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We discuss the long-distance physics of 2D adjoint QCD when it is viewed as an effective field theory
and determine the β functions for its two classically marginal four-Fermi operators. These four-fermion
terms preserve the invertible symmetries of the kinetic terms, and they have important implications at long
distances if they are generated at short distances. Our results are likely to be important for future numerical
lattice Monte Carlo studies of 2D adjoint QCD.
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I. INTRODUCTION

One-flavor massless SUðNÞ adjoint QCD is a popular
setting for exploring the physics of confinement; see, e.g.,
Refs. [1–22]. This theory—which we will call QCD[Adj]
—has just two fields, an SUðNÞ gauge field aμ and a
massless adjoint-representationMajorana fermion ψ , but its
physics is very rich. First, the fact that ψ is in the adjoint
representation means that there is a ZN 1-form symmetry
that acts on Wilson loops, which ensures that confinement
is a well-defined notion; see, e.g., Refs. [23,24]. Second,
massless QCD[Adj] enjoysN ¼ 1 supersymmetry in d ¼ 4
spacetime dimensions, but it is not supersymmetric when
d < 4. Third, QCD[Adj] has a rich matrixlike large N limit
in d ≥ 2, in the sense that the propagating degrees of
freedom are N × N matrices. In 2D, this is to be contrasted
with SUðNÞ QCD with fundamental fermions, where the
standard large N limit becomes vectorlike due to the fact
that the adjoint (matrix) gluons do not have propagating
degrees of freedom in two dimensions, while fundamental
representation quarks are N-dimensional vectors. Finally,
the largeN limit of QCD[Adj] is believed to be equivalent to
the large N limit of QCD with a Dirac fermion in the two-
index antisymmetric “AS” representation [10]. AtN¼ 3 the
AS representation is the same as the (anti)fundamental
representation, so studying QCD[Adj] yields lessons for
an unusual but phenomenologically viable [10,25–29] large
N limit of SUð3Þ QCD in any d ≥ 2. All of these features
make QCD[Adj] a very interesting setting for exploring the
physics of confinement.

The Euclidean action of QCD[Adj] is

S ¼
Z

ddx

�
1

2g2
trf2μν þ trψ̄=Dψ þ � � �

�
: ð1Þ

The ellipsis represents other local terms built out of aμ and
ψ that are consistent with the symmetries of the kinetic
terms. In addition to the ZN 1-form symmetry, the
invertible symmetries include fermion parity ð−1ÞF, charge
conjugation C, time reversal T, a coordinate reflection
symmetry R, and a discrete chiral symmetry in even
spacetime dimensions: Z2 in d ¼ 2 and ZN in d ¼ 4.
In this paper, we will follow a common Wilsonian

perspective and interpret Eq. (1) as an effective field theory
(EFT), so that Eq. (1) is viewed as the longer-distance
effective action corresponding to some short-distance
description involving additional heavy degrees of freedom.
For instance, we could add an extra scalar field ϕ of mass
M ≫ gwith a Yukawa interaction of the form

R
ddxyϕtrψ̄ψ

to Eq. (1) and then consider the physics for energies ≪ M.
As another example, Eq. (1) could be the coarse-grained
effective description of a short-distance spacetime lattice
model with lattice spacing a. We will try to understand the
“universal” aspects of the long-distance physics which are
independent of the details of such short-distance modifi-
cations, provided that the invertible symmetries of Eq. (1)
mentioned above are not explicitly broken at short dis-
tances. The dependence of the physics on various possible
symmetry-preserving short-distance modifications is para-
metrized by symmetry-preserving � � � terms in Eq. (1).
In d ≥ 3, any symmetry-preserving terms other than the

kinetic terms in Eq. (1) are technically irrelevant. The only
apparent exception is the d ¼ 4 term iθ

32π2

R
d4xϵμναβtrfμνfαβ

with θ ¼ π, but this term has no physical effects, since it
can be absorbed in the phase of the massless fermion field.
Therefore, if one’s goal is to understand the universal
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aspects of the long-distance physics of QCD[Adj], then in
d ≥ 3 it is safe to delete the ellipsis in Eq. (1).
In this paper, we focus on the physics in d ¼ 2, where the

situation is different thanks to the fact that there are two
classically marginal four-fermion terms consistent with all
the invertible symmetries mentioned above. As a result, the
EFT action of 2D QCD[Adj] can be written as [21]

S ¼
Z

d2x

�
1

2g2
trf2μν þ trψ̄=Dψ

þ 1

2N
λjtr½ψ̄γμψψ̄γμψ � −

1

N2
λmtr½ψ̄ψ �tr½ψ̄ψ �

�
: ð2Þ

The λj term is like the Thirring interaction for a Dirac
fermion [30], while the λm term is a version of the Gross-
Neveu interaction [31]. As we review below, these two
terms are identical at N ¼ 2.
A very interesting feature of 2D QCD[Adj] is that, when

λm is turned off, the model has an exotic “noninvertible”
symmetry [22]; see also [32,33]. This exotic symmetry
would be explicitly broken by the adjoint quark mass term
mtrψ̄ψ , which would also break the Z2 chiral symmetry.
The λm term is the square of the mass term and does not
break chiral symmetry, but it turns out that it does break the
noninvertible 0-form symmetry [22]. The other four-
fermion term, λjtr½ψ̄γμψψ̄γμψ �, does not break any of
the symmetries. Because of the infamous subtleties
involved in defining chiral lattice fermions (reviewed in,
e.g., Ref. [34]), the noninvertible symmetry discovered in
Ref. [22] seems unlikely to be preserved in spacetime
lattice formulations of 2D QCD[Adj]. One might, there-
fore, worry that, without fine-tuning, numerical lattice
simulations of 2D QCD[Adj] might end up reaching
continuum limits described by Eq. (2) that have nonzero
values of λm and λj. This is one of several motivations for
understanding the impact of the four-fermion terms on the
long-distance physics.
We calculate the β functions of λj and λm in Sec. III after

setting out our conventions in Sec. II. We find that, with a
natural choice of signs for λj and λm, these couplings
generically become large in the long-distance limit. We
then discuss the implications of the renormalization group
(RG) flow for confinement in Sec. IV. Finally, readers may
have noticed that with λm ¼ λj ¼ 0, 2D QCD[Adj]
becomes superrenormalizable, and it may seem impossible
for a four-fermion term to be generated through radiative
corrections in such a quantum field theory (QFT). While
this is true in the naive continuum theory, in Sec. V we will
show how it can be false on the lattice. We then conclude
in Sec. VI.

II. CONVENTIONS

For concreteness, we use the following representation of
2D Euclidean gamma matrices:

γ1 ¼
�
0 1

1 0

�
; γ2¼

�
1 0

0 −1

�
; ð3Þ

and define γ≡ iγ1γ2. The charge conjugationmatrixC ¼ −γ
satisfies CγμC−1 ¼ −ðγμÞT , and we define the charge con-
jugate of ψ to be ψc ¼ C−1ψ̄T ; see, e.g., Ref. [35] for an
extensive discussion of possible conventions. TheMajorana
condition ψc ¼ ψ then implies ψ̄ ¼ ψTCT ¼ ψTγ. The
Euclidean action takes the form

S ¼
Z

d2x

�
N
2λ

tr½fμνfμν� þ tr½ψ̄=Dψ � þmtr½ψ̄ψ �

þ 1

2N
λjtr½ψ̄γμψψ̄γμψ � −

1

N2
λmtr½ψ̄ψ �tr½ψ̄ψ �

�
; ð4Þ

where the field strength fμν ¼ ∂μaν − ∂νaμ − i½aμ; aν�, the
covariant derivative =D ¼ γμð∂μ − i½aμ; ·�Þ, ψ ¼ ψAtA is a
Majorana fermion in the adjoint representation of SUðNÞ, tA
are the generators of SUðNÞ in the fundamental representa-
tion with A ¼ 1;…; N2 − 1, the trace is taken over color
indices with trtAtB ¼ 1

2
δAB, the transpose in ψ̄ acts on spinor

(but not color) indices, λ ¼ g2N > 0 is the ’t Hooft coupling,
andN ≥ 2.We are ultimately interested in them ¼ 0 theory,
but we will use the mass term to regulate low-momentum
divergences in the Feynman diagram calculations.
The tr½ψ̄ψ �tr½ψ̄ψ � term is an adjoint Majorana version of

the four-Fermi interaction in the Gross-Neveu model [31].
Our sign of the λm term in Eq. (4) matches that of Gross and
Neveu, who fixed the sign of the four-fermion coupling in
their model by requiring it to match the effective coupling
that would be induced by integrating out a heavy scalar ϕ
with a Yukawa coupling to the mass operator, which takes
the form

R
d2xyϕtrψ̄ψ in QCD[Adj]. We also chose the

sign of the tr½ψ̄γμψψ̄γμψ � term to match the standard sign of
the four-fermion coupling in the Thirring model [30].1

Happily, these two choices are nicely correlated with each
other in QCD[Adj] thanks to the fact that for N ¼ 2 [21]

tr½ψ̄γμψψ̄γμψ � ¼ −tr½ψ̄ψ �tr½ψ̄ψ �: ð5Þ

This also means that for N ¼ 2 there is only one indepen-
dent symmetry-preserving four-fermion operator.
Before moving on, we should note that it is sometimes

possible for four-fermion terms to have the “wrong” sign
without physical problems. This is famously the case for
the Thirring coupling gt for a single Dirac fermion, which

1Our sign choices are also compatible with the sign choices of
Ref. [36], which studied the β functions of classically marginal
couplings, including some four-fermion couplings, in generalized
Schwinger models with N fermions. We also note that Ref. [37]
recently calculated the β functions of four-fermion deformations
of some 2D chiral gauge theories, while Ref. [38] studied four-
fermion couplings in the one-flavor charge N Schwinger model.
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can be negative as long as gt > −π=2. While we will focus
on λj ≥ 0 and λm ≥ 0, it would be interesting to understand
whether there are well-motivated UV completions of 2D
adjoint QCD that yield negative values for these couplings.
Finally, we note that the fermion ψ can be decomposed

into right- and left-moving components, R and L, respec-
tively, which in this basis takes the form

ψ ¼ 1ffiffiffi
2

p
�
R

�
1

i

�
þ L

�
i

1

��
: ð6Þ

This leads to a useful alternate form of the four-Fermi
interactions:

tr½ψ̄γμψψ̄γμψ � ¼ 4tr½LLRR�;
tr½ψ̄ψ �tr½ψ̄ψ � ¼ −4tr½LR�tr½LR�: ð7Þ

III. CALCULATING BETA FUNCTIONS

Our goal is to calculate the β functions of λj and λm to
one-loop accuracy. The gauge coupling is dimensionful
while λj and λm are dimensionless, so gluons cannot
contribute to the β functions of λj and λm at any finite
loop order. Therefore, we do not consider gluon loops in
this section.
We calculate the β function in two different ways: from

the operator product expansion (OPE) (see, e.g., Ref. [39])
and from standard considerations of one-loop Feynman
diagrams. The agreement of the results provides a check on
our calculations.

A. Beta functions from OPEs

Let us define the operators

Oj ¼
2

N
∶tr½LLRR�∶;

Om ¼ 4

N2
∶tr½LR�tr½LR�∶; ð8Þ

where ∶∶ denotes normal ordering. The β functions for λj
and λm are then given by2 [39]

βj ¼ πðcjjjλ2j þ 2cjmjλmλj þ cjmmλ2mÞ;
βm ¼ πðcmjjλ2j þ 2cmmjλmλj þ cmmmλ

2
mÞ; ð9Þ

where cKIJ are the OPE coefficients

OIðzÞOJð0Þ ¼
X
K

cKIJOKð0Þ
zΔIþΔJ−ΔK

þ � � � ; ð10Þ

where I; J; K ¼ j, m and here ΔI ¼ 2 for all I.
When m ¼ 0, the propagators are

hLa
bðzÞLc

dð0Þi ¼
1

4πiz

�
δadδ

c
b −

1

N
δabδ

c
d

�
¼ −hRa

bðzÞRc
dð0Þi; ð11Þ

where a; b; c; d ¼ 1;…; N are fundamental color indices.
To determine the OPE coefficients, we use Wick’s theorem
to evaluate contractions in products of Oj and Om and find

OjðzÞOjð0Þ ¼
1

z2

�
−

1

4π2
Ojð0Þ

�
þ � � � ;

OmðzÞOjð0Þ ¼
1

z2

�
1

N2π2
Ojð0Þ −

1

2π2
Omð0Þ

�
þ � � � ;

OmðzÞOmð0Þ ¼
1

z2

�
−
1 − 3=N2

π2
Omð0Þ

�
þ � � � : ð12Þ

Note that Om does not appear in the 1=z2 part of the
contraction of OjðzÞOjð0Þ, and vice versa. Applying
Eq. (9), we find

βj ¼ −
λj
π

�
1

4
λj −

2

N2
λm

�
;

βm ¼ −
λm
π

��
1 −

3

N2

�
λm þ λj

�
ð13Þ

and observe that there is neither a λ2m term in βj nor a λ2j
term in βm.

B. Beta functions from Feynman diagrams

We check Eq. (13) by calculating βj and βm using
standard Feynman diagram methods with the Feynman
rules in Fig. 1. Dropping the gauge field (since it does not
contribute to our calculation), we express the action with
counterterms in dimension d ¼ 2 − ϵ as

S¼
Z

ddx
1

2
ψT
Aγð=∂þmÞψAþ

1

2
ψT
Aγðδψ=∂þδmÞψA

−
1

2N
μϵλjtr½ψTγiψψTγiψ �−

1

N2
μϵλmtr½ψTγψ �tr½ψTγψ �

−
1

2N
μϵδλj tr½ψTγiψψTγiψ �−

1

N2
μϵδλm tr½ψTγψ �tr½ψTγψ �;

ð14Þ

where A ¼ 1;…; N2 − 1 is an adjoint color index and the
mass scale μ has been introduced so that λj and λm are
dimensionless. We include the fermion mass to regulate IR2We thank Diego Delmastro for introducing us to this method.
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divergences and take m → 0 and the end. The β functions
can be built from

Λjðλj;λmÞ≡λj
Zλj

Z2
ψ
; Λmðλj;λmÞ≡λm

Zλm

Z2
ψ
; ð15Þ

where the Z’s are related to the δ’s by

δψ ¼Zψ −1; δλj;m ¼ λj;mðZλj;m −1Þ: ð16Þ

The β functions can then be obtained from the system of
equations (see, e.g., [40])

0 ¼ ϵΛj þ βj
∂Λj

∂λj
þ βm

∂Λj

∂λm
;

0 ¼ ϵΛm þ βj
∂Λm

∂λj
þ βm

∂Λm

∂λm
: ð17Þ

We evaluate bubble diagrams involving λm and λj of the
form shown in Fig. 2 using the Feynman rules in Fig. 1 and
simplify the results using standard SUðNÞ identities (see,
e.g., [41]) to obtain

δψ ¼ 0;

δλj ¼ −
1

4πϵ
λ2j þ

2

N2πϵ
λjλm;

δλm ¼ −
1 − 3=N2

πϵ
λ2m −

1

πϵ
λjλm: ð18Þ

The resulting β functions exactly match Eq. (13). As
another consistency check, we note that, when N ¼ 2, βj
and βm coincide, in the sense that if we turn off, e.g., λm
when calculating βj and vice versa, we get the same result.

This is consistent with the fact that when N ¼ 2 theOj and
Om operators are identical.

IV. THE LONG-DISTANCE LIMIT

We now discuss the implications of our results for the
long-distance physics of 2D QCD[Adj]. We first discuss
the behavior of the couplings in the long-distance limit in
Sec. IVA and then summarize the consequences for
confinement in Sec. IV B.

A. Renormalization group flow

We first observe that the β functions in Eq. (13) say that
if at the short-distance cutoff we have λj > 0 but λm ¼ 0,
then λm remains zero in the IR as long as the one-loop
approximation can be trusted, and vice versa. The fact that
turning on λj does not generate λm is expected from
symmetry considerations, because the theory with λm¼ 0
has an enhanced (noninvertible) symmetry [22]. But the
fact that turning on λm does not induce the λj coupling
cannot be explained by any known symmetry, so this seems
likely to be a one-loop artifact.
For N ¼ 2 there is only one independent four-fermion

coupling consistent with the invertible symmetries of 2D
QCD[Adj], and it is asymptotically free. It flows to strong
coupling at long distances, so if it is generated with a small
positive coefficient at short distances, it will have important
quantitative effects in the IR. Whether it also has important
qualitative effects is tied up with the anomaly structure of
the theory, as we will discuss below.
The RG flow of the λj and λm couplings for N ¼ 3 is

illustrated in Fig. 3. As one would expect from a continuum
analysis of a superrenormalizable QFT, if λm ¼ λj ¼ 0 at
the short-distance cutoff, then these couplings remain zero
as one goes to long distances. However, if λm > 0 at short
distances, then it increases in the long-distance limit
regardless of the value of λj. The behavior of λj depends
on the relative sizes of λj and λm at the short-distance cutoff.
If λj is sufficiently large compared to λm at the cutoff, then
both λj and λm increase as we flow to long distances. If λj is
much smaller than λm at the cutoff, then λj decreases as we
flow to long distances, while λm increases. However, the
one-loop approximation breaks down once either coupling
becomes large, and so at finite N a perturbative calculation

FIG. 1. Feynman rules for the action in Eq. (14). Here,
A; B; C;D; E ¼ 1;…; N2 − 1 are adjoint color indices, r, s, t,
and u are spinor indices, i is a Lorentz index, dABC are the totally
symmetric structure constants of SUðNÞ, and summation over
repeated indices is implied.

FIG. 2. The one-loop Feynman diagrams needed for our
calculation of the β functions all take the basic form sketched
in this diagram.
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is not sufficient to determine the long-distance fate of λj
when 0 < λj ≪ λm at the short-distance cutoff.
In the large N limit, the situation simplifies: The double-

trace coupling λm does not affect the RG flow of the single-
trace coupling λj. Therefore, in the large N limit our
one-loop analysis allows us to conclude that both λj and λm
flow to strong coupling in the long-distance limit, and it is
natural to expect 1=N corrections to be quantitatively small
already at N ¼ 3 in this model with adjoint matter, where
the large N expansion goes in powers of 1=N2.
We can summarize our discussion of the RG flow by

saying that if some small positive λj, λm four-fermion
couplings are induced from short-distance effects, then they
become large in the long-distance limit and must be taken
into account to understand the long-distance physics.

B. Consequences for confinement

To understand the qualitative consequences of the dis-
cussion above, we have to review the ’t Hooft anomalies of
2D QCD[Adj]. We first recall that the lowest critical
dimension for a discrete 1-form symmetry is d ¼ 3 [24],
so it is generally natural to expect 2D gauge theories with
ZN symmetries to confine test quarks, since their 1-form
symmetry cannot be spontaneously broken; see Ref. [42]
for a beautiful effective field theory explanation as well as

Ref. [43] for an earlier closely related discussion. However,
there is an important subtlety: In d ¼ 2, if a ZN 1-form
symmetry has a mixed ’t Hooft anomaly with a 0-form
symmetry, then both symmetries will be at least partially
spontaneously broken on R2, with some subtle features
like the presence of “universes” [22,44]. This is nicely
illustrated by the behavior of the charge N Schwinger
model [22,38,45], which is in a fully deconfined phase on
R2 because the rank of its ZN 0-form chiral symmetry
precisely matches the rank of its ZN 1-form symmetry, and
these two symmetries have a mixed ’t Hooft anomaly.
Since 2D QCD[Adj] has only a Z2 chiral symmetry, the

invertible symmetries leave no room for this sort of
anomaly-driven complete deconfinement for N > 2. (If
N is even, there is a mixed chiral/1-form anomaly that
leads to Wilson loops in representations with N-ality N=2
to be deconfined [21].) However, as we already mentioned,
2D QCD[Adj] has an exotic noninvertible symmetry so
long as λm ¼ 0 and m ¼ 0 [22]. The topological line
operators generating this noninvertible symmetry carry
all possible charges under the ZN 1-form symmetry, and
this leads to the same type of anomaly-driven complete
deconfinement seen in the charge N Schwinger model.
Komargodski et al. observed that turning on a small λm

coupling produces a nonvanishing string tension [22]
proportional to λm. However, if λm were marginally irrel-
evant, this λm-induced string tension would vanish in the
long-distance limit. But here we have shown that λm is
marginally relevant. This implies that if a tiny λm > 0 is
induced from some short-distance regularization, then it will
grow at long distances, badly breaking the noninvertible
symmetry and inducing confinement with a string tension
set by some combination of the ’t Hooft coupling λ and the
strong scaleΛm of λm. Similarly, if a small λj > 0 is induced
in the action of 2D QCD[Adj] from some short-distance
physics, we expect that, e.g., the particle masses will be
sensitive to the strong scaleΛj associated to λj, in addition to
their sensitivity to the dimensionful ’t Hooft coupling λ.
In summary, the four-fermion interactions of 2D QCD

[Adj] can have important quantitative and qualitative
effects on the long-distance physics, for example, driving
massless 2D QCD[Adj] to confine fundamental test quarks
for any N > 2. If λj and λm are induced in the effective
action of 2D QCD[Adj] from some short-distance physics,
they must be carefully taken into account when studying
the long-distance correlation functions of the theory.

V. FOUR-FERMION OPERATORS
AND THE LATTICE

There are several ways to quantitatively explore the long-
distance physics of 2D QCD[Adj]. One approach is to work
on the light cone, using either discretized light-cone
quantization [1–3,5,46,46–49] or light-cone conformal
truncation [50,51]. These methods have the advantage that

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 3. One-loop renormalization group flow of the four-
fermion couplings λm and λj of 2D N ¼ 3 QCD[Adj], with the
arrows pointing toward the long-distance limit. The λm coupling
always grows as we flow to the long-distance limit, while the
behavior of λj depends on the starting point in parameter space.
While the plot suggests that λj flows to zero if λj ≪ λm, this
conclusion is not reliable, because λm becomes large in the same
limit, leading to a breakdown of the one-loop approximation.
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they appear to preserve the noninvertible 0-formsymmetry of
2DQCD[Adj]; see the discussion in, e.g., Ref. [52] regarding
the decoupling of left- and right-handed excitations in light
of the results of Ref. [22]. The light-cone approaches also
have the nice feature of being relatively inexpensive numeri-
cally, at least at largeN. They also have some disadvantages,
ranging from challenges with directly studying spontaneous
symmetry breaking using light-cone methods—see, e.g.,
Refs. [53–56]—as well as difficulties with calculating
correlation functions of large Wilson loops, which are the
most natural observables for studying the physics of confine-
ment and the realization of the ZN 1-form symmetry.
Another approach, which is especially widely used to

study gauge theories in d > 2, is to perform numerical
Monte Carlo calculations of Euclidean correlation functions
using lattice gauge theory. So far, the only lattice gauge
theory calculations of 2D adjoint one-flavor QCD in the
massless limit is Ref. [57], which constructed a remarkable
Hamiltonian lattice discretization that correctly captures all
of the invertible symmetries of the model, including chiral
symmetry. However, the numerical analysis of Ref. [57]
focused on N ¼ 2, where (a) λm is equivalent to λj, and
(b) the model is deconfined simply due to the anomalies of
the invertible symmetries. The continuum-limit behavior of
N > 2 QCD[Adj] defined on spacetime (or for that matter
spatial) lattices is not yet fully clear.
As discussed above, if we set λm ¼ λj ¼ 0 in the

classical Lagrangian of the continuum theory, then these
couplings stay zero in the quantum theory by dimensional
analysis. But it is less clear what would happen to λj and λm
if we start with a lattice discretization. The lattice brings in
another dimensionful parameter, the lattice spacing a, and
necessarily breaks some spacetime symmetries, such as
translation symmetry. It also often breaks or modifies some
internal symmetries, such as chiral symmetry [34]. Can
four-fermion interaction terms that cannot be generated in a
continuum field theory be radiatively generated when such
a theory is discretized?
A naive massless lattice fermion action leads to 2d

massless “doubler” fermions in the continuum limit; see,
e.g., [34,58,59]. There are several known ways around this,
but all of them do something subtle to chiral symmetry. For
example, let us consider Wilson lattice fermions [58]. The
idea of Wilson fermions is to add a (dangerously) irrelevant
term to the fermion action which explicitly breaks chiral
symmetry and also breaks the degeneracy between the
fermion doubler modes, so that the continuum action
resulting from coarse graining the lattice action becomes
(in a continuum notation)

SW ¼
Z

ddx

�
1

2g2
trf2μν þ trψ̄=Dψ

þmtrψ̄ψ þ ratrψ̄=D2ψ þ � � �
�
; ð19Þ

where the r term is the Wilson term, a is the lattice spacing,
and � � � stands for other terms induced by coarse graining
the lattice action. For generic values of m, one gets 2d

heavy fermions with mass m ∼ 1=a in the continuum limit.
However, it is known that one can tune the bare quark mass
m to get a single light or massless physical quark in the
continuum limit, while the extra 2d − 1 doubler quarks
remain heavy, with masses ∼1=a.
It is easy to verify that the extra terms hiding in � � �

include four-fermion interactions. In particular, it is easy to
check that the tree-level gluon exchange diagram in, e.g.,
Fig. 4 produces an effective λj ∼ r2g2a2 interaction. This
should not be surprising, because no symmetry forbids
such an interaction, and the extra dimensionful scale a
invalidates the naive continuum argument for the impos-
sibility of gluon loops producing classically marginal local
four-fermion interactions. It is natural to expect that higher-
order diagrams induced by the Wilson term also produce
the λm coupling, since λm is also not forbidden by either
symmetries or dimensional analysis arguments. While
these effective four-fermion couplings λj and λm will
necessarily appear suppressed by positive powers of ga,
and, hence, appear to be small near the continuum limit
where ga ≪ 1, these couplings run and can become large at
long distances. Tuning m to reach the chiral limit clearly
does not generically tune four-fermion couplings to zero.
Therefore, if one were to formulate 2D QCD[Adj] on the
lattice using Wilson fermions, one would study the physics
of Eq. (2) with nonzero four-fermion couplings λj and λm.
To avoid this, one would have to turn on λj and λm in the
bare lattice action and fine-tune them.
To show that Wilson fermions are not special in inducing

four-fermion interactions in lattice field theories—even
though it appears to be impossible to induce such interactions
when naively thinking about the continuum theory—let us
consider an even simpler example: a massless Euclidean 2D
Dirac fermion Ψ with a current-current Thirring interaction
term,

SΨ ¼
Z

d2x½Ψ̄=∂Ψþ gtðΨ̄γμΨÞ2�: ð20Þ

This simple field theory has the standard vector and axial
symmetries Uð1ÞV andUð1ÞA, and theThirring coupling gt is

FIG. 4. A tree-level gluon-exchange diagram from the Wilson
term in Eq. (19), which leads to an effective λj ∼ r2g2a2.
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exactly marginal and does not run [30]. After gauging
fermion parity ð−1ÞF (which just means summing over
periodic and antiperiodic conditions on, e.g., a spacetime
torus), it is known that the Thirring model gets a dual
description as a scalar field theory [60–62]

Sφ ¼
Z

d2x
R2

4π
ð∂μφÞ2; ð21Þ

where R2 ¼ 1
2
þ gt

π , the scalar φ is compact φ ¼ φþ 2π,
jμV ¼ Ψ̄γμΨ ∼ iϵμν∂νφ, and jμA ¼ Ψ̄γ5γμΨ ∼ ∂

μφ. The van-
ishing of the β function for gt translates to parameterR being
marginal, which is indeed clear by inspection of the free-field
action in Eq. (21).
It is known that 2D compact scalars with R and 1=R are

T-dual to each other, in the sense that physics at R is the
same as at 1=R with φ exchanged with its dual field θ,
related via ∂μφ ¼ R−2ϵμν∂

νθ. The T-dual action is

Sθ ¼
Z

d2x
1

4πR2
ð∂μθÞ2: ð22Þ

The 2π periodic field θ transforms by shifts under Uð1ÞV,
while its winding current iϵμν∂νθ is identified with Uð1ÞA.
The “Dirac point” R ¼ ffiffiffiffiffiffiffiffi

1=2
p

, which corresponds to
gt ¼ 0, enjoys a somewhat exotic enhanced 0-form sym-
metry. In 2D, 0-formsymmetries aregeneratedby topological
line operators. It is known that, when R ¼ ffiffiffiffiffiffiffiffi

1=k
p

for k∈Z,
Sθ is self-dual under the combination of gaugingZk ∈Uð1ÞV
and performing T-duality. As a result, there exists a topo-
logical line operator N k associated with performing these
transformations in, e.g., half of spacetime [63–66]. The
topological line operatorN k is a symmetry generator despite
not being not invertible for k ≠ 1 (see, e.g., Ref. [67] for a nice
review). This means that no matter how we complicate the
continuum model by, e.g., adding interactions, as long as
Z2 ∈Uð1ÞV andT-duality remain unbroken, the line operator
N 2 will remain topological, and the pointR ¼ ffiffiffiffiffiffiffiffi

1=2
p

will be
protected by the noninvertible symmetry associatedwithN 2.
This gives a symmetry-based way to understand why gt
remains zero at all length scales if it is set to zero at short
distances.
Can R—and, hence, gt—get renormalized if the short-

distance version of the model is defined on a spacetime
lattice? To understand why the answer is yes, let us
discretize, e.g., Sθ using the Villain formalism

Slat ¼
X
l

1

4πR2
lat

½ðdθÞl − 2πnl�2; ð23Þ

where θs ∈R, nl ∈Z, ðdθÞl ¼ θ
sþbl − θs, s and l denote

sites and links, respectively, and Rlat is the lattice analog of
R. This action has a discrete gauge redundancy θs → θs þ
2πks; nl → nl þ ðdkÞl with ks ∈Z, so that nl is a discrete

gauge field associated with 2π shifts of θ. The Uð1ÞV
symmetry acts by constant shifts of θs, but, as is common in
lattice discretizations of continuum field theories with
chiral symmetry, Uð1ÞA is not preserved at finite lattice
spacing. To see this, note that the chiral charge QA within a
region bounded by a closed curve C is the winding number
of θ:

QAðCÞ ¼ −
1

2π

X
l∈C

½ðdθÞl − 2πnl�∈Z: ð24Þ

Unfortunately, the path integral involves sums over all
possible nl, and so QA is not conserved with this lattice
discretization.
We can now understand why the point Rlat ¼

ffiffiffiffiffiffiffiffi
1=2

p
does

not have any enhanced symmetry on the lattice. The
appearance of an enhanced symmetry at R ¼ ffiffiffiffiffiffiffiffi

1=2
p

in
the continuum model required both Uð1ÞV symmetry and
T-duality. But while the lattice model in Eq. (23) preserves
Uð1ÞV , it does not preserve T-duality: For small Rlat the
model is gapped, while for large Rlat the physics is com-
pletely different and the model is gapless; see, e.g., [68,69].
Given that Rlat ¼

ffiffiffiffiffiffiffiffi
1=2

p
does not have any enhanced

symmetries, Rlat should get renormalized as we go to the
continuum limit. Reaching a continuum limit with gt ¼ 0
should require tuning Rlat to a bare value which is
not Rlat ¼

ffiffiffiffiffiffiffiffi
1=2

p
.

That this renormalization really does occur can be read
off from numerical and analytic lattice calculations [68,69].
A continuum analysis based on Eq. (22) implies that
“vortex operators” eiθ become relevant when R hits the
enhanced-symmetry value 2. If the relation Rlat ¼ R were
to hold, then when Rlat goes through 2, the system should
go through a Berezinskii-Kosterlitz-Thouless transition,
from a conformal field theory phase with an emergent
Uð1ÞA symmetry to a gapped phase with no Uð1ÞA
symmetry. However, the critical value of Rlat is known
to be [68,69]

Rlat ≈ 2.16 > 2: ð25Þ

So Rlat—and, hence, also ðgtÞlat—is indeed renormalized in
the lattice theory, despite what one might have expected
when considering the continuum theory.
This section illustrates the familiar lesson that parame-

ters can get renormalized differently in lattice versus
continuum field theories. To prevent a parameter from
being renormalized, it must be a point of enhanced
symmetry in whichever theory one considers, be it in
the continuum or on the lattice. In particular, when studying
QCD[Adj] using lattice Monte Carlo methods, one should
interpret the bare values of λj and λm as part of its parameter
space, and studying any particular point in the physical
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ðλj; λmÞ plane is likely to require fine-tuning of the bare
parameters.

VI. CONCLUSIONS

Two-dimensional QCD with one massless adjoint
fermion is an interesting setting for studying confine-
ment, with surprisingly rich and subtle physics. These
subtleties include a rich set of symmetries and anomalies,
including ones that involve an exotic noninvertible
symmetry [22]. These anomalies can have the surprising
result of driving 2D QCD[Adj] into a deconfined phase
characterized by a spontaneously broken ZN 1-form
symmetry [1–3,5,22,32,33]. Another interesting subtlety
is the possibility of adding two classically marginal four-
fermion interaction terms to the action of the theory
for N > 2.
In this paper, we have explored the interplay of these

subtleties by viewing QCD[Adj] as a Wilsonian effective
field theory, where the dimensionless four-fermion cou-
plings λj and λm must be interpreted as part of its parameter
space. These couplings can easily be produced by short-
distance physics such as a lattice regularization, as we have
discussed in Sec. V. Even if they appear with small
(positive) values, these couplings turn out to run and
generically become large at long distances, as discussed
in Sec. III. Therefore, 2D adjoint QCD can be viewed as a
theory with three dimensionful parameters: the ’t Hooft
coupling λ and the strong scales Λj and Λm associated with
λj and λm [21], rather than just one dimensionful coupling
λ, as was done historically.
Our results are likely to be helpful for lattice

Monte Carlo studies of 2D QCD[Adj] on spacetime
lattices. Without careful fine-tuning, these numerical sim-
ulations are likely to probe the physics of adjoint QCD with
nonzero values of λj and λm. One way to check whether,
e.g., the λm coupling is generated in a lattice simulation is to
calculate

htrψ̄ψ trψ̄ψi: ð26Þ

This expectation value must vanish in a QFT that enjoys the
noninvertible symmetry uncovered in Ref. [22] in the

infinite volume limit.3 But if λm ¼ 0 in the bare lattice
action while htrψ̄ψ trψ̄ψi ≠ 0 even in the chiral limit, then
one can conclude that the noninvertible symmetry is
explicitly broken and the λm term has been radiatively
generated. One can quantify the size and sign of the
radiatively generated λm by turning on a bare λm coupling
and tuning it to get (26) to vanish. However, as we argued in
Sec. V, it is natural to expect the coefficients of the four-
Fermi terms to be small near the continuum limit, scaling as
∼ðgaÞp, p > 1. Therefore, it is likely to be easiest to
examine (26) on small lattices with ga ∼ 1, i.e., far from the
continuum limit. After that, one could explore the behavior
of (26) near the continuum limit in large boxes with
characteristic size L ≫ g−1.
The fact that λj and λm can get large in the long-distance

limit implies that, e.g., the continuum-limit particle spectra
produced from spacetime lattice Monte Carlo simulations
may differ appreciably from the particle spectra that have
been extracted from light-cone calculations with
λj ¼ λm ¼ 0, unless the Monte Carlo simulations are
carefully fine-tuned. In future work, it would be interesting
to explore whether, e.g., domain-wall or overlap fermion
lattice actions induce λm ≠ 0 and λj ≠ 0 as one goes to the
continuum limit as well as to numerically explore what
happens to the spectrum as one dials λ=Λj and λ=Λm.
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