AN−1, a sphere with one minimal
puncture and two maximal punctures gives rise to this
building block. For simplicity in notation (without distin-
guishing types of punctures), we denote its contribution to a

(0,4) elliptic genus as I ð0;4Þ
0;3 . The explicit contributions of

this and the vector multiplet are

I ð0;4Þ
0;3 ða; b; cÞ ¼

YN
i;j¼1

ηðqÞ2
ϑ1ðvðcaibjÞ�Þ

;

I ð0;4Þ
vec ðaÞ ¼ ðϑ1ðv2ÞηðqÞÞN−1

N!

×
YN
A;B¼1
A≠B

ϑ1ðv2aA=aBÞϑ1ðaA=aBÞ
ηðqÞ2 ; ð3:1Þ

where the SUðNÞ fugacities condition is implicitly
imposed,

YN
i¼1

ai ¼ 1 ¼
YN
i¼1

bi: ð3:2Þ

The fugacity v is for the Cartan subgroup of the anti-
diagonal of SUð2Þ−R × SUð2ÞþR R symmetry that commutes
with the supercharges. In this physical setup, it was argued
in [27,75] that the (0,4) elliptic genus is expected to be the
Vafa-Witten partition function [76] on Cg;n × S2. In [27],
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the S duality of (0,4) theories with genus zero was
confirmed by evaluating the elliptic genera. Notably, using
the elliptic inversion formula (2.37), the elliptic genus of
the (0,4) reduction of the non-Lagrangian T3 trinion theory
was obtained there. The primary focus of this paper is to
explore the (0,4) theories with a genus greater than zero,
using elliptic genera.
In theories with a genus of zero, one can determine the

right-moving central charge using the SUð2ÞþR anomaly,

cR ¼ 6ð2kRÞ ¼ 6ðnh − nvÞ: ð3:3Þ

Here, kR denotes the SUð2ÞþR anomaly coefficient, which
can be computed as in (2.14) in the ultra-violet theory, and
2kR represents the level of the affine SUð2ÞþR symmetry. For
a class S theory T N ½Cg¼0;n� lacking a Lagrangian descrip-
tion, nh and nv can be evaluated from partitions of N
assigned to punctures. The explicit treatment can be found
in [27,77], and we omit the details here. The left-moving
central charge cL can be derived from the gravitational
anomaly (2.18). Note that 2kR represents the quaternionic
dimension of the Higgs branch. Moreover, the q → 0 limit
of the elliptic genus agrees with the Hilbert series of the
Higgs branch [78]. (The computational techniques were
developed in [79–81].)
On the other hand, the situation drastically changes for

theories with a genus greater than zero. In a theory with
genus g > 0, the Uð1Þg gauge symmetry is unbroken at a
generic point of the moduli space of the hypermultiplets,
and therefore it was called the Kibble branch in [78]. It was
conjectured in [27] that the computation of the right-
moving central change is modified from (3.3) as

cR ¼ 6ð2kR þ gÞ ¼ 6ðnh − nv þ gÞ: ð3:4Þ

As we will see below, the q → 0 limit of the elliptic genus is
no longer equal to the Hilbert series of the Kibble branch.
This is very similar to the relation between the Hall-
Littlewood index and the Higgs branch Hilbert series [5]
in which the agreement can be seen for theories with genus
zero but not higher.
In the following, we present closed-form expressions for

the (0,4) elliptic genera of theories where the genus g > 0.
If a theory has a Lagrangian description with a gauge
group of adequately low total rank, one can straightfor-
wardly compute the elliptic genus through the JK-residue
method. To determine the elliptic genus of non-Lagrangian
theories at higher genus, we exploit the inversion formula
in [27,82,83], namely, by performing additional gauging in
Lagrangian theories. For detailed calculations, readers can
refer to Appendix D, which provides explicit JK-residue
computations of (0,4) elliptic genera. The resulting closed-
form expressions are remarkably simple, aligning well with
the TQFT structure on punctured Riemann surfaces Cg;n.

A. Type A1

Class S theories of type A1 all have Lagrangian descrip-
tions and are completely specified by the genus g and the
number of (regular) punctures n. We focus on theories at
genus g ≥ 1 with an arbitrary number of punctures. To
compute elliptic genera, we can gauge the basic building
block illustrated on the left side of Fig. 16 by using (3.1).
For g ¼ 1, n ¼ 1, the elliptic genus is computed from the JK
residue where one only encounters nondegenerate poles,

I ð0;4Þ;2
1;1 ðcÞ ¼

Z
JK

da
2πia

I ð0;4Þ
0;3 ða; a−1; cÞI ð0;4Þ

vec ðaÞ

¼ ηðqÞ2ϑ1ðv4Þ
ϑ1ðv2Þϑ1ðv2c�2Þ : ð3:5Þ

This expression is a simple ratio of the theta functions, and
the LG dual theory was described in Sec. 2.2.3 of [27]. A
similar computation can be performed for g ¼ 1, n ≥ 1,
which yields

I ð0;4Þ;2
1;n ðc1;…; cnÞ ¼

Yn
i¼1

ηðτÞ2ϑ1ðv4Þ
ϑ1ðv2Þϑ1ðv2c�2

i Þ : ð3:6Þ

While the Kibble branch Hilbert series was computed in
Sec. 4.2.2 of [78] for n ¼ 2, the relation between the elliptic
genus and the Hilbert series is unclear. Consequently,
although the form of the elliptic genus suggests the
existence of an LG dual theory, its precise description
remains unknown to us.
It is straightforward to obtain the elliptic genus for higher

genera. For example, the theory of genus two is

I ð0;4Þ;2
2;0 ¼

Z
JK

da
2πia

I ð0;4Þ;2
1;2 ða; a−1ÞI ð0;4Þ

vec ðaÞ

¼
Z
JK

da
2πia

ðI ð0;4Þ;2
1;1 ðaÞÞ2I ð0;4Þ

vec ðaÞ

¼ ϑ1ðv2Þϑ1ðv4Þ
ηðqÞ2 : ð3:7Þ

FIG. 16. Left: a building block for type A1, representing eight
(0,2) chiral multiplets with SUð2Þ3 flavor symmetry. Right: a
building block for Lagrangian theories of type AN−1, representing
a (0,4) free hypermultiplet with SUðNÞa × SUðNÞb × Uð1Þc
flavor symmetry.
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Moreover, we can increase the genus g by gluing together any number of pairs of punctures, and the final result takes the
simple form

I ð0;4Þ;2
g;n ðc1;…; cnÞ ¼

�
ϑ1ðv2Þϑ1ðv4Þ

ηðqÞ2
�

g−1Yn
i¼1

ηðqÞ2ϑ1ðv4Þ
ϑ1ðv2Þϑ1ðv2c�2

i Þ : ð3:8Þ

This result is consistent with the cut-and-join TQFT structure on Cg;n, so that

I ð0;4Þ;2
gþ1;n ðc1;…; cnÞ ¼

Z
JK

da
2πia

I ð0;4Þ;2
g;nþ2 ðc1;…; cn; a; a−1ÞI ð0;4Þ

vec ðaÞ;

I ð0;4Þ;2
g1þg2;n1þn2ðc1;…; cn1þn2Þ ¼

Z
JK

da
2πia

I ð0;4Þ;2
g1;n1þ1ðc1;…; aÞI ð0;4Þ

vec ðaÞI ð0;4Þ;2
g2;n2þ1ðcn1þ1;…; a−1Þ:

B. Type A2

For class S theories of type A2, there are two types of
regular punctures: the minimal punctures with flavor
symmetry Uð1Þ and the maximal punctures with flavor
symmetry SU(3). We denote the number of these punctures
as n1 and n3, respectively. First, we can gauge the basic
building block illustrated on the right side of Fig. 16 by
using (3.1) to compute the elliptic genus for g ¼ 1 with
several minimal punctures. This can be swiftly computed
using the JK residue, from which we can postulate the
general formula

I ð0;4Þ;3
g¼1;n1;0

ðc1;…; cn1Þ ¼
Yn1
i¼1

ηðqÞ2ϑ1ðv6Þ
ϑ1ðv2Þϑ1ðv3c�3

i Þ : ð3:9Þ

To access the elliptic genus in the presence of maximal
punctures, we apply the elliptic inversion formula in [27]
that computes the (0,4) elliptic genus of the T3 theory.
Specifically, starting from g ¼ 1; n1 ¼ 2, we use the
inversion formula (2.37) to obtain g ¼ 1; n3 ¼ 1 (Fig. 17),

I ð0;4Þ;3
g¼1;0;n3¼1ðbÞ ¼

ηðqÞ5
2ϑ1ðv2z�2Þ

Z
JK

ds
2πis

ϑ1ðs�2Þϑ1ðv−2Þ
ϑ1ðv−1s�1z�1Þ

× I ð0;4Þ;3
g¼1;n1;0

ðs13=r; s−1
3=rÞ

¼ ηðqÞ6ϑ1ðv2Þϑ1ðv4Þϑ1ðv6ÞQ
3
A;B¼1 ϑ1ðv2bA=bBÞ

; ð3:10Þ

where the SU(3) fugacities for the maximal puncture are
identified by ðb1; b2; b3Þ ¼ ðrz; r=z; r−2Þ. The detailed
computations of the elliptic genus for type A2 theories
are collected in Appendix D 2. In summary, the elliptic
genus for the (0,4) reduction of the class S theory
T 3½Cg;n1;n3 � is given by the following simple form:

I ð0;4Þ;3
g;n1;n3 ¼

�
ϑ1ðv2Þϑ1ðv4Þ2ϑ1ðv6Þ

ηðqÞ4
�

g−1
I ð0;4Þ;3
1;n1;0

I ð0;4Þ;3
1;0;n3

;

ð3:11Þ

where

I ð0;4Þ;3
g¼1;0;n3

¼
Yn3
i¼1

ηðqÞ6ϑ1ðv2Þϑ1ðv4Þϑ1ðv6ÞQ
3
A;B¼1 ϑ1ðv2biA=biBÞ

: ð3:12Þ

C. Type A3

For type A3 theories, there are four types of regular
punctures whose partitions and flavor symmetries are given
as follows:
(1) [3, 1] U(1).
(2) [2, 1, 1] SUð2Þ × Uð1Þ.
(3) [2, 2] SU(2).
(4) [1, 1, 1, 1] SU(4).

We use the notations n1, n2, n3, n4 to denote the numbers of
these punctures, respectively. For g ¼ 1 only with minimal

FIG. 17. Application of the elliptic inversion formula leads to the elliptic genus for a maximal puncture.
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punctures (n2 ¼ n3 ¼ n4 ¼ 0), it is straightforward to
compute the elliptic genus,

I ð0;4Þ;4
1;n1;0;0;0

¼
Yn1
i¼1

ηðqÞ2ϑ1ðv8Þ
ϑ1ðv2Þϑ1ðv4c�4

i Þ : ð3:13Þ

Applying the elliptic inversion formula in [83], we can
calculate the elliptic genus of genus-one theories that have
[2,1,1], and [2,2] punctures. As a specific case, when there
is only one [2,1,1] puncture, the elliptic genus is as follows:

I ð0;4Þ;4
g¼1;0;1;0;0 ¼

ηðqÞ5
2ϑ1ðv2z�2Þ

Z
JK

ds
2πis

ϑ1ðs�2Þϑ1ðv−2Þ
ϑ1ðv−1s�1z�1Þ

× I ð0;4Þ;3
g¼1;2;0;0;0ðs

1
4=r; s−

1
4=rÞ

¼ ηðqÞ6ϑ1ðv6Þϑ1ðv8Þ
ϑ1ðv2Þ2ϑ1ðv2z�2Þϑ1ðv3z�r�4Þ ; ð3:14Þ

where z, r denote the SU(2) and U(1) fugacities, respec-
tively. (See Fig. 18.) With only one [2, 2] puncture, the
elliptic genus is

I ð0;4Þ;4
g¼1;0;0;1;0 ¼

ηðqÞ5ϑ1ðv2Þϑ1ðv−2Þ
2ϑ1ðv4Þ

×
Z
JK

ds
2πis

ϑ1ðs�2Þ
ϑ1ðs�1Þϑ1ðv−2s�1Þ

× I ð0;4Þ;3
g¼1;2;0;0;0ðs

1
4=w; s−

1
4=wÞ

¼ ηðqÞ4ϑ1ðv6Þϑ1ðv8Þ
ϑ1ðv2Þϑ1ðv4Þϑ1ðv4w�4Þϑ1ðv2w�4Þ : ð3:15Þ

While the derivation of the elliptic genus for the theory
of genus one with a maximal puncture remains unknown,
an extrapolation from the results in (3.5) and (3.10) allows
us to propose the following expression:

I ð0;4Þ;4
g¼1;0;0;0;1 ¼

ηðqÞ12ϑ1ðv2Þϑ1ðv4Þϑ1ðv6Þϑ1ðv8ÞQ
4
A;B¼1 ϑ1ðv2bA=bBÞ

: ð3:16Þ

The validity of our proposed formula can be tested by
examining the S duality in Fig. 19. Gauging this theory as
in the right side of the figure leads to the theory of genus
one with three minimal punctures, and thus we can compare
the result with (3.13). The detailed computations of the
elliptic genera are collected in Appendix D 3.

FIG. 18. Application of the elliptic inversion formula leads to the elliptic genus for a [2,1,1] puncture.

FIG. 19. S duality in the class S theory of type A3. The right theory involves gauging the A3 trinion theory.
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This allows us to further increase the genus g and, finally,
the elliptic genus of a general A3 theory is given by

I ð0;4Þ;4
g;n1;n2;n3;n4 ¼

�
ϑ1ðv2Þϑ1ðv4Þ2ϑ1ðv6Þ2ϑ1ðv8Þ

ηðqÞ6
�

g−1

× I ð0;4Þ;4
1;n1;0;0;0

I ð0;4Þ;4
1;0;n2;0;0

I ð0;4Þ;4
1;0;0;n3;0

I ð0;4Þ;4
1;0;0;0;n4

;

where

I ð0;4Þ;4
1;n1;0;0;0

¼
Yn1
i¼1

ηðqÞ2ϑ1ðv8Þ
ϑ1ðv2Þϑ1ðv4c�4

i Þ ; ð3:17Þ

I ð0;4Þ;4
1;0;n2;0;0

¼
Yn3
i¼1

ηðqÞ6ϑ1ðv6Þϑ1ðv8Þ
ϑ1ðv2Þ2ϑ1ðv2z�2

i Þϑ1ðv3z�i r�4
i Þ ; ð3:18Þ

I ð0;4Þ;4
1;0;0;n3;0

¼
Yn2
i¼1

ηðqÞ4ϑ1ðv6Þϑ1ðv8Þ
ϑ1ðv2Þϑ1ðv4Þϑ1ðv2w�4

i Þϑ1ðv4w�4
i Þ ; ð3:19Þ

I ð0;4Þ;4
1;0;0;0;n4

¼
Yn4
i¼1

ηðqÞ12ϑ1ðv2Þϑ1ðv4Þϑ1ðv6Þϑ1ðv8ÞQ
4
A;B¼1 ϑ1ðv2biA=biBÞ

: ð3:20Þ

D. Type AN − 1 and TQFT structure

From the above results, we can observe a simple TQFT
structure in the N ¼ ð0; 4Þ elliptic genus of the class S
theory at genus g ≥ 1. This structure suggests that the
elliptic genus can be expressed as a straightforward product
of contributions from individual punctures and handles.
Therefore, the N ¼ ð0; 4Þ elliptic genus corresponding to
type AN−1 is expected to have the following form:

I ð0;4Þ;N
g;n ¼ ðHNÞg−1

Yn
i¼1

I ð0;4Þ;N
λi

ðbiÞ; ð3:21Þ

where g is the genus of the associated Riemann surface and
n collectively denotes the number of punctures, with their
internal data represented by partitions (Young diagrams).
The function Iλi captures the contribution from the ith

puncture labeled by a partition λi, andHN encapsulates the
contribution originating from a handle. Loosely speaking,
this expression resembles the TQFT expression of the
4D N ¼ 2 superconformal index [4,5], which involves
an infinite sum over representations of SUðNÞ schemati-
cally as

I4D ¼
X
μ

H2g−2þn
μ

Y
i

ψ ðλiÞ
μ ðbiÞ: ð3:22Þ

We expect the elliptic genus Ig;n to obey a TQFT
structure under cutting and gluing. Let us consider the
maximal puncture corresponding to the integer partition
½1N �, which contributes

I ð0;4Þ;N
½1N � ðbÞ ¼ ηðqÞN2−N Q

N
M¼1 ϑ1ðv2MÞQ

N
A;B ϑ1ðv2bA=bBÞ

; ð3:23Þ

where bA denotes the SUðNÞ flavor fugacities with the
constraint b1 � � � bN ¼ 1.
Consider two Riemann surfaces, labeled as Cg1;n1 and

Cg2;n2 , each with a maximal puncture. By SUðNÞ gauging,
these two maximal punctures can be joined together, which
results in a new Riemann surface Cg1þg2;n1þn2−2. Similarly,
if a Riemann surfaceCg;n possesses more than two maximal
punctures, by gauging the diagonal of the SUðNÞ2 flavor
symmetry originating from these two maximal punctures,
we can transform this surface into a new Riemann surface
Cgþ1;n−2. These processes is visualized in Fig. 20. For the
form of the (0,4) elliptic genus (3.21) to be compatible with
these procedures, the handle contribution must be

HN ¼
Z
JK

da
2πia

I ð0;4Þ;N
½1N � ðaÞI ð0;4Þ;N

½1N � ða−1ÞI ð0;4Þ
vec ðaÞ

¼
Q

N
M¼1 ϑ1ðv2MÞ2

N!ηðqÞN−1ϑ1ðv2ÞNþ1

Z
JK

da
2πia

Y
A≠B

ϑ1ðaA=aBÞ
ϑ1ðv2aA=aBÞ

;

¼
Q

N
M¼1 ϑ1ðv2MÞ2

ηðqÞ2ðN−1Þϑ1ðv2Þϑ1ðv2NÞ
: ð3:24Þ

The JK integral is analogous to that in (2.76). The results
(3.23) and (3.24) reduce to those in the previous examples

FIG. 20. Gluing maximal punctures leads to a new Riemann surface, and (0,4) elliptic genera are consistent with the cut-and-join
procedure on Riemann surfaces Cg;n.
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when N ¼ 2, 3, 4. Furthermore, given that the (0,4) elliptic
genus form in (3.21) receives only local contributions,
verifying the following properties is straightforward:

I ð0;4Þ;N
g1þg2;n1þn2−2ðb; cÞ ¼

Z
JK

da
2πia

I ð0;4Þ;N
g1;n1 ðb; aÞ

× I ð0;4Þ;N
g2;n2 ðc; a−1ÞI ð0;4Þ

vec ðaÞ;

I ð0;4Þ;N
gþ1;n−2ðbÞ ¼

Z
JK

da
2πia

I ð0;4Þ;N
g;n ðb; a; a−1ÞI ð0;4Þ

vec ðaÞ:

ð3:25Þ

The contribution from other punctures can be derived
from the maximal one using nilpotent Higgsing. When
transitioning from the maximal one to another type, an
operator O, which is charged under the SUðNÞ flavor
symmetry, acquires a nilpotent vacuum expectation value
hOiwith Jordan blocks of sizes 1 andN − 1, which specifies
an embedding SUð2Þ ↪ SUðNÞ [77]. Following [83], we
propose that this nilpotent Higgsing procedure can be
implemented at the level of the elliptic genus as follows.
The contribution from a puncture defined by an integer
partition λ of N is given by

IλðcÞ ¼ lim
b→c

�
KλðcÞ
K½1N �ðbÞ

	
ΓðtαzÞ→ ηðqÞ

ϑ1ðv2αzÞ

I ½1N �ðbÞ: ð3:26Þ

Here b denotes the flavor fugacities associated with the
puncture and the function K is defined using the plethystic
exponential (A5) as

KλðcÞ ≔ PE

�X
j

tjþ1 − pqtj

ð1 − pÞð1 − qÞ ch
f
μjðcÞ

	
: ð3:27Þ

The ratio Kλ=K½1N � in (3.26) can always be expressed by
elliptic gamma functions, which will be shown at the end of
this section.
The replacement b → c and the Kλ should be understood

in the following way [84]. Recall that the integer partition λ
captures an embedding of SU(2) in SUðNÞ. The adjoint
representation of SUðNÞ decomposes with respect to this
embedding,

adj ¼⊕j μj ⊗ σj; ð3:28Þ

where σj denotes the spin-j representation of the embedded
SU(2) and μj denotes a representation of the commutant,
namely, the flavor symmetry f of the puncture. Under the

decomposition, the character of the adjoint representation
can also be decomposed as9

chadjðbÞ ¼
X
j

chfμjðcÞchSUð2Þσj ðt1=2Þ; ð3:30Þ

where chSUð2Þσj ðt1=2Þ ¼ Pj
m¼−j t

m.
For example, the partition λ ¼ ½1N � corresponding to the

maximal puncture simply means a trivial embedding of
SU(2), and therefore f ¼ SUðNÞ, j ¼ 0, and μ0 ¼ adj.
The K function then reads

K½1N �ðbÞ ¼ PE

�
t − pq

ð1 − pÞð1 − qÞ chadjðbÞ
	
; ð3:31Þ

where b ¼ ðb1; b2;…; bN−1; bNÞ denotes the fugacities of
the flavor SUðNÞ. As another example, when N ¼ 4,
λ ¼ ½2; 2�, the flavor symmetry is f ¼ SUð2Þ. The adjoint
of SU(4) decomposes as adj ¼ ð½j ¼ 1� ⊕ ½j ¼ 0�Þ ⊗
σj¼1 ⊕ ½j ¼ 1� ⊗ σj¼0, where [j] simply denotes the
spin-j representation with respect to f. The replacement
b → c reads ðb1; b2; b3; b4Þ → ðct1=2; ct−1=2; c−1t1=2;
c−1t−1=2Þ, and the K function is given by

K½22�ðcÞ ¼ PE

� ðt − pqÞ
ð1 − qÞð1 − pÞ

�
c2 þ 1

c2
þ 1

�
þ ðt2 − pqtÞ
ð1 − qÞð1 − pÞ

�
c2 þ 1

c2
þ 2

�	
: ð3:32Þ

Another case of interest is the principal embedding
λ ¼ ½N� corresponding to trivial flavor symmetry. The
fugacity takes the principal specialization

ðb1;…; bNÞ → ðt−N−1
2 ; t−

N−3
2 ;…; t

N−3
2 ; t−

N−1
2 Þ: ð3:33Þ

The adjoint of SUðNÞ is decomposed into adj ¼⊕N−1
i¼1 σi

and the K function is

K½N�ðcÞ ¼ PE

"XN−1

i¼1

tiþ1 − pqti

ð1 − pÞð1 − qÞ

#
: ð3:34Þ

Note that there is no real c dependence since the corre-
sponding flavor symmetry is trivial. We should regard the

9To actually obtain the decomposition (3.30) of character, one
may start by finding the replacement b → c associated with the
embedding. The process to find b → c effectively starts by
addressing a simpler equation,

chfundðbÞ ¼
X
j

chfμ0j
ðcÞchSUð2Þσj ðt1=2Þ; ð3:29Þ

with respect to the decomposition of the SUðNÞ fundamental
fund ¼⊕j μ

0
j ⊗ σj. Then, the replacement can then be reintro-

duced into (3.30) and help determine pairs μ, σ of representations.
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principal embedding as removing the puncture entirely.
Hence,

lim
b→c

�
K½N�ðcÞ
K½1N �ðbÞ

	
ΓðtαzÞ→ ηðτÞ

ϑ1ð2αvþzÞ

I ½1N �ðbÞ ¼ 1: ð3:35Þ

This illustrates the closure of a puncture.
In this way, the contribution from a puncture with a

hook-type Young diagram can be read as

I ½N−K;1K � ¼
Q

N
M¼N−Kþ1 ϑ1ðv2MÞ

ηðqÞK
ηðqÞ2KQ

K
A¼1 ϑ1ðvN−Kþ1ðrNcAÞ�Þ

×
ηðqÞK2Q

K
A;B¼1 ϑ1ðv2cA=cBÞ

; ð3:36Þ

where r and cA represent the flavor fugacities.
In all of the above ratios of K, we make the replacement

ΓðtαzÞ → ηðτÞ
ϑ1ð2αvþzÞ at the end of the computation. This is

possible thanks to the fact that limb→c Kλ=K½1N � is always a
product of elliptic gamma functions. This can be seen by
explicitly writing out the plethystic exponential

lim
b→c

KλðcÞ
K½1N �ðbÞ

¼ PE
�

t − pq
ð1 − pÞð1 − qÞ

×
X
j

chfμjðcÞðtj − chSUð2Þσj ðt1=2ÞÞ
	
: ð3:37Þ

For each j in the above sum, we write explicitly

ðt − pqÞðtj − chSUð2Þσj ðt1=2ÞÞ ¼ −ðt − pqÞðt−j þ t−jþ1 þ � � �
þ tj−2 þ tj−1Þ: ð3:38Þ

Note that the adjoint representation adj is real, and hence
we have

chfμjðcÞ ¼ chfμjðc−1Þ: ð3:39Þ

Therefore,

ðt − pqÞðtj − chSUð2Þσj ðt1=2ÞÞchfμjðcÞ
¼ −ðt−jþ1 þ t−jþ2 þ � � � þ tj−1 þ tjÞchfμjðcÞ
þ pqðt−jþ1 þ t−jþ2 þ � � � þ tj−1 þ tjÞchfμjðcÞj t→t−1

c→c−1
:

Here we see that the structure of x − pq
x emerges, and the

ratio of K precisely forms a product of elliptic gamma
functions. At the end of the computation, the replacement
ΓðtαzÞ → ηðτÞ

ϑ1ð2αvþzÞ should be performed to derive the

contribution from a puncture to the (0,4) elliptic genus.
Our findings give rise to various intriguing questions

and potential research directions. Thus, we conclude this

section by highlighting a few prospective avenues for future
exploration.
Simplicity of forms: The (0,4) elliptic genus manifests in

surprisingly simple forms, primarily as products of theta
functions. However, such simplicity is observed only in
theories where the genus is greater than zero. The under-
lying reasons for this remain mysterious.
Nonlinear sigma model: Our investigations point toward

an N ¼ ð0; 4Þ nonlinear sigma model as an IR theory. The
target space of this model is the moduli space of the
hypermultiplet with a nontrivial left-moving bundle.
Notably, the form of the (0,4) elliptic genus strongly
indicates the existence of an LG dual theory for this class
of theories. An immediate challenge is to identify the
superpotential of the LG model, which realizes the target
space of the nonlinear sigma model.
Relation with Schur indices: Prior works, such as

[85–88], brought up the relationship between (0,4) elliptic
genera and Schur indices. However, the findings in these
works remain observational and lack a foundational under-
standing. Therefore, a deeper analysis of the (0,4) elliptic
genus presented in this paper, in light of these observations,
is a promising avenue.
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APPENDIX A: NOTATIONS AND CONVENTIONS

In this paper, the symbol q is defined as q ≔ e2πiτ, where
τ is a complex structure of a two-torus. Throughout the
paper, single symbols written in sans-serif type are used to
represent chemical potentials. The fugacity z and the
chemical potential z for either gauge or flavor symmetry
are related by the equation z ¼ e2πiz. Abusing notation,
functions with fugacities and chemical potentials will be
used interchangeably. For example, the following two
notations represent the same theta function:

ϑ1ðzÞ ¼ ϑ1ðzÞ: ðA1Þ

The notation fða�b�Þ is a shorthand notation used to
denote the multiplication of all possible combinations of
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signs in the arguments. It is defined as follows:

fða�b�Þ≔ fðabÞfða−1bÞfðab−1Þfða−1b−1Þ;
gð�a�bÞ≔ gðaþbÞgð−aþbÞgða−bÞgð−a−bÞ: ðA2Þ

Throughout this paper, we use the following notation for
q-Pochhammer symbols:

ðz; qÞ ≔
Y∞
k¼0

ð1 − zqkÞ: ðA3Þ

The elliptic gamma function is defined by

Γðz;p;qÞ ¼
Y∞

m;n¼0

1−pmþ1qnþ1=z
1−pmqnz

¼ PE

�
z− pq

z

ð1− qÞð1−pÞ
	
;

ðA4Þ

where PE represents the plethystic exponential

PE½fðx; y; � � �Þ�≡ exp

�X∞
d¼1

1

d
fðxd; yd; � � �Þ

	
; ðA5Þ

which brings the single-particle index f to the multiparticle
index. We often use the shorthand notation ΓðzÞ for the
elliptic gamma function.
The Dedekind eta function is

ηðτÞ ¼ q
1
24

Y∞
n¼1

ð1 − qnÞ; ðA6Þ

where q ¼ e2πiτ and Imτ > 0. Often, we also use the
notation ηðqÞ. Its modular properties are

ηðτ þ 1Þ ¼ e
iπ
12ηðτÞ; η

�
−
1

τ

�
¼

ffiffiffiffiffiffiffi
−iτ

p
ηðτÞ: ðA7Þ

1. Jacobi theta functions

The Jacobi theta functions are defined as a Fourier series,

ϑ1ðzjτÞ ≔ −i
X

r∈Zþ1
2

ð−1Þr−1
2e2πirzq

r2
2 ;

ϑ2ðzjτÞ ≔
X

r∈Zþ1
2

e2πirzq
r2
2 ;

ϑ3ðzjτÞ ≔
X
n∈Z

e2πinzq
n2
2 ;

ϑ4ðzjτÞ ≔
X
n∈Z

ð−1Þne2πinzqn2
2 ;

where q ¼ e2πiτ and z ¼ e2πiz. The Jacobi theta functions
can be rewritten in the triple-product form

ϑ1ðzjτÞ ¼ iq
1
8z−

1
2ðq; qÞðz; qÞðz−1q; qÞ;

ϑ2ðzjτÞ ¼ q
1
8z−

1
2ðq; qÞð−z; qÞð−z−1q; qÞ;

ϑ3ðzjτÞ ¼ ðq; qÞð−zq1=2; qÞð−z−1q1=2; qÞ;
ϑ4ðzjτÞ ¼ ðq; qÞðzq1=2; qÞðz−1q1=2; qÞ:

From the Jacobi triple products, we can easily find the
relation between ϑ1 and ϑ4 as

ϑ4ðzjτÞ ¼ −iq1
8z

1
2ϑ1

�
zþ τ

2
jτ
�
: ðA8Þ

We also use the notation ϑiðz; qÞ. In either notation, the q
and τ are often omitted, and we simply write ϑiðzÞ or ϑiðzÞ.
Let us spell out some properties of the function ϑ1ðzjτÞ

we use in the main text. Under shifts of z, we have

ϑ1ðzþ aþ bτjτÞ ¼ ð−1Þaþbe−2πibz−iπb
2τϑ1ðzjτÞ ðA9Þ

for a; b∈Z. Furthermore, ϑ1 is odd with respect to z, while
the others are even,

ϑ1ð−zjτÞ ¼ −ϑ1ðzjτÞ; ϑi¼2;3;4ð−zjτÞ ¼ ϑiðzjτÞ:

The function ϑ1ðzjτÞ has simple zeros in z at z ¼ Zþ τZ,
and no poles. When computing JK residues, it is notable
that the derivative of z at 0 relates to ηðτÞ as follows:

ϑ01ð0jτÞ ¼ 2πηðqÞ3:

From this relationship, we deduce a pole at z ¼ 0 as

1

ϑ1ðzÞ
¼ 1

2πηðτÞ3
1

z
þOðzÞ; ðA10Þ

from which one easily extracts residues of ratios of Jacobi
theta functions.
Under the modular transformation τ⟶

T
τ þ 1,

ðz; τÞ⟶S ðzτ ;− 1
τÞ, the Jacobi theta function ϑ1 trans-

forms as

ϑ1ðzjτ þ 1Þ ¼ e
πi
4ϑ1ðzjτÞ;

ϑ1

�
z
τ
j − 1

τ

�
¼ −i

ffiffiffiffiffiffiffi
−iτ

p
eπiz

2=τϑ1ðzjτÞ:

2. Eisenstein series

The twisted Eisenstein series, denoted by Ek½ϕθ� with
characteristics ½ϕθ�, are defined as a series in q,
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Ek≥1

�
ϕ

θ

	
≔ −

BkðλÞ
k!

þ 1

ðk − 1Þ!
X0

r≥0

ðrþ λÞk−1θ−1qrþλ

1 − θ−1qrþλ

þ ð−1Þk
ðk − 1Þ!

X
r≥1

ðr − λÞk−1θqr−λ
1 − θqr−λ

:

Here ϕ≡ e2πiλ determines 0 ≤ λ < 1. BkðxÞ represents the
kth Bernoulli polynomial. When ϕ ¼ θ ¼ 1, the prime in
the sum indicates that the r ¼ 0 term is omitted.
Additionally, we define

E0

�
ϕ

θ

	
¼ −1:

The standard, or untwisted, Eisenstein series E2n is
obtained from the θ;ϕ → 1 limit of E2n½ϕθ�,

E2nðτÞ ¼ E2n

�þ1

þ1

	
:

Contrarily, taking the limit θ;ϕ → 1 for odd k results in 0,
with the exception of E1½ϕθ�, which is singular.
The Eisenstein series with ϕ ¼ �1 enjoy the useful

symmetry property

Ek

��1

z−1

	
¼ ð−1ÞkEk

��1

z

	
:

For instance, under transformations z → qz or z → q
1
2z, the

twisted Eisenstein series intermix with those of lower
weight:

En

��1

zq
k
2

	
¼

Xn
l¼0

�
k
2

�
l 1

l!
En−l

� ð−1Þkð�1Þ
z

	
:

Similarly, for the modular S transformation, an inhomo-
geneous behavior is observed. For instance,

En

�þ1

þz

	
⟶
S
�

1

2πi

�
n
��X

k≥0

1

k!
ð− log zÞkyk

�
×

�X
l≥0

ðlog qÞlylEl

�þ1

z

	�	
n
; ðA11Þ

where ½� � ��n implies taking the coefficient of yn.

APPENDIX B: JK RESIDUE INTEGRALS

In this appendix, we provide a detailed overview of the
JK-residue computation [38–41] related to the elliptic
genus addressed in the main text. Since the elliptic genera
receive contributions from both nondegenerate and degen-
erate poles in general, a thorough review of the JK-residue

integral definition is beneficial for the paper to be self-
contained.
In the context of a rank-r gauge theory, the elliptic genus

computed through the JK-residue technique integrates an
r-form over specific cycles, and is conventionally repre-
sented as

I2D ¼
I
JK

Yr
i¼1

dai
2πiai

ZðaÞ

¼
I
special cycles

ZðaÞda1 ∧ … ∧ dar: ðB1Þ

As stated in the main text, ai ¼ e2πiai , and similarly for
other variables except for q ¼ e2πiτ. For our purpose, the
integrand Z, as a function of ai, is separately elliptic in
each ai, namely,

Zð…; ai þ τ;…Þ ¼ Zð…; ai;…Þ;Zð…; ai þ 1;…Þ
¼ Zð…; ai;…Þ: ðB2Þ

More concretely, Z takes the form of certain ratios of the
Jacobi theta functions ϑ1, and poles come from the zeros of
ϑ1 in the denominator. Each pole is given as a solution to a
set of pole equations,

Xr
i¼1

Qi
aai þ ba ¼ ma þ naτ; Qi

a ∈Z; ma;

na ∈N; a ¼ 1; 2;…; r; ðB3Þ

coming from some factors ϑ1ðQi
aai þ baÞNa in the denom-

inator of Z. Note that ma, na only take values in a finite
range in N that will be determined by the charge vectors
Qa ¼ ðQ1

a; Q2
a;…; Qr

rÞ. A few remarks follow.
(1) Zeros from numerators may arise in certain solutions

of the pole equations, reducing the pole’s order.
If the total order of the pole is below r, it is not
included in the JK residue.

(2) At some poles a�, there may be n > r factors of ϑN1 ’s
simultaneously made zero by a�, associated with n
different charge vectors Q1;…; Qn. This is referred
to as a degenerate pole.

(3) A pole associated with precisely r different ϑN1
factors and therefore r different charge vectors
Q1;…; Qr is referred to as a nondegenerate pole.

(4) The range of ma, na is not unique. We start by
rearranging the Qa terms such that Qi

i ≠ 0. Then,
ma, na are defined by methods like the Hermite or
Smith normal form decomposition of the (reordered)
integral square matrix ðQÞai ≔ Qi

a. In the Smith
decomposition,
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UQV ¼ D;

U; V are integral and j detUj ¼ j detVj ¼ 1;

D is diagonal:

Then, we fix the range ma; na;¼ 0; 1;…; Daa − 1.
Alternatively, in Hermite decomposition, UQ ¼ T
with a unimodular integral U, and T is an upper
triangular integral matrix. In this case, ma; na ¼
0; 1;…; Taa − 1. Note that although Taa ≠ Daa in
general, the final result of the JK-residue computa-
tion will be the same.

For any pole a� satisfying (B3), we need to compute the
corresponding JK residue. We follow the constructive
definition of the JK residue [38]. To begin, one picks a
generic reference vector η∈ h� of the gauge group. If a� is a
nondegenerate pole with charge vectors Q1;…; Qr, its
contribution is given by

JK-Res
a�

ðηÞZ ¼ δðQ; ηÞ 1

j detQjResϵr¼0 � � �

Resϵ1¼0Z




Qaaþba¼maþnaτþϵa

; ðB4Þ

where δðQ; ηÞ equals one when η is inside the cone spanned
by Q1;…; Qr, and zero otherwise. The residues are
calculated in sequence.
For a degenerate pole, we identify an associated set of

charge vectors, Q� ¼ fQ1;…; Qng, with n > r. From the
set Q�, a collection of geometric objects can be defined.
(1) Given any r sequence of linearly independent charge

vectors ðQa1 ;…; QarÞ from Q�, we can construct a
flag F. This flag is essentially a series of nested
subspaces of Rr:

f0g ⊂ F1 ⊂ … ⊂ Fr ¼ Rr;

Fl ¼ spanfQa1 ;…; Qalg: ðB5Þ

Note that different sequences may give rise to the
same flag. When this happens, we only consider one
of them. The sequence ðQa1 ;…; QarÞ is often called
a basis BðF;Q�Þ of F inQ�. Given an F, the basis in
Q� is generally not unique, but we pick an arbi-
trary one.

(2) From each flag F and its basis BðF;Q�Þ, one
constructs a sequence of vectors

κðF;Q�Þ ≔ ðκ1;…; κrÞ; κa ¼
X
Q∈Q�
Q∈Fa

Q: ðB6Þ

One further defines signF ≔ sign det κðF;Q�Þ.
(3) For each κðFÞ, one constructs a closed-cone

cðF;Q�Þ spanned by κðF;Q�Þ.

With these objects defined, the JK residue of the given
degenerate pole a� is given by

JK-Res
a�

ðηÞZ ¼
X
F

δðF; ηÞ signF
detBðF;Q�Þ

Resϵr¼0 � � �

× Resϵ1¼0Z



Qa1 aþba1¼ma1þna1 τþϵ1���
Qar aþbar¼marþnar τþϵr

; ðB7Þ

where the sum is over all flags constructed out of Q�
associated with a�. Again, δðF; ηÞ equals one if the closed-
cone cðF;Q�Þ contains η, and zero otherwise. This defi-
nition of JK-Res naturally extends to nondegenerate poles,
where there are precisely r vectors in Q�, and

κðF;Q�Þ ¼ BðF;Q�Þ;
signF

detBðF;Q�Þ
¼ 1

j detBðF;Q�Þj
:

ðB8Þ

The result clearly reduces to the previous definition of the
JK residue for the nondegenerate case. Finally, given a
generic η,Z

JK

Yr
i¼1

dai
2πiai

ZðaÞ ¼
X
a�

JK-Res
a�

ðηÞZðaÞ: ðB9Þ

Although the structure of poles and the results of individual
JK residues often differ drastically when η varies across
chambers, the overall result is independent of the choice
of η.
In the following, we apply the JK-residue prescription to

a number of quiver gauge theories discussed in the main
text, presenting details of the computations. We first focus
on cases with SU(2) and U(1) gauge groups, followed by
those with SUðNÞ and U(1) gauge groups.

APPENDIX C: JK RESIDUES OF N = ð0;2Þ
ELLIPTIC GENERA

In this appendix, we provide detailed computations of
JK-residue integrals for elliptic genera of 2D N ¼ ð0; 2Þ
quiver gauge theories, complementing the main text. To
elucidate the JK-residue computations, here we use nota-
tions based on chemical potentials instead of fugacities.

1. g = 1, n= 2

Given genus g ¼ 1 and the number of punctures n ¼ 2,
one can write down different quiver gauge theories with
different gauge groups.

a. SUð2Þ2 gauge theory

The first theory is an SUð2Þ2 gauge theory coupled to
two bifundamentals,
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SUð2Þ1 × SUð2Þ2
ϕ1 ð2; 2Þ
ϕ2 ð2; 2Þ

The quiver is shown in Fig. 6. The elliptic genus of this
theory is computed by the JK-residue computation of the
integral

I1;2 ¼
Z
JK

da1
2πia1

da2
2πia2

ηðτÞ8
4

Q
2
i¼1 ϑ1ð�2aiÞQ

2
i¼1 ϑ4ð�a1 � a2 þ ciÞ

:

ðC1Þ

Here c1;2 represent the flavor Uð1Þ × Uð1Þ fugacities. The
charge covectors are shown in Fig. 21. Various reference
vectors η can be chosen, all of which yield the same result.
For example, picking η ¼ ð1; 0Þ picks out one cone in R2

spanned by the charge vectors (1,1) and ð1;−1Þ. The
corresponding poles are given by the set of equations

a1 − a2 þ c1 þ
τ

2
¼ m1 þ n1τ;

a1 þ a2 þ c2 þ
τ

2
¼ m0

1 þ n01τ ðC2Þ

and

a1 − a2 þ c2 þ
τ

2
¼ m2 þ n2τ;

a1 þ a2 þ c1 þ
τ

2
¼ m0

2 þ n02τ; ðC3Þ

wheremi; ni ¼ 0, andmi; ni ¼ 0, 1. There are in total eight

poles, all of which contribute − 1
8

ηðτÞ2
ϑ1ðc1Þϑ1ðc2Þ, and therefore

I1;2 ¼ −
ηðτÞ2Q

2
i¼1 ϑ1ð2ciÞ

: ðC4Þ

b. First SUð2Þ × Uð1Þ gauge theory

Additionally, there are two other quiver theories as
SUð2Þ × Uð1Þ gauge theories that correspond to the
genus-one Riemann surface with two punctures, with the
quiver diagrams on the left side of Fig. 7. The first such
gauge theory has an elliptic genus described by

I 0
1;2 ¼

Z
JK

da1
2πia1

da2
2πia2

ηðτÞ8
2

×
ϑ1ð�2a1Þϑ4ð�2a2Þ

ϑ4ða1 � a2 � b1 þ d1Þϑ4ð−a1 � a2 � b2 þ d1Þ
:

Here we turn on the U(1) flavor symmetry that rotates the

chiral multiplets from the two Uð0;2Þ
2 with the same phase

with fugacity d1. One can also check that the integrand
remains separately elliptic with respect to the variables a1;2.
The charge vectors are still

ð1; 1Þ; ð−1; 1Þ; ð1;−1Þ; ð−1;−1Þ: ðC5Þ

One can pick any η inside the four quadrants, and the JK-
residue computation yields the same result,

I 0
1;2 ¼

2ηðτÞ2ϑ4ð2d1Þ2
ϑ1ð2d1 � b1 � b2Þ

: ðC6Þ

c. Second SUð2Þ × Uð1Þ gauge theory

A distinct SUð2Þ × Uð1Þ gauge theory is depicted by the
quiver diagram on the right side of Fig. 7. The elliptic genus
can be computed as the JK residue of the integrand

Z00
1;2 ¼

ηðτÞ10ϑ4ð�2a1Þϑ1ð�2a2Þ
4ϑ4ða1 þ d1Þ2

Q
�ϑ4ða1 � 2a2 þ d1Þϑ4ð−a1 � b1 � b2 þ d1Þ

:

FIG. 21. Charge vectors of the genus-one theory as an SUð2Þ2
gauge theory.
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From the denominator, we can deduce the charge vectors,

ð−1; 0Þ; ð1;−2Þ; ð1; 0Þ; ð1; 2Þ: ðC7Þ

See Fig. 22. Clearly, there are several choices for η. Let us
start with η ¼ ð−1;−1Þ. In this case, only the cones
spanned by ð−1; 0Þ and ð1;−2Þ contribute, corresponding
to the poles from the equation (with four different choices
of the signs �)

−a1 � b1 � b2 þ d1 þ
τ

2
¼ m1 þ n1τ

a1 − 2a2 þ d1 þ
τ

2
¼ m2 þ n2τ; ðC8Þ

where m1, n1 ¼ 0, m2; n2 ¼ 0, 1. In total, there are 4 × 4
different poles. For example, poles having −a1 − b1 −
b2 þ d1 þ τ

2
¼ 0 contribute

ηðτÞ4ϑ4ð−2b1 − 2b2 þ 2d1Þ2
ϑ1ð2b1 þ 2b2Þϑ1ð2b1 þ 2b2Þϑ1ð−2b1 − 2b2 þ 4d1Þ

Q
2
i¼1 ϑ1ð2biÞ

:

To summarize, the elliptic genus reads

I 00
1;2 ¼

ηðτÞ2Q
2
i¼1 ϑ1ð2biÞ

X
α;β¼�

αβϑ4ð2αb1 þ 2βb2 þ 2d1Þ
ϑ1ð2αb1 þ 2βb2Þϑ1ð2αb1 þ 2βb2 þ 4d1Þ

: ðC9Þ

Alternatively, one can also choose η ¼ ð1; 1Þ. In this
case, the relevant cones are spanned by the charge vectors

ð1; 2Þ and ð1; 0Þ; ð1; 2Þ and ð1;−2Þ: ðC10Þ

The corresponding poles are from the equations

a1 − 2a2 þ d1 þ
τ

2
¼ m1 þ n1τ;

a1 þ 2a2 þ d1 þ
τ

2
¼ m2 þ n2τ; ðC11Þ

with m1, n1 ¼ 0, m2; n2 ¼ 0, 1, 2, 3, and the equations

a1 þ d1 þ
τ

2
¼ m1 þ n1τ;

a1 þ 2a2 þ d1 þ
τ

2
¼ m2 þ n2τ; ðC12Þ

with m1, n1 ¼ 0, m2; n2 ¼ 0, 1. The JK-residue computa-
tion is, however, more subtle in this setup, due to the
presence of degenerate poles

ða1; a2Þ ¼
�
−d1 −

τ

2
;
mþ nτ

2

�
; m; n ¼ 0; 1: ðC13Þ

Note also that these degenerate poles are precisely the
common solutions to (C11) and (C12) (up to a shift of a1 by
full periods 1; 1þ τ, τ). At these poles, the factors

ϑ4ða1− 2a2þd1Þ; ϑ4ða1þ 2a2þd1Þ; ϑ4ða1þd1Þ2
ðC14Þ

simultaneously vanish. Therefore, there are 12 nondegen-
erate poles and four degenerate poles that contribute to the
elliptic genus. The former is straightforward to compute.
For example,

JKa1−2a2þd1þτ
2
¼0

a1þ2a2þd1þτ
2
¼τ

Z ¼ −
ϑ4ð2d1Þ2

16ϑ4ð�b1 � b2 þ 2d1Þ
: ðC15Þ

For the degenerate poles, we follow [38]. The relevant
charge vectors can be grouped into

Q� ¼ fð1;−2Þ; ð1; 2Þ; ð1; 0Þg ðC16Þ

FIG. 22. Charge vectors of the JK residues for the second
SUð2Þ × Uð1Þ gauge theory.
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and that gives rise to three flags F1;−2; F1;2; F1;0 led by the three vectors in Q�. The corresponding κðFÞ and other relevant
information is collected in the following table.

F F1;−2 F1;2 F1;0

κðFÞ ðð1;−2Þ; ð3; 0ÞÞ ðð1; 2Þ; ð3; 0ÞÞ ðð1; 0Þ; ð3; 0ÞÞ
sign detðκðFÞÞ 1 −1 0

η∈ cðF;Q�Þ False True False

From the table, we can compute the contribution from the
degenerate poles,

ηðτÞ2ϑ4ð2d1Þ2
4ϑ1ð�b1 � b2 þ 2d1Þ

: ðC17Þ

In the end, the elliptic genus computed using η ¼ ð1; 1Þ is

I 00
1;2 ¼

ηðτÞ4
2

ϑ4ð2d1Þ2
X4
i¼1

ð−1Þi 1

ϑið2d1 � b1 � b2Þ
: ðC18Þ

Although they look different, the elliptic genera (C9) and
(C18) are actually identical and are equal to

I 00
1;2 ¼ −ηðτÞ2ϑ4ð2d1Þ2

ϑ1ð8d1Þ
ϑ1ð4d1Þ

Y2
i¼1

ϑ1ð4biÞ
ϑ1ð2biÞ

×
1

ϑ1ð4d1 � 2b1 � 2b2Þ
: ðC19Þ

The equality of the expressions can be checked by the
power expansion in q explicitly; for instance, the leading q
term of reads

I 00
1;2 ¼

b31ðb21þ 1Þb32ðb22þ 1Þd41ðd21− 1Þ2ðd41þ 1Þ
ðb21b22−d41Þðb21d41−b22Þðb21−b22d

4
1Þðb21b22d41− 1Þq

−1
6

þ� � � : ðC20Þ

2. g = 1, n= 3

There are several different 2D N ¼ ð0; 2Þ theories
corresponding to the genus-one Riemann surfaces C1;3

with three punctures.

a. SUð2Þ3 gauge theory

Let us first consider the SUð2Þ × SUð2Þ × SUð2Þ gauge
theory shown in Fig. 8. The elliptic genus is the JK residue
of the integrand

Z1;3 ¼ −
ηðτÞ12ϑ1ð�2a1Þϑ1ð�2a2Þϑ1ð�2a3ÞQ

A<Bϑ4ð�aA � aB þ c1Þ
: ðC21Þ

We can choose η ¼ ð1; 1þ 1
1000

; 1þ 1
2000

Þ. There is no
degenerate pole, and the elliptic genus is given by

I1;3 ¼
ηðτÞ3Q

3
i¼1 ϑ1ð2ciÞ

: ðC22Þ

b. First SUð2Þ2 × Uð1Þ theory
Let us now consider an SUð2Þ × SUð2Þ × Uð1Þ gauge

theory illustrated on the left side of Fig. 9, whose elliptic
genus is the JK residue of the integrand

Z0
1;3 ¼ 2

ηðτÞ12ϑ4ð�2a1Þϑ1ð�2a2Þϑ1ð�2a3Þ
4ϑ4ð�a2 � a3 þ c1Þϑ4ða1 � a2 � b2 þ d1Þϑ4ð−a1 � a3 � b3 þ d1Þ

: ðC23Þ

An arbitrary reference vector can be chosen, such as η ¼ ð 999
1000

; 1999
2000

; 2999
3000

Þ which leads to 40 nondegenerate poles. The JK
residue is straightforward, yielding

I 0
1;3

ηðτÞ3 ¼ −
1

2ϑ1ð2c1Þ
Q

3
i¼2 ϑ1ð2biÞ

X
α;β¼�

αβϑ1ðαb2 þ βb3 þ c1Þ2
ϑ4ðαb2 þ βb3 þ c1 � 2d1Þ

þ ϑ4ð2d1Þ2
2ϑ1ð2b2Þϑ1ð2c1Þ

X
α¼�

αϑ1ð2αb2 þ 2c1Þ
ϑ4ðαb2 þ c1 � b3 � 2d1Þ

þ ϑ4ð2d1Þ2
ϑ1ð2b3Þϑ1ð4d1Þ

X
α¼�

αϑ1ð2αb3 þ 4d1Þ
ϑ4ðαb3 þ 2d1 � b2 � c1Þ

: ðC24Þ
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It is straightforward to check that this complicated
expression is actually equal to

I 0
1;3

ηðτÞ3 ¼ 2
ϑ4ð2d1Þ2
ϑ1ð4d1Þ

ϑ1ð2c1 þ 4d1Þ
ϑ1ð2c1Þ

1

ϑ4ðc1 þ 2d1 � b2 � b3Þ
;

ðC25Þ

which signals an LG description of the quiver gauge theory.

c. Second SUð2Þ2 × Uð1Þ theory
Another quiver gauge theory with the gauge group

SUð2Þ × SUð2Þ × Uð1Þ is depicted on the right side of
Fig. 9. Its elliptic genus is determined by the JK residue of
the integrand

Z ¼ I ð0;2Þ
U2

ðc1; b1;a3ÞI ð0;2Þ
U2

ða2 þ d1; b2;−a3Þ
× I ð0;2Þ

U2
ð−a2 þ d1; a1;−a1Þϑ4ð�a2Þ

Y
i¼f1;3g

I ð0;2Þ
vec ðaiÞ:

The six charge vectors are given by

ð�1; 0; 0Þ; ð�1; 0; 1Þ; ð0;�2;−1Þ: ðC26Þ

There are various choices for η. For example, let us begin
with

η ¼
�
999

1000
;
1999

2000
;
2999

3000

�
: ðC27Þ

With this choice, there are 64 nondegenerate poles, giving
the elliptic genus

I 00
0;3

ηðτÞ3 ¼
1

ϑ1ð2c1Þ
Q

2
i¼1 ϑ1ð2biÞ

X
αβ¼�

αβϑ4ð2αb1 þ 2βb2 þ 2c1 þ 2d1Þ2
ϑ1ð2αb1 þ 2βb2 þ 2c1Þϑ1ð2αb1 þ 2βb2 þ 2c1 þ 4d1Þ

þ 2ϑ4ð2d1Þ2
ϑ1ð4d1Þ

X4
i¼1

ð−1Þi
2ϑið�b1 � b2 þ c1Þ

: ðC28Þ

For instance, another intriguing choice for η is

η ¼
�
−

999

1000
;

1

1000
; 1

�
: ðC29Þ

With this choice of η, there are 56 nondegenerate poles and eight degenerate poles. The latter poles are given by

a1 ¼ −
mþ nτ

2
; a2 ¼ d1 þ

τ

2
; a3 ¼ þb2 − 2d1 − τ; m; n ¼ 0; 1

or; a1 ¼ −
mþ nτ

2
; a2 ¼ d1 þ

τ

2
; a3 ¼ −b2 − 2d1 − τ; m; n ¼ 0; 1: ðC30Þ

The elliptic genus reads

4
ϑ1ð2b2Þϑ1ð4d1Þ
ηðτÞ3ϑ4ð2d1Þ2

I 00
0;3 ¼

X4
i¼1

X
α¼�

ð−1Þiαϑ1ð2αb2 þ 4d1Þ
ϑið�b1 þ αb2 � c1 þ 2d1Þ

þ
X

α;β;γ¼�

2αβϑ1ð4d1Þ
ϑ1ð2b1Þϑ1ð2c1Þϑ4ð2d1Þ2

ϑ4ð2αb1 þ 2βb2 þ 2c1 þ 2γd1Þ2
ϑ1ð2ðαb1 þ βb2 þ c1 þ 2γd1ÞÞϑ1ð2ðαb1 þ βb2 þ c1ÞÞ

: ðC31Þ

Although the two expressions for I 00
1;3 look different, they are both equal to the simple ratio

I 00
1;3

ηðτÞ3 ¼
ϑ4ð2d1Þ2ϑ1ð4c1 þ 8d1Þ

ϑ1ð4d1Þϑ1ð2c1Þ
1

ϑ1ð�2b1 � 2b2 þ 2c1 þ 4d1Þ
Y2
i¼1

ϑ1ð4biÞ
ϑ1ð2biÞ

; ðC32Þ

suggesting an LG description of the theory.
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3. g = 2, n= 0

There are two possible quiver gauge theories with
SUð2Þ2 × Uð1Þ gauge groups associated with the genus-
two Riemann surface with no puncture (see Fig. 10).

a. First SUð2Þ2 × Uð1Þ theory
The theory on the left side of Fig. 10 has an elliptic genus

given by the JK residue of the integrand

Z2;0 ¼ 2I ð0;2Þ
U2

ða3 þ d1; a1;a2Þ
× I ð0;2Þ

U2
ð−a3 þ d1;−a1;−a2Þ

× ϑ4ð�2a3Þ
Y2
i¼1

I ð0;2Þ
vec ðaiÞ: ðC33Þ

The eight charge vectors are given by ð�1;�1;�1Þ. There
are many essentially equivalent choices of η. For example,
we pick

η ¼
�
1;

999

1000
;
4999

5000

�
: ðC34Þ

With this choice of η, there are 32 nondegenerate poles. All
of them contribute identically to the total JK residue.
Finally, the elliptic genus reads

I2;0 ¼ −
2ϑ4ð2d1Þ2
ηðτÞϑ1ð4d1Þ

: ðC35Þ

b. Second SUð2Þ2 × Uð1Þ theory
The theory on the right side of Fig. 10 has an elliptic

genus integrand

Z0
2;0 ¼ 2I ð0;2Þ

U2
ða3 þ d1; a1;−a1Þ

× I ð0;2Þ
U2

ð−a3 þ d1;−a2;−a2Þ

× ϑ4ð�2a3Þ
Y2
i¼1

I ð0;2Þ
vec ðaiÞ: ðC36Þ

The charge vectors are given by

ð�2; 0; 1Þ; ð0;�2;−1Þ; ð0; 0;�1Þ: ðC37Þ

Let us consider the choice of η

η ¼
�
1001

1000
;
501

500
;
1003

1000

�
: ðC38Þ

With this choice, there are 48 nondegenerate poles and
16 degenerate poles. The latter take the form

a1 ¼
m1 þ n1τ

2
; a2 ¼ −d1 −

τ

2
þm2 þ n2τ

2
;

a3 ¼ −d1 −
τ

2
: ðC39Þ

It turns out that all 64 poles share identical contributions to
the elliptic genus. In the end, we have

I 0
2;0 ¼

2ϑ4ð2d1Þ2
ηðτÞϑ1ð4d1Þ

: ðC40Þ

Apparently, up to a sign,

I2;0 ¼ I 0
2;0: ðC41Þ

4. Genus two with n punctures

Let us briefly summarize the computation for genus-two
theories with n punctures. Given n, there are essentially
only two SUð2Þnþ2 × Uð1Þ quiver gauge theories one can
consider: if the Uð1Þ node in the quiver diagram is
removed/ungauged, one frame continues to have a con-
nected quiver diagram, while the other frame is cut into two
disconnected pieces.
The first frame is simpler. The integrand reads

Z2;n ¼ ϑ4ð�2anþ3Þ
Ynþ2

j¼1

I ð0;2Þ
vec ðajÞ

·
Ynþ2

i¼1

I ð0;2Þ
U2

ðci;−ai−1; aiÞ



 cnþ1¼anþ3þd1
cnþ2¼−anþ3þd1

a0¼anþ2

: ðC42Þ

One can pick a simple and generic η ¼ ðη1;…; ηnþ3Þ,
such as

ηi ¼ 1 −
1

1000000i
: ðC43Þ

With this choice, there are only 22gþnþ1 nondegenerate
poles, which lead to the simple elliptic genus

I2;n ¼ 2ð−1Þnþ1
ϑ4ð2d1Þ2

ηðτÞϑ1ð4d1Þ
Yn
i¼1

ηðτÞ
ϑ1ð2ciÞ

: ðC44Þ

The second frame has an integrand

Z0
2;n ¼ ϑ4ð�2anþ3Þ

Ynþ2

j¼1

I ð0;2Þ
vec ðajÞ

· I ð0;2Þ
U2

ð−anþ3 þ d; anþ2;−anþ2Þ

×
Ynþ1

i¼1

I ð0;2Þ
U2

ðci;−ai−1; aiÞ



cnþ1¼anþ3þd1

a0¼anþ1

: ðC45Þ

There are different η to choose from. For example,
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η ¼ ðη1;…Þ; ηi ¼ 1 −
1

1000 × i
: ðC46Þ

With this choice, only nondegenerate poles contribute,
yielding

I 0
2;n ¼ 2ð−1Þn ϑ4ð2d1Þ2

ηðτÞϑ1ð4d1Þ
Yn
i¼1

ηðτÞ
ϑ1ð2ciÞ

: ðC47Þ

While other choices of η may lead to degenerate poles, the
final result of the elliptic genus remains independent of η.
Up to a sign, both SUð2Þnþ3 × Uð1Þ quiver gauge theories
share the same elliptic genus,

I2;n ¼ I 0
2;n: ðC48Þ

5. SU(3) theory for g= 1, n= 1

The elliptic genus for the N ¼ ð0; 2Þ SU(3) theory
coupled to an adjoint chiral multiplet is given by the
integral

I ð0;2Þ;3
1;1 ¼

Z
JK

da1
2πia1

da2
2πia2

I ð0;2Þ
U3

ðc; a;−aÞI ð0;2Þ
vec ðaÞ; ðC49Þ

where

I ð0;2Þ
U3

ðc; a; bÞ ¼
Y3

A;B¼1

ηðτÞ
ϑ4ðcþ aA þ bBÞ




a3¼−a1−a2
b3¼−b1−b2

ðC50Þ

I ð0;2Þ
vec ðaÞ ¼ ηðτÞ3

3!

Y3
A;B¼1
A≠B

ϑ1ðaA − aBÞ
ηðτÞ : ðC51Þ

Subsequent discussions involving SUðNÞ gauge group will
continue to use these basic building blocks. One can pick
some generic reference vector η, such as

η ¼ ð1; 0Þ; or ð0; 1Þ: ðC52Þ

There are always 18 nondegenerate poles, yielding

I ð0;2Þ;3
1;1 ¼ ηðτÞ

ϑ4ð3cÞ
: ðC53Þ

6. g = 1, n= 2 with SU(3) and/or U(1) gauge group

Several A2 type N ¼ ð0; 2Þ theories can be defined for
the genus-one Riemann surface with two punctures.

a. SUð3Þ2 gauge theory

The simplest theory is an SUð3Þ3 theory, with the
integrand

Z ¼ I ð0;2Þ
U3

ðc1; a1; a2ÞI ð0;2Þ
U3

ðc2;−a1;−a2Þ
Y2
i¼1

I ð0;2Þ
vec ðaiÞ:

ðC54Þ

One can pick, for example,

η ¼
�
1;

1

1000
;−

1

19
;
16

17

�
: ðC55Þ

There are 108 nondegenerate poles, giving

I ð0;2Þ;3
1;2 ¼ ηðτÞ2

ϑ4ð3c1Þϑ4ð3c2Þ
: ðC56Þ

b. SUð3Þ × Uð1Þ gauge theory

The integrand of the elliptic genus for the SUð3Þ × Uð1Þ
theory, depicted on the left side of Fig. 15, is

Z ¼ I ð0;2Þ
U3

ða2 þ d1; a1; bÞI ð0;2Þ
U3

ð−a2 þ d1;−a1; b0Þ
× I ð0;2Þ

vec ða1Þϑ4ð�3a2Þ; ðC57Þ

where ϑ4ð�3a2Þ accounts for the contribution from two
Fermi multiplets with �3 Uð1Þ gauge charges. With the
simple choice of

η ¼
�
999

1000
;
1999

2000
;
2999

3000

�
; ðC58Þ

there are 162 nondegenerate poles, giving a fairly compli-
cated expression for the elliptic genus,

I 0
1;2 ¼−ηðτÞ7

X3
A;A0¼1

ϑ1ð−bA−b0A0 þd1Þ2Q
B≠Aϑ1ðbB−bAÞ

Q
B0≠A0ϑ1ðb0B0 −b0A0 Þ

×
1

ϑ1ðbAþb0A0 þ 2d1Þ
Q

B≠A;B0≠A0ϑ1ðbBþb0B0 þ 2d1Þ
:

ðC59Þ

Although the expression is complicated, it can be reformu-
lated as the simpler ratio

I 0
1;2 ¼

3ηðτÞ7ϑ1ð3d1Þ2Q
3
A;B¼1 ϑ1ðbA þ b0B þ 2d1Þ

: ðC60Þ

APPENDIX D: JK RESIDUES OF N = ð0;4Þ
ELLIPTIC GENERA

In this appendix, we present the detailed computation of
theN ¼ ð0; 4Þ elliptic genus. Recall that the basic building
blocks of the elliptic genus for the Lagrangian theories of
type AN−1, as illustrated in Fig. 16, are given by [27]
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I ð0;4Þ;N
0;3 ðc; a; bÞ ¼

YN
A;B¼1

ηðτÞ
ϑ1ðv� ðcþ aA þ bBÞÞ

; ðD1Þ

I ð0;4Þ;N
vec ¼ 1

N!
ðϑ1ð2vÞηðτÞÞN−1

×
YN
A;B¼1
A≠B

ϑ1ð2vþ aA − aBÞϑ1ðaA − aBÞ
ηðτÞ2 ; ðD2Þ

where all of the SUðNÞ chemical potentials satisfy the
traceless condition, such as

P
N
A¼1 aA ¼ 0. The chemical

potentials a; b; c make manifest the flavor symmetry
SUðNÞ × SUðNÞ × Uð1Þ ⊂ SUð2NÞ × Uð1Þ. Note that
our convention is slightly different from that in [27] by
some constant factor.

1. Type AN − 1 theories with minimal punctures
at genus one

We begin with the theory of type A2 at genus one with
one minimal puncture associated with an Uð1Þ flavor
symmetry. The elliptic genus can be computed by the
JK residue

I ð0;4Þ;3
1;1;0 ðcÞ ¼

Z
JK

Y2
A¼1

daA
2πiaA

I ð0;4Þ;3
0;3 ðc; a;−aÞI ð0;4Þ;3

vec ðaÞ:

ðD3Þ

The integration simplifies when choosing a suitable refer-
ence vector, such as η ¼ ð1; 1 − 1

1000
Þ, resulting in only

54 nondegenerate poles. The result of the JK-residue
computation is

I ð0;4Þ;3
1;1;0 ðcÞ ¼ ηðτÞ2

�
−

ϑ1ð4v − 2cÞϑ1ð3v − cÞ
ϑ1ðv − 3cÞϑ1ð3v − 3cÞϑ1ð2cÞϑ1ðvþ cÞ þ

ϑ1ð3v − cÞϑ1ð3vþ cÞ
ϑ1ðv − 3cÞϑ1ðv − cÞϑ1ðvþ cÞϑ1ðvþ 3cÞ

þ ϑ1ð3vþ cÞϑ1ð4vþ 2cÞ
ϑ1ðv − cÞϑ1ð2cÞϑ1ðvþ 3cÞϑ1ð3vþ 3cÞ

	
: ðD4Þ

The sum of the three terms can be reorganized into the simple ratio

I ð0;4Þ;3
1;1;0 ðcÞ ¼ ηðτÞ2ϑ1ð6vÞ

ϑ1ð2vÞϑ1ð3vþ 3cÞϑ1ð3v− 3cÞ
¼ q−1=6ð1þ 2v2 þ ðc3 þ c−3Þv3 þ 3v4 þ ð−v−6 − 2v−4 − v−2 þ 6þ 2ðc3 þ c−3Þvþ 15v2 þ…Þqþ…Þ: ðD5Þ

The same computation can be done for SU(4), but it is more tedious. There are both nondegenerate and degenerate poles,
and in the end the elliptic genus reads

I ð0;4Þ;4
1;1;0 ðcÞ ¼ ηðτÞ2

�
−

ϑ1ð5v − 3cÞϑ1ð4v − 2cÞϑ1ð3v − cÞ
ϑ1ð2cÞϑ1ð2v − 4cÞϑ1ð4v − 4cÞϑ1ðv − 3cÞϑ1ðvþ cÞ −

ϑ1ð4v − 2cÞϑ1ð3v − cÞϑ1ð3vþ cÞ
ϑ1ð2cÞϑ1ð4cÞϑ1ð2v − 4cÞϑ1ðv − cÞϑ1ðvþ cÞ

þ ϑ1ð2vÞϑ1ð4vÞϑ1ð3v − cÞϑ1ð3vþ cÞ
ðϑ1ð2cÞÞ2ϑ1ðv − 3cÞϑ1ð2v − 2cÞϑ1ð2vþ 2cÞϑ1ðvþ 3cÞ −

ϑ1ð3v − cÞϑ1ð3vþ cÞϑ1ð4vþ 2cÞ
ϑ1ð2cÞϑ1ð4cÞϑ1ðv − cÞϑ1ðvþ cÞϑ1ð2vþ 4cÞ

þ ϑ1ð3vþ cÞϑ1ð4vþ 2cÞϑ1ð5vþ 3cÞ
ϑ1ð2cÞϑ1ðv − cÞϑ1ðvþ 3cÞϑ1ð2vþ 4cÞϑ1ð4vþ 4cÞ

	
: ðD6Þ

Similar to the SU(3) case, the expression can be recast into the simple ratio

I ð0;4Þ;N
1;1;0 ðcÞ ¼ ηðτÞ2ϑ1ð2NvÞ

ϑ1ð2vÞϑ1ðNv� NcÞ ; N ¼ 4: ðD7Þ

Here the expression on the right is expected to hold for all genus-one AN−1 theories with one minimal puncture.
Furthermore, through an even more intricate computation, we derive the elliptic genus for a circular SUð3Þ2 quiver
with Uð1Þ2x1;x2 flavor symmetry or, equivalently, a theory of type A2 at genus one with two minimal punctures. The
expression from the direct JK-residue computation is too complicated to detail here; however, it can be reorganized into
the simple form
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I ð0;4Þ;2
g¼1;n1¼2ðc1; c2Þ ¼

ηðτÞ4ϑð6vÞ2
ϑ1ð2vÞ2

Q
2
i¼1 ϑð3v� 3ciÞ

: ðD8Þ

Here n denotes the number of minimal punctures.
Extrapolating from the above results, it is natural to
conjecture that for all of the SUðNÞ-type theories at genus
one with n1 minimal punctures, the elliptic genus can be
written as

I ð0;4Þ;N
g¼1;n1

ðc1;…; cn1Þ ¼
YnUð1Þ
i¼1

ηðτÞ2ϑ1ð2NvÞ
ϑ1ð2vÞϑ1ðNv� NciÞ

: ðD9Þ

We will apply this conjecture to later computations.

2. Type A2 theories at genus g ≥ 1

The elliptic genus ofN ¼ ð0; 4ÞT3 theory was computed
in [27] using an elliptic inversion formula. In more detail,
the elliptic genus of theN ¼ ð0; 4ÞT3 theory and the SU(3)
SQCD with six fundamental flavors is related by the
Argyres-Seiberg duality,

I ð0;4Þ;N¼3
SQCD ða; b; r; sÞ ¼

Z
JK

dz
2πiz

ηðτÞ
ϑ1ðv� s� zÞ

× I ð0;4Þ;2
vec ðzÞIT3ða; b; cÞ: ðD10Þ

Within the integral, we gauge an SUð2Þ ⊂ SUð3Þc, leading
to c1 ¼ rþ z; c2 ¼ r − z; c3 ¼ −2r. The integral can be
inverted to compute the elliptic genus IT3

. Explicitly, it is
given by the simple JK-residue computation

IT3
ða; b; cÞ ¼ ηðτÞ5

2ϑ1ð2v� 2zÞ
Z
JK

ds
2πis

ϑ1ð�2sÞϑ1ð�2vÞ
ϑ1ð−v� s� zÞ

× I ð0;4Þ;N¼3
SQCD ða; b; r; sÞ:

Note that the coefficient in front of the integral has been
adjusted according to our convention. On the right, a; b; r; s
represent the SUð3Þa × SUð3Þb × Uð1Þx × Uð1Þy flavor
chemical potentials, where

x ¼ s
3
þ r; y ¼ s

3
− r: ðD11Þ

After the integral, z; r combine into SU(3) chemical
potentials,

c1 ¼ rþ z; c2 ¼ r − z; c3 ¼ −2r: ðD12Þ

The a; b; c denote the SUð3Þ3 ⊂ E6 chemical potentials for
the N ¼ ð0; 4ÞE6 theory.
From the elliptic inversion formula for IT3

, it is evident
that the diagonal of the two SU(3) flavor subgroups can be
gauged, which yields the elliptic genus of the SU(3)-type
genus-one theory with one maximal puncture associated

with an SUð3Þc flavor symmetry. Now the situation is much

better: the right-hand side involves I ð0;4Þ;3
g¼1;n1¼2, which is

shown to be a simple ratio of elliptic theta functions, where
n1 denotes the number of minimal punctures (see Fig. 17).
When performing the JK-residue computation, we encoun-
ter only nondegenerate poles and obtain a simple result for
the (0,4) elliptic genus with n3 ¼ 1 maximal puncture,

I ð0;4Þ;3
g¼1;n1¼0;n3¼1ðcÞ ¼

ηðτÞ6ϑ1ð2vÞϑ1ð4vÞϑ1ð6vÞQ
3
A;B¼1 ϑ1ð2vþ biA − biBÞ

: ðD13Þ

Instead of directly gauging the diagonal of the two
existing SU(3) groups, one can alternatively gauge the
diagonal of the SUð3Þ2 flavor subgroup of IT3

and an
SU(3) linear quiver. This approach can be used to generate
a genus-one theory with additional minimal punctures. In
other words,

I ð0;4Þ;3
g¼1;n1;n3¼1 ¼ elliptic inversion of I ð0;4Þ;3

g¼1;n1þ2;n3¼0: ðD14Þ

Effectively, the elliptic inversion formula represents the
fusion of any two minimal punctures into a single maximal
one. Therefore, the inversion, or fusing two minimal
punctures, can be performed successively, yielding more
maximal punctures. Since the elliptic genera on the right
are all simple ratios, the JK residue can be easily carried
out, and at each step of the fusion the outcome continues to
be a simple ratio. In conclusion, we obtain the following
general result for the theory of type A2 for any g ≥ 1 that
has n1 minimal and n3 maximal punctures:

I ð0;4Þ;3
g;n1;n3 ¼

�
ϑ1ð2vÞϑ1ð4vÞ2ϑ1ð6vÞ

ηðτÞ4
�

g−1
I ð0;4Þ;3
g¼1;n1;0

I ð0;4Þ;3
g¼1;0;n3

;

ðD15Þ

where with N ¼ 3,

I ð0;4Þ;3
g¼1;n1;0

¼
Yn1
i¼1

ηðτÞ2ϑ1ð2NvÞ
ϑ1ð2vÞϑ1ðNv� NciÞ

; ðD16Þ

I ð0;4Þ;3
g¼1;0;n3

¼
Yn3
i¼1

ηðτÞ6ϑ1ð2vÞϑ1ð4vÞϑ1ð6vÞQ
3
A;B¼1 ϑ1ð2vþ biA − biBÞ

: ðD17Þ

3. Type A3 theories at genus g ≥ 1

Let us now consider theories of type A3 of class S. There
are four punctures (and the corresponding flavor symmetry)
to be considered: minimal [U(1)], ½2; 12� [SUð2Þ × Uð1Þ],
½22� [SU(2)], and maximal [SU(4)]. To begin, we have

I ð0;4Þ;N¼4
g¼1;n1;0;0;0

¼
Yn1
i¼1

ηðτÞ2ϑ1ð2NvÞ
ϑ1ð2vÞϑ1ðNv� NciÞ

; N ¼ 4; ðD18Þ
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where the subscripts n1, n2, n3, and n4 denote the number
of punctures associated with the respective flavor sym-
metries U(1), SUð2Þ × Uð1Þ, SU(2), and SU(4).
In the context of 4D N ¼ 2 SCFTs, R0;N are non-

Lagrangian theories with SUð2NÞ × SUð2Þ flavor sym-
metry, and they arise from a strong-coupling limit of the
N ¼ 2 SUðNÞ theory with 2N fundamental hypermultip-
lets. Concretely, as a theory of A3-type class S, R0;4

corresponds to the three-punctured sphere with two maxi-
mal punctures and a ½2; 12� puncture, where the manifest
flavor subgroup is SUð4Þ2 × Uð1Þ × SUð2Þ.
In 2D, the N ¼ ð0; 4Þ elliptic genus of R0;4 theory was

computed in [83] using an elliptic inversion. The Argyres-
Seiberg-like duality implies an integral equality between
the elliptic genus of SU(4) SQCD with eight fundamental
flavors and that of the R0;4 theory,

I ð0;4Þ;N¼4
SQCD ða; b; r; sÞ ¼

Z
JK

dz
2πiz

ηðτÞ
ϑ1ðv� s� zÞ

× I ð0;4Þ;2
vec ðzÞI ð0;4Þ

R0;4
ða; b; r; zÞ; ðD19Þ

which can be inverted to give

I ð0;4Þ
R0;4

ða; b; r; zÞ ¼ ηðτÞ5
2ϑ1ð2v� 2zÞ

×
Z
JK

ds
2πis

ϑ1ð�2sÞϑ1ð−2vÞ
ϑ1ð−v� s� zÞ

× I ð0;4Þ;N¼4
SQCD ða; b; r; sÞ:

Here a;b; r; z denote the chemical potentials of SUð4Þ ×
SUð4Þ × Uð1Þ × SUð2Þ ⊂ SUð8Þ × SUð2Þ flavor symmetry
of the R0;4 theory. On the right, a; b; r; s are the chemical
potentials of the Uð8Þ ¼ SUð8Þa;b;r × Uð1Þs flavor sym-
metry of the SU(4) gauge theory with eight fundamental
hypermultiplets. The chemical potentials r; s are related to
the standard x; y [associated with the two minimal punctures
of the SU(4) SQCD] by

x ¼ s
4
þ r; y ¼ s

4
− r: ðD20Þ

One can start gauging in the theory of 42 free hyper-
multiplets or handles to the punctures associated with a; b

on both sides of the above equation, so that the I ð0;4Þ;N¼4
SQCD on

the right becomes I ð0;4Þ;N¼4
g;n1þ2;0;0;n4

, while on the left it becomes

I ð0;4Þ;4
g;n1;0;1;n4

. Effectively, the elliptic inversion merges two
minimal punctures into a ½2; 12� puncture (see Fig. 18). In the
simplest case, when g ¼ 1, n1 ¼ 0, n4 ¼ 0,

I ð0;4Þ;4
g¼1;0;1;0;0 ¼

ηðτÞ6ϑ1ð6vÞϑ1ð8vÞ
ϑ1ð2vÞ2ϑ1ð2v� 2zÞϑ1ð3v� z� 4rÞ : ðD21Þ

The [2, 1, 1] puncture can be further Higgsed to a [2, 2]
puncture with SU(2) flavor symmetry. The class S theory
corresponding to a three-punctured sphere with two maxi-
mal and one [2, 2] puncture has an enhanced E7 flavor
symmetry. The elliptic genus of the corresponding 2D
N ¼ ð0; 4Þ theory can also be computed using an elliptic
inversion formula [83]. Following the same approach as
above, we perform additional gluing/gauging operations on
the two maximal punctures and obtain the contribution
from one [2, 2] puncture,

I ð0;4Þ;4
g¼1;0;0;1;0ðwÞ ¼

Z
JK

ds
2πis

ηðτÞ5ϑ1ð�2vÞ
2ϑ1ð4vÞ

×
ϑ1ð�2sÞ

ϑ1ð�sÞϑ1ð−2v� sÞ I
ð0;4Þ;4
1;2;0;0;0ðc1; c2Þ

¼ ηðτÞ6ϑ1ð6vÞϑ1ð8vÞ
ϑ1ð2vÞϑ1ð4vÞϑ1ð4v� 4wÞϑ1ð2v� 4wÞ :

ðD22Þ

Again,w represents the SU(2) flavor chemical potential. As
before, the two U(1) chemical potentials on the right are
related to w by c1 ¼ s

4
þ w and c2 ¼ s

4
− w.

The contribution from the maximal puncture can be
obtained by considering the generalized S duality, as shown
in Fig. 19, which requires

I ð0;4Þ;4
1;3;0;0;0ðx1;2;3Þ ¼

Z
JK

db1
2πib1

Y2
A¼1

daA
2πiaA

I ð0;4Þ;4
1;0;0;0;1ðcÞjcA¼1;2;3¼aAþrI

ð0;4Þ;3
vec ðaÞ

Y3
A¼1

Y2
i¼1

ηðτÞ2
ϑ1ðv� ð−aA þ bi þ x01ÞÞ

× I ð0;4Þ;2
vec ðbÞ

Y2
i¼1

ηðτÞ2
ϑ1ðv� ð−bi þ x02ÞÞ

: ðD23Þ

In the above, aA and bi are SU(3) and SU(2) fugacities with a3 ¼ 1=ða1a2Þ and b1 ¼ 1=b2. The Uð1Þ fugacities on both
sides are identified by
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x01 ¼
x4=31 x2=33

x2=32

; x02 ¼ x22x
2
3; r¼

�
x3
x1x2

�
1=3

: ðD24Þ

Explicitly, the elliptic genus of the N ¼ ð0; 4Þ genus-one
theory with one maximal puncture reads

I ð0;4Þ;4
1;0;0;0;1 ¼

ηðτÞ12ϑ1ð2vÞϑ1ð4vÞϑ1ð6vÞϑ1ð8vÞQ
4
A;B¼1 ϑ1ð2vþ cA − cBÞ

: ðD25Þ

Finally, by gauging the maximal punctures, we deter-
mine the elliptic genus for genus g ≥ 1 with arbitrary
punctures,

I ð0;4Þ;4
g;n1;n2;n3;n4 ¼

�
ϑ1ð2vÞϑ1ð4vÞ2ϑ1ð6vÞ2ϑ1ð8vÞ2

ηðτÞ6
�

g−1

× I ð0;4Þ;4
1;n1;0;0;0

I ð0;4Þ;4
1;0;n2;0;0

I ð0;4Þ;4
1;0;0;n3;0

I ð0;4Þ;4
1;0;0;0;n4

;

where

I ð0;4Þ;4
1;n1;0;0;0

¼
Yn1
i¼1

ηðτÞ2ϑ1ð8vÞ
ϑ1ð2vÞϑ1ð4v� 4xiÞ

; ðD26Þ

I ð0;4Þ;4
1;0;n2;0;0

¼
Yn3
i¼1

ηðτÞ6ϑ1ð6vÞϑ1ð8vÞ
ϑ1ð2vÞ2ϑ1ð2v� 2ziÞϑ1ð3v� zi � 4riÞ

;

ðD27Þ

I ð0;4Þ;4
1;0;0;n3;0

¼
Yn2
i¼1

ηðτÞ6ϑ1ð6vÞϑ1ð8vÞ
ϑ1ð2vÞϑ1ð4vÞϑ1ð2v� 4wiÞϑ1ð4v� 4wiÞ

;

ðD28Þ

I ð0;4Þ;4
1;0;0;0;n4

¼
Yn4
i¼1

ηðτÞ12ϑ1ð2vÞϑ1ð4vÞϑ1ð6vÞϑ1ð8vÞQ
4
A;B¼1 ϑ1ð2vþ biA − biBÞ

: ðD29Þ
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