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We explore the canonical description of a scalar field in 1þ 1 dimensional Minkowski space as a
parametrized field theory on an extended phase space that includes additional embedding fields that
characterize spacetime hypersurfaces X relative to which the scalar field is described. This theory is
quantized via the Dirac prescription and physical states of the theory are used to define conditional wave
functionals jψϕ½X�i interpreted as the state of the field relative to the hypersurface X, thereby extending the
Page-Wootters formalism to quantum field theory. It is shown that this conditional wave functional satisfies
the Tomonaga-Schwinger equation, thus demonstrating the formal equivalence between this extended
Page-Wootters formalism and standard quantum field theory. We also construct relational Dirac
observables and define a quantum deparametrization of the physical Hilbert space leading to a relational
Heisenberg picture, which are both shown to be unitarily equivalent to the Page-Wootters formalism.
Moreover, by treating hypersurfaces as quantum reference frames, we extend recently developed quantum
frame transformations to changes between classical and nonclassical hypersurfaces. This allows us to
exhibit the transformation properties of a quantum field under a larger class of transformations, which leads
to a frame-dependent particle creation effect.
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I. INTRODUCTION

Physical theories that are independent of background
spacetime structure are typically characterized by con-
straints. For example, in the absence of a boundary, the
canonical Hamiltonian of general relativity vanishes on
shell. In such theories, the Hamiltonian does not generate
an evolution of the physical degrees of freedom; instead,
dynamics emerges from relations between internal sub-
systems. As a consequence, a relational notion of dynamics
has long been recognized as a conservative expectation of a
quantum theory of gravity [1–6]. Often mechanical models
with a finite number of degrees of freedom are studied in
relational scenarios to exhibit mathematical and conceptual
subtleties within a fully relational quantum theory [5–14].
However, given that general relativity is a field theory, a

natural stepping stone is a relational theory of quantum
fields.
With this as an aim, Dirac [15] and later Kuchař [16] (see

also [17–19]) developed what is known as parametrized
field theory (PFT), in which a matter field ϕ is described
relative to arbitrary curvilinear coordinates Xμðt; xÞ asso-
ciated with a foliation of Minkowski space. For constant t,
these coordinate functions are treated as dynamical fields
that describe hypersurfaces Σ as embeddings into
Minkowski space, X∶Σ → M. This leads to an extended
phase space description of the matter field ϕ and the
spacetime embedding fields characterizing X. The resulting
phase space can then be quantized via the Dirac procedure,
leading to a quantum theory that treats ϕ and X on equal
footing [8,20–26]. This approach to field theory is distinct
from standard treatments (e.g., Ref. [27]) in which position
is treated as a classical background parameter alongside the
time variable. In contrast, PFT promotes both the time
variable and the position operator to embedding fields,
which are then quantized.
Prior to the development of PFT, Tomonaga [28,29] and

Schwinger [30] put forward an alternative approach to a
manifestly covariant formulation of quantum field theory.
Inspired by the desire for a Lorentz invariant framework
and the need to address divergences in quantum electro-
dynamics, they promoted the time-dependent quantum
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mechanical wave function to a wave functional jψϕ½X�i by
replacing the time variable with a spacelike hypersurface X
in Minkowski space. The dynamics of the theory is
governed by a functional differential equation known as
the Tomonaga-Schwinger equation, which characterizes
changes of jψϕ½X�i under deformations of X, analogous
to how the Schrödinger equation governs time evolution.
In this article, we develop a novel approach to a relational

formulation of quantum field theory along the lines envis-
aged by Page and Wootters [31,32]. We begin with the Dirac
quantization of PFT in 1þ 1 dimensional Minkowski space,
which requires constructing Hilbert spaces characterizing
both a matter field and the embedding fields. We then
introduce sets of coherent states fjXig relative to one-
dimensional subgroups of spacetime diffeomorphisms.
These coherent states are eigenstates of the quantized
embedding field operators with eigenfunctions correspond-
ing to coordinate functions defining definite hypersurfaces.
The group structure of these coherent states is crucial
for implementing the Page-Wootters formalism [32–38].
Physical states jΨphysi characterizing the scalar field and
embedding fields are constructed by promoting the classical
phase space constraints to operators that annihilate jΨphysi.
Conditioning physical states on a specific embedding
state jXi defines a state of the scalar field jψϕ½X�i ≔
hXj ⊗ ÎϕjΨphysi, which is to be interpreted as the state of
ϕ relative toX. The conditional state is a wave functional that
is shown to satisfy the Tomonaga-Schwinger equation, thus
demonstrating the equivalence of the Page-Wootters formal-
ism to standard formulations of wave functional dynamics in
quantum field theory. In particular, we show that the foliation
independence of the integrated Tomonaga-Schwinger equa-
tion, which is usually attributed to the microcausality
condition satisfied by the stress-energy tensor of the scalar
field, is seen to be independently derived from the gauge
invariance of physical states (see Fig. 3).
Moreover, the embedding states are used to build rela-

tional Dirac observables and a relational Heisenberg picture
equivalent to a quantum deparametrization of the physical
Hilbert space [35,36,38–42], which give unitarily equiv-
alent formulations to the Page-Wootters formalism analo-
gous to the noninteracting quantum mechanical scenario
[35,36]. Finally, we present a field-theoretic analog of the
quantum reference frame changes introduced by Giacomini
et al. [43], which allows us to describe a quantum field
theory relative to a superposition of classical embeddings.
We show that when transforming the conditional state of
the scalar field to one defined relative to an embedding in a
state that has support on hypersurfaces related by
Bogoliubov transformations that are nontrivial combina-
tions of creation and annihilation operators, changing
embedding fields that characterize a reference frame can
lead to a particle creation effect. This effect is a field-
theoretic analog of the conversion between spatial super-
position and entanglement under a change of quantum
reference frame [43].

Note that the embedding fields constitute a field-
theoretic quantum reference frame; specifically, the embed-
ding fields are quantum reference frames associated with
the infinite-dimensional diffeomorphism group, just like
the quantum clocks in the Page-Wootters formalism are
temporal quantum reference frames associated with the
one-dimensional group of time reparametrizations. Our
work thus constitutes a field-theoretic extension of recent
results about quantum reference frames, which rather
focused on finite-dimensional groups and thereby a
mechanical setting or symmetry reduced cosmological
models [33–53] (see also [54–58] for dynamical frames
in field theory).
While a functional Schrödinger equation governing the

dynamics of a scalar field relative to variations of the
embedding fields has previously been derived in the context
of the canonical quantization of PFT [19,21,22,24,59],
this was done directly using the constraints on the physical
Hilbert space. The novelty of our approach is thatwe derive a
functional evolution equation on a reduced Hilbert space
characterizing the scalar field alone in the form of the well-
known Tomonaga-Schwinger equation from a quantum
reference frame perspective and specifically the Page-
Wootters formalism extended to field theory.
Webegin in Sec. II by reviewing parametrized field theory

and derive a family of constraints satisfied by the scalar field
and a set of embedding fields. In Sec. III, we construct the
kinematical Hilbert spaces of the scalar field and embedding
fields (the latter at a somewhat formal level) and carry out the
Dirac quantization of PFT. In doing so, we introduce group
coherent states associated with diffeomorphisms of
Minkowski space. In Sec. IV, we develop the field-theoretic
generalization of the Page-Wootters formalism and show
that the conditional state of the scalar field satisfies the
Tomonaga-Schwinger equation, and construct relational
Dirac observables encoding the same dynamics. We also
develop a quantumdeparametrization of the physicalHilbert
space, leading to a relational Heisenberg picture. As an
application of the developed framework, in Sec. V we
analyze changes of quantum reference frames, induced
Bogoliubov transformations on a scalar field, and a frame-
dependent particle creation effect. We conclude in Sec. VI
with a summary of our results and an outlook on futurework.
Throughout, we adopt units such that ℏ ¼ c ¼ 1,

employing the ð−;þÞ convention for the metric signature.
We use round brackets () for the arguments of functions and
square brackets [] for the arguments of functionals.

II. PARAMETRIZED FIELD THEORY

Consider a real scalar field ϕðXμÞ living on 1þ 1
dimensional Minkowski spaceM equipped with the metric
ημν ¼ diagð−1; 1Þ, defined in terms of the inertial coor-
dinates Xμ ¼ ðT; XÞ. The dynamics of the theory is
specified by the action
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S½ϕ� ¼
Z

dTdXLðϕ; ∂ϕ=∂XμÞ; ð1Þ

where Lðϕ; ∂ϕ=∂XμÞ is the Lagrangian density of the field.
One can vary this action and obtain the dynamics of the
field with respect to the inertial coordinates Xμ.
However, the dynamics of the theory may be described

with respect to an arbitrary set of curvilinear coordinates
xμ ¼ ðt; xÞ defined by the coordinate functions Xμðt; xÞ.
Such a coordinate system can be chosen so that for each
t∈ ½t1; t2�, the functions Xμðt; xÞ parametrize a family of
spacelike embeddings of the one-manifold Σ ≃R in M:

XðtÞ∶Σ → M;

x ↦ Xμðt; xÞ:

A foliation of Minkowski space is defined to be a smooth,
one-parameter family F ≔ fXðtÞ; ∀ t∈ ½t1; t2�g of space-
like hypersurfaces XðtÞ such that each spacetime point is
located on precisely one hypersurface of the family; see
Fig. 1. A spacelike foliation defines a timelike deformation
vector field [18,60,61],

tμðt; xÞ ≔ ∂tXμðt; xÞ ¼ Nðt; xÞnμðt; xÞ þ Nμðt; xÞ; ð2Þ

where we have decomposed this vector field into its
components orthogonal and parallel to the embedding
XðtÞ. Here, nμðt; xÞ is the unique future-pointing unit
normal vector to XðtÞ, Nðt; xÞ is known as the lapse

function, and Nμðt; xÞ ≔ Nxðt; xÞ∂xXμðt; xÞ is the shift
vector, which is orthogonal to nμðt; xÞ. The flow generated
by the deformation vector field defines a timelike con-
gruence of curves in M, which can be interpreted as a
family of world lines corresponding to a set of observers
relative to which the dynamics of the field is to be
described. Also note that the timelike deformation vector
field is a complete vector field.1

The action S½ϕ� can be recast on an extended configu-
ration space characterizing both the field ϕðt; xÞ and the
embedding fields Xμðt; xÞ as dynamical degrees of freedom
[16–19]. This is accomplished by reparametrizing the
action in terms of the coordinates xμ as

S½ϕ; Xμ� ¼
Z

dtdx JL
�
ϕ;

∂ϕ

∂xν
∂xν

∂Xμ

�
; ð3Þ

where J ≔ ∂T
∂t

∂X
∂x −

∂X
∂t

∂T
∂x denotes the determinant of the

Jacobian associated with the coordinate transformation
Xμðt; xÞ. When cast in Hamiltonian form, the Lagrangian
density in Eq. (3) yields the family of constraints
[16–19,25,62]

Cμðt; xÞ ≔ Πμðt; xÞ þ hμ½ϕ; π; Xμ�ðt; xÞ ≈ 0; ð4Þ

where Πμðt; xÞ is the momentum conjugate to the inertial
coordinate Xμðt; xÞ and

hμ½ϕ; π; Xμ�ðt; xÞ ≔ J
∂tðt; xÞ
∂Xν Tν

μðt; xÞ
¼ nνðt; xÞTν

μðt; xÞ; ð5Þ

where nνðt; xÞ ≔ ϵνρ∂Xρðt; xÞ=∂x and Tμ
νðt; xÞ denotes the

stress-energy tensor of the field ϕ.

III. DIRAC QUANTIZATION OF PFT

While it is true that the gauge-invariant dynamics
defined by the action in Eq. (3) coincides with the dynamics
defined by the action Eq. (1), the former is defined on an
extended configuration space that explicitly includes degrees
of freedom associated with an embedding relative to which
the scalar field is to be described. However, the embedding
degrees of freedom are not independent of the matter field
degrees of freedom due to the constraints in Eq. (4).
Quantization proceeds via the Dirac prescription by

promoting the configuration variables, XμðxÞ and ϕðxÞ,
and their conjugate momenta, ΠμðxÞ and πðxÞ, to operatorsFIG. 1. Depicted is a smooth one-parameter family of spacelike

hypersurfaces XðtÞ that define a foliation of Minkowski space,
F ≔ fXðtÞ; ∀ t∈ ½t1; t2�g. The parameter x is a spatial coor-
dinate parametrizing each hypersurface (blue), and tμðt; xÞ
denotes the deformation vector field (green), defined in
Eq. (2), which is tangent to integral curves (red) associated with
the F .

1To see this, consider the integral curve γðtÞ∶ða; bÞ → M
given by integrating the timelike deformation vector. Then,
∀ p∈M and any integral curve γ passing through the point
p, γ can be extended to an integral curve defined on R,
Γ∶R → M, and Γ has a global flow.
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satisfying canonical commutation relations on the kin-
ematical Hilbert space Hkin ≃HEmb ⊗ Hϕ, where HEmb

and Hϕ are the kinematical embedding and matter field
Hilbert spaces, respectively. These canonical phase space
operators then define a quantization of the constraint
operator in Eq. (4) upon a choice of factor ordering and
regularization. Physical states are defined as those that are
annihilated by the constraint operator and used to construct
the physical Hilbert space Hphys. We outline the formal
construction of Hϕ, HEmb, and Hphys, and introduce
structures necessary for a field-theoretic generalization of
the Page-Wootters formalism.

A. The matter field Hilbert space Hϕ

As a minimal assumption, take the classical configuration
space of thematter field Cϕ ¼ fϕðxÞg to be the space of twice
differentiable functions that decay rapidly at infinity on the
hypersurfaceX. By analogywith thequantumdescription of a
nonrelativistic free particle, where the Hilbert space is the
space of square-integrable functions over the configuration
space R3, one would naively expect the Hilbert space of the
matter field to be Hϕ ≃ L2ðCϕ;DϕÞ for some measure Dϕ.
However, the field configuration space Cϕ is infinite dimen-
sional, complicating the integration theory necessary to define
Hϕ. To address these issues,we follow the construction ofHϕ

presented in Refs. [8,20,63,64].
One proceeds by introducing an arbitrary, linearly inde-

pendent set of probe functions V ¼ fv1ðxÞ;…; vnðxÞg
that are elements of the Schwartz space S of smooth, rapidly
decreasing functions on R. These functions probe the
structure of the field configuration space through the linear
functionals constructed by smearing the field operators on Σ,

ϕi ≔
Z

dΣðxÞviðxÞϕðxÞ;

where dΣðxÞ ≔ dx
ffiffiffiffiffiffiffiffiffi
γðxÞp

is the invariant measure on Σ and
γðxÞ ≔ ημν∂xXμðxÞ∂xXνðxÞ is both the induced metric on Σ
and its determinant; the numbers ϕi can be interpreted as the
component of the field along vi. One then defines the set
CylV of so-called cylindrical functions on Cϕ with respect to
V as those that can be expressed as functions of the
coordinates ϕi,

fðϕÞ ¼ fðϕ1;…;ϕnÞ∈CylV; ð6Þ
i.e. functions that are constant along the other directions in
Cϕ (not encompassed by the probes), and introduces an inner
product on CylV ,

hf; gi ≔
Z

dμnf�ðϕ1;…;ϕnÞgðϕ1;…;ϕnÞ; ð7Þ

where dμn is a measure on Rn. The space CylV is then
extended to the space Cyl of all functions that are cylindrical

with respect to some set of probes, not necessarily the set V.
For the inner product in Eq. (7) to bewell defined, the value of
the integral cannot dependon the specific set of probes used to
represent the functions. This imposes nontrivial consistency
requirements on the measure dμn on Cyl that can be met, for
example, by a normalized Gaussian measure on Rn. The
Cauchy completion of Cyl with respect to the norm induced
by Eq. (7) is taken to be theHilbert space of the fieldHϕ. One
can then extend the measure Dϕ ≔ limn→∞ dμn onto the
space of tempered distributions S0, which is the topological
dual of the Schwartz space of probesS (i.e., the space of linear
functionals on S), and show that Hϕ ≃ L2ðS0;DϕÞ; for this
reason,S0 ⊃ Cϕ is knownas the quantumconfiguration space,
which is larger than Cϕ [8,20]. In that way, it encodes the
distributional character of quantum field theory.
Having defined the Hilbert space Hϕ, we seek a

representation of the field operator, its conjugate momentum,
and their canonical commutation relations. Analogous to the
generalized eigenstates of the position operator in nonrela-
tivistic quantum mechanics, we can define generalized field
eigenstates jϕi associated with configurations of the field
ϕðxÞ∈S0. More specifically, consider the distributional field
operator ϕ̂ðxÞ on a hypersurface X satisfying

ϕ̂ðxÞjϕi ¼ ϕðxÞjϕi:

The states jϕi can be represented as a delta functional
on S0,

jϕi ¼
Z
S0
Dϕ0δ½ϕ − ϕ0�jϕ0i;

and are orthogonal to one another hϕjϕ0i ¼ δ½ϕ − ϕ0�. It
follows that these states form a basis forHϕ, so that any field
state on X may be expanded as

jΨϕi ¼
Z
S0
DϕΨϕ½ϕ�jϕi;

where Ψϕ½ϕ� ¼ hϕjΨϕi∈Hϕ.
It will be useful to smear the distributional field operator

with a probe function f∈S,

ϕ̂½f� ≔
Z

dΣðxÞ fðxÞϕ̂ðxÞ;

and define its conjugate momentum

π̂½g� ≔ −i
Z
S0
Dϕ

Z
dΣðxÞgðxÞjϕi δ

δϕðxÞ hϕj;

which together furnish a representation of the canonical
commutation relations,

½ϕ̂½f�; π̂½g��jΨϕi ¼ i

�Z
dΣðxÞfðxÞgðxÞ

�
jΨϕi:
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B. The embedding field Hilbert space HEmb

1. General framework

The embedding field Hilbert space HEmb ought to be
defined as the space of square-integrable functions over the
configuration space of the embedding fields Q containing
all possible hypersurfaces, X∶Σ → M∈EmbðΣ;MÞ. This
is a mathematically subtle topic because EmbðΣ;MÞ is not
a vector space (one cannot add arbitrary embeddings to
form another one), and we shall invoke a few assumptions
to proceed in analogy to the construction of the scalar field
Hilbert space.2 Following Isham and Kuchař [17,18], we
first consider the space of all (not necessarily spacelike)
embeddings Emb∶Σ → M, where Σ ¼ R. We then take the
configuration space to be

Q ≔ EmbðΣ;MÞ=DiffðΣÞ ≃G=H;

where G ≔ DiffðMÞ is the group of diffeomorphisms on
M, H ≔ DiffðM;X0Þ is the subgroup of diffeomorphisms
that leave invariant a fiducial embedding X0∶ Σ → M, and
DiffðΣÞ is the group of diffeomorphisms on Σ. The
embedding field Hilbert space will then be Hemb ≃
L2ðQ̃;DqÞ for an appropriate measure Dq on the quantum
configuration space Q̃ ⊃ Q.3

The embedding fields are assumed to be promoted to
self-adjoint operators on HEmb defined by the eigenvalue-
eigenvector equation

X̂μðxÞjXqi ≔ Xμ
qðxÞjXqi;

where Xμ
qðxÞ∶Σ → M is the eigenfunction corresponding

to the generalized eigenstate jXqi and equal to the coor-
dinate functions describing the embedding Xq.
Given that the embedding field operators are taken to be

self-adjoint, the embedding operator X̂μðxÞ is densely
defined on the basis jXqi, which are generalized eigenstates
of the embedding operator X̂μðxÞ with real eigenvalue
functions Xμ

qðxÞ. This is consistent with the demand that
X̂μðxÞ is self-adjoint and thus jXqi are orthogonal for
different q, so that we may represent hypersurface states as
Dirac delta functionals,

jXqi ¼
Z

Dq0 δ½Xq0 − Xq�jXq0 i:

It follows that fjXqi; ∀ q∈ Q̃g forms a basis for HEmb,
and thus we have a resolution of the identity

ÎEmb ¼
Z

DqjXqihXqj; ð8Þ

and we can expand embedding states as

jψi ¼
Z

Dqψ ½Xq�jXqi;

where ψ ½Xq� ≔ hXqjψi.
The embedding operators X̂μðxÞ may be smeared with a

one-form wμðxÞ on Σ, yielding

X̂½w� ≔
Z

dΣðxÞwμðxÞX̂μðxÞ

¼
Z

dΣðxÞwμðxÞ
Z

DqjXqiXμ
qðxÞhXqj:

The momentum operator canonically conjugate to X̂½w�
can be represented as

Π̂½v� ≔
Z

dΣðxÞ vμðxÞΠ̂μðxÞ

¼ −i
Z

dΣðxÞ vμðxÞ
Z

DqjXqi
δ

δXμ
qðxÞ hXqj;

where vμðxÞ is a vector field on Σ. Together, these operators
furnish a representation of the canonical commutation
relations

½X̂½w�; Π̂½v�� ¼ i
Z

dΣðxÞwμðxÞvμðxÞ:

Note that Π̂½v� cannot be a self-adjoint operator in general.
If this were the case, then the canonical commutation

2For an alternative construction using polymer quantization,
see [24].

3In arriving at this point, we assume that it is possible to define
a complete orthonormal set of probe one-forms Bq ≔fq1μðxÞ; q2μðxÞ;…; qnμðxÞg as elements of the Schwartz space
SðΣÞ of rapidly decreasing functions on Σ. Proceeding analo-
gously to Sec. III A, let us introduce linear functions that probe
the configuration space:

qi ≔
Z

dΣðxÞ qiμðxÞXμðxÞ∈R:

We assume that one can again define the set of cylindrical
functions CylBq

with respect to Bq,

ψðqÞ ¼ ψðq1; q2;…; qnÞ∈CylBq
;

analogous to Eq. (6), and introduce an inner product on CylBq

analogous to Eq. (7), which requires the introduction of a
cylindrical measure dμn ¼

Q
n
i¼1 dμ, which we take to be con-

structed as a product measure. We assume that this space
can be extended to the space of all functions on Q that are
cylindrical with respect to some set of probe functions, not
necessarily Bq, and then take the Cauchy completion of this space
to form the embedding Hilbert space HEmb. We further assume
that the embedding Hilbert space can be represented as
HEmb ≃ L2ðQ̃;DqÞ, where Dq ≔ limn→∞ dμn and Q̃ ¼ S0

2ðΣÞ
is a suitable space of two-component tempered distributions on Σ.
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relation would imply that the embedding configuration
space has a linear structure and would thus be a vector
space. However, this is not true, as one cannot add arbitrary
embeddings to produce another embedding (see [17,18] for
further discussion). Nevertheless, because Π̂½v� is symmet-
ric, for different vector fields vμ it will have nontrivial
domains in Hemb, where it may effectively act like a self-
adjoint operator. On these domains it will act like a
translation operator for the embedding fields, however,
only locally in the embedding configuration space.

2. Coherent states relative to subgroups
of spacetime diffeomorphisms

Consider a representation of a one-dimensional sub-
group Gv ⊂ DiffðMÞ generated by the vector field
vμðxÞ∈VecðMÞ, which is taken to vanish asymptotically,
given by

ÛvðsÞ ≔ e−isΠ̂½v� ¼ e−is
R

dΣðxÞvμðxÞΠ̂μðxÞ; ð9Þ

for all s∈ ½s0; s1� ⊂ R, where this interval will depend on
the states this operator acts on. For some (possibly
distributional) states it may even be defined for all
s∈R. On the domain of Π̂½v�, this group representation
will effectively act unitarily. Let us now consider a seed
state jX0i, taken to be a generalized eigenstate of the
embedding field operator which thus corresponds to a
definite hypersurface configuration, and define the set of
group coherent states [65] generated by the action of ÛvðsÞ:

fjXvðsÞi ≔ ÛvðsÞjX0i for all s∈ ½s0; s1� ⊂ Rg; ð10Þ

where the interval ½s0; s1� depends on X0. Similarly defined
coherent states relative to subgroups of the diffeomorphism
group of Euclidean space have found application in general
quantization methods [66]. As shown in Appendix A 1,
these coherent states satisfy

X̂μðxÞjXvðsÞi ¼ ðXμ
0ðxÞ þ svμðxÞÞjXvðsÞi: ð11Þ

This yields an interpretation of jXvðsÞi as a state of the
embedding fields associated with a hypersurface described
by the coordinate functions XμðxÞ ¼ Xμ

0ðxÞ þ svμðxÞ,
where Xμ

0ðxÞ are the coordinate functions of the seed
hypersurface X0; see Fig. 2.

C. The physical Hilbert space Hphys

Physical states jΨphysi are defined as those living in the
kernel of the constraint operators resulting from the
quantization of Eq. (4)4:

ĈμðxÞjΨphysi ¼ ðΠ̂μðxÞ þ ĥμðxÞÞjΨphysi ¼ 0; ð12Þ

where

ĥμðxÞ ≔ n̂νðxÞ ⊗ T̂ν
μðxÞ þ ÂμðxÞ ð13Þ

is the quantization of the Hamiltonian flux in Eq. (5), which
picks up an anomalous term,

ÂμðxÞ ¼ −
Z

DqjXqi
ffiffiffiffiffiffiffiffiffi
γðxÞ

p �
ημνXν

qðxÞ
∂K
∂x

−K2nμ

�
hXqj;

if we consider a free scalar field theory, i.e. one with mass
m ¼ 0. In that case, we are dealing with a conformal field
theory (CFT) which leads to anomalies in the quantum
setting. Adding the anomaly to the Hamiltonian ensures the
constraint algebra closes [19], and is further discussed in
Appendix C. In the expression above, K represents the
trace of the extrinsic curvature of the embedding Xq. The
effect of this anomalous term is to redistribute the energy
content of the slice based on how it is embedded in the
higher dimensional spacetime [19]. Notice that when acting
on states with support only on flat embeddings, the
anomalous term vanishes, as such embeddings have con-
stant zero extrinsic curvature. One should also keep in mind
that if the embeddings are taken to be flat at infinity, the
anomaly vanishes when integrated over the entire spacelike
slice (in any coordinate frame)5

Z
dΣqðxÞÂμðxÞ ¼ 0: ð14Þ

If the embedding states jXvðsÞi in Eq. (10) are generated
from an asymptotically flat embedding X0, then the

FIG. 2. Hypersurfaces corresponding to the seed state jX0i and
the state jXvðsÞi ≔ ÛvðsÞjX0i, which is connected to the seed
embedding by a unitary representation ÛvðsÞ of the one-
dimensional subgroup Gv ⊂ DiffðMÞ generated by the vector
field vμðxÞ∈VecðMÞ.

4Note that Ĉμ can in general not be a self-adjoint operator on
Hkin due to Π̂μ not being self-adjoint. However, one can still
impose it to construct its space of solutions.

5In [19], this was shown for cylindrical Minkowski space, but
from the equations in that work it follows that this also holds for
open Minkowski on hypersurfaces that become flat towards
infinity.
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anomaly vanishes when integrated over the associated
hypersurface XvðsÞ.
We assume that the set of states satisfying Eq. (12) can be

equipped with an inner product and completed to form the
physical Hilbert space Hphys. Gauge transformations are
generated by Ĉ½v� ≔ Π̂½v� þ ĥ½v� and leave physical states

invariant, eiĈ½v�jΨphysi ¼ jΨphysi, for all jΨphysi∈Hphys.

IV. MATTER RELATIVE TO QUANTUM FIELDS

When reparametrization-invariant theories are canoni-
cally quantized, it is found that the Hamiltonian of the
theory is proportional to a constraint operator. This implies
that physical states do not evolve under the action generated
by the quantized Hamiltonian. This is a generic feature
of relativistic theories and, ultimately, a manifestation of
background independence. This means that there is no
physical evolution relative to the external background.
Nonetheless, we are tasked with recovering a notion of

dynamics from the quantized theory. One approach is to
identify a subsystem after quantization to serve as a
reference frame relative to which another subsystem
evolves. Three approaches that accomplish this task are
the construction of so-called relational Dirac observables
(also known as evolving constants of motion) [5,60,67,68],
the Page and Wootters formalism [31,32], and a quantum
deparametrization procedure [39,41]. For simple mechani-
cal systems, these approaches have been shown to be
equivalent in [35,36].
In this section, we introduce the Page-Wootters formu-

lation of the parametrized field theory reviewed in Sec. II. A
conditional state of the matter field is defined by condition-
ing physical states on configurations of the embedding
fields. This conditional state is then shown to formally
satisfy the covariant Tomonaga-Schwinger equation and an
appropriate Schrödinger equation describing evolution
along arbitrary spacelike foliations of Minkowski space,
thus demonstrating the formal equivalence of the Page-
Wootters formalism with standard formulations of quantum
field theory. We also introduce relational Dirac observables
and a quantum deparametrization of the physical Hilbert
space that results in a relational Heisenberg picture. These
relational formulations are shown to be unitarily equivalent
to the Page-Wootters formalism.

A. The Page-Wootters formalism and
Tomonaga-Schwinger equation

The typical starting point of the Page-Wootters formal-
ism applied to a mechanical system is a physical state
jΨphysi describing a noninteracting clock C and system of
interest S satisfying a Hamiltonian constraint,

ĈHjΨphysi ¼ ðĤC þ ĤSÞjΨphysi ¼ 0: ð15Þ

One then considers a time observable

TC ≔ fjtihtj; ∀ t∈G ⊆ Rg;

defined by a set of rank-1 effect density operators jtihtj
constructed from the outer product of so-called clock states
jti for all t∈R that parametrize the one-dimensional time
evolution group G generated by the clock Hamiltonian ĤC.
What distinguishes TC as a time observable is that it
transforms covariantly under the action of G, which
amounts to the following relation between the clock states6:

jt0i ¼ e−iĤCðt0−tÞjti: ð16Þ

One then defines the conditional state of the system jψSðtÞi
at a time t as

jψSðtÞi ≔ ðhtj ⊗ ÎSÞjΨphysi: ð17Þ

It then follows from Eqs. (15) and (16) that the conditional
wave function satisfies the Schrödinger equation,
i d
dt jψSðtÞi ¼ ĤSjψSðtÞi, and yields the correct one- and
two-time probabilities [35]. Thus, we conclude that the
conditional state jψSðtÞi ought to be interpreted as the usual
time-dependent solution to the Schrödinger equation,
which constitutes the recovery of the standard quantum
mechanical framework from the Page-Wootters formalism.
However, Page and Wootters never intended these ideas

to be limited to mechanical systems, which is made clear
when Page writes [71]:

For simplicity, one can think of the […] system as
a “particle”with “position,”which is a convenient
model to have in mind, but my discussion is not
intended to be limited to such a simple model. For
example, the closed system could consist of
relativistic quantum fields within a given classical
background spacetime.

Taking this seriously, we develop a field-theoretic gener-
alization of the Page-Wootters formalism for PFT. We
begin by considering a physical state jΨphysi satisfying
Eq. (12), and introducing the so-called reduction map
RS½Xq�, which plays the same role as Eq. (17). The
reduction map is defined as

RS½Xq�∶Hphys → HXq
;

jΨphysi ↦ jψϕ½Xq�i ≔ RS½Xq�jΨphysi;

6We note that in the case when the spectrum of ĤC is
unbounded, then TC can be associated with a self-adjoint time
operator T̂C that is canonically conjugate to ĤC, ensuring that the
clock Hamiltonian generates time translations. However, in the
case when ĤC is bounded from below, as in any physical system,
then such a construction is not possible. Nonetheless, a covariant
positive operator-valued measure (POVM) TC is still well defined
and yields the optimal estimate of parameter time [33–36,69,70].
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where

RS½Xq� ≔ hXqj ⊗ Îϕ ð18Þ

is used to condition a physical state jΨphysi on an embed-
ding state jXqi. We refer to jψϕ½Xq�i as a conditional state
of the field ϕ relative to the hypersurface Xq.
As a consequence of the resolution of the identity in

Eq. (8), the reduction map is formally invertible on physical
states, with inverse

R−1
S ½Xq�∶HXq

→ Hphys;

jψϕ½Xq�i ↦ jΨphysi ¼ R−1
S ½Xq�jψϕ½Xq�i;

where

R−1
S ½Xq�¼

Z
Dq0jXq0 i⊗ Ûϕ½Xq0 −Xq�

¼
Z

Dq0ÛX½Xq0 −Xq�jXqi⊗ Ûϕ½Xq0 −Xq�; ð19Þ

and

ÛX½Xq0 − Xq� ≔ e
−i
R

dΣqðxÞðXμ

q0 ðxÞ−X
μ
qðxÞÞΠ̂μðxÞ;

Ûϕ½Xq0 − Xq� ≔ e
−i
R

dΣqðxÞðXμ

q0 ðxÞ−X
μ
qðxÞÞnνðxÞT̂ν

μðxÞ: ð20Þ

Note that the surface integrals above are defined on the
embedded hypersurface Xq in Minkowski space and that
the difference Xμ

q0 ðxÞ − Xμ
qðxÞ defines a vector field on (but

not necessarily tangential to) this surface. In the line above,
nνðxÞ is no longer an operator as it has already been
evaluated on the embedding Xq. The action of the inverse
map on a conditional state of the field is then

R−1
S ½Xq�jψϕ½Xq�i ¼

Z
DqjXqijψϕ½Xq�i ¼ jΨphysi: ð21Þ

Given that RS½Xq� is invertible, it follows that Hphys is
isomorphic to HXq

.
We will now consider the conditional state of the field

jψϕ½XvðsÞ�i ≔ RS½XvðsÞ�jΨphysi ð22Þ

associated with a one-dimensional subgroup Gv ⊂ G
defined by the vector field vμðxÞ and group element s.
In what follows, we will derive the variation of jψϕ½XvðsÞ�i
in the parameter s, parametrizing the subgroupGv, and then
its variation in the vector field vμðxÞ, characterizing
deformations of the hypersurface X0. We then consider
the evolution of the conditional state along a foliation F
of M.

1. Evolution in the group parameter s

One notable difference to the quantum mechanical case
in Eq. (15) is that in PFT the embedding fields, serving as a
dynamical reference frame for the scalar field, interact with
the scalar field via the embedding-dependent Hamiltonian
in Eq. (13) (cf., Ref. [33]). Nevertheless, we can proceed
similarly.
The evolution of the conditional state jψϕ½XvðsÞ�i in the

parameter s∈ ½s0; s1� satisfies

i
d
ds

jψϕ½XvðsÞ�i ¼ i
d
ds

hXvðsÞjΨphysi

¼ i
d
ds

hX0jeisΠ̂½v�jΨphysi
¼ ihX0jeisΠ̂½v�iΠ̂½v�jΨphysi
¼ −hXvðsÞjΠ̂½v�jΨphysi
¼ hXvðsÞjĥ½v�jΨphysi
¼ ĥ½v;XvðsÞ�hXvðsÞjΨphysi
¼ ĥ½v;XvðsÞ�jψϕ½XvðsÞ�i; ð23Þ

where the dependence on XvðsÞ is through nμðxÞ, and we
have defined

ĥ½v;XvðsÞ� ≔
Z

dΣðxÞvμðxÞnνðxÞT̂ν
μðxÞ; ð24Þ

and made use of Eqs. (9), (12), and (22). It is thus seen that
the operator ĥ½v;XvðsÞ� generates the flow in s. We remind
the reader that the anomaly (when present) has vanished
because we have integrated over asymptotically flat spatial
hypersurfaces as in Eq. (14).
As an example, let us consider an inertial foliation of

Minkowski space by flat spacelike hypersurfaces defined
by the one-parameter family of hypersurfaces through the
coordinate functions,

Xμðs; xÞ ¼ Xμð0; xÞ þ svμðxÞ;

where the fiducial embedding is taken to be Xμð0; xÞ ¼
ð−x sinhw; x coshwÞ, the vector field vμðxÞ ¼ ðcoshw;
− sinhwÞ, and w denotes the rapidity of the inertial
frame moving at a relative speed β defined as coshw ≔
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
. It then follows that

nνðxÞ ¼ ϵνρ
∂XρðxÞ
∂x

����
X¼XvðsÞ

¼ ðcoshw; sinhwÞ;

which is normal to each hypersurface of the foliation. For
such a foliation, Eq. (23) reduces to the Schödinger
equation
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i
d
dt

jψϕ½XvðtÞ�i ¼ Ĥflat;βjψϕ½XvðtÞ�i;

where Eq. (24) simplifies to the Hamiltonian

Ĥflat;β ≔
Z

dΣðxÞvμðxÞnνðxÞT̂ν
μðxÞ;

which generates an evolution in the group parameter s ¼ t,
interpreted as the proper time of an observer moving along
the timelike congruence defined by the inertial foliation.

2. Variation of the conditional hypersurface

Instead of considering the conditional state jψϕ½XvðsÞ�i to
be a function of s, we may instead consider it to be a
functional depending on the coordinate functions
XμðxÞ ¼ Xμ

0ðsÞ þ svμðxÞ, where vμðxÞ defines a one-dimen-
sional subgroup Gv ⊂ DiffðMÞ characterizing a set of
particular deformations of the fiducial hypersurface X0.
Let us introduce the notation jψϕ½XμðxÞ�i ≔ jψϕ½XvðsÞ�i
to emphasize the functional dependence of the conditional
state on the hypersurface XvðsÞ through its coordinate
functions XμðxÞ.
Now consider variations of the conditional state under

deformations of the hypersurface XvðsÞ by taking the
functional derivative with respect to the coordinate func-
tions XμðxÞ, while keeping Xμ

0ðxÞ fixed for s∈ ½s0; s1�:

i
δjψϕ½XμðxÞ�i

δXμðxÞ ¼ i
δ

δXμðxÞ hXvðsÞjΨphysi

¼ i
δ

δXμðxÞ hX0jeisΠ̂½v�jΨphysi

¼ ihX0j
δei

R
dΣðxÞðXμðxÞ−Xμ

0
ðxÞÞΠ̂μðxÞ

δXμðxÞ jΨphysi

¼ ihX0jeisΠ̂½v�iΠ̂μðxÞjΨphysi
¼ −hXvðsÞjΠ̂μðxÞjΨphysi
¼ hXvðsÞjĥμðxÞjΨphysi
¼ ĥμðx; XμðxÞÞjψϕ½XμðxÞ�i: ð25Þ

Let us define the surface variation as the normal projection
of the functional derivative with respect to the coordinate
functions [72]

δ

δXðxÞ ≔ nμðxÞ δ

δXμðxÞ ;

where nμðxÞ is the normal to XvðsÞ; this derivative
characterizes normal deformations of the conditional wave
functional. By contracting Eq. (25) with nμðxÞ, we recover
the Tomonaga-Schwinger equation:

i
δ

δXðxÞjψϕ½XμðxÞ�i¼nμðxÞĥμðx;XμðxÞÞjψϕ½XμðxÞ�i: ð26Þ

The recovery of the Tomonaga-Schwinger equation
[28,30,73,74] using the Page-Wootters formalism indicates
its formal equivalence with standard functional formula-
tions of quantum field theory. One should note that the
conformal anomaly potential ÂμðxÞ is embedded in the
Hamiltonian flux (for the m ¼ 0 case), underlying a
redistribution of the energy flux over the embedding for
hypersurfaces with nonvanishing extrinsic curvature.
However, this once again does not affect the integrated
version of the Tomonaga-Schwinger equation, as the
anomaly vanishes for asymptotically flat embeddings.
We recall that a functional Schrödinger equation

has previously been derived in the context of PFT
[19,21,22,24,59]; however, not on the reduced Hilbert
space of conditional states of the scalar field as done here,
but rather directly using the constraint and physical states.
Employing the Page-Wootters formalism here permits us to
instead identify such a functional Schrödinger equation
with the Tomonaga-Schwinger equation, which similarly is
formulated on the Hilbert space of the quantum field alone.

3. Schrödinger evolution along a one-parameter
family of hypersurfaces

Consider a one-parameter familyF≔fXðtÞ;∀ t∈½t1;t2�g
of spacelike hypersurfacesXðtÞ in Minkowski space (which
may or may not constitute a foliation). Each hypersurface
in the family is associated with a conditional state
jψϕ½XðtÞ�i ≔ RS½XðtÞ�jΨphysi, which evolves along the
family according to

i
d
dt

jψϕ½XðtÞ�i ¼ ilim
ε→0

jψϕ½Xðtþ εÞ�i − jψϕ½XðtÞ�i
ε

¼ i
Z

dΣðt; xÞtμðt; xÞ δ

δXμðxÞ jψϕ½XðtÞ�i

¼ ĤðtÞjψϕ½XðtÞ�i; ð27Þ

wherewe have used Eq. (25) to arrive at the last equality and
defined the Hamiltonian

ĤðtÞ ≔
Z

dΣðt; xÞtμðt; xÞĥμðx; Xμðt; xÞÞ;

by projecting the energy-momentum density ĥμðx; Xμðt; xÞÞ
along the deformation vector field tμ and integrating over
the Cauchy surface Σ. In particular, we can decompose
the Hamiltonian into normal and parallel deformation
generators:

ĤðtÞ ¼ Ĥ⊥ðtÞ þ ĤkðtÞ;

where
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Ĥ⊥ðtÞ ≔
Z

dΣðxÞNðtÞnμðt; xÞĥμðx; Xμðt; xÞÞ;

ĤkðtÞ ≔
Z

dΣðxÞNμðt; xÞĥμðx; Xμðt; xÞÞ:

It is seen that Eq. (27) constitutes a generalized Schrödinger
equation that accounts for normal deformations of the
hypersurface XðtÞ generated by Ĥ⊥ðtÞ, and spatial redis-
tribution of points generated by ĤkðtÞ [i.e., spatial diffeo-
morphisms of XðtÞ]. Moreover, the standard Schrödinger
equation in Minkowski space is recovered when restricting
to inertial embeddings, such as Tðt; xÞ ¼ t and Xðt; xÞ ¼ x.
It then follows that tμðt; xÞ ¼ nμðt; xÞ ¼ ð1; 0Þ, so that

i
d
dt

jψϕ½XðtÞ�i ¼ Ĥflat;0jψϕ½XðtÞ�i;

where Ĥflat;0 ¼
R
dΣðxÞT̂0

0ðxÞ, is the standard Hamiltonian
on a flat embedding and T̂0

0ðxÞ is the standard energy
density in the employed coordinate frame.
Integrating Eq. (27), we arrive at

jψϕ½X2�i ¼ ÛF ðt2; t1Þjψϕ½X1�i; ð28Þ

where

ÛF ðt2; t1Þ ≔ Pe
−i
R

t2
t1

dt ĤðtÞ ð29Þ

is formally a unitary operator that propagates the condi-
tional state of the matter field from X1 to X2, and P denotes
the path-ordering operator in the foliation parameter t. Note
that the Hamiltonian density satisfies the microcausality
condition, ½ĥμðt; xÞ; ĥνðt; x0Þ� ¼ 0 for spacelike separated
points labeled by the coordinates ðt; xÞ and ðt; x0Þ. This
provides the integrability requirement for the integral in
Eq. (29) to be well defined and independent of the
spacetime foliation of the region being integrated over
[28,30,73–75]. If the Hamiltonian generating ÛF ðt2; t1Þ is
constructed by smearing the Hamiltonian flux with a
deformation vector field associated with a complete space-
like foliation, then it is a complete vector field in
Minkowski space M. The deformation vector field lifts
to a complete vector field on the classical scalar field
configuration space Cϕ (see Sec. III) because the deforma-
tion vector field generates a gauge diffeomorphism, which
cannot change the C2 nature of a classical field configu-
ration, nor its asymptotic drop-off property, given that also
gauge diffeomorphisms have to vanish asymptotically. In
fact, this should extend to the quantum configuration space
S0, where the action of the Lie derivative on distributions
can be understood via partial integration and the properties
of the gauge diffeomorphisms should ensure the preserva-
tion of the properties of the permitted set of distributions.
Making this rigorous is somewhat challenging; however, it

suggests that van Hove’s theorem in quantum mechanics
[76–78] could be extrapolated to field theory, in which
case it would imply that the Hamiltonian is formally
self-adjoint.
Alternatively, we may evolve jψϕ½X1�i to jψϕ½X2�i by

first applying the inverse of the reduction map evaluated at
X1 and then the reduction map evaluated at X2, yielding

jψϕ½X2�i ¼ RS½X2�∘R−1
S ½X1�jψϕ½X1�i

¼ hX2j ⊗ Îϕ

Z
DqjXqi ⊗ Ûϕ½Xq − X1�jψ ½X1�i

¼ Ûϕ½X2 − X1�jψ ½X1�i: ð30Þ

Assuming the family of hypersurfaces constitutes a
foliation, applying Eq. (30) between successive leaves,
as is done in Appendix B, together with the fact that
R−1

S ½Xq�∘RS½Xq� ¼ Îphys, which stems from the gauge
invariance of physical states imposed by Eq. (12), it follows
that we must have

jψϕ½X2�i ¼ ÛF ðt2; t1Þjψϕ½X1�i ¼ Ûϕ½X2 − X1�jψϕ½X1�i:
ð31Þ

This shows that the evolution between the two hyper-
surfaces is formally unitary and foliation independent since
neither the reduction map nor its inverse depends on F .
This is a different way of demonstrating the foliation
independence of the Tomonaga-Schwinger equation that
does not use the microcausality condition but instead uses
the fact that physical states are invariant under diffeo-
morphisms, which is a gauge symmetry of PFT. See Fig. 3
for more detail. This is an instantiation of the fact that
foliation independence and diffeomorphism invariance are
deeply intertwined in canonical formulations of generally
covariant theories, e.g., see [25,60,79–81].

B. Changes of embedding configuration

Having constructed the conditional states jψϕ½Xq�i of the
scalar field relative to an embedding Xq, we now consider
how the conditional state changes under a change of
embedding, Xq → Xq0 . Since the embedding fields con-
stitute a dynamical reference frame, each configuration can
be regarded as a reference frame orientation. The action of a
generic change in frame configuration, Xq → Xq0 , on the
conditional state jψϕ½Xq�i is given in terms of the reduction
map and its inverse, and is seen to induce a unitary map on
conditional states:

jψϕ½Xq0 �i ¼ RS½Xq0 �∘R−1
S ½Xq�jψϕ½Xq�i

¼ Ûϕ½Xq0 − Xq�jψϕ½Xq�i: ð32Þ

As depicted in Fig. 3, this map is used to transform
conditional states between two embedding configurations
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associated with different leaves of a foliation. However, the
map in Eq. (32) is more general as it maps the conditional
state between two embedding configurations that are not
necessarily part of a foliation. For example, consider two
embedding configurations related by a finite Lorentz boost
Λ. The coordinate functions characterizing these embed-
dings are related by Xμ

ΛqðxÞ ¼ Λμ
νXν

qðxÞ. Inserting this in
Eq. (32), we arrive at

jψϕ½XΛq�i ¼ Ûϕ½XΛq − Xq�jψϕ½Xq�i
¼ e−i

R
dΣðxÞðΛμ

ν−δμνÞXν
qðxÞĥμðxÞjψϕ½Xq�i:

Furthermore, covariance requires that field observables
ÂϕðqÞ transform between hypersurfaces q and Λq as

ÂϕðΛqÞ ¼ Ûϕ½XΛq − Xq�ÂϕðqÞÛ†
ϕ½XΛq − Xq�:

We may also consider how the conditional state trans-
forms under a transformation from an inertial to a uni-
formly accelerating frame [82,83]. In particular, if
bμ ≔ ð0; 1αÞ is a constant vector, the embedding configura-
tion obtained through the finite special conformal trans-

formation Xμ
q0 ðxÞ ¼

Xμ
qðxÞ−bμX2

qðxÞ
βðxÞ experiences a uniform

acceleration α relative to Xq, where βðxÞ ≔ 2XσðxÞbσ −
Xσ
qðxÞXqσðxÞ=α2. Using Eq. (32), the conditional state of

the field transforms as

jψϕ½Xq0 �i ¼ Ûϕ½Xq0 − Xq�jψϕ½Xq�i

¼ e
−i
R

dΣðxÞ
h
βðxÞXμqðxÞ−bμX2qðxÞ

1−βðxÞ

i
ĥμðxÞjψϕ½Xq�i:

Note that Ûϕ½Xq0 − Xq� may have a non-trivial domain, as
Xμ
q0 ðxÞ defined via the acceleration above is not in general

guaranteed to be an embedding.

C. Construction of relational Dirac observables

We may construct gauge-invariant observables directly
on the physical Hilbert space that encode relations between
the matter field and embedding fields; such observables are
known as relational Dirac observables [5,56,60,67,68].
Consider an observable on the field Hilbert space

Â0 ≔
Z

dΣ0ðxÞA½ϕ̂ðxÞ; π̂ðxÞ�∈BðHϕÞ:

Using the reduction map and its inverse in Eqs. (18) and
(19), we can construct a relational Dirac observable F̂A0

½Xq�
on the physical Hilbert space [35], such that

hψϕ½Xq�jÂ0jψϕ½Xq�i ¼ hΨphysjF̂A0
½Xq�jΨphysiphys;

where the subscript “phys” denotes the physical inner
product as opposed to the kinematical inner product (no
subscript), and

F̂A0
½Xq�≔R−1

S ½Xq�Â0RS½Xq�

¼
Z

Dq0ÛX½Xq0 −Xq�jXqihXqj⊗ Ûϕ½Xq0 −Xq�Â0:

ð33Þ

As shown in Appendix A 2, F̂A0
½Xq� commutes with the

constraint Ĉ½g� on physical states,

½Ĉ½g�; F̂A0
½Xq��jΨphysi ¼ 0;

and thus constitutes a gauge invariant relational Dirac
observable. F̂A0

½Xq� encodes the outcome of the observable
Â0, conditioned on the embedding being in configura-
tion Xq.
The dynamics of the matter field ϕ relative to the

embedding fields Xμ along a spacelike foliation F ¼
fXðtÞ; ½t1; t2�g is encoded in the one-parameter family of
relational Dirac observables FA0

½XðtÞ� acting onHphys. This
should be contrasted with how the same dynamics in the
Page-Wootters formalism is encoded in the integration of
the Tomonaga equation on Hϕ along F as in Eq. (29)
and Fig. 3.

FIG. 3. The composition of the inverse reduction map relative
to X1 and reduction map relative to X2 (upper path), which maps
the conditional state jψϕ½X1�i to jψϕ½X2�i, is shown in Eq. (31) to
be equivalent to integrating the Tomonaga-Schwinger equation
along an arbitrary spacelike foliation of Minkowski space
connecting X1 and X2 (lower path). Foliation independence of
the evolution of the conditional state from X1 and X2 arises in the
former as a consequence of the diffeomorphism invariance of the
physical states from which the conditional states of the scalar
field are constructed, while in the latter it arises as a consequence
of the microcausality condition satisfied by the stress-energy
tensor of the scaler field.
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D. Quantum deparametrization to
a relational Heisenberg picture

Conditioning physical states on embedding states
yielded a relational functional Schrödinger picture for
the free scalar field that formally encompasses the standard
wave functional formulation in Minkowski space. As a next
step, we apply a quantum deparametrization procedure
related to the method developed in Refs. [35,36,38,39,41]
to give a unitarily equivalent, functional Heisenberg picture
for the scalar field. Such a procedure is modeled on the
classical analog of deparametrizing a classical reparamet-
rization-invariant theory.
Let us consider the following deparametrization map

relative to a fiducial hypersurface X0
7:

T X0
≔

Z
DqjXqihXqj ⊗ Ûϕ½X0 − Xq�; ð34Þ

with inverse

T −1
X0

¼
Z

DqjXqihXqj ⊗ Û†
ϕ½X0 − Xq�; ð35Þ

such that T −1
X0
∘T X0

¼ Îphys.
We define the Heisenberg reduction map as

RH∶ Hphys → HXq
;

jΨphysi ↦ RHjΨphysi;

where

RH ≔ hXqjT X0
¼ Ûϕ½X0 − Xq�RS½Xq� ¼ RS½X0�; ð36Þ

with inverse

R−1
H ≔T −1

X0

Z
DqjXqi⊗ Îϕ¼

Z
DqjXqi⊗ Û†

ϕ½X0−Xq�:

Given a physical state jΨphysi, the Heisenberg reduction
map and its inverse can be used to construct a relational
Heisenberg picture. Analogous to the conditional state
defined in Eq. (22), we define a conditional Heisenberg
state relative to a fiducial embedding X0 as

RHjΨphysi ¼ RS½X0�jΨphysi ¼ jψϕ½X0�i:

In addition, the relational Dirac observables defined in
Eq. (33) can be mapped to Heisenberg picture observables
(cf., Theorem 5 of Ref. [35])

Âϕ½Xq� ≔ RHF̂A0
½Xq�R−1

H

¼ Ûϕ½X0 − Xq�Â0Û
†
ϕ½X0 − Xq�;

which satisfies the Heisenberg functional equation of
motion,

δ

δXμ
qðxÞ Âϕ½Xq� ¼ i½hμ½Xq; x�; Âϕ�; ð37Þ

as we show in Appendix A. Thus, together with the
Tomonaga-Schwinger equation in Eq. (26), the relation
between the Heisenberg and Schrödinger reduction maps in
Eq. (36), and the definition of the Dirac observables
in Eq. (33), it is seen that the description of a PFT in terms
of the Page-Wootters formalism developed in Sec. IVA, the
quantum deparametrization procedure introduced immedi-
ately above, and the relational Dirac observable prescription
presented in Sec. IV C yield relational formalisms that are
unitarily equivalent. Thus, as in the case of noninteracting
mechanical systemswith vanishing Hamiltonian constraints
[35,36], there exists a field-theoretic trinity of relational
quantum dynamics for PFT.

V. QUANTUM EMBEDDING TRANSFORMATIONS

Analogous to the usual interpretation of the conditional
state in the Page-Wootters formalism, the conditional
state jψϕ½X�i is a functional describing a matter field ϕ
relative to a hypersurface associated with the embedding X.
Operationally, the embedding fields serve as abstractions of
a reference frame consisting of the rods and clocks of a
congruence of observers.
Given this interpretation, an important task is to examine

how the conditional wave functional jψϕ½X�i transforms
under a change of embedding X, and in doing so, recover
classical frame transformations in a certain approximation.
Moreover, the formalism introduced above treats embed-
dings as genuine quantum degrees of freedom associated
with a Hilbert space, allowing us to go beyond classical
frame transformations and examine the field from the
perspective of a nonclassical embedding. Such a generali-
zation is in the spirit of Ref. [43] in which spatial super-
position and entanglement were interchangeable under an
analogous quantum frame transformation. Moreover,
such quantum frame transformations provide the founda-
tion on which to build a quantum theory of general
covariance [35–42], which is expected to play an important
role in a quantum theory of gravity.

A. Changes of embedding fields

In the remainder, we shall now assume that there exist
two dynamically distinct embedding fields, either of
which we can employ as a reference frame. For example,
one of them might be given by some additional matter
fields, though we shall not specify how this effects the

7The analog in [35,36,38,39,41] trivializes the constraints to
the reference system, thereby effectively disentangling (relative to
the kinematical tensor product structure) the latter and the degrees
of freedom to be described relative to it. In the present case, the
map does not achieve this for arbitrarily smeared constraints.
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Hamiltonian constraint. In this way, while being more
formal, we are also more general.
Consider then two embedding Hilbert spaces HA

and HB with their respective embedding states denoted
as jXAi and jYBi. Suppose the conditional wave functional
relative to A is jψϕ½XA�i, and the state of embedding
field B is

jψBjA½XA�i ¼
Z

DqψB½Yq;XA�jYqi;

so that their joint state is

jψB;ϕ½XA�i ¼ jψBjAijψϕ½XA�i: ð38Þ

The change of embedding map ΛA→B∶ HB ⊗ Hϕ →
HA ⊗ Hϕ transforms a conditional state relative to embed-
ding A to the conditional state relative to embedding B:

ΛA→B ≔ RS½YB�∘R−1
S ½XA�

¼
Z

DqjXqi ⊗ hYBjÛY½Xq − XA� ⊗ Ûϕ½Xq − XA�:

Transforming the conditional state in Eq. (38), defined as
the state of B and ϕ relative to A, to a conditional state of A
and ϕ relative to B:

jψA;ϕ½YB�i ¼ ΛA→BjψB;ϕ½XA�i

¼
Z

DqψBjA½YB − Yq�jXqijψϕ½Xq�i:

It is seen that even though the matter field ϕ and embedding
fields associated with B are separable relative to A, from the
perspective of B, they are entangled. This is analogous to
the frame dependence of superposition and entanglement
exhibited in Refs. [43,49].

B. Particle creation due to reference frame coherence

Having defined the change of embedding map ΛA→B, its
action can transform observables between foliations of
spacetime associated with distinct embedding frame fields.
In particular, consider two foliations FA ¼ fXAðτÞg and
FB ¼ fXBðtÞg of M, each associated with a timelike
killing vector field, ∂τ and ∂t, respectively. Suppose the
field is expanded in creation and annihilation operators
along FA as

ϕ̂ðτ; xÞ ¼
Z

dkðukðτ; xÞâk þ u�kðτ; xÞ�â†kÞ;

and along FB as

ϕ̂ðt; xÞ ¼
Z

dkðvkðt; xÞb̂k þ v�kðt; xÞb̂†kÞ;

where ukðτ; xÞ and ukðτ; xÞ, together with their complex
conjugate, form two complete sets of orthonormal solutions
to the classical field equation.
The number operator N̂k;A ≔ a†kak, which counts the

number of particles relative toFA, can be expressed relative
to FB, as follows:

N̂k;A ↦ ΛA→BðÎB ⊗ N̂k;AÞΛ†
A→B

¼
Z

DqjXqihXqj ⊗ N̂k;q;

where N̂k;q ≔ ĉ†k;qĉk;q is the number operator on the

hypersurface Xq, and ĉk;q and ĉ†k;q are the associated
creation and annihilation operators with mode functions
wiðt̃; xÞ, where t̃ is a time coordinate along a foliation
between XA and Xq. In particular, observe that the trans-
formation maps a local operator into a nonlocal one. We
note in passing that the transformed number operator has
the same form as the encoding map that appears in the
context of quantum communication [13,84–86], as a
quantization of Dirac observables using covariant
POVMs [35,38,87,88], and as a relativization map in the
context of Refs. [44,50,51]. The operators ĉk;q can be
expressed as a linear combination of the creation and
annihilation operators b̂k and b̂†k via the Bogoliubov
transformation

ĉk;q ¼
Z

djðαjkðqÞb̂j þ β�jkðqÞb̂†jÞ;

where αjkðqÞ ≔ ðvj; wkÞ and βjkðqÞ ≔ −ðvj; w�
kÞ are

Bogoliubov coefficients and (,) is the usual Klein-
Gordon inner product on Xq.
Now suppose that relative to FB the scalar field is in its

vacuum state j0ϕjBi, and the state of embedding A is jψAjBi.
Then, the expected number of particles relative to A is

hψAjBjh0ϕjBjN̂k;AjψAjBij0ϕjBi

¼
Z

DqjψAjB½Xq�j2
Z

djjβjkðqÞj2: ð39Þ

Supposing that jψAjB½Xq�j2 has support on Xq that have
nonvanishing βjkðqÞ, the vacuum state of B will be seen to
have particles relative to A. A “classical” Bogoliubov
transformation is recoveredwhen jψAjB½Xq�j2 → δ½Xq − XB�
becomes sharply localized around XB.
A possible interpretation of Eq. (39) is that standard

treatments of quantum field theory miscount the number
of field quanta by assuming an infinitely precise localization
of the laboratory frame. In contrast, Eq. (39) weighs the
expected particle number for each embedding by the distri-
bution jψAjB½Xq�j2. This particle creation effect is a field-
theoretic analog of the transformation between superposition
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and entanglement that occurs in general quantum reference
frame changes discussed in Refs. [43,49], and the interplay
between clock state localization and temporally localized
dynamics discussed [35,45]. We note that related, though
qualitatively different, particle creation effects have been
discussed in the context of superpositions of accelerated
observers [52] and superpositions of spacetime structure
[55,89,90].

VI. DISCUSSION AND OUTLOOK

Beginning with the Dirac quantization of PFT, we
have developed a field-theoretic generalization of the
Page-Wootters approach to relational dynamics. We began
by formally constructing the kinematical Hilbert spaces of
the scalar matter field and embedding fields. We then
introduced group coherent states of the embedding fields
relative to subgroups of the diffeomorphisms of Minkowski
space, and used them to construct states of the scalar field
relative to hypersurface configurations. Exploiting the
group properties of these coherent states, we showed that
the conditional state of the scalar field satisfies the
Tomonaga-Schwinger equation, and thus demonstrated
that the field-theoretic generalization of the Page-
Wootters formally coincides with standard functional for-
mulations of quantum field theory. As depicted in Fig. 3,
what is notable in this framework is the appearance of a
dual picture connecting the foliation independence of the
conditional state’s evolution between two spacelike hyper-
surfaces emerging as a consequence of the invertibility of
the Page-Wootters reduction maps, and ultimately the
gauge invariance of physical states. Alternatively, foliation
independence of the integrated Tomonaga-Schwinger is
usually derived as a consequence of the microcausality
condition satisfied by the scalar field’s stress-energy tensor.
In addition, we constructed relational Dirac observables

corresponding to field observables relative to configura-
tions of the embedding fields and a quantum deparamet-
rization of the physical Hilbert space, which led to a
relational Heisenberg picture [35,36,39,41]. Both of
these relational frameworks were shown to be unitarily
equivalent to the Page-Wootters formalism, extending the
equivalence established in Refs. [35,36,38]. Finally, we
introduced a field-theoretic extension of quantum reference
frame changes [43], which can be used to transform the
number operator between different quantum reference
frames characterized by a quantum state of the embedding
fields. In doing so, we showed that the particle content of a
field depends on the quantum state of the embedding it is
being described relative to, highlighting a consequence of
treating embeddings as quantum reference frames.
Natural generalizations of the above analysis are pos-

sible, though they do not come without difficulty. It would
be natural to extend the Page-Wootters formalism to higher
spacetime dimensions; however, the canonical quantization
of such a PFT leads to difficulties in constructing unitary

evolution along arbitrary foliations [21,22]. Nevertheless,
extensions to higher spacetime dimensions have been
developed either through the use of loop quantization
techniques [24] or through algebraic methods [22], the
latter of which implements evolution between spacelike
hypersurfaces via a map that has a similar compositional
structure as the evolution map depicted in Fig. 3.
Alternatively, one could imagine generalizing the frame-
work by replacing the Minkowski background considered
here with a curved spacetime, though the simple difference
of vector fields used to connect points on different hyper-
surfaces would have to be suitably generalized (e.g., Fermi-
Walker transport). Instead of modifying the background
spacetime, another avenue to explore could be replacing the
“ideal” embedding fields with physical matter that pos-
sesses its own independent dynamics. Such a generalization
is directly relevant to the canonical quantization program
given that the canonical quantization of general relativity
with dust is deparametrizable like PFT [4,56,91–95] (see
also Ref. [59]). In principle, a Page-Wootters formulation
of geometrodynamics may be possible, even if such a goal
is ambitious. Furthermore, it would be interesting to
explore connections with the recently proposed geometric
event-based relativistic quantum mechanics [96], which is
based on a similar conditioning procedure that was
employed in this work, as well as the “second quantization”
of the Page-Wootters formalism proposed in [97,98].
We further mention that phase space extensions by

embedding fields also play a crucial role in the recent
discussions on finite subregions and edge modes in gravity
[57,58,99–104]. In that context, these embedding fields
rather define the spatial boundaries of the subregion in a
relational manner. Again, a conditional state formulation
may also be applicable to such a setting.
Aside from the dynamical model provided by PFT,

our analysis relies on coherent states of the embedding
field introduced in Eq. (10), which correspond to
classical configurations characterizing hypersurfaces in
Minkowski space. Group coherent states play an important
role in many applications of quantum theory [65], and
often serve to indicate the orientation of reference frame
[13,33–38,44,50,51,70,87,88]. However, the literature has
focused on coherent states associated with finite-dimen-
sional Lie groups, whereas the coherent states of the
embedding fields considered above are associated with
subgroups of the infinite-dimensional Lie group of space-
time diffeomorphisms, and further study of their math-
ematical structure is of interest [66].

ACKNOWLEDGMENTS

We thank S. Ali Ahmad for comments on an early
version of this manuscript. P. H. is grateful for the hospital-
ity of the high-energy physics group at EPF Lausanne,
where the final stages of this work were carried out. This
work was supported by funding from Okinawa Institute of

HÖHN, RUSSO, and SMITH PHYS. REV. D 109, 105011 (2024)

105011-14



Science and Technology Graduate University and initially
by an “It-from-Qubit” Fellowship of the Simons
Foundation (awarded to P. H.). This project/publication
was also made possible through the support of the ID
No. 62312 grant from the John Templeton Foundation, as
part of the “The Quantum Information Structure of
Spacetime” Project (QISS). The opinions expressed in this
project/publication are those of the author(s) and do not
necessarily reflect the views of the John Templeton
Foundation. A. R. H. S. is grateful for financial support
through a Summer Research Grant awarded by Saint
Anselm College.

APPENDIX A: EXPLICIT CALCULATIONS

In this Appendix, we collect explicit calculations leading
to some of the results in the main body. In particular, we
describe the connection between eigenstates of the embed-
ding operator and coherent states, and we prove the
commutation of lifted Dirac observables with the constraint
operator.

1. Generalized eigenstates of the embedding
operator as group coherent states

Here we show that generalized eigenstates jXvðsÞi of the
embedding operator X̂μðxÞ are coherent states associated
with one-dimensional subgroups Gv ⊂ G of the group
G ≔ DiffðMÞ with eigenfunctions corresponding to
the coordinate functions of the associated embedding
XvðsÞ∶Σ → M, where s∈ ½s0; s1�.
Consider the coherent state system relative to the group

Gv introduced in Eq. (10):

fjXvðsÞi ≔ ÛvðsÞjX0i for all s∈ ½s0; s1� ⊂ Rg;

where

ÛvðsÞ ≔ e−isΠ̂½v� ¼ e−is
R

dΣðxÞvμðxÞΠ̂μðxÞ

is a unitary representation of Gv. Now consider that

X̂½w�jXvðsÞ�i¼ X̂½w�e−isΠ̂½v�jX0i¼
X∞
k¼0

ð−isÞk
k!

X̂½w�Π̂½v�kjXi:

ðA1Þ

To simplify the sum, observe that

�
X̂½w�; Π̂½v�2� ¼ �

X̂½w�; Π̂½v��Π̂½v� þ Π̂½v��X̂½w�; Π̂½v��
¼ 2iðw; vÞΠ̂½v�:

Suppose that this holds for the mth case, so that

�
X̂½w�; Π̂½v�m� ¼ miðw; vÞΠ̂½v�m−1:

Then it also holds for the mþ 1th case:

�
X̂½w�;Π̂½v�mþ1

�¼ �
X̂½w�;Π̂½v�m�Π̂½v�þ Π̂½v�m�X̂½w�;Π̂½v��

¼ðmþ1Þiðw;vÞΠ̂½v�m:

By induction it follows that ½X̂½w�; Π̂½v�k� ¼
kiðw; vÞΠ̂½v�k−1, which allows for a further simplification
of Eq. (A1):

X̂½w�jXvðsÞi

¼
X∞
k¼0

ð−isÞk
k!

ðΠ̂½v�kX̂½w� þ kiðw; vÞΠ̂½v�k−1ÞjX0i

¼
�
e−isΠ̂½v�X̂½w� þ iðw; vÞ

X∞
k¼1

ð−isÞk
ðk − 1Þ! Π̂½v�k−1

�
jX0i

¼
�
e−isΠ̂½v�X0½w� þ iðw; vÞ

X∞
m¼0

ð−isÞmþ1

m!
Π̂½v�m

�
jX0i

¼ �
X0½w�e−isΠ̂½v� þ ðw; vÞse−isΠ̂½v�	jX0i

¼ ðX0½w� þ ðw; vÞsÞjXgvs i

¼
Z

dΣðxÞwμðxÞðXμ
0ðxÞ þ svμðxÞÞjXgvs i:

The above equality must hold for all wμðxÞ, which implies

X̂μðxÞjXvðsÞi ¼ ðXμ
0ðxÞ þ svμðxÞÞjXvðsÞi;

as stated in Eq. (11).

2. Commutation of F̂A½Xq� with the smeared
constraint operator

We can observe that F̂A½Xq� formally commutes with the
constraint

½Ĉ½g�; F̂A½Xq��jΨphysi ¼ Ĉ½g�F̂A½Xq�jΨphysi

¼ Ĉ½g�
Z

Dq ÛX½Xq̄ − Xq� ⊗ Ûϕ½Xq̄ − Xq�jXqihXqj ⊗ ÂjΨphysi

¼ Ĉ½g�
Z

Dq ÛX½Xq̄ − Xq� ⊗ Ûϕ½Xq̄ − Xq�jXqi ⊗ Âjψϕ½Xq�i:
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Let us now expand the conditional state in the eigenbasis of Â, so that jψϕ½Xq�i ¼
P

k ψk½Xq�jaki, where Âjaki ¼ akjaki
and ψk½Xq� ≔ hakjψϕ½Xq�i. This allows us to express the above commutator as

½Ĉ½g�; F̂A½Xq��jΨphysi ¼ Ĉ½g�
Z

DqÛX½Xq̄ − Xq� ⊗ Ûϕ½Xq̄ − Xq�jXqi ⊗ Â
X
k

ψkjak½Xq�i

¼ Ĉ½g�
Z

DqÛX½Xq̄ − Xq� ⊗ Ûϕ½Xq̄ − Xq�jXqi ⊗
X
k

ψkakjak½Xq�i

¼
X
k

ψkakĈ½g�
�Z

DqÛX½Xq̄ − Xq� ⊗ Ûϕ½Xq̄ − Xq�jXqi ⊗ Iϕ

�
jak½Xq�i

¼
X
k

ψkakĈ½g�R−1
S ½Xq�jak½Xq�i

¼
X
k

ψkakĈ½g�jΨ̄phys;ki

¼ 0;

where going from the third to fourth equality we have made use of the definition of the inverse of the reduction map given in
Eq. (19).

3. Heisenberg equation from deparametrization

Start with a Heisenberg picture of the form

ÂϕðqÞ ≔ RHF̂A0
½Xq�R−1

H ¼ Ûϕ½X0 − Xq�Â0Û
†
ϕ½X0 − Xq�;

where, as defined in the text,

Ûϕ½X0 − Xq� ≔ e−i
R

dΣðxÞðXμ
0
ðxÞ−Xμ

qðxÞÞĥμ½Xμ
qðxÞ�:

Taking the functional derivative of the Heisenberg-picture operator,

Z
dΣðyÞ δÂϕ½Xq�

δXμ
qðyÞ ¼

Z
dΣðyÞ δ

δXμ
qðyÞ



e−i

R
dΣðxÞðXν

0
ðxÞ−Xν

qðxÞÞĥν½Xq;x�Â0e
i
R

dΣðxÞðXν
0
ðxÞ−Xν

qðxÞÞĥν½Xq;x�
�

¼
Z

dΣðxÞdΣðyÞ
�
iδðx − yÞĥμ½Xq; x� − iðXν

0ðxÞ − Xν
qðxÞÞ

δĥν½Xq; x�
δXμ

qðyÞ

Âϕ½Xq�

þ
Z

dΣðxÞdΣðyÞÂϕ½Xq�
�
−iδðx − yÞĥμ½Xq; x� þ iðXν

0ðxÞ − Xν
qðxÞÞ

δĥν½Xq; x�
δXμ

qðyÞ


¼ i
�
Ĥμ½Xq�; Âϕ½Xq�

�
− i

Z
dΣðxÞdΣðyÞðXν

0ðxÞ − Xν
qðxÞÞ

�
δĥν½Xq; x�
δXμðyÞ ; Âϕ½Xq�



¼ i
�
Ĥμ½Xq�; Âϕ½Xq�

�
− i

Z
dΣðxÞdΣðyÞðXν

0ðxÞ − Xν
qðxÞÞ

�
δnρðxÞ
δXμðyÞT

ρ
ν; Âϕ½Xq�



¼ i
�
Ĥμ½Xq�; Âϕ½Xq�

�
− i

Z
dΣðxÞdΣðyÞðXν

0ðxÞ − Xν
qðxÞÞ

�
ϵρσ

�
∂x

δXσðxÞ
δXμðyÞ

�
Tρ

ν; Âϕ½Xq�


¼ i
�
Ĥμ½Xq�; Âϕ½Xq�

�
− i

Z
dΣðxÞdΣðyÞðXν

0ðxÞ − Xν
qðxÞÞ

�
ϵρμð∂xδðx − yÞÞT̂ρ

νðxÞ; Âϕ½Xq�
�

¼ i
�
Ĥμ½Xq�; Âϕ½Xq�

�
− i

Z
dxdΣðyÞδðx − yÞ

h
ϵρμ∂x


 ffiffiffiffiffiffiffiffiffi
γðxÞ

p
ðXν

qðxÞ − Xν
0ðxÞÞT̂ρ

νðxÞ
�
; Âϕ½Xq�

i

¼ i
�
Ĥμ½Xq�; Âϕ½Xq�

�
− i

�Z
dx ϵρμ∂x


 ffiffiffiffiffiffiffiffiffi
γðxÞ

p
ðXν

qðxÞ − Xν
0ðxÞÞT̂ρ

νðxÞ
�
; Âϕ½Xq�



¼ i
�
Ĥμ½Xq�; Âϕ½Xq�

�
;
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where the integral appearing in the penultimate equality
vanishes given that it is equal to a boundary term that
vanishes under the assumption that the matter field stress-
energy tensor vanishes at infinity. We thus recover the
Heisenberg equation as stated in Eq. (37).

APPENDIX B: FOLIATION INDEPENDENCE
THROUGH EQUIVALENCE OF EVOLUTIONS

OF THE CONDITIONED STATE

We give here the derivation of Eq. (31), which illustrates
the foliation independence of the evolution of the field
degrees of freedom from an initial to a final hypersurface.
The unitary operator evolves the conditioned state degrees
of freedom through the integrated Schrödinger equation. It
is also equivalent to mapping back the conditioned state to
the perspective-neutral physical Hilbert space and then
projecting back to the final embedding through a compo-
sition of the Schrödinger reduction maps. We start with the
general map:

Ûϕ½Xq0 − Xq� ≔ e
−i
R

dΣðxÞðXμ

q0 ðxÞ−X
μ
qðxÞÞhμðxÞ:

We will now show that, given a foliation that connects
two embeddings, mapping from the initial embedding to
the perspective-neutral space and back into the final

embedding is equivalent to projecting the field on the
initial embedding and then evolving it through an arbitrary
foliation using the Hamiltonian flux. This is only possible
due to the fact that physical states are zero eigenvalue states
of the constraint and are hence gauge invariant.
Consider a discrete one-parameter family F ≔

fXðtÞ; ∀ t∈ ½ti; tf�g consisting of nþ 1 spacelike hyper-
surfaces XðtÞ “foliating” Minkowski space such that
XðtiÞ ¼ Xq and XðtfÞ ¼ Xq0 . This foliation is highly non-
unique and each surface is separated from the previous and
successive one by a small finite interval Δt of the time
coordinate t such that

Δt ¼ tf − ti
nþ 1

and tkþ1 ¼ tk þ Δt. Let us now consider the unitary
evolution operator of the conditioned state between the
kth and the (kþ 1)th surfaces of the foliation:

Uϕ½XðtkþΔtÞ−XðtkÞ�¼e−i
R
dΣðtk;xÞΔtðX

μðtkþΔt;xÞ−Xμðtk;xÞ
Δt Þhμðtk;xÞ:

The evolution between the initial and final leaves of the
foliation is now obtained by applying the unitary evolution
between two adjacent slices n amount of times:

Ûϕ½XðtfÞ − XðtiÞ� ¼ P
Yn
k¼1

Ûϕ½Xðtk þ ΔtÞ − XðtkÞ�

¼ P
Yn
k¼1

exp

�
−i

Z
dΣðtk; xÞΔt

�
Xμðtkþ1; xÞ − Xμðtk; xÞ

Δt

�
ĥμðtk; xÞ



¼ P exp
�
−i

Xn
k¼1

Δt
Z

dΣðtk; xÞ
�
Xμðtkþ1; xÞ − Xμðtk; xÞ

Δt

�
ĥμðtk; xÞ


:

The path-ordering operator ensures that the unitary evolution acts in the correct order on the leaves of the foliation, and
allows us not to worry about whether the Hamiltonian flux commutes at different points of the foliation. We now take the
limit for an infinite number of infinitesimally close slices, we recover Eq. (29):

Ûðtf; tiÞ ¼ lim
Δt→0
n→∞

Ûϕ½XðtfÞ − XðtiÞ�

¼ lim
Δt→0
n→∞

P exp

�
−i

Xn
k¼1

Δt
Z

dΣðtk; xÞ
�
Xμðtkþ1; xÞ − Xμðtk; xÞ

Δt

�
ĥμðtk; xÞ



¼ P exp

�
−i

Z
XðtfÞ

XðtiÞ
dtdΣðt; xÞtμðt; xÞĥμðt; xÞ

�
; ðB1Þ

where tμðt; xÞ ≔ ∂tXμ ¼ nμðt; xÞNðt; xÞ þ Nμðt; xÞ is the deformation vector field.
Alternatively, before taking the continuum limit, the recovery map and its inverse, defined in Eqs. (18) and (19), can be

used to map between successive leaves:
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Ûϕ½XðtfÞ − XðtiÞ� ¼ P
Yn
k¼1

Ûϕ½Xðtk þ ΔtÞ − XðtkÞ�

¼ P
Yn
k¼1

RS½Xðtkþ1Þ�∘R−1
S ½XðtkÞ�

¼ RS½XðtfÞ�
�
P
Yn−1
k¼1

R−1
S ½Xðtkþ1Þ�∘RS½XðtkÞ�

�
R−1

S ½XðtiÞ�

¼ RS½XðtfÞ�∘R−1
S ½XðtiÞ�;

where in moving from the third line, we have used the fact
that R−1

S ½Xðtkþ1Þ�∘RS½XðtkÞ� ¼ Îϕ. The final expression
depends only on the initial and final hypersurfaces, not
discrete foliation. Thus, the limit Δt → 0; n → ∞ can be
taken with the result that

Ûðtf; tiÞ ¼ RS½XðtfÞ�∘R−1
S ½XðtiÞ�: ðB2Þ

Given that Eqs. (B1) and (B2) must be equal, it follows that
the evolution between XðtiÞ and XðtfÞ is independent of the
choice of foliation, despite the foliation dependence of the
integrand in Eq. (B1).

APPENDIX C: DISCUSSION OF THE ANOMALY

In this paper, we have considered the quantization of a
scalar field on a two-dimensional spacetime. In the mass-
less case, this constitutes a CFT. Hence, we need to address
the conformal anomaly arising in the process. Since the
conformal group is a subgroup of the spacelike preserving
diffeomorphisms that evolve the embeddings, it carries the
Virasoro algebra into the Hamiltonian flux when the
constraint CμðxÞ is smeared by a conformal vector.
Following Kuchař [19], we see how the anomaly arising
from the commutation relation of the Hamiltonian flux can
be expressed in terms of derivatives of an anomaly potential
Aμ. This potential needs to be incorporated with the
Hamiltonian flux, such that the right commutation relations
will be ensured. Following Kuchař’s notation, the anomaly
potential can be spilt into two parts:

AμðxÞ ¼ IAμðxÞ þ IIIAμðxÞ:

The first term is related to a soft breaking of the conformal
symmetry by the introduction of a macroscopic length

scale. For example, in Kuchař, it is given for the choice of
manifold being R × S1. If we assume the stress-energy
tensor of the field to be normally ordered such that its
vacuum expectation value on the plane vanishes, we can
interpret the first part of the anomaly potential as a Casimir
energy given by the periodic boundary condition [19]. It is
embedding independent and vanishes for the unbounded
R2 manifold considered in this paper:

IAμðxÞ ¼ 0:

The second part of the anomaly is instead embedding
dependent. It relates the distribution of the energy along the
embedding to the trace of its extrinsic curvature
KðxÞ ¼ Kμ

μðxÞ:

IIIAμðxÞ ¼
ffiffiffiffiffiffiffiffiffi
γðxÞ

p �
XμðxÞ

∂KðxÞ
∂x

−KðxÞ2nμðxÞ
�
:

As explained in Sec. II, this vanishes for embeddings with
zero extrinsic curvature and when integrated over asymp-
totically flat embeddings. Given a spacetime embedding
Xμðt; xÞ ¼ ðTðt; xÞ; Xðt; xÞÞ. We can define the oriented
Minkowski basis vectors as tμ ¼ −∂μT, sμ ¼ ∂μX such that
tμtμ ¼ −1, sμsμ ¼ 1, and tμsμ ¼ 0. Following [19], we can
rewrite this part of the anomaly such that when integrated

Z
dΣðxÞIIIAμðxÞtμ½XμðxÞ�¼−

Z
dΣðxÞ∂xð ffiffiffi

γ
p

KðxÞt0Þ¼0;
Z

dΣðxÞIIIAμðxÞsμ½XμðxÞ�¼−
Z

dΣðxÞ∂xð ffiffiffi
γ

p
KðxÞs1Þ¼0;

and we see that the anomaly vanishes as the extrinsic
curvature vanishes at infinity.
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