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We develop a new formula called a mode recombination formula, and we can recast the effective potential
at finite temperature in one-loop approximation for fermion and scalar fields on the D-dimensional spacetime,

SL x RP=(p+1) [T, S! into a convenient form for discussing nonanalytic terms, which cannot be written in
the form of any positive integer power of the field-dependent mass squared, in the effective potential.

The formula holds irrespective of whether the field is a fermion or a scalar and of boundary conditions

for spatial S} directions and clarifies the importance of zero modes in the Matsubara and Kaluza-Klein
modes for the existence of the nonanalytic terms. The effective potential is drastically simplified further
to obtain the nonanalytic terms in easier and more transparent way. In addition to reproducing previous
results, we find that there exists no nonanalytic term for the fermion field with arbitrary boundary
condition for the spatial S} direction, which is also the case for the scalar field with the antiperiodic

boundary condition for the spatial direction.
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I. INTRODUCTION

Quantum field theory at finite temperature has provided
a fundamental theoretical framework in high energy phys-
ics. In particular, the effective potential at finite temperature
is a crucial tool to investigate physical phenomena involved
with the order of the phase transition and its strength.

In the pioneering work by the Dolan-Jackiw [1], they
found that there exists a nonanalytic term, which cannot be
written in the form of any positive integer power of field-
dependent mass squared, in the effective potential at finite
temperature for a real scalar field. The nonanalytic term
obtained by them has three-halves power of the mass
squared, and it turns out to play an essential role to trigger
the first order phase transition [2,3]. Moreover, the magni-
tude of the term is related with the strength of the first order
phase transition, which, in turn, put certain constraint on
physical quantity such as the Higgs mass, for example, in
the study of electroweak baryogenesis [4]. Hence, the
nonanalytic term in the effective potential is an important
quantity that must be studied in detail.
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Quantum field theory with compactified dimensions has
been one of the attractive approaches for physics beyond
the standard model. Orbifold compactification provides a
framework for gauge-Higgs unification, where the Higgs
field is unified into higher dimensional gauge fields [5,6].
The order of the finite temperature phase transition in the
gauge-Higgs unification has been studied in [7,8], and
the first order phase transition actually occurs due to the
nonanalytic term in the effective potential. It has been also
shown that the quantum field theory at finite temperature
with compactified dimensions can possess rich phase
structures [9,10]. Compactified dimensions also provide
the theoretical framework for studying quantum field
theory itself. For instance, from a point of view of
dimensional reduction [11,12], models with several num-
bers of S have been investigated.

In the previous paper [13], we studied all the possible
nonanalytic terms in the effective potential at finite temper-
ature in one-loop approximation for a real scalar field on
the D-dimensional spacetime, S! x RP~(P+1) x]% S},
where the S!, RP~(P*1) S} stand for the Euclidean time
direction, the D — (p + 1) dimensional flat Euclidean
space, the spatial compactified direction, respectively.
The effective potential contains the modified Bessel func-
tion of the second kind accompanied with multiple mode
summations with respect to the winding mode associated
with each S'. By using the integral representation for
the modified Bessel function given by the inverse Mellin
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transformation [14,15] and the analytical extension for the
mode summation [16], we recast the effective potential into
the integral form on the complex plane' and performed the
residue integration in order to obtain the nonanalytic terms.
We found that the only nonanalytic power comes from
a term MP~(P*1D) which is not analytic in M? when the
dimension of the flat Euclidian space, D — (p + 1) is odd.
We obtained the coefficient of this term, but other non-
analytic terms proportional to log M were not studied.

In this paper, we develop a new formula called a mode
recombination formula, which plays a central role for
discussions in the present paper. The effective potential
can be recast into the convenient form for studying the
nonanalytic terms. The formula also clarifies that only the
zero mode in the Kaluza-Klein mode associated with each
S is crucial for the existence of the nonanalytic terms in the
case of the scalar field satisfying the periodic boundary
condition for the spatial S!(i =1, ..., p) direction. Then,
the effective potential relevant for the nonanalytic terms can
be simplified further drastically and is given in terms of the
contribution of the single mode summation with respect to
the winding mode associated with each S'. This is quite
different from the previous paper, where it includes the
contribution of the multiple mode summations. The integral
form for the simplified effective potential on the complex
plane is easy to perform the residue integration in order to
obtain the nonanalytic terms. We reproduce the previous
results in easier and more transparent way.

The mode recombination formula holds irrespective
of whether the field is a fermion or a scalar and of the
boundary condition for the spatial S!(i =1, ..., p) direc-
tion. The formula also provides a convenient form for
studying the nonanalytic terms in the effective potential
for the case of the fermion field with arbitrary boundary
condition for the S! direction. The zero mode for the
Euclidean time direction is removed due to the antiperiodic
boundary condition followed from the quantum statistics
for the fermion. This changes the pole structure of the
analytical extension for the mode summation with respect
to the Matsubara mode compared with that of the scalar
case. We find that there is no nonanalytic term for the case
of the fermion. This immediately implies that the effective
potential does not possess the nonanalytic term for the case
of the real scalar field satisfying the antiperiodic boundary
condition for at least one spatial S} direction.

This paper is organized as follows. We present the setup
in the next section. We prove the mode recombination
formula and present the convenient form of the effective
potential for studying the nonanalytic terms in each case of
the fermion and the scalar in the Sec. III. We reproduce the
same result as the one in the previous paper in easier and
more transparent way in the Sec. IV. We also study the

'The studies for dimensional reduction based on the integral
form have been carried out in Refs. [11,12].

nonanalytic terms for the case of fermion with arbitrary
boundary condition in the Sec. V and of the real scalar
with the antiperiodic boundary condition in the Sec. VL
The final section is devoted to conclusions and discussions
which also include the case for a higher dimensional
gauge field.

II. SETUP

Let us first present the setup for our discussions.
We study nonanalytic terms in the effective potential at
finite temperature in one-loop approximation for a real
scalar (fermion) field on the D-dimensional spacetime,
St x RP=(+1) x [T, S}. We employ the Euclidean time
formulation for finite temperature quantum field theory and
then the Euclidean time direction, whose coordinate is
denoted by 7, is compactified on S!. The spatial p
directions are compactified on the p numbers of S' and
their coordinates are y'(i =1,...,p). We denote the
circumference of each S! as L;(i=0,1,...,p) and L,
stands for the inverse temperature 7~'. The RP~(P*1) is the
D —(p+1) dimensional flat Euclidean space whose
coordinates are x*(k =1,...,D — (p + 1)).

The Lagrangian is given by

1 m2 A . _
L= 5(0N¢)2 —7452 —5454 + @ (iCy0y + my )y + gy,
(2.1)

where the N stands for N = (z, k, i), and ¢ () is the scalar
(fermion) field whose bulk mass is m(m). The g is the
Yukawa coupling.

One needs to specify the boundary conditions for
the S! and S!(i=1,..., p) directions. For a given field
®(7,x*,y"), the boundary condition for the S! direction is
specified by

®(7 + Ly, xk, y') = e>Md(z, xk, yi). (2.2)
The parameter 7, is definitely determined by quantum
statistics to be 0 (periodic) for the scalar field or to be %
(antiperiodic) for the fermion field. On the other hand, the
boundary condition for the S}(i =1,...,p) direction is
parametrized by

O(7,xK, yl + L;) = e?md(z, xk, yh). (2.3)
The parameter #; can take O or % for the real scalar field and
can be arbitrary for the fermion field.

We employ the standard prescription to calculate the
effective potential at finite temperature in one-loop approxi-
mation. Let us quickly review the calculations given in the
previous paper [13]. For those who are familiar with it,
readers can directly go to the next section. By taking up the
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quadratic terms in the shifted Lagrangian around the constant field ¢ for the scalar field ¢ in Eq. (2.1), one needs
to evaluate

Var = (= (H Z) / %log[p%(i—’g)zwwno)uii(i—f)zmiw)uw((p) 24

I pj=—o0

in order to obtain the effective potential on S! x RP~(P+1) x [T7_, S! in one-loop approximation. Here, the M () is the
field-dependent mass of the scalar (fermion) field,

(M(p) = mp + go). (2.5)

Hereafter, we denote M (¢) by M for simplicity. The pp denotes the D — (p + 1)-dimensional Euclidean momentum. The f
is the fermion number that is O(1) for the boson (fermion) and the V is the on-shell degrees of freedom. The 7, denotes the
Matsubara mode arising from the S!, and the Kaluza-Klein mode n;(i = 1,..., p) comes from each S}(i = 1,--- p). The
parameter 7;(i =0, 1, ..., p) is given in Egs. (2.2) and (2.3).

Let us make use of the zeta-function regularization in order to evaluate Eq. (2.4). By defining

(H Z ) /de—H,),fﬁ { Bt <i—z>2("o +19)” + lzpl: <2L—7:>2(n,- +1;)? +M2} o (2.6)

’n——oo

then, the V. is written as

o1 d
Var = (15 (= 576) 27)
s—0
Performing the pj integration with the formula
1 o0
A = —/ dt=le ", (2.8)
I'(s) Jo
and employing the Poisson summation
N R N Ly (TN e
NI (= zim; i, 2.9
2 22 @9)

we obtain

D
T2

Veff = (_1>f+1

D Z Z / di =3 Leal(moLo)++(m, L, ) |=Mt+2mi(mong+-+myn,) (2.10)

my=—00 m,=

Hereafter, we call m;(j = 0,1,..., p) in Eq. (2.9) or Eq. (2.10) the winding modes, while ny and n,(i = 1,2, ..., p) in
Eq. (2.9) or Eq. (2.4) the Matsubara and the Kaluza-Klein modes, respectively.

It is useful to separate each summation with respect to m; in Eq. (2.10) into the zero mode (m; = 0) and the nonzero ones
(m; #0) and to express Eq. (2.10) into the form

p+1 p+1

n D
Ver =D FOP(M) =% S FUN L (M), (2.11)
n=0 n=0 0<i;<i,<--<i,<p
where
D (s (s
n)D n / _D_ Li(m; M2 i(m; ms
Fiif,LiZ qqqqq 1, (M) = (- )f+1N Z Z / di 121 e Hlmiy L Vot i, Ly, Pl=MP 425 my 1+ 1)

— m; —

(2.12)

The prime of the summation in ) /®

m;=—0o0

means that the zero mode (m; = 0) is removed.
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The F© in Eq. (2.11) corresponds to the contribution

from all the zero modes my=m; =---=m, =0 in
Eq. (2.10) and is found to be
a7 [
FOD (M) = (=1)/*! / dtt—%—l -M?t
D
. 2 D D
= (-1 I —=)(M?):. 2.13
I (-2 )0t e

It must be understood that F(OP (M) is regularized by the
dimensional regularization for D = even. On the other
hand, for D = odd, it yields [13]

|

m, =1

ZZ

mj, =1

I)D;I
or DT
FOR(M) = ()N o MP(2.14)
By using the formula

& 1 g—A-E A\ VAB

; dtrv e =2 3 K,(2VAB), (2.15)

where the K,(z) is the modified Bessel function of the
second kind, Eq. (2.12) for n > 1 becomes

D

)

M2

+ (mi,,Li,,)2>

Kg<\/M2{(m L

The effective potential is given by the modified Bessel
function of the second kind accompanied with the
multiple mode summation with respect to the winding
mode m; (j=1,...,n) associated with the S}I_. The wind-

ing mode is derived from the Matsubara/Kaluza-Klein
mode n, through the Poisson summation (2.9). We will

use the inverse process in the next section, which is
employed to prove a mode recombination formula. The
results in this section have already been obtained in
the previous paper (see Eq. (2.10) of Ref. [13]) and they
are the starting point for the discussion in the present paper.

III. MODE RECOMBINATION FORMULA

In this section, we present and prove the formula called a
mode recombination formula. The formula plays a crucial
role to obtain a new form of the effective potential, which is
different from Eq. (2.11) and is convenient for discussing
the nonanalytic terms. These terms can be obtained from
the effective potential by use of the mode recombination
formula in easier and more transparent way, as we will see
in the next section.

Let us recall Eq. (2.11) and first write it as

p+1

M+ 3 FNL (M),

n=1 0<i,<iy<--<i,<p
(3.1)

where we have separated the n = 0 term from the summa-
tion in Eq. (2.11) for later convenience. We focus on
the scale L in L,-]_(i.,- =0,...,p) and separate the term

Vegr = FOP

2 + -+ (minLin)2}> COS(27zm,~lnl~l) cee Cos(2ﬂm,~”77,-").

(2.16)

associated with L, from the terms without L, on the right-
hand side of Eq. (3.1) as’

p+1

> F‘L’Zﬁiiz ,,,,, L, (M)

n=1 0<i;<ir<--<i,<p

— FL0

+FL . <M>). (3.2)

Let us show that the second and third terms on the right-hand
side of Eq. (3.2) can be combined into a single expression

(3.3)

’Let us comment that the effective potential obtained by
Dolan-Jackiw, Eq. (3.13c) in their paper [1], is reduced to

F (LIO)D(M ) by applying the formula [14]

Ki(z) = Mz—ﬂze‘z and

XL (a4 1)
aﬂ+] Zb—ﬂ—l

/0o dx K, (aVx? + 22)

;= K, ,_i(az
0 (x2+22)5 " 1( )

to the series expansion of the logarithm in Eq. (3.13c). The mode
in the serles expansion plays the same role with the winding mode

mg in F (M)
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where

27\ ?
My =M + (L_o> (ng +mo)*.

(3.4)

Here, the ny is the original Matsubara mode appeared in Eq. (2.4).
Let us prove Eq. (3.3). By using Eq. (2.16), the two terms on the left-hand side of Eq. (3.3) are combined into a single

. . . 3
expression, including the m, = 0 mode,” as

L]

-+ (mi,zLi,,)2>

m; L; ) }> 2ximoo cos(2wm; n;, ) - - - cos(2mm; ;). (3.5)

l’l

With the help of the formula (2.15), the modified Bessel function of the second kind in Eq. (3.5) is written in the integral
form, and we inversely use the Poisson summation (2.9) for the m, mode, which is then converted into the Matsubara

mode ng. Thus, we obtain

n)D n+1 1 - _D-1_
P 2, 0+ P L, 0 = (N o > Doy [Tar
np==00 m; = m;, =
o o M E) (notno Pli—l(miy Ly P o--+(mi, Ly, )? ]COS(2ﬂ'mi1’7i1)"'COS(Zﬂminni")
D-1
1 &) 0 0 M(20) =
=— (-1 f+lN — < )
Lo( ) m)T :Z Z=1 mzzl (mi L)+ 4 (m;, L;,)?
i n

X Kpo (\/M%o){(mill'il R (minLin)2}> cos(2zm; n; ) - --cos(2xm; n; ), (3.6)

where we have used Eq. (2.15) again to rewrite the integral from into the Bessel function in the last equality. Equation (3.6)
is nothing but the right-hand side of Eq. (3.3) and we have proved Eq. (3.3).

We shall call Eq. (3.3) the mode recombination formula® in the present paper. Let us note that the Matsubara mass
squared, the second term in Eq. (3.4), is recovered by the inverse use of the Poisson summation (2.9). From Egs. (3.2)

and (3.3), we obtain an important relation

p+1

Z Z F(L’:Bz ..... Ly, (M) =

n=1 0<i;<i,<--<i,<p

Some comments are in order. It is important to note that
the first term on the right-hand side of Eq. (3.7), which is
the contribution of the single mode summation with respect
to the winding mode m, associated with the S! having the
focused scale L, is separated from the contributions of
the multiple mode summations in the process of deriving
the mode recombination formula. The Matsubara mass
squared, the second term in Eq. (3.4), arises after using

SLet us note that this is allowed because Eq. (2.16) is
regularlzed with respect to m; =0(j = 1,....n).

“The idea of the mode recombination has been developed in a
different context by the authors [10].

DM)+zp: >

(3.7)

Z FO27L (M),

n=1 l§i1<i2<-~-<in<p n0:

inversely the Poisson summation. As is clear from the
discussions given above, the formula (3.7) holds irrespec-
tive of whether the field is the scalar or fermion and also
of the boundary condition for the spatial § l(i =1,....,p)

direction. The spacetime dimensions in F(L) L, (M) is

effectively reduced to D — 1. This is 1nterpreted as that the
particle with mass squared M? having the Matsubara mass
squared (3£ ) (ny +n9)* to be considered on the D — 1
dimensional spacetime, RP~(P+D) x T7_ S!. One can
choose another scale, say L;(je{l,...,p}) instead of
Ly, then, the M%) is replaced by M%].) with the Kaluza-

Klein mass squared (3 ) (n;+n;)*
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From Eq. (3.7), the effective potential (3.1) is written by

RS D

n=1 1<i)<ip<--<i,<p

Vegr = FOP (M) + FLO (3.8)

We repeat the same discussion for the third term in Eq. (3.8) by focusing next on the scale L. One immediately sees that the

term, aside from the scale L, can be written as

P o
S Y FTL (M)
n=11

<i)<ip<-+<i,<p ny=—0o0
>\ (1)D-1
= > )T M)+ >

ny=-—o0 n=1 2<i,<i;<-
1

>

ny=-oo n=1 2<i<iy<-<i,<p ng

where we have defined

1
2\ 2
My =M+ 30 (F) enr G0
iz0 \li

and have used Eq. (3.3) with Ly, D — 1, M and M ) being
replaced by Ly, D —2, M) and M g ;), respectively in the
last equality. We observe that the first term on the right-
hand side of Eq. (3.9), the contribution of the single mode
summation with respect to the winding mode m; associated

Ve = FOP(M) +FL0

-<i,<p ngy

1 . 1
> A ) ¢

Do (R, o)+ FLETL, M)
_Z Ll _Z (L?._.,zL,H(M(on), (3.9)

with the S1 having the focused scale L, is separated from
the contributions of the multiple mode summations. The
Kaluza-Klein mass squared (7%)(n; +#,) turns out to be
added to M%o) through the formula (3.3) in Eq. (3.10).
We repeat the same discussion given above by focusing
on the scales L,, L3, ..., L,_; sequentially for the multiple
mode summation obtained at each step such as the second

term on the right-hand side of Eq. (3.7) [or Eq. (3.9)]. We
finally find that the effective potential is recast into

0”0*—00 LOLlno —00 nj=—00
o0 o0 l
R e D D DR M T 1)
P I pp=—o0 n,_|=—o
14 [+ (1
+Z< el >(H Z )F 01, de=1))5 (3.11)

k=0 j=0 nj=—c0

|
where we have defined k-1 k-1 o
Li :H Z =1 M%O,l ..... k—1)|k=0:M2-

i=0 k=0 j=0n;=—colk=0

(3.12)

The second term F\ Lo P(M) in the first line of Eq. (3.11) is

incorporated into the summation with respect to k as
the k = 0 term in Eq. (3.11), where it is understood that
we set

J

(3.13)

Equation (3.11) is the effective potential rewritten by
using successively the mode recombination formula (3.3)
and gives the starting point to discuss the nonanalytic terms
in the present paper. Let us note that Eq. (3.11) holds for any
boundary condition for the spatial S} direction, reflecting the
fact that the mode recombination formula holds irrespective
of the boundary condition for any spatial direction.
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It may be instructive to mention that the effective
potential (3.1) is invariant under the exchange of the scales
L; and Lj(i # j). The invariance, however, does not
become manifest in the new form of the effective potential
(3.11). Instead of losing the manifest invariance, the
effective potential has a remarkable feature that except
for the first term in Eq. (3.11), all the contributions to the
effective potential are given by the single mode summation
with respect to the winding mode my(k =0, ..., p) asso-
ciated with the S}(, even though the M? has the Kaluza-
Klein (Matsubara) mass squared, the second term in
Eq. (3.12). One can further simplify Eq. (3.11) by taking
account of the discussion on the zero modes in Eq. (3.12),
as we will see in the next section.

We shall study the nonanalytic terms for the case of the
fermion field as well as the scalar one in the present paper.
It may be appropriate here to present the convenient form of
the effective potential for the discussion in the case of the
fermion. One can show that the first and the second terms in

Then, the effective potential (3.8) is written as

1 [Se]

Vet =1 Z F (O)D_I(M(OJ)
0n0=—oo
- 1 & F(n)D—l M
2> D R, (M)
n=1 1<i,<ir<-<i,<p 0 ny=—oo
(3.15)
or
P 1 =] n)
Va=3 S LS AL M)
n=0 1<i;<i<--<i,<p n0:
(3.16)

where the first term in Eq. (3.15) is incorporated into
the summation with respect to n as the n =0 term

Eq. (3.8) are combined into a single expression in Eq. (3.16).

Let us prove Eq. (3.14). By setting m; = =m; =
| & 0, n = 0 and dropping the summation Zm (j=1,. ) in
F <O)D<M )+ F (L]())D(M )= I F (O)D_I(M (0))- (3.14) the first equality of Eq. (3.6), the left hand s1de of

0 no=—co Eq. (3.14) is given by

|
FOP(M) + FLP00) = (1N 3 [ anti
’ Ly )T

- L—o<-1>f“Nz<zﬁ = (-75) 2 0 3.17)

ng=—00

where we have used Eq. (2.8) in the last equality. From Eq. (2.13), this is nothing but the right-hand side of Eq. (3.14) and

we have proved Eq. (3.14).

We will use Egs. (3.15) and (3.16) in Sec. V, where we discuss the nonanalytic terms in the effective potential for the case
of the fermion. It can be said that Eq. (3.14) is also the mode recombination formula and is regarded as the n = 0 case
in Eq. (3.3). Let us note that we can always write the effective potential as Eq. (3.16) for any boundary condition of the

spatial S} direction.

For later convenience, we introduce the integral representation for the modified Bessel function of the second kind on

the complex plane [14,15]

K, (x)

1 c+ioco d X —2t+v
= — tI(\)(t — — .
o[-y (2)

(3.18)

The constant ¢ should be understood to be a point located on the real axis which is greater than all the poles of the gamma
functions in the integrand. By using the formula (3.18), one obtains the integral form of the right-hand side of Eq. (3.3)

with n > 1 as

M\ 1 fesio L, D=1Y (M)
2 47[i c—ico 2 2

(3.19)
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where we have defined

SW(#L;,....L; ) =T(t) Z Z {(m; L; )* + -+ (m; L; )*} " cos(2mm; ;) - - - cos(2xm; n; ), (3.20)

mi, =1 m;, =1

and M ) is given by Eq. (3.4). Let us note that the n = 0 case in Eq. (3.3) is given by Eq. (3.17).

We have succeeded in representing the effective potential in the various forms like Eqs. (3.8), (3.11), (3.15) and (3.16). It
may be helpful to comment on which forms are useful for the analysis of the scalar or fermion field. The expressions (3.8)
and (3.11) of the effective potential will be used for the scalar with the periodic boundary condition. On the other hand, the
expressions (3.15) and (3.16) turn out to be useful for the fermion and the scalar with the antiperiodic boundary condition.

IV. NONANALYTIC TERMS FOR SCALAR FIELD WITH PERIODIC BOUNDARY CONDITION

In this section, we derive the nonanalytic terms of the effective potential for a real scalar (f = 0, NV = 1,7, = 0) with the
periodic boundary condition in all the spatial directions (17, = --- =#, = 0), although the results have already been
obtained in the previous paper [13]. The purpose of this section is to show that our formulation presented in this paper is
easier and more transparent to obtain the nonanalytic terms than that in the previous paper. To this end, we examine the
right-hand side of Eq. (3.3). From Eq. (3.19), we have

on M2\ 1 [etico D-1
i () G a5
(ZE)TLO 2 4ri Jo—ico 2

2T 1 [etieo D-1\ & ML\ % [ 7\ 2.
- - il 1———— 24 (== =) 8L, ... L;), 4.1
e (=) o () (@) e

where we have defined

S(’1)<t, Li] s "”Lin)

PO S 3 (my Ly + ot (my L)) (42)

m; =1 mj, =1

and have separated the zero mode (n, = 0) from the nonzero modes (ny # 0).
We show that the second term in Eq. (4.1) never has nonanalytic terms, in other words, all the terms are given by
positive integer powers of the mass squared M?. The second term in Eq. (4.1) is written, after changing the variable

1
2"+1 1 [otico ML, x\ 2. D-1
- — drT(t S+ ——:L. ,....L. |, 4.3
s o a0 i (50) () (e P ) ey

- D—
:t_—Z , as
ny=1

where we have again denoted 7 by . Let us recall the following formula used in the previous paper [13,16]
I'(z) Z{ noLo)* + 27}

N o+fwb+ziiwm4ﬂﬂ

2 Z 2L0 z ( ) L:)Jr% Zt_% =1 LO

1T  valt-y 1 (= 2’1/““""
2 ZZI ZLO ZZ(I—%) \/E LO 27” c

where we have used Eq. (3.18) in the last equality.

=2t

dllf‘(tl —t—|—;>§(2tl 2141 )F(tl)( Lﬂo> . (44

"1 —ico
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We apply the formula (4.4) with Lo =1 and z = % to Eq. (4.3), which becomes
2mkl 1 fetieo 1 ML\"2 /& 1\ /MLy\ 205
- dts —=T(1) | — ~T(t—= ) —=—
H%Lo4m'¢_im { 2 ()(2ﬂ> * 2 ( 2><277:>

2t 1 ¢ +ico 1 ML\ 2t =2t D-—1
+\ﬂ/7.tzm,/1‘ dt1F<tl—t+2>C(2tl—2t—|- )F(t1)< 20> }(Z)) S<><t+ > ;L ..,Lin>. (4.5)

We deform the integration path with respect to #; in Eq. (4.5) in such a way that it encloses all the poles in the integrand and
perform the #; integration by the residue theorem. Among the poles t; = ¢ — % -2(¢=12,...)0f(t; —t+ %) only the
), which always follows from the combination
I(t, —t¢ + D¢(21y =2t +1) and is frequently used throughout our discussions. The residue integral from the pole

pole #; = 1 — 1 is relevant because of the property {(-2¢) = 0(Z = 1.2, ...

t; =t — % with {(0) = —1/2 cancels the second term in Eq. (4.5) and the integral from the pole #; = 1 of {(21; — 21 + 1)

with F(1/2)

= /7 does the first terms in Eq. (4.5). We are left with the contribution from the pole t; = —i(7 =0, 1, ..

.) of

I'(#;), so that we find that the second term in Eq. (4.1) becomes

2n+l c+z<>o

B 72 Lo 4m Z

Even though there would appear the poles in the multiple
mode summations S(”)(t +DT_1;Li1, ...,L,-") that contrib-
ute to the ¢ integration in Eq. (4.6) by the residue theorem, it
does not affect the power of the mass squared (M?)" in
Eq. (4.6). Thus, Eq. (4.6) has only positive integer powers
of the mass squared M2, i.e. (M?)". This observation
implies that only the first term in Eq. (4.1) potentially
can have the nonanalytic terms, so that from Eq. (3.3),
we obtain the important relation

(4.7)

The abbreviation denoted by “n.a.” in Eq. (4.7) means
nonanalytic terms, which is used throughout the paper. It
should be stressed that only the zero mode (ny = 0) in M )
is relevant for the existence of the nonanalytic terms in the
mode recombination formula (3.3). The relation (4.7) is
crucial for the continuing discussion given below.

The relevant part for the nonanalytic terms in the
effective potential (3.8) is given by replacing M by M
without the summation because of Eq. (4.7). Cons1dermg
the discussion led to Eq. (4.7), we understand that the
relevant part for the nonanalytic terms in Eq. (3.9) is given
by replacing the M ), M (o) by M, M), respectively and

1 ML, 1\~ D-1
—fi—t4= |¢(=2a-21+1 W t4+——L;,...L; |. (4
Fr(camen e (50 () S (12 ). a0

dropping the n, summation. By repeating the same dis-
cussion as above and applying it to the effective potential
(3.11), the relevant part of the nonanalytic terms in the
effective potential is given by picking up only the zero
modes in M )(k: 1,2,...,p), that is,

,,,,,

Veff'n.a. = D(M ‘na + Z(Hk 1y )FLk (M)|na
i=0

(4.8)

It turns out that the relevant part of the nonanalytic terms
in the effective potential drastically reduces to the simple
expression (4.8) and is given by the contribution of the
single mode summation of the winding mode my(k =
o,..., p) associated with the S ,'C This is quite different from
that given in the previous paper where we have analyzed the
multiple mode summations in order to obtain the nonana-
lytic terms. It should be emphasized that Eq. (4.8) is
obtained as the consequence of taking account of the zero
mode (ny = ---=n, =0) alone in the Matsubara and
Kaluza-Klein modes.

Let us confirm the results obtained in the previous paper
by using Eq. (4.8). We will soon recognize that the
calculations based on Eq. (4.8) are easier and more trans-
parent compared with that in the previous paper. We first

study the nonanalytic terms of Ff,‘lk)D_k(M) in Eq. (4.8).
From Egs. (2.16) and (3.18), one has (remember 7, = 0,
N = 1,1, =0 in this section)
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(1)Dk -2 & M N\
A0 = e 3 () Kl )
-2 (MX\T' 1 [e+ie k ML\~
- ( d ) - / - th(t >F(t)§(2t)( - ) , (4.9)
|
where we have used the definition of the zeta function A. (D, p+1)=(even,odd)
{(z) = > % m™*. Since the scale dependence on M in Let us first introduce
Eq. (4.9) is (M?)*7", the poles t = 25k — £(£ = 0,1, ...)
of I'(r—25%) yields analytic terms (M?)”, which are 1 (1)D—(2n41)
outside of our interest. Only the pole ¢t = 0 among the Aspi1 == Fi,, M),
. [T Li
poles t = —m(m =0,1,...,) of I'(¢) contributes to the ! .
residue integration because of the property {(—2m) = _ (=)= MP=n) (4.13)
O(m =1,2,...). Hence, there are two poles, t =0 of S PEAEE(D - 2n+ 1) Lo Ly, '
I'(r) and =13 of {(2r) that contribute to the residue
integration in Eq. (4.9) for obtaining the nonanalytic
terms. B,, = 1 (1)D=2n (M)]
Since the nonanalytic terms are given by positive odd "I L i

integer powers of M, whether the pole of t =0or¢=1/2 (_1)(_1)0—72:’ D201
can produce a nonanalytic term depends on whether D = S5 o . (414)

and k are even or odd. For (D, k)= (even,even) or
(odd, odd), the nonanalytic terms in Eq. (4.9) is given
by the pole t =} as

—k

(=D(=D

7 (D—k—1)!!

2

—k
FOP ™ (m)

k

— AD=k
2

B5k

|n.a.

while for (D, k) = (even,odd) or (odd, even), the pole
t = 0 yields the nonanalytic term

(-1)=2"
(1)D—k - D—k
F M = MP~x, 4.11
Ly ( )|n.a. Z%ED%H(D—IC)” ( )
Here, we have used
1-D —1)227
F( 3 > :((D—)l)!!\/; for D =even. (4.12)

We are ready to calculate the nonanalytic terms in the
effective potential based on Eq. (4.8) by using Eqs. (4.10)
and (4.11). It is convenient to study the terms for each case
of even/odd D and p + 1. Let us remind that p + 1 is the
total number of S'.

The log M is another type of the nonanalytic term in the
effective potential, which is obtained by the residue integration
for the double pole of the integrand in Eq. (4.9). We do not study
such the term in this paper.

25 2 (D-2n—1)!1Lg- Ly,

where we have used Eq. (4.11) [Eq. (4.10)] in the equality
of Eq. (4.13) [Eq. (4.14)]. One immediately observes that

A2n+l = —an for n = O, 1, (415)

Let us note that the definition for By in Eq. (4.14)

is consistently equal to F(LIO)D(M) by setting
l-zﬁgl Li|,_o = 1, which originally corresponds to the

k =0 term in Eq. (3.11).
In terms of Eqgs. (4.13) and (4.14), the nonanalytic term
in Eq. (4.8) is given by

P
T

Veff|n.a. = F(0>D(M)‘nd + Z(A2n+l + B2n) + BP = BP’
n=0

(4.16)

where we have used Eq. (4.15) and the fact that from
Eq. (2.13), the FO? (M) does not possess any nonanalytic
term for D = even. The B, is given by Eq. (4.14) with

D-p D+p+2

n =% to yield, by noting that (=1)(=1)=" = (=1)~* for
p = even,
(-1 MP=(p+1)
Veff'n‘a. :BP = b bop2 LoL L,
25 (D_(p—|—1))!! oLi---L,
(4.17)
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B. (D,p+1)=

In this case, the nonanalytic term in Eq. (4.8) is written
by using Eqgs. (4.13) and (4.14) as

(even, even)

F

Veff'n.a. = |na Z A2n+l + BZn =0, (4'18)
=0

where we have used Eq. (4.15) in the last equality. The
effective potential does not have any nonanalytic term in
this case.

C. (D,p+1)=(odd, odd)

For the case of D = odd, from Egs. (4.10) and (4.11),
it is convenient to introduce

1 1)D—-(2n-1
C2n—1 = Hzn 2L (Lz)n—l ( >(M)|n.a.
(DT M
T AD=(n=1) p-gp-1 21 ’ (419)
2 (D —2n)! Lo Loy
1 1)D-2
D,, = TlLF(LZ)n (M)
i=0 i
-1 D—2n+1 MD—Zn
= b= 20t (D 2;1)1 ’ (4'20)
27 (D—=2n)"Lo-+- Loy
respectively. We see that the relation
Cyy =—-D,y, forn=0,1,--- (4.21)

holds. It should be understood that in Eq. (4.21) we have
defined Cy,_i|,_o = FOP(M) and Dy,|,_o = Fi)” (M),
One immediately confirms that the C_; = —D, is satisfied
by using the explicit expressions for F(O° (M) in Eq. (2.14)
and F{)”(M) [13] in Eq. (4.11) for D = odd.

In terms of Egs. (4.19) and (4.20), the nonanalytic part of
the effective potential in Eq. (4.8) is calculated as
14
2

Veitla = > _(Cauet + D) =0,
n=0

(4.22)

thanks to Eq. (4.21).

m\ D-1
=) SW({t+=——L;.,....L; ),
x(Lo) (25 0

where we have changed the variable 7 = ¢ —

D. (D, p+1)=(odd, even)
In this case, the nonanalytic term in Eq. (4.8) is
obtained as

p=1
2

Veff|n.a. = Z(CZn—l + D2n) + Cp = va
n=0

(4.23)

where we have used Eq. (4.21). The C,
Eq. (4.19) with n = 2 to yield

is given by

(- 1)# MP-(p+1)
Veff|n.a.:Cp_ D—p D-=p=2 LoL.---L.°
277z (D—(p+1)!1Loly p
(4.24)

D+p

where we have used the fact (—1)(—1)? =(=1)=
for p = odd.

The results (4.17), (4.18), (4.22) and (4.24) are found to
exactly agree with those given in the previous paper, as they
should be. Even though they have already been obtained in
the previous paper, our formalism developed in this paper
is easier and more transparent to derive the nonanalytic
terms of the effective potential, and furthermore makes it
possible to analyze the case of the fermion field, as we
will see in the next section. In addition to it, a new insight
on the nonanalytic term is obtained. The nonanalytic term
Eq. (4.17) [or Eq. (4.24)] depends on each scale, L, ..., L,
of all the S'’s. This may reflect the fact that only the zero
modes in the Matsubara and Kaluza-Klein modes are
relevant for the existence of the nonanalytic terms, as
shown in Eq. (4.8).

V. NONANALYTIC TERMS FOR FERMION FIELD

Let us study the nonanalytic terms in the effective
potential for the case of the fermion field (f= 1,;10:%)
satisfying arbitrary boundary condition for the spatial
Si(i =1,2,..., p) direction. The effective potential (3.15)
rather than Eq. (3.11) is appropriate to discuss the terms in
this case.

We first consider the n > 1 term, the second one in
Eq. (3.15), whose integral form on the complex plane is
given from Eq. (3.19) by

oo £ (w3 (2}

D=1 and have denoted 7 by ¢ again.
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One needs to develop the analytical extension for the mode summation with respect to n; in Eq. (5.1). To this end,
we employ the formula (2.8) and the Poisson summation (2.9). Then, we find

(5]

O {<n0+%>2+z} =z Z / 7D e rimg =1 (5.2)

ny=-—o00 ny=-—0co

By separating my = 0 and m # 0 modes in Eq. (5.2) and by using Eqgs. (2.8) and (2.15), the right-hand side of Eq. (5.2)
becomes

M=) (P
VT 20 +4yn E Z(—l) omy *K,_1(2mmgz)

my=1

0
= =5 - _1 0
=z z(2<f-%)2) + 4\/;?(;”) {— my K _(2mmez) +2 (2m0)t‘5K,_%(4ﬂmoz)}, (5.3)
my=1

my=1
where we have used the property K_,(z) = K,(z) and the formula

> (=1 f(mg) = meo +2Zf2mo (5.4)

my=1 my=

for later convenience. We further recast Eq. (5.3) into the integral form on the complex plane by Eq. (3.18). Then, we obtain

® 12 ~t D(t—3) 4% 1 [ertio 1 _
ro) 3 {(mtg) v} =va g Y [ anr (n - et -2 0 )

ng=—00 cy—ico
+4(2,[)2t 1 /c1+ioo
Vi Ami

dr, F<t, -1+ %) ¢(2t; =2t + 1)I(t)) (27z) 721, (5.5)

c1—ico

This is an analytical extension for the mode summation with respect to n, in Eq. (5.1). Eq. (5.5) does not have the term
corresponding to the first term in Eq. (4.4) because of the lack of the zero mode due to the antiperiodic boundary condition
for the fermion ﬁeld in the Euclidean time direction.

By setting z = 52 and inserting Eq. (5.5) into Eq. (5.1), we have

1 < (n)D-1 1 2" 1 ctico 1\ /ML, -2(1-})
I mMm»—L—oNz—-/ ofvir(r=3) (5

a7 4ni J._is

472 1 ci+ioo 1 MLg\ 21
_\/Eﬁ/c]—ioo dt1F<t1—t+§>g’(2tl—2t—|—l)l“(tl)(7>

4(2 2t 1 c1+ico 1
n (\/”7_3 4_”i/ dtlr<t1—t+§>é(2t1—2t+1)F(f1)(MLo)_2"}

o\ D -1
N s (P2l ), .
x<L0> S <z+ 5—iLi o ,n> (5.6)

We perform the residue integration with respect to #; by deforming the integration path in such a way that it encloses all the
poles in the integrand. Among the poles t; =t —5—£(£ =0,1,...) of I'(1; — t + 1), only the pole 7, = 7 — 1 is relevant to
the residue integration thanks to the property {(—2¢) = 0(Z = 1,2, ...). In addition to it, the poles #; = ¢t of (27, — 2t + 1)
and 1, = —ii(n =0,1,...) of T'(#;) contribute to the ¢, integration by the residue theorem. It is easy to see that the
contributions from the residue integration of the pole #; =t — % in the second and third terms of Eq. (5.6) cancel the first
term in Eq. (5.6) and that the contributions from the residue integration of the pole #; = ¢ of {(2¢; — 27 + 1) in the second
and the third terms of Eq. (5.6) are canceled each other. Thus, what is left is the contribution of the residue integration of the
pole t; = —a(a = 0,1, ...) of I'(¢;) alone, which is given by

c1—ioo
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2 (="

N

One observes that the dependence of the power on M in
Eq. (5.7) is given by the positive integer power of the mass
squared (M?)", so that there exists no nonanalytic term in
the second term in Eq. (3.15)

(5.8)

1 [Se]
Z L_ Z ..... LL" )|na

>
n=1 1<i)<ip<--<i,<p n():
We note that the multiple mode summations in S (r +

DT‘I ;L;,.....L; ) could produce poles that contribute to the
|

D—l - 12 MLO D21
rf—=—— Z
(-%57) 24 (o3) + (5]
47~ (D-1) ) +ico
dn,T'| t
NG 4711[1 i <]

+ 12)) £(2t; + D)I(t;)(MLy) ™",

- )2 -

4(2,,)—(D—1> 1 ¢ +ico
_ dny |t
- \/7_7: 47”.11—1‘00 1 :

We again evaluate the 7, integration by the residue theorem
by deforming the integration path in such a way that it
encloses all the poles in the integrand. The nonanalytic
terms® in the second and the third terms in Eq. (5.9) are
given by the residue integration of the poles that have the
minus half odd integer values of #;, as seen from the scale
dependence on M in Eq. (5.9).

For D =even, the relevant pole is t; = -5 of
{(2t; + D), from which the second and the third terms
in Eq. (5.9) yield

D-1

() (5)”
4&; ( 5 )(A;LT‘))D o (5.10)

®We do not consider the nonanalytic terms of the type, log M in
this paper, which comes from the double pole in the integrand, as
mentioned in the footnote of the Sec. IV.

c+too ”
7; Byl 4711[ Z{__ n!

(—n—t+ )C( 2n—2t—|—1)<M2LO> ﬁLét

2

r(- —t+%>§(—2r‘z—2t+1)(ML0)2”(2L0)2’}S()<I+D_1 Li.. ,Lin>.

(5.7)

t integration in Eq. (5.7), but they do not change the
power of (M?)" because of the nonexistence of M in
the summations. It is important to note that Eq. (5.7)
holds irrespective of the boundary condition for the spatial
Si(i=1,2,..., p) direction and thus, so does Eq. (5.8).

Let us next study the n =0 term, the first one in
Eq. (3.15), which is given by Eq. (3.17) with f =0 and
o = 1 . We make use of the analytical extension (5.4) in
order to calculate the mode summation with respect ng in
Eq. (3.17). By putting ¢ = — 251, z = ¥Lein Eq. (5.5), the
relevant part of Eq. (3.17) becomes

+ 12)) (21, + D)I(1) (MZLO) -

(5.9)

The first term in Eq. (5.9) is analytic for D = even, so that
there is no nonanalytic term in Eq. (5.9) for D = even.
On the other hand, for D = odd, the relevant pole for the

nonanalytic terms is given only by the pole t; = 12) among
the poles t; = —2 — f(f 0,1,...) of I'(t; +2) because
of the property C( )=0(¢=1.2,..). Then, the sec-

ond and the third terms in Eq. (5.9) lead to
D\ (MLy\P D\ (MLy\P
I'—-——=)(——] —-2yal'| —=|—=—
vn(-3) (5) - (-5) (%)
D\ (MLy\P
= — F _—— _ s
vn(-3) (5)
which cancels the first term in Eq. (5.9). Thus, Eq. (5.9) has
no nonanalytic term for D = odd.

We have shown that the first term in Eq. (3.15) does not
possess the nonanalytic term

(5.11)

1 (o8]

L_ Z FOP-1 (M(O))|n.a. =0.
0

ny=-—00

(5.12)
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We arrive at the important conclusion from Egs. (5.8)
and (5.12) that the effective potential (3.16) has no
nonanalytic term for the case of the fermion

1 > n)D—1
Z L_() Z F(Lzl) ~~~~~ L, (M(O))|n.a,
ng=—co

p
n=0 1<i;<ip<--<i,<p -

0

Veff‘n.a. =

(5.13)

It should be emphasized that Eq. (5.13) holds irrespective
of the boundary condition for the spatial S! (i = 1,2, ..., p)
direction.

VI. NONANALYTIC TERMS FOR SCALAR FIELD
WITH ANTIPERIODIC BOUNDARY CONDITION

Taking account of the result obtained in the previous
section, we can also study the case of the scalar field
with some of the boundary condition for the spatial
Si(i=1,..., p) direction being antiperiodic. In this case,
by regarding the direction that has the antiperiodic boun-
dary condition as the Euclidean time direction, the effective
potential essentially has the same with that of the case for
the fermion field. Hence, we conclude that there is no
nonanalytic term in the effective potential if the scalar field
satisfies at least one antiperiodic boundary condition for the
spatial S} direction.

VII. CONCLUSIONS AND DISCUSSIONS

We have studied the nonanalytic terms, which cannot be
written in the form of any positive integer power of field-
dependent mass squared, in the effective potential at finite
temperature in one-loop approximation for the fermion
and scalar fields on the D-dimensional spacetime,
St x RP=(P+1D) x T2, S!. In doing it, we have developed
the new formula called the mode recombination for-
mula (3.3), which holds irrespective of whether the field
is a fermion or a scalar and of the boundary condition for
the spatial S! direction. The effective potential has been
recast into the new forms (3.11) and (3.16) by using the
formula, which is convenient to study the nonanalytic terms
for both cases of the fermion and the scalar.

We have clarified the importance of the zero mode in the
Kaluza-Klein mode for the existence of the nonanalytic
terms through the mode recombination formula. This has
drastically simplified the relevant part of the effective
potential for calculating the nonanalytic terms for the
case of the scalar field satisfying the periodic boundary
condition for the spatial S! direction. The effective potential
(4.8) is given in terms of the single mode summation of
the winding mode for each S' and the integral form for
the potential on the complex plane is easy to perform the
residue integration. We have correctly reproduced the
nonanalytic term (4.17) [and (4.24)] in easier and more
transparent way.

The mode recombination formula has also provided the
convenient form for studying the nonanalytic terms in the
effective potential for the case of the fermion field satisfy-
ing arbitrary boundary conditions for the spatial S} (i =
1,..., p) directions. The antiperiodicity for the Euclidean
time direction for the fermion has resulted the quite
different pole structure of the analytical extension for the
mode summation with respect to the Matsubara mode
compared with that of the scalar. We have found that there
is no nonanalytic term in the effective potential for the case
of the fermion. The result for the case of the fermion has
immediately led to the conclusion that there also exists no
nonanalytic term for the case of the scalar field satisfying
the antiperiodic boundary condition for at least one spatial
S! direction.

We have obtained some insight on the nonanalytic terms
in the effective potential. We have found that the nonana-
lytic term can appear only when there exists the zero mode
associated with each of all the S!’s in the Matsubara and
Kaluza-Klein modes. This observation may explain that the
nonanalytic term depends on all the scales L, Ly, ..., L,
like in Eq. (4.17) [or Eq. (4.24)] and further that the
effective potential has no nonanalytic term for the fermion
due to the lack of the zero mode for the Euclidean time
direction irrespective of the absence or presence of the zero
mode for the spatial S!(i = 1,2, ..., p) direction.

Equipped with the result obtained for the cases of the
scalar, we can also mention about the nonanalytic terms
for the case of a higher dimensional gauge field on
St x RP=(P+1) x 7 S!. Let us consider the D-dimensional
gauge field Ay (7, x*,y"), whose component gauge fields
are written as

AM(T, xk, yl) — (AT(T, xk, yi), Ak(T’ xkv yi)’ Ai(T’ xk7 yl))
(7.1)

We need to specify the boundary condition for the
Euclidean time direction and the spatial S} direction.
The boundary condition for the Euclidean time direction
must be periodic, i.e.

Ap(t + Lo X", y7) = +Ay (2,25, y') (7.2)
because of the quantum statistics. One can choose the
boundary conditions of the A;(z, x, y') and the A;(z, x, y')
for the spatial S! (i =1, ..., p) direction to be 0 or twisted
under the assumption that the Lagrangian density must
be single valued. The gauge field A, (z,x*,y") can be
massive through the Higgs mechanism and it has the field-
dependent mass such as M(g). If we restrict the twisted
boundary condition for the spatial S! direction to the
antiperiodic boundary condition, the nonanalytic term in
the effective potential for each gauge field in Eq. (7.1)
is reduced to the cases of the scalar field studied in the
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Secs. IV and VI. Thus, the result has already been
obtained.”

In addition to the nonanalytic terms we have studied,
there is another type of the nonanalytic term, log M in the
effective potential, as mentioned in Sec. IV. Such the term
arises from the double pole of the integrand, for example, in
the residue integration of Eq. (4.9). In order to understand
the whole nonanalytic structure of the effective potential
with respect to M, one has to study such a term extensively

"If the component gauge field A; has the zero mode, it can
acquire the vacuum expectation value (VEV) through the dy-
namics of the Wilson line phase [17]. The VEV is removed by the
field redefinition to twist the boundary condition for the spatial
direction of the matter field.

as well. Our analyses have been carried out at the level of
one-loop approximation for the effective potential at finite
temperature. One may wonder what type of the nonana-
lytic terms besides the one obtained in the paper can
emerge beyond the one-loop calculation. In connection
with higher loop calculations, we are also interested in the
behavior of the log M term, which actually stands for
genuine quantum effects. These are under investigation
and will be reported elsewhere.
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