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We develop a new formula called a mode recombination formula, and we can recast the effective potential
at finite temperature in one-loop approximation for fermion and scalar fields on theD-dimensional spacetime,
S1τ × RD−ðpþ1Þ ×

Qp
i¼1 S

1
i into a convenient form for discussing nonanalytic terms, which cannot bewritten in

the form of any positive integer power of the field-dependent mass squared, in the effective potential.
The formula holds irrespective of whether the field is a fermion or a scalar and of boundary conditions
for spatial S1i directions and clarifies the importance of zero modes in the Matsubara and Kaluza-Klein
modes for the existence of the nonanalytic terms. The effective potential is drastically simplified further
to obtain the nonanalytic terms in easier and more transparent way. In addition to reproducing previous
results, we find that there exists no nonanalytic term for the fermion field with arbitrary boundary
condition for the spatial S1i direction, which is also the case for the scalar field with the antiperiodic
boundary condition for the spatial direction.

DOI: 10.1103/PhysRevD.109.105012

I. INTRODUCTION

Quantum field theory at finite temperature has provided
a fundamental theoretical framework in high energy phys-
ics. In particular, the effective potential at finite temperature
is a crucial tool to investigate physical phenomena involved
with the order of the phase transition and its strength.
In the pioneering work by the Dolan-Jackiw [1], they

found that there exists a nonanalytic term, which cannot be
written in the form of any positive integer power of field-
dependent mass squared, in the effective potential at finite
temperature for a real scalar field. The nonanalytic term
obtained by them has three-halves power of the mass
squared, and it turns out to play an essential role to trigger
the first order phase transition [2,3]. Moreover, the magni-
tude of the term is related with the strength of the first order
phase transition, which, in turn, put certain constraint on
physical quantity such as the Higgs mass, for example, in
the study of electroweak baryogenesis [4]. Hence, the
nonanalytic term in the effective potential is an important
quantity that must be studied in detail.

Quantum field theory with compactified dimensions has
been one of the attractive approaches for physics beyond
the standard model. Orbifold compactification provides a
framework for gauge-Higgs unification, where the Higgs
field is unified into higher dimensional gauge fields [5,6].
The order of the finite temperature phase transition in the
gauge-Higgs unification has been studied in [7,8], and
the first order phase transition actually occurs due to the
nonanalytic term in the effective potential. It has been also
shown that the quantum field theory at finite temperature
with compactified dimensions can possess rich phase
structures [9,10]. Compactified dimensions also provide
the theoretical framework for studying quantum field
theory itself. For instance, from a point of view of
dimensional reduction [11,12], models with several num-
bers of S1 have been investigated.
In the previous paper [13], we studied all the possible

nonanalytic terms in the effective potential at finite temper-
ature in one-loop approximation for a real scalar field on
the D-dimensional spacetime, S1τ × RD−ðpþ1Þ ×

Qp
i¼1 S

1
i ,

where the S1τ ; RD−ðpþ1Þ; S1i stand for the Euclidean time
direction, the D − ðpþ 1Þ dimensional flat Euclidean
space, the spatial compactified direction, respectively.
The effective potential contains the modified Bessel func-
tion of the second kind accompanied with multiple mode
summations with respect to the winding mode associated
with each S1. By using the integral representation for
the modified Bessel function given by the inverse Mellin
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transformation [14,15] and the analytical extension for the
mode summation [16], we recast the effective potential into
the integral form on the complex plane1 and performed the
residue integration in order to obtain the nonanalytic terms.
We found that the only nonanalytic power comes from
a term MD−ðpþ1Þ which is not analytic in M2 when the
dimension of the flat Euclidian space, D − ðpþ 1Þ is odd.
We obtained the coefficient of this term, but other non-
analytic terms proportional to logM were not studied.
In this paper, we develop a new formula called a mode

recombination formula, which plays a central role for
discussions in the present paper. The effective potential
can be recast into the convenient form for studying the
nonanalytic terms. The formula also clarifies that only the
zero mode in the Kaluza-Klein mode associated with each
S1 is crucial for the existence of the nonanalytic terms in the
case of the scalar field satisfying the periodic boundary
condition for the spatial S1i ði ¼ 1;…; pÞ direction. Then,
the effective potential relevant for the nonanalytic terms can
be simplified further drastically and is given in terms of the
contribution of the single mode summation with respect to
the winding mode associated with each S1. This is quite
different from the previous paper, where it includes the
contribution of the multiple mode summations. The integral
form for the simplified effective potential on the complex
plane is easy to perform the residue integration in order to
obtain the nonanalytic terms. We reproduce the previous
results in easier and more transparent way.
The mode recombination formula holds irrespective

of whether the field is a fermion or a scalar and of the
boundary condition for the spatial S1i ði ¼ 1;…; pÞ direc-
tion. The formula also provides a convenient form for
studying the nonanalytic terms in the effective potential
for the case of the fermion field with arbitrary boundary
condition for the S1i direction. The zero mode for the
Euclidean time direction is removed due to the antiperiodic
boundary condition followed from the quantum statistics
for the fermion. This changes the pole structure of the
analytical extension for the mode summation with respect
to the Matsubara mode compared with that of the scalar
case. We find that there is no nonanalytic term for the case
of the fermion. This immediately implies that the effective
potential does not possess the nonanalytic term for the case
of the real scalar field satisfying the antiperiodic boundary
condition for at least one spatial S1i direction.
This paper is organized as follows. We present the setup

in the next section. We prove the mode recombination
formula and present the convenient form of the effective
potential for studying the nonanalytic terms in each case of
the fermion and the scalar in the Sec. III. We reproduce the
same result as the one in the previous paper in easier and
more transparent way in the Sec. IV. We also study the

nonanalytic terms for the case of fermion with arbitrary
boundary condition in the Sec. V and of the real scalar
with the antiperiodic boundary condition in the Sec. VI.
The final section is devoted to conclusions and discussions
which also include the case for a higher dimensional
gauge field.

II. SETUP

Let us first present the setup for our discussions.
We study nonanalytic terms in the effective potential at
finite temperature in one-loop approximation for a real
scalar (fermion) field on the D-dimensional spacetime,
S1τ × RD−ðpþ1Þ ×

Qp
i¼1 S

1
i . We employ the Euclidean time

formulation for finite temperature quantum field theory and
then the Euclidean time direction, whose coordinate is
denoted by τ, is compactified on S1τ . The spatial p
directions are compactified on the p numbers of S1 and
their coordinates are yiði ¼ 1;…; pÞ. We denote the
circumference of each S1i as Liði ¼ 0; 1;…; pÞ and L0

stands for the inverse temperature T−1. The RD−ðpþ1Þ is the
D − ðpþ 1Þ dimensional flat Euclidean space whose
coordinates are xkðk ¼ 1;…; D − ðpþ 1ÞÞ.
The Lagrangian is given by

L¼ 1

2
ð∂NϕÞ2−

m2
s

2
ϕ2 −

λ

4!
ϕ4þ ψ̄ðiΓN∂N þmfÞψ þ gϕψ̄ψ ;

ð2:1Þ

where the N stands for N ¼ ðτ; k; iÞ, and ϕðψÞ is the scalar
(fermion) field whose bulk mass is msðmfÞ. The g is the
Yukawa coupling.
One needs to specify the boundary conditions for

the S1τ and S1i ði ¼ 1;…; pÞ directions. For a given field
Φðτ; xk; yiÞ, the boundary condition for the S1τ direction is
specified by

Φðτ þ L0; xk; yiÞ ¼ e2πiη0Φðτ; xk; yiÞ: ð2:2Þ

The parameter η0 is definitely determined by quantum
statistics to be 0 (periodic) for the scalar field or to be 1

2

(antiperiodic) for the fermion field. On the other hand, the
boundary condition for the S1i ði ¼ 1;…; pÞ direction is
parametrized by

Φðτ; xk; yi þ LiÞ ¼ e2πiηiΦðτ; xk; yiÞ: ð2:3Þ

The parameter ηi can take 0 or 12 for the real scalar field and
can be arbitrary for the fermion field.
We employ the standard prescription to calculate the

effective potential at finite temperature in one-loop approxi-
mation. Let us quickly review the calculations given in the
previous paper [13]. For those who are familiar with it,
readers can directly go to the next section. By taking up the

1The studies for dimensional reduction based on the integral
form have been carried out in Refs. [11,12].

MAKOTO SAKAMOTO and KAZUNORI TAKENAGA PHYS. REV. D 109, 105012 (2024)

105012-2



quadratic terms in the shifted Lagrangian around the constant field φ for the scalar field ϕ in Eq. (2.1), one needs
to evaluate

Veff ¼ ð−1ÞfN 1

2

�Yp
i¼0

1

Li

X∞
ni¼−∞

�Z
dD−ðpþ1ÞpE

ð2πÞD−ðpþ1Þ log
�
p2
E þ

�
2π

L0

�
2

ðn0 þ η0Þ2 þ
Xp
i¼1

�
2π

Li

�
2

ðni þ ηiÞ2 þM2ðφÞ
�

ð2:4Þ

in order to obtain the effective potential on S1τ × RD−ðpþ1Þ ×
Qp

i¼1 S
1
i in one-loop approximation. Here, the MðφÞ is the

field-dependent mass of the scalar (fermion) field,

M2ðφÞ ¼ m2
s þ

λ

2
φ2 ðMðφÞ ¼ mF þ gφÞ: ð2:5Þ

Hereafter, we denoteMðφÞ byM for simplicity. The pE denotes theD − ðpþ 1Þ-dimensional Euclidean momentum. The f
is the fermion number that is 0(1) for the boson (fermion) and theN is the on-shell degrees of freedom. The n0 denotes the
Matsubara mode arising from the S1τ , and the Kaluza-Klein mode niði ¼ 1;…; pÞ comes from each S1i ði ¼ 1; � � �pÞ. The
parameter ηiði ¼ 0; 1;…; pÞ is given in Eqs. (2.2) and (2.3).
Let us make use of the zeta-function regularization in order to evaluate Eq. (2.4). By defining

IðsÞ≡
�Yp

i¼0

1

Li

X∞
ni¼−∞

�Z
dD−ðpþ1ÞpE

ð2πÞD−ðpþ1Þ

�
p2
E þ

�
2π

L0

�
2

ðn0 þ η0Þ2 þ
Xp
i¼1

�
2π

Li

�
2

ðni þ ηiÞ2 þM2

�
−s
; ð2:6Þ

then, the Veff is written as

Veff ¼ ð−1ÞfN 1

2

�
−

d
ds

IðsÞ
�����

s→0

: ð2:7Þ

Performing the pE integration with the formula

A−s ¼ 1

ΓðsÞ
Z

∞

0

dt ts−1e−At; ð2:8Þ

and employing the Poisson summation

X∞
nj¼−∞

e
−ð2πLjÞ

2ðnjþηjÞ2t ¼
X∞

mj¼−∞

Lj

2π

�
π

t

�1
2

e−
ðmjLjÞ2

4t þ2πimjηj ; ð2:9Þ

we obtain

Veff ¼ ð−1Þfþ1N
π

D
2

2ð2πÞD
X∞

m0¼−∞
� � �

X∞
mp¼−∞

Z
∞

0

dt t−
D
2
−1e−

1
4t½ðm0L0Þ2þ���þðmpLpÞ2�−M2tþ2πiðm0η0þ���þmpηpÞ: ð2:10Þ

Hereafter, we call mjðj ¼ 0; 1;…; pÞ in Eq. (2.9) or Eq. (2.10) the winding modes, while n0 and niði ¼ 1; 2;…; pÞ in
Eq. (2.9) or Eq. (2.4) the Matsubara and the Kaluza-Klein modes, respectively.
It is useful to separate each summation with respect tomj in Eq. (2.10) into the zero mode ðmj ¼ 0Þ and the nonzero ones

ðmj ≠ 0Þ and to express Eq. (2.10) into the form

Veff ¼
Xpþ1

n¼0

FðnÞDðMÞ ¼
Xpþ1

n¼0

X
0≤i1<i2<���<in≤p

FðnÞD
Li1

;Li2
;…;Lin

ðMÞ; ð2:11Þ

where

FðnÞD
Li1

;Li2
;…;Lin

ðMÞ ¼ ð−1Þfþ1N
π

D
2

2ð2πÞD
X0∞

mi1
¼−∞

� � �
X0∞

min¼−∞

Z
∞

0

dt t−
D
2
−1e−

1
4t½ðmi1

Li1
Þ2þ���þðminLin Þ2�−M2tþ2πiðmi1

ηi1þ���þminηin Þ:

ð2:12Þ
The prime of the summation in

P0∞
mj¼−∞ means that the zero mode (mj ¼ 0) is removed.
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The Fð0Þ in Eq. (2.11) corresponds to the contribution
from all the zero modes m0 ¼ m1 ¼ � � � ¼ mp ¼ 0 in
Eq. (2.10) and is found to be

Fð0ÞDðMÞ ¼ ð−1Þfþ1N
π

D
2

2ð2πÞD
Z

∞

0

dt t−
D
2
−1e−M

2t

¼ ð−1Þfþ1N
π

D
2

2ð2πÞD Γ
�
−
D
2

�
ðM2ÞD2 : ð2:13Þ

It must be understood that Fð0ÞDðMÞ is regularized by the
dimensional regularization for D ¼ even. On the other
hand, for D ¼ odd, it yields [13]

Fð0ÞDðMÞ ¼ ð−1Þfþ1N
ð−1ÞDþ1

2

2
Dþ1
2 π

D−1
2 D!!

MD: ð2:14Þ

By using the formula

Z
∞

0

dt t−ν−1e−At−
B
t ¼ 2

�
A
B

�ν
2

Kνð2
ffiffiffiffiffiffiffi
AB

p
Þ; ð2:15Þ

where the KνðzÞ is the modified Bessel function of the
second kind, Eq. (2.12) for n ≥ 1 becomes

FðnÞD
Li1

;Li2
;…;Lin

ðMÞ ¼ ð−1Þfþ1N
2n

ð2πÞD2
X∞
mi1

¼1

� � �
X∞
min¼1

�
M2

ðmi1Li1Þ2 þ � � � þ ðminLinÞ2
�D

4

× KD
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2fðmi1Li1Þ2 þ � � � þ ðminLinÞ2g

q �
cosð2πmi1ηi1Þ � � � cosð2πminηinÞ: ð2:16Þ

The effective potential is given by the modified Bessel
function of the second kind accompanied with the
multiple mode summation with respect to the winding
mode mijðj ¼ 1;…; nÞ associated with the S1ij . The wind-
ing mode is derived from the Matsubara/Kaluza-Klein
mode nij through the Poisson summation (2.9). We will
use the inverse process in the next section, which is
employed to prove a mode recombination formula. The
results in this section have already been obtained in
the previous paper (see Eq. (2.10) of Ref. [13]) and they
are the starting point for the discussion in the present paper.

III. MODE RECOMBINATION FORMULA

In this section, we present and prove the formula called a
mode recombination formula. The formula plays a crucial
role to obtain a new form of the effective potential, which is
different from Eq. (2.11) and is convenient for discussing
the nonanalytic terms. These terms can be obtained from
the effective potential by use of the mode recombination
formula in easier and more transparent way, as we will see
in the next section.
Let us recall Eq. (2.11) and first write it as

Veff ¼ Fð0ÞDðMÞ þ
Xpþ1

n¼1

X
0≤i1<i2<���<in≤p

FðnÞD
Li1

;Li2
;…;Lin

ðMÞ;

ð3:1Þ

where we have separated the n ¼ 0 term from the summa-
tion in Eq. (2.11) for later convenience. We focus on
the scale L0 in Lijðij ¼ 0;…; pÞ and separate the term

associated with L0 from the terms without L0 on the right-
hand side of Eq. (3.1) as2

Xpþ1

n¼1

X
0≤i1<i2<���<in≤p

FðnÞD
Li1

;Li2
;…;Lin

ðMÞ

¼ Fð1ÞD
L0

ðMÞ þ
Xp
n¼1

X
1≤i1<i2<���<in≤p

�
FðnÞD
Li1

;…;Lin
ðMÞ

þ Fðnþ1ÞD
L0;Li1

;…;Lin
ðMÞ

	
: ð3:2Þ

Let us show that the second and third terms on the right-hand
side of Eq. (3.2) can be combined into a single expression

FðnÞD
Li1

;…;Lin
ðMÞ þ Fðnþ1ÞD

L0;Li1
;…;Lin

ðMÞ

¼ 1

L0

X∞
n0¼−∞

FðnÞD−1
Li1

;…;Lin
ðMð0ÞÞ; ð3:3Þ

2Let us comment that the effective potential obtained by
Dolan-Jackiw, Eq. (3.13c) in their paper [1], is reduced to
Fð1ÞD
L0

ðMÞ by applying the formula [14]

K1
2
ðzÞ ¼

ffiffiffiffiffi
π

2z

r
e−z and

Z
∞

0

dxKνðα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
Þ x2μþ1

ðx2 þ z2Þν2 ¼
2μΓðμþ 1Þ
αμþ1zν−μ−1

Kν−μ−1ðαzÞ

to the series expansion of the logarithm in Eq. (3.13c). The mode
in the series expansion plays the same role with the winding mode
m0 in Fð1ÞD

L0
ðMÞ.
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where

M2
ð0Þ ≡M2 þ

�
2π

L0

�
2

ðn0 þ η0Þ2: ð3:4Þ

Here, the n0 is the original Matsubara mode appeared in Eq. (2.4).
Let us prove Eq. (3.3). By using Eq. (2.16), the two terms on the left-hand side of Eq. (3.3) are combined into a single

expression, including the m0 ¼ 0 mode,3 as

FðnÞD
Li1

;…;Lin
ðMÞ þ Fðnþ1ÞD

L0;Li1
;…;Lin

ðMÞ

¼ ð−1Þfþ1N
2n

ð2πÞD2
X∞

m0¼−∞

X∞
mi1

¼1

� � �
X∞
min¼1

�
M2

ðm0L0Þ2 þ ðmi1Li1Þ2 þ � � � þ ðminLinÞ2
�D

4

× KD
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2fðm0L0Þ2 þ ðmi1Li1Þ2 þ � � � þ ðminLinÞ2g

q �
e2πim0η0 cosð2πmi1ηi1Þ � � � cosð2πminηinÞ: ð3:5Þ

With the help of the formula (2.15), the modified Bessel function of the second kind in Eq. (3.5) is written in the integral
form, and we inversely use the Poisson summation (2.9) for the m0 mode, which is then converted into the Matsubara
mode n0. Thus, we obtain

FðnÞD
Li1

;…;Lin
ðMÞþFðnþ1ÞD

L0;Li1
;…;Lin

ðMÞ ¼ 1

L0

ð−1Þfþ1N
2n

2ð4πÞD−1
2

X∞
n0¼−∞

X∞
mi1

¼1

� � �
X∞
min¼1

Z
∞

0

dt t−
D−1
2
−1

×e−½M
2þð2πL0Þ

2ðn0þη0Þ2�t− 1
4t½ðmi1

Li1
Þ2þ���þðminLin Þ2� cosð2πmi1ηi1Þ � � �cosð2πminηinÞ

¼ 1

L0

ð−1Þfþ1N
2n

ð2πÞD−1
2

X∞
n0¼−∞

X∞
mi1

¼1

� � �
X∞
min¼1

� M2
ð0Þ

ðmi1Li1Þ2þ� � �þ ðminLinÞ2
�D−1

4

×KD−1
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ð0Þfðmi1Li1Þ2þ� � �þ ðminLinÞ2g
q �

cosð2πmi1ηi1Þ � � �cosð2πminηinÞ; ð3:6Þ

where we have used Eq. (2.15) again to rewrite the integral from into the Bessel function in the last equality. Equation (3.6)
is nothing but the right-hand side of Eq. (3.3) and we have proved Eq. (3.3).
We shall call Eq. (3.3) the mode recombination formula4 in the present paper. Let us note that the Matsubara mass

squared, the second term in Eq. (3.4), is recovered by the inverse use of the Poisson summation (2.9). From Eqs. (3.2)
and (3.3), we obtain an important relation

Xpþ1

n¼1

X
0≤i1<i2<���<in≤p

FðnÞD
Li1

;Li2
;…;Lin

ðMÞ ¼ Fð1ÞD
L0

ðMÞ þ
Xp
n¼1

X
1≤i1<i2<���<in≤p

1

L0

X∞
n0¼−∞

FðnÞD−1
Li1

;…;Lin
ðMð0ÞÞ: ð3:7Þ

Some comments are in order. It is important to note that
the first term on the right-hand side of Eq. (3.7), which is
the contribution of the single mode summation with respect
to the winding mode m0 associated with the S1τ having the
focused scale L0, is separated from the contributions of
the multiple mode summations in the process of deriving
the mode recombination formula. The Matsubara mass
squared, the second term in Eq. (3.4), arises after using

inversely the Poisson summation. As is clear from the
discussions given above, the formula (3.7) holds irrespec-
tive of whether the field is the scalar or fermion and also
of the boundary condition for the spatial S1i ði ¼ 1;…; pÞ
direction. The spacetime dimensions in FðnÞD−1

Li1
;…;Lin

ðMð0ÞÞ is
effectively reduced to D − 1. This is interpreted as that the
particle with mass squared M2 having the Matsubara mass
squared ð2πL0

Þ2ðn0 þ η0Þ2 to be considered on the D − 1

dimensional spacetime, RD−ðpþ1Þ ×
Qp

i¼1 S
1
i . One can

choose another scale, say Ljðj∈ f1;…; pgÞ instead of
L0, then, the M2

ð0Þ is replaced by M2
ðjÞ with the Kaluza-

Klein mass squared ð2πLj
Þ2ðnj þ ηjÞ2.

3Let us note that this is allowed because Eq. (2.16) is
regularized with respect to mij ¼ 0ðj ¼ 1;…; nÞ.

4The idea of the mode recombination has been developed in a
different context by the authors [10].
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From Eq. (3.7), the effective potential (3.1) is written by

Veff ¼ Fð0ÞDðMÞ þ Fð1ÞD
L0

ðMÞ þ
Xp
n¼1

X
1≤i1<i2<���<in≤p

1

L0

X∞
n0¼−∞

FðnÞD−1
Li1

;…;Lin
ðMð0ÞÞ: ð3:8Þ

We repeat the same discussion for the third term in Eq. (3.8) by focusing next on the scale L1. One immediately sees that the
term, aside from the scale L0, can be written as

Xp
n¼1

X
1≤i1<i2<���<in≤p

X∞
n0¼−∞

FðnÞD−1
Li1

;…;Lin
ðMð0ÞÞ

¼
X∞

n0¼−∞
Fð1ÞD−1
L1

ðMð0ÞÞ þ
Xp−1
n¼1

X
2≤i1<i2<���<in≤p

X∞
n0¼−∞

�
FðnÞD−1
Li1

;…;Lin
ðMð0ÞÞ þ Fðnþ1ÞD−1

L1;Li1
;…;Lin

ðMð0ÞÞ
	

¼
X∞

n0¼−∞
Fð1ÞD−1
L1

ðMð0ÞÞ þ
Xp−1
n¼1

X
2≤i1<i2<���<in≤p

X∞
n0¼−∞

1

L1

X∞
n1¼−∞

FðnÞD−2
Li1

;…;Lin
ðMð0;1ÞÞ; ð3:9Þ

where we have defined

M2
ð0;1Þ ¼ M2 þ

X1
i¼0

�
2π

Li

�
2

ðni þ ηiÞ2 ð3:10Þ

and have used Eq. (3.3) with L0; D − 1;M and Mð0Þ being
replaced by L1; D − 2;Mð0Þ and Mð0;1Þ, respectively in the
last equality. We observe that the first term on the right-
hand side of Eq. (3.9), the contribution of the single mode
summation with respect to the winding modem1 associated

with the S11 having the focused scale L1, is separated from
the contributions of the multiple mode summations. The
Kaluza-Klein mass squared ð2πL1

Þ2ðn1 þ η1Þ2 turns out to be

added to M2
ð0Þ through the formula (3.3) in Eq. (3.10).

We repeat the same discussion given above by focusing
on the scales L2; L3;…; Lp−1 sequentially for the multiple
mode summation obtained at each step such as the second
term on the right-hand side of Eq. (3.7) [or Eq. (3.9)]. We
finally find that the effective potential is recast into

Veff ¼ Fð0ÞDðMÞ þ Fð1ÞD
L0

ðMÞ þ 1

L0

X∞
n0¼−∞

Fð1ÞD−1
L1

ðMð0ÞÞ þ
1

L0L1

X∞
n0¼−∞

X∞
n1¼−∞

Fð1ÞD−2
L2

ðMð0;1ÞÞ

þ � � � þ 1

L0 � � �Lp−1

X∞
n0¼−∞

� � �
X∞

np−1¼−∞
Fð1ÞD−p
Lp

ðMð0;1;…;p−1ÞÞ

¼ Fð0ÞDðMÞ þ
Xp
k¼0

�
1Q

k−1
i¼0 Li

��Yk−1
j¼0

X∞
nj¼−∞

�
Fð1ÞD−k
Lk

ðMð0;1;…;k−1ÞÞ; ð3:11Þ

where we have defined

M2
ð0;1;…;k−1Þ ≡M2 þ

Xk−1
i¼0

�
2π

Li

�
2

ðni þ ηiÞ2: ð3:12Þ

The second term Fð1ÞD
L0

ðMÞ in the first line of Eq. (3.11) is
incorporated into the summation with respect to k as
the k ¼ 0 term in Eq. (3.11), where it is understood that
we set

Yk−1
i¼0

Li

����
k¼0

¼
Yk−1
j¼0

X∞
nj¼−∞

����
k¼0

¼1; M2
ð0;1;…;k−1Þjk¼0¼M2:

ð3:13Þ

Equation (3.11) is the effective potential rewritten by
using successively the mode recombination formula (3.3)
and gives the starting point to discuss the nonanalytic terms
in the present paper. Let us note that Eq. (3.11) holds for any
boundary condition for the spatial S1i direction, reflecting the
fact that the mode recombination formula holds irrespective
of the boundary condition for any spatial direction.
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It may be instructive to mention that the effective
potential (3.1) is invariant under the exchange of the scales
Li and Ljði ≠ jÞ. The invariance, however, does not
become manifest in the new form of the effective potential
(3.11). Instead of losing the manifest invariance, the
effective potential has a remarkable feature that except
for the first term in Eq. (3.11), all the contributions to the
effective potential are given by the single mode summation
with respect to the winding mode mkðk ¼ 0;…; pÞ asso-
ciated with the S1k, even though the M2 has the Kaluza-
Klein (Matsubara) mass squared, the second term in
Eq. (3.12). One can further simplify Eq. (3.11) by taking
account of the discussion on the zero modes in Eq. (3.12),
as we will see in the next section.
We shall study the nonanalytic terms for the case of the

fermion field as well as the scalar one in the present paper.
It may be appropriate here to present the convenient form of
the effective potential for the discussion in the case of the
fermion. One can show that the first and the second terms in
Eq. (3.8) are combined into a single expression

Fð0ÞDðMÞ þ Fð1ÞD
L0

ðMÞ ¼ 1

L0

X∞
n0¼−∞

Fð0ÞD−1ðMð0ÞÞ: ð3:14Þ

Then, the effective potential (3.8) is written as

Veff ¼
1

L0

X∞
n0¼−∞

Fð0ÞD−1ðMð0ÞÞ

þ
Xp
n¼1

X
1≤i1<i2<���<in≤p

1

L0

X∞
n0¼−∞

FðnÞD−1
Li1

;…;Lin
ðMð0ÞÞ

ð3:15Þ

or

Veff ¼
Xp
n¼0

X
1≤i1<i2<���<in≤p

1

L0

X∞
n0¼−∞

FðnÞD−1
Li1

;…;Lin
ðMð0ÞÞ;

ð3:16Þ

where the first term in Eq. (3.15) is incorporated into
the summation with respect to n as the n ¼ 0 term
in Eq. (3.16).
Let us prove Eq. (3.14). By setting mi1 ¼ � � � ¼ min ¼

0; n ¼ 0 and dropping the summation
P

mj
ðj ¼ 1;…; nÞ in

the first equality of Eq. (3.6), the left-hand side of
Eq. (3.14) is given by

Fð0ÞDðMÞ þ Fð1ÞD
L0

ðMÞ ¼ 1

L0

ð−1Þfþ1N
1

2ð4πÞD−1
2

X∞
n0¼−∞

Z
∞

0

dt t−
D−1
2
−1e−½M

2þð2πL0Þ
2ðn0þη0Þ2�t

¼ 1

L0

ð−1Þfþ1N
π

D−1
2

2ð2πÞD−1 Γ
�
−
D − 1

2

� X∞
n0¼−∞

ðM2
ð0ÞÞ

D−1
2 ; ð3:17Þ

where we have used Eq. (2.8) in the last equality. From Eq. (2.13), this is nothing but the right-hand side of Eq. (3.14) and
we have proved Eq. (3.14).
We will use Eqs. (3.15) and (3.16) in Sec. V, where we discuss the nonanalytic terms in the effective potential for the case

of the fermion. It can be said that Eq. (3.14) is also the mode recombination formula and is regarded as the n ¼ 0 case
in Eq. (3.3). Let us note that we can always write the effective potential as Eq. (3.16) for any boundary condition of the
spatial S1i direction.
For later convenience, we introduce the integral representation for the modified Bessel function of the second kind on

the complex plane [14,15]

KνðxÞ ¼
1

4πi

Z
cþi∞

c−i∞
dtΓðtÞΓðt − νÞ

�
x
2

�
−2tþν

: ð3:18Þ

The constant c should be understood to be a point located on the real axis which is greater than all the poles of the gamma
functions in the integrand. By using the formula (3.18), one obtains the integral form of the right-hand side of Eq. (3.3)
with n ≥ 1 as

1

L0

X∞
n0¼−∞

FðnÞD−1
Li1

;…;Lin
ðMð0ÞÞ ¼

1

L0

ð−1Þfþ1N
2n

ð2πÞD−1
2

X∞
n0¼−∞

�M2
ð0Þ
2

�D−1
2 1

4πi

Z
cþi∞

c−i∞
dtΓ

�
t −

D − 1

2

��
Mð0Þ
2

�
−2t

× SðnÞðt;Li1 ;…; LinÞ; ð3:19Þ
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where we have defined

SðnÞðt;Li1 ;…; LinÞ≡ ΓðtÞ
X∞
mi1

¼1

� � �
X∞
min¼1

fðmi1Li1Þ2 þ � � � þ ðminLinÞ2g−t cosð2πmi1ηi1Þ � � � cosð2πminηinÞ; ð3:20Þ

and Mð0Þ is given by Eq. (3.4). Let us note that the n ¼ 0 case in Eq. (3.3) is given by Eq. (3.17).
We have succeeded in representing the effective potential in the various forms like Eqs. (3.8), (3.11), (3.15) and (3.16). It

may be helpful to comment on which forms are useful for the analysis of the scalar or fermion field. The expressions (3.8)
and (3.11) of the effective potential will be used for the scalar with the periodic boundary condition. On the other hand, the
expressions (3.15) and (3.16) turn out to be useful for the fermion and the scalar with the antiperiodic boundary condition.

IV. NONANALYTIC TERMS FOR SCALAR FIELD WITH PERIODIC BOUNDARY CONDITION

In this section, we derive the nonanalytic terms of the effective potential for a real scalar ðf ¼ 0;N ¼ 1; η0 ¼ 0Þwith the
periodic boundary condition in all the spatial directions ðη1 ¼ � � � ¼ ηp ¼ 0Þ, although the results have already been
obtained in the previous paper [13]. The purpose of this section is to show that our formulation presented in this paper is
easier and more transparent to obtain the nonanalytic terms than that in the previous paper. To this end, we examine the
right-hand side of Eq. (3.3). From Eq. (3.19), we have

1

L0

X∞
n0¼−∞

FðnÞD−1
Li1

;…;Lin
ðMð0ÞÞ

¼ −
2n

ð2πÞD−1
2 L0

�
M2

2

�D−1
2 1

4πi

Z
cþi∞

c−i∞
dtΓ

�
t −

D − 1

2

��
M
2

�
−2t

S̃ðnÞðt;Li1 ;…; LinÞ

−
2nþ1π

D−1
2

LD
0

1

4πi

Z
cþi∞

c−i∞
dtΓ

�
t −

D − 1

2

�X∞
n0¼1



n20 þ

�
ML0

2π

�
2
�D−1

2
−t
�
π

L0

�
−2t

S̃ðnÞðt;Li1 ;…; LinÞ; ð4:1Þ

where we have defined

S̃ðnÞðt;Li1 ;…; LinÞ≡ ΓðtÞ
X∞
mi1

¼1

� � �
X∞
min¼1

fðmi1Li1Þ2 þ � � � þ ðminLinÞ2g−t ð4:2Þ

and have separated the zero mode ðn0 ¼ 0Þ from the nonzero modes ðn0 ≠ 0Þ.
We show that the second term in Eq. (4.1) never has nonanalytic terms, in other words, all the terms are given by

positive integer powers of the mass squared M2. The second term in Eq. (4.1) is written, after changing the variable
t̄ ¼ t − D−1

2
, as

−
2nþ1

π
D−1
2 L0

1

4πi

Z
c̄þi∞

c̄−i∞
dtΓðtÞ

X∞
n0¼1



n20 þ

�
ML0

2π

�
2
�

−t
�
π

L0

�
−2t

S̃ðnÞ
�
tþD − 1

2
;Li1 ;…; Lin

�
; ð4:3Þ

where we have again denoted t̄ by t. Let us recall the following formula used in the previous paper [13,16]

ΓðtÞ
X∞
n0¼1

fðn0L0Þ2 þ z2g−t

¼ −
1

2

ΓðtÞ
z2t

þ
ffiffiffi
π

p
2L0

Γðt − 1
2
Þ

z2ðt−1
2
Þ þ 2πt

L
tþ1

2

0

1

zt−
1
2

X∞
m¼1

mt−1
2Kt−1

2

�
2πm
L0

z

�

¼ −
1

2

ΓðtÞ
z2t

þ
ffiffiffi
π

p
2L0

Γðt − 1
2
Þ

z2ðt−1
2
Þ þ 1ffiffiffi

π
p

�
π

L0

�
2t 1

2πi

Z
c1þi∞

c1−i∞
dt1 Γ

�
t1 − tþ 1

2

�
ζð2t1 − 2tþ 1ÞΓðt1Þ

�
z
π

L0

�
−2t1

; ð4:4Þ

where we have used Eq. (3.18) in the last equality.
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We apply the formula (4.4) with L0 ¼ 1 and z ¼ ML0

2π to Eq. (4.3), which becomes

−
2nþ1

π
D−1
2 L0

1

4πi

Z
c̄þi∞

c̄−i∞
dt



−
1

2
ΓðtÞ

�
ML0

2π

�
−2t

þ
ffiffiffi
π

p
2

Γ
�
t −

1

2

��
ML0

2π

�
−2ðt−1

2
Þ

þ π2tffiffiffi
π

p 1

2πi

Z
c1þi∞

c1−i∞
dt1 Γ

�
t1 − tþ 1

2

�
ζð2t1 − 2tþ 1ÞΓðt1Þ

�
ML0

2

�
−2t1

��
π

L0

�
−2t

S̃ðnÞ
�
tþD − 1

2
;Li1 ;…; Lin

�
: ð4:5Þ

We deform the integration path with respect to t1 in Eq. (4.5) in such a way that it encloses all the poles in the integrand and
perform the t1 integration by the residue theorem. Among the poles t1 ¼ t − 1

2
− lðl ¼ 1; 2;…Þ of Γðt1 − tþ 1

2
Þ, only the

pole t1 ¼ t − 1
2
is relevant because of the property ζð−2lÞ ¼ 0ðl ¼ 1; 2;…Þ, which always follows from the combination

Γðt1 − tþ 1
2
Þζð2t1 − 2tþ 1Þ and is frequently used throughout our discussions. The residue integral from the pole

t1 ¼ t − 1
2
with ζð0Þ ¼ −1=2 cancels the second term in Eq. (4.5) and the integral from the pole t1 ¼ t of ζð2t1 − 2tþ 1Þ

with Γð1=2Þ ¼ ffiffiffi
π

p
does the first terms in Eq. (4.5). We are left with the contribution from the pole t1 ¼ −n̄ðn̄ ¼ 0; 1;…Þ of

Γðt1Þ, so that we find that the second term in Eq. (4.1) becomes

−
2nþ1

π
D
2L0

1

4πi

Z
c̄þi∞

c̄−i∞
dt
X∞
n̄¼0

ð−1Þn̄
n̄!

Γ
�
−n̄− tþ1

2

�
ζð−2n̄−2tþ1Þ

�
ML0

2

�
2n̄
�
1

L0

�
−2t

S̃ðnÞ
�
tþD−1

2
;Li1 ;…;Lin

�
: ð4:6Þ

Even though there would appear the poles in the multiple
mode summations S̃ðnÞðtþ D−1

2
;Li1 ;…; LinÞ that contrib-

ute to the t integration in Eq. (4.6) by the residue theorem, it
does not affect the power of the mass squared ðM2Þn̄ in
Eq. (4.6). Thus, Eq. (4.6) has only positive integer powers
of the mass squared M2, i.e. ðM2Þn̄. This observation
implies that only the first term in Eq. (4.1) potentially
can have the nonanalytic terms, so that from Eq. (3.3),
we obtain the important relation

�
FðnÞD
Li1

;…;Lin
ðMÞ þ Fðnþ1ÞD

L0;Li1
;…;Lin

ðMÞ
	����

n:a:

¼ 1

L0

X∞
n0¼−∞

FðnÞD−1
Li1

;…;Lin
ðMð0ÞÞjn:a:

¼ 1

L0

FðnÞD−1
Li1

;…;Lin
ðMÞjn:a:: ð4:7Þ

The abbreviation denoted by “n.a.” in Eq. (4.7) means
nonanalytic terms, which is used throughout the paper. It
should be stressed that only the zero mode ðn0 ¼ 0Þ inMð0Þ
is relevant for the existence of the nonanalytic terms in the
mode recombination formula (3.3). The relation (4.7) is
crucial for the continuing discussion given below.
The relevant part for the nonanalytic terms in the

effective potential (3.8) is given by replacing Mð0Þ by M
without the summation because of Eq. (4.7). Considering
the discussion led to Eq. (4.7), we understand that the
relevant part for the nonanalytic terms in Eq. (3.9) is given
by replacing the Mð0Þ;Mð0;1Þ by M;Mð1Þ, respectively and

dropping the n0 summation. By repeating the same dis-
cussion as above and applying it to the effective potential
(3.11), the relevant part of the nonanalytic terms in the
effective potential is given by picking up only the zero
modes in Mð0;1;…;k−1Þðk ¼ 1; 2;…; pÞ, that is,

Veff jn:a: ¼ Fð0ÞDðMÞjn:a: þ
Xp
k¼0

�
1Q

k−1
i¼0 Li

�
Fð1ÞD−k
Lk

ðMÞjn:a::

ð4:8Þ

It turns out that the relevant part of the nonanalytic terms
in the effective potential drastically reduces to the simple
expression (4.8) and is given by the contribution of the
single mode summation of the winding mode mkðk ¼
0;…; pÞ associated with the S1k. This is quite different from
that given in the previous paper where we have analyzed the
multiple mode summations in order to obtain the nonana-
lytic terms. It should be emphasized that Eq. (4.8) is
obtained as the consequence of taking account of the zero
mode ðn0 ¼ � � � ¼ np ¼ 0Þ alone in the Matsubara and
Kaluza-Klein modes.
Let us confirm the results obtained in the previous paper

by using Eq. (4.8). We will soon recognize that the
calculations based on Eq. (4.8) are easier and more trans-
parent compared with that in the previous paper. We first

study the nonanalytic terms of Fð1ÞD−k
Lk

ðMÞ in Eq. (4.8).
From Eqs. (2.16) and (3.18), one has (remember η0 ¼ 0;
N ¼ 1; ηk ¼ 0 in this section)
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Fð1ÞD−k
Lk

ðMÞ ¼ −2
ð2πÞD−k

2

X∞
mk¼1

�
M2

ðmkLkÞ2
�D−k

4

KD−k
2
ðmkMLkÞ

¼ −2
ð2πÞD−k

2

�
M2

2

�D−k
2 1

4πi

Z
cþi∞

c−i∞
dtΓ

�
t −

D − k
2

�
ΓðtÞζð2tÞ

�
MLk

2

�
−2t

; ð4:9Þ

where we have used the definition of the zeta function
ζðzÞ ¼ P∞

m¼1m
−z. Since the scale dependence on M in

Eq. (4.9) is ðM2ÞD−k
2
−t, the poles t ¼ D−k

2
− lðl ¼ 0; 1;…Þ

of Γðt − D−k
2
Þ yields analytic terms ðM2Þl, which are

outside of our interest. Only the pole t ¼ 0 among the
poles t ¼ −mðm ¼ 0; 1;…; Þ of ΓðtÞ contributes to the
residue integration because of the property ζð−2mÞ ¼
0ðm ¼ 1; 2;…Þ. Hence, there are two poles, t ¼ 0 of
ΓðtÞ and t ¼ 1

2
of ζð2tÞ that contribute to the residue

integration in Eq. (4.9) for obtaining the nonanalytic
terms.5

Since the nonanalytic terms are given by positive odd
integer powers of M, whether the pole of t ¼ 0 or t ¼ 1=2
can produce a nonanalytic term depends on whether D
and k are even or odd. For ðD; kÞ ¼ ðeven; evenÞ or
ðodd; oddÞ, the nonanalytic terms in Eq. (4.9) is given
by the pole t ¼ 1

2
as

Fð1ÞD−k
Lk

ðMÞjn:a:¼
ð−1Þð−1ÞD−k

2

2
D−k
2 π

D−k−2
2 ðD−k−1Þ!!

MD−k−1

Lk
; ð4:10Þ

while for ðD; kÞ ¼ ðeven; oddÞ or (odd, even), the pole
t ¼ 0 yields the nonanalytic term

Fð1ÞD−k
Lk

ðMÞjn:a: ¼
ð−1ÞD−kþ1

2

2
D−kþ1

2 π
D−k−1

2 ðD − kÞ!!M
D−k: ð4:11Þ

Here, we have used

Γ
�
1 −D
2

�
¼ ð−1ÞD2 2D

2

ðD − 1Þ!!
ffiffiffi
π

p
for D ¼ even: ð4:12Þ

We are ready to calculate the nonanalytic terms in the
effective potential based on Eq. (4.8) by using Eqs. (4.10)
and (4.11). It is convenient to study the terms for each case
of even/odd D and pþ 1. Let us remind that pþ 1 is the
total number of S1.

A. ðD; p + 1Þ= ðeven; oddÞ
Let us first introduce

A2nþ1 ≡ 1Q
2n
i¼0 Li

Fð1ÞD−ð2nþ1Þ
L2nþ1

ðMÞjn:a:

¼ ð−1ÞD−2n
2

2
D−2n
2 π

D−2n−2
2 ðD − ð2nþ 1ÞÞ!!

MD−ð2nþ1Þ

L0 � � �L2n
; ð4:13Þ

B2n ≡ 1Q
2n−1
i¼0 Li

Fð1ÞD−2n
L2n

ðMÞjn:a:

¼ ð−1Þð−1ÞD−2n
2

2
D−2n
2 π

D−2n−2
2 ðD − 2n − 1Þ!!

MD−2n−1

L0 � � �L2n
; ð4:14Þ

where we have used Eq. (4.11) [Eq. (4.10)] in the equality
of Eq. (4.13) [Eq. (4.14)]. One immediately observes that

A2nþ1 ¼ −B2n for n ¼ 0; 1;…: ð4:15Þ

Let us note that the definition for B0 in Eq. (4.14)

is consistently equal to Fð1ÞD
L0

ðMÞ by settingQ
2n−1
i¼0 Lijn¼0 ¼ 1, which originally corresponds to the

k ¼ 0 term in Eq. (3.11).
In terms of Eqs. (4.13) and (4.14), the nonanalytic term

in Eq. (4.8) is given by

Veff jn:a: ¼ Fð0ÞDðMÞjn:a: þ
Xp2−1
n¼0

ðA2nþ1 þ B2nÞ þ Bp ¼ Bp;

ð4:16Þ

where we have used Eq. (4.15) and the fact that from
Eq. (2.13), the Fð0ÞDðMÞ does not possess any nonanalytic
term for D ¼ even. The Bp is given by Eq. (4.14) with

n ¼ p
2
to yield, by noting that ð−1Þð−1ÞD−p

2 ¼ ð−1ÞDþpþ2
2 for

p ¼ even,

Veff jn:a: ¼ Bp ¼ ð−1ÞDþpþ2
2

2
D−p
2 π

D−p−2
2 ðD − ðpþ 1ÞÞ!!

MD−ðpþ1Þ

L0L1 � � �Lp
:

ð4:17Þ

5The logM is another type of the nonanalytic term in the
effective potential, which is obtained by the residue integration
for the double pole of the integrand in Eq. (4.9). We do not study
such the term in this paper.
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B. ðD; p + 1Þ= ðeven; evenÞ
In this case, the nonanalytic term in Eq. (4.8) is written

by using Eqs. (4.13) and (4.14) as

Veff jn:a: ¼ Fð0ÞDðMÞjn:a: þ
Xp−12
n¼0

ðA2nþ1 þ B2nÞ ¼ 0; ð4:18Þ

where we have used Eq. (4.15) in the last equality. The
effective potential does not have any nonanalytic term in
this case.

C. ðD; p+ 1Þ = ðodd; oddÞ
For the case of D ¼ odd, from Eqs. (4.10) and (4.11),

it is convenient to introduce

C2n−1 ≡ 1Q
2n−2
i¼0 Li

Fð1ÞD−ð2n−1Þ
L2n−1

ðMÞjn:a:

¼ ð−1Þð−1ÞD−ð2n−1Þ
2

2
D−ð2n−1Þ

2 π
D−2n−1

2 ðD − 2nÞ!!
MD−2n

L0 � � �L2n−1
; ð4:19Þ

D2n ≡ 1Q
2n−1
i¼0 Li

Fð1ÞD−2n
L2n

ðMÞjn:a:

¼ ð−1ÞD−2nþ1
2

2
D−2nþ1

2 π
D−2n−1

2 ðD − 2nÞ!!
MD−2n

L0 � � �L2n−1
; ð4:20Þ

respectively. We see that the relation

C2n−1 ¼ −D2n for n ¼ 0; 1; � � � ð4:21Þ

holds. It should be understood that in Eq. (4.21) we have

defined C2n−1jn¼0 ≡ Fð0ÞDðMÞ and D2njn¼0 ≡ Fð1ÞD
L0

ðMÞ.
One immediately confirms that the C−1 ¼ −D0 is satisfied
by using the explicit expressions for Fð0ÞDðMÞ in Eq. (2.14)
and Fð1ÞD

L0
ðMÞ [13] in Eq. (4.11) for D ¼ odd.

In terms of Eqs. (4.19) and (4.20), the nonanalytic part of
the effective potential in Eq. (4.8) is calculated as

Veff jn:a: ¼
Xp

2

n¼0

ðC2n−1 þD2nÞ ¼ 0; ð4:22Þ

thanks to Eq. (4.21).

D. ðD; p + 1Þ= ðodd; evenÞ
In this case, the nonanalytic term in Eq. (4.8) is

obtained as

Veff jn:a: ¼
Xp−12
n¼0

ðC2n−1 þD2nÞ þ Cp ¼ Cp; ð4:23Þ

where we have used Eq. (4.21). The Cp is given by

Eq. (4.19) with n ¼ pþ1
2

to yield

Veff jn:a: ¼ Cp ¼ ð−1ÞDþp
2

2
D−p
2 π

D−p−2
2 ðD − ðpþ 1ÞÞ!!

MD−ðpþ1Þ

L0L1 � � �Lp
;

ð4:24Þ

where we have used the fact ð−1Þð−1ÞD−p
2 ¼ ð−1ÞDþp

2

for p ¼ odd.
The results (4.17), (4.18), (4.22) and (4.24) are found to

exactly agree with those given in the previous paper, as they
should be. Even though they have already been obtained in
the previous paper, our formalism developed in this paper
is easier and more transparent to derive the nonanalytic
terms of the effective potential, and furthermore makes it
possible to analyze the case of the fermion field, as we
will see in the next section. In addition to it, a new insight
on the nonanalytic term is obtained. The nonanalytic term
Eq. (4.17) [or Eq. (4.24)] depends on each scale, L0;…; Lp

of all the S1’s. This may reflect the fact that only the zero
modes in the Matsubara and Kaluza-Klein modes are
relevant for the existence of the nonanalytic terms, as
shown in Eq. (4.8).

V. NONANALYTIC TERMS FOR FERMION FIELD

Let us study the nonanalytic terms in the effective
potential for the case of the fermion field ðf¼1; η0¼ 1

2
Þ

satisfying arbitrary boundary condition for the spatial
S1i ði ¼ 1; 2;…; pÞ direction. The effective potential (3.15)
rather than Eq. (3.11) is appropriate to discuss the terms in
this case.
We first consider the n ≥ 1 term, the second one in

Eq. (3.15), whose integral form on the complex plane is
given from Eq. (3.19) by

1

L0

X∞
n0¼−∞

FðnÞD−1
Li1

;…;Lin
ðMð0ÞÞ ¼

1

L0

N
2n

π
D−1
2

1

4πi

Z
c̄þi∞

c̄−i∞
dtΓðtÞ

X∞
n0¼−∞


�
n0 þ

1

2

�
2

þ
�
ML0

2π

�
2
�

−t

×

�
π

L0

�
−2t

SðnÞ
�
tþD − 1

2
;Li1 ;…; Lin

�
; ð5:1Þ

where we have changed the variable t̄ ¼ t − D−1
2

and have denoted t̄ by t again.
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One needs to develop the analytical extension for the mode summation with respect to n0 in Eq. (5.1). To this end,
we employ the formula (2.8) and the Poisson summation (2.9). Then, we find

ΓðtÞ
X∞

n0¼−∞


�
n0 þ

1

2

�
2

þ z2
�

−t
¼ ffiffiffi

π
p X∞

m0¼−∞

Z
∞

0

dt̄ t̄ðt−1
2
Þ−1 e−

ð2πm0Þ2
4t̄ þπim0−z2 t̄: ð5:2Þ

By separating m0 ¼ 0 and m0 ≠ 0 modes in Eq. (5.2) and by using Eqs. (2.8) and (2.15), the right-hand side of Eq. (5.2)
becomes

ffiffiffi
π

p Γðt − 1
2
Þ

z2ðt−1
2
Þ þ 4

ffiffiffi
π

p �
π

z

�
t−1

2
X∞
m0¼1

ð−1Þm0m
t−1

2

0 Kt−1
2
ð2πm0zÞ

¼ ffiffiffi
π

p Γðt − 1
2
Þ

z2ðt−1
2
Þ þ 4

ffiffiffi
π

p �
π

z

�
t−1

2



−
X∞
m0¼1

m
t−1

2

0 Kt−1
2
ð2πm0zÞ þ 2

X∞
m0¼1

ð2m0Þt−1
2Kt−1

2
ð4πm0zÞ

�
; ð5:3Þ

where we have used the property K−νðzÞ ¼ KνðzÞ and the formula

X∞
m0¼1

ð−1Þm0fðm0Þ ¼ −
X∞
m0¼1

fðm0Þ þ 2
X∞
m0¼1

fð2m0Þ ð5:4Þ

for later convenience. We further recast Eq. (5.3) into the integral form on the complex plane by Eq. (3.18). Then, we obtain

ΓðtÞ
X∞

n0¼−∞


�
n0 þ

1

2

�
2

þ z2
�

−t
¼ ffiffiffi

π
p Γðt − 1

2
Þ

z2ðt−1
2
Þ −

4π2tffiffiffi
π

p 1

4πi

Z
c1þi∞

c1−i∞
dt1 Γ

�
t1 − tþ 1

2

�
ζð2t1 − 2tþ 1ÞΓðt1ÞðπzÞ−2t1

þ 4ð2πÞ2tffiffiffi
π

p 1

4πi

Z
c1þi∞

c1−i∞
dt1 Γ

�
t1 − tþ 1

2

�
ζð2t1 − 2tþ 1ÞΓðt1Þð2πzÞ−2t1 : ð5:5Þ

This is an analytical extension for the mode summation with respect to n0 in Eq. (5.1). Eq. (5.5) does not have the term
corresponding to the first term in Eq. (4.4) because of the lack of the zero mode due to the antiperiodic boundary condition
for the fermion field in the Euclidean time direction.
By setting z ¼ ML0

2π and inserting Eq. (5.5) into Eq. (5.1), we have

1

L0

X∞
n0¼−∞

FðnÞD−1
Li1

;…;Lin
ðMð0ÞÞ ¼

1

L0

N
2n

π
D−1
2

1

4πi

Z
cþi∞

c−i∞
dt


 ffiffiffi
π

p
Γ
�
t −

1

2

��
ML0

2π

�
−2ðt−1

2
Þ

−
4π2tffiffiffi
π

p 1

4πi

Z
c1þi∞

c1−i∞
dt1 Γ

�
t1 − tþ 1

2

�
ζð2t1 − 2tþ 1ÞΓðt1Þ

�
ML0

2

�
−2t1

þ 4ð2πÞ2tffiffiffi
π

p 1

4πi

Z
c1þi∞

c1−i∞
dt1 Γ

�
t1 − tþ 1

2

�
ζð2t1 − 2tþ 1ÞΓðt1ÞðML0Þ−2t1

�

×

�
π

L0

�
−2t

SðnÞ
�
tþD − 1

2
;Li1 ;…; Lin

�
: ð5:6Þ

We perform the residue integration with respect to t1 by deforming the integration path in such a way that it encloses all the
poles in the integrand. Among the poles t1 ¼ t − 1

2
− lðl ¼ 0; 1;…Þ of Γðt1 − tþ 1

2
Þ, only the pole t1 ¼ t − 1

2
is relevant to

the residue integration thanks to the property ζð−2lÞ ¼ 0ðl ¼ 1; 2;…Þ. In addition to it, the poles t1 ¼ t of ζð2t1 − 2tþ 1Þ
and t1 ¼ −n̄ðn̄ ¼ 0; 1;…Þ of Γðt1Þ contribute to the t1 integration by the residue theorem. It is easy to see that the
contributions from the residue integration of the pole t1 ¼ t − 1

2
in the second and third terms of Eq. (5.6) cancel the first

term in Eq. (5.6) and that the contributions from the residue integration of the pole t1 ¼ t of ζð2t1 − 2tþ 1Þ in the second
and the third terms of Eq. (5.6) are canceled each other. Thus, what is left is the contribution of the residue integration of the
pole t1 ¼ −n̄ðn̄ ¼ 0; 1;…Þ of Γðt1Þ alone, which is given by
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1

L0

X∞
n0¼−∞

FðnÞD−1
Li1

;…;Lin
ðMð0ÞÞ ¼

1

L0

N
2n

π
D−1
2

1

4πi

Z
cþi∞

c−i∞
dt

X∞
n̄¼0



−

2ffiffiffi
π

p ð−1Þn̄
n̄!

Γ
�
−n̄− tþ 1

2

�
ζð−2n̄− 2tþ 1Þ

�
ML0

2

�
2n̄
L2t
0

þ 2ffiffiffi
π

p ð−1Þn̄
n̄!

Γ
�
−n̄− tþ 1

2

�
ζð−2n̄− 2tþ 1ÞðML0Þ2n̄ð2L0Þ2t

�
SðnÞ

�
tþD− 1

2
;Li1 ;…; Lin

�
:

ð5:7Þ

One observes that the dependence of the power on M in
Eq. (5.7) is given by the positive integer power of the mass
squared ðM2Þn̄, so that there exists no nonanalytic term in
the second term in Eq. (3.15)

Xp
n¼1

X
1≤i1<i2<���<in≤p

1

L0

X∞
n0¼−∞

FðnÞD−1
Li1

;…;Lin
ðMð0ÞÞjn:a:¼0: ð5:8Þ

We note that the multiple mode summations in SðnÞðtþ
D−1
2

;Li1 ;…; LinÞ could produce poles that contribute to the

t integration in Eq. (5.7), but they do not change the
power of ðM2Þn̄ because of the nonexistence of M in
the summations. It is important to note that Eq. (5.7)
holds irrespective of the boundary condition for the spatial
S1i ði ¼ 1; 2;…; pÞ direction and thus, so does Eq. (5.8).
Let us next study the n ¼ 0 term, the first one in

Eq. (3.15), which is given by Eq. (3.17) with f ¼ 0 and
η0 ¼ 1

2
. We make use of the analytical extension (5.4) in

order to calculate the mode summation with respect n0 in
Eq. (3.17). By putting t ¼ − D−1

2
; z ¼ ML0

2π in Eq. (5.5), the
relevant part of Eq. (3.17) becomes

Γ
�
−
D − 1

2

� X∞
n0¼−∞


�
n0 þ

1

2

�
2

þ
�
ML0

2π

�
2
�D−1

2

¼ ffiffiffi
π

p
Γ
�
−
D
2

��
ML0

2π

�
D
−
4π−ðD−1Þffiffiffi

π
p 1

4πi

Z
c1þi∞

c1−i∞
dt1 Γ

�
t1 þ

D
2

�
ζð2t1 þDÞΓðt1Þ

�
ML0

2

�
−2t1

þ 4ð2πÞ−ðD−1Þffiffiffi
π

p 1

4πi

Z
c1þi∞

c1−i∞
dt1 Γ

�
t1 þ

D
2

�
ζð2t1 þDÞΓðt1ÞðML0Þ−2t1 : ð5:9Þ

We again evaluate the t1 integration by the residue theorem
by deforming the integration path in such a way that it
encloses all the poles in the integrand. The nonanalytic
terms6 in the second and the third terms in Eq. (5.9) are
given by the residue integration of the poles that have the
minus half odd integer values of t1, as seen from the scale
dependence on M in Eq. (5.9).
For D ¼ even, the relevant pole is t1 ¼ − D−1

2
of

ζð2t1 þDÞ, from which the second and the third terms
in Eq. (5.9) yield

−
4

ffiffiffi
π

p
ffiffiffi
π

p
22

Γ
�
−
D − 1

2

��
ML0

2π

�
D−1

þ 4
ffiffiffi
π

p
ffiffiffi
π

p
22

Γ
�
−
D − 1

2

��
ML0

2π

�
D−1

¼ 0: ð5:10Þ

The first term in Eq. (5.9) is analytic for D ¼ even, so that
there is no nonanalytic term in Eq. (5.9) for D ¼ even.
On the other hand, for D ¼ odd, the relevant pole for the

nonanalytic terms is given only by the pole t1 ¼ − D
2
among

the poles t1 ¼ − D
2
− lðl ¼ 0; 1;…Þ of Γðt1 þ D

2
Þ because

of the property ζð−2lÞ ¼ 0ðl ¼ 1; 2;…Þ. Then, the sec-
ond and the third terms in Eq. (5.9) lead to

ffiffiffi
π

p
Γ
�
−
D
2

��
ML0

2π

�
D
− 2

ffiffiffi
π

p
Γ
�
−
D
2

��
ML0

2π

�
D

¼ −
ffiffiffi
π

p
Γ
�
−
D
2

��
ML0

2π

�
D
; ð5:11Þ

which cancels the first term in Eq. (5.9). Thus, Eq. (5.9) has
no nonanalytic term for D ¼ odd.
We have shown that the first term in Eq. (3.15) does not

possess the nonanalytic term

1

L0

X∞
n0¼−∞

Fð0ÞD−1ðMð0ÞÞjn:a: ¼ 0: ð5:12Þ
6We do not consider the nonanalytic terms of the type, logM in

this paper, which comes from the double pole in the integrand, as
mentioned in the footnote of the Sec. IV.
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We arrive at the important conclusion from Eqs. (5.8)
and (5.12) that the effective potential (3.16) has no
nonanalytic term for the case of the fermion

Veff jn:a: ¼
Xp
n¼0

X
1≤i1<i2<���<in≤p

1

L0

X∞
n0¼−∞

FðnÞD−1
Li1

;…;Lin
ðMð0ÞÞjn:a:

¼ 0: ð5:13Þ

It should be emphasized that Eq. (5.13) holds irrespective
of the boundary condition for the spatial S1i ði ¼ 1; 2;…; pÞ
direction.

VI. NONANALYTIC TERMS FOR SCALAR FIELD
WITH ANTIPERIODIC BOUNDARY CONDITION

Taking account of the result obtained in the previous
section, we can also study the case of the scalar field
with some of the boundary condition for the spatial
S1i ði ¼ 1;…; pÞ direction being antiperiodic. In this case,
by regarding the direction that has the antiperiodic boun-
dary condition as the Euclidean time direction, the effective
potential essentially has the same with that of the case for
the fermion field. Hence, we conclude that there is no
nonanalytic term in the effective potential if the scalar field
satisfies at least one antiperiodic boundary condition for the
spatial S1i direction.

VII. CONCLUSIONS AND DISCUSSIONS

We have studied the nonanalytic terms, which cannot be
written in the form of any positive integer power of field-
dependent mass squared, in the effective potential at finite
temperature in one-loop approximation for the fermion
and scalar fields on the D-dimensional spacetime,
S1τ × RD−ðpþ1Þ ×

Qp
i¼1 S

1
i . In doing it, we have developed

the new formula called the mode recombination for-
mula (3.3), which holds irrespective of whether the field
is a fermion or a scalar and of the boundary condition for
the spatial S1i direction. The effective potential has been
recast into the new forms (3.11) and (3.16) by using the
formula, which is convenient to study the nonanalytic terms
for both cases of the fermion and the scalar.
We have clarified the importance of the zero mode in the

Kaluza-Klein mode for the existence of the nonanalytic
terms through the mode recombination formula. This has
drastically simplified the relevant part of the effective
potential for calculating the nonanalytic terms for the
case of the scalar field satisfying the periodic boundary
condition for the spatial S1i direction. The effective potential
(4.8) is given in terms of the single mode summation of
the winding mode for each S1 and the integral form for
the potential on the complex plane is easy to perform the
residue integration. We have correctly reproduced the
nonanalytic term (4.17) [and (4.24)] in easier and more
transparent way.

The mode recombination formula has also provided the
convenient form for studying the nonanalytic terms in the
effective potential for the case of the fermion field satisfy-
ing arbitrary boundary conditions for the spatial S1i ði ¼
1;…; pÞ directions. The antiperiodicity for the Euclidean
time direction for the fermion has resulted the quite
different pole structure of the analytical extension for the
mode summation with respect to the Matsubara mode
compared with that of the scalar. We have found that there
is no nonanalytic term in the effective potential for the case
of the fermion. The result for the case of the fermion has
immediately led to the conclusion that there also exists no
nonanalytic term for the case of the scalar field satisfying
the antiperiodic boundary condition for at least one spatial
S1i direction.
We have obtained some insight on the nonanalytic terms

in the effective potential. We have found that the nonana-
lytic term can appear only when there exists the zero mode
associated with each of all the S1’s in the Matsubara and
Kaluza-Klein modes. This observation may explain that the
nonanalytic term depends on all the scales L0; L1;…; Lp

like in Eq. (4.17) [or Eq. (4.24)] and further that the
effective potential has no nonanalytic term for the fermion
due to the lack of the zero mode for the Euclidean time
direction irrespective of the absence or presence of the zero
mode for the spatial S1i ði ¼ 1; 2;…; pÞ direction.
Equipped with the result obtained for the cases of the

scalar, we can also mention about the nonanalytic terms
for the case of a higher dimensional gauge field on
S1τ × RD−ðpþ1Þ ×

Qp
i S

1
i . Let us consider theD-dimensional

gauge field AMðτ; xk; yiÞ, whose component gauge fields
are written as

AMðτ; xk; yiÞ ¼ ðAτðτ; xk; yiÞ; Akðτ; xk; yiÞ; Aiðτ; xk; yiÞÞ:
ð7:1Þ

We need to specify the boundary condition for the
Euclidean time direction and the spatial S1i direction.
The boundary condition for the Euclidean time direction
must be periodic, i.e.

AMðτ þ L0; xk; yiÞ ¼ þAMðτ; xk; yiÞ ð7:2Þ

because of the quantum statistics. One can choose the
boundary conditions of the Akðτ; xk; yiÞ and the Aiðτ; xk; yiÞ
for the spatial S1i ði ¼ 1;…; pÞ direction to be 0 or twisted
under the assumption that the Lagrangian density must
be single valued. The gauge field AMðτ; xk; yiÞ can be
massive through the Higgs mechanism and it has the field-
dependent mass such as MðφÞ. If we restrict the twisted
boundary condition for the spatial S1i direction to the
antiperiodic boundary condition, the nonanalytic term in
the effective potential for each gauge field in Eq. (7.1)
is reduced to the cases of the scalar field studied in the
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Secs. IV and VI. Thus, the result has already been
obtained.7

In addition to the nonanalytic terms we have studied,
there is another type of the nonanalytic term, logM in the
effective potential, as mentioned in Sec. IV. Such the term
arises from the double pole of the integrand, for example, in
the residue integration of Eq. (4.9). In order to understand
the whole nonanalytic structure of the effective potential
with respect toM, one has to study such a term extensively

as well. Our analyses have been carried out at the level of
one-loop approximation for the effective potential at finite
temperature. One may wonder what type of the nonana-
lytic terms besides the one obtained in the paper can
emerge beyond the one-loop calculation. In connection
with higher loop calculations, we are also interested in the
behavior of the logM term, which actually stands for
genuine quantum effects. These are under investigation
and will be reported elsewhere.
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