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We study the Weyl formula for the asymptotic number of eigenvalues of the Laplace-Beltrami operator
with Dirichlet boundary condition on a Riemannian manifold in the context of geometric flows. Assuming
the eigenvalues to be the energies of some associated statistical system, we show that geometric flows are
directly related with the direction of increasing entropy chosen. For a closed Riemannian manifold we
obtain a volume preserving flow of geometry being equivalent to the increment of Gibbs entropy function
derived from the spectrum of Laplace-Beltrami operator. Resemblance with Arnowitt-Deser-Misner
formalism of gravity is also noted by considering open Riemannian manifolds, directly equating the
geometric flow parameter and the direction of increasing entropy as time direction.
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I. INTRODUCTION: WEYL ASYMPTOTIC
FORMULA AND ENTROPY FUNCTION

In the early 20th century, Hermann-Weyl proved a
formula for the asymptotic number of eigenvalues of the
Laplace-Beltrami operator acting on space of functions
satisfying Dirichlet boundary conditions on the boundary
of a bounded domain Rd [1]. In particular he proved that if
NðEÞ are the number of eigenvalues of such an operator up
to some value E, then

lim
E→∞

NðEÞ
E

d
2

¼ ωdVolM
ð2πÞd ; ð1Þ

with VolM being the d-dimensional volume ofM andωd is
the volume of the unit sphere inRd. He also conjectured the
two-term asymptotics of NðEÞ in [2], which was later
proved by [3]. This can be stated as follows; given the
d-dimensional Laplace-Beltrami operator, the two-term
asymptotic formula for the number of eigenvalues NðEÞ
lying up to a given energy level E is given by the following
relation:

NðEÞ ∼ c0E
d
2 � c1E

d−1
2 ; ð2Þ

with M being a region in Euclidean space Rd and “þ” or
“−” depends on the choice of Dirichlet or Neumann
boundary conditions, respectively. The constants in this
case are

c0 ¼
1

ð2πÞd ωdVolM; c1 ¼ −
1

4ð2πÞd−1 ωd−1Vol ∂M;

ð3Þ
with Vol ∂M being the (d − 1)-dimensional volume of the
boundary ∂M and ωd;ωd−1 are the volume of unit spheres
in Rd and Rd−1, respectively. One can consult [4] for an
excellent review with further references on this topic.
Kac [5] and Pleijel [6] investigated this matter further to
ask if it is possible for an observer to decipher the shape of
a membrane by listening to its vibrations.1 It turned out that
to some extent this is indeed possible as pointed out by
Mckean and Singer [7]. They proved the following result.
Let Δ be the Laplace-Beltrami operator on a d-dimensional
Riemannian manifold M without boundaries, equipped
with a metric2 gij, then the partition function (heat kernel)
is given by

Z ¼
X
n

e−
γn
T ¼ T

d
2VolM

ð4πÞd2 þ T
d
2
−1 R ffiffiffi

g
p

dxdR

6ð4πÞd2

þ T
d
2
−2

180ð4πÞd2
Z ffiffiffi

g
p

dxdQþOðTd
2
−3Þ: ð4Þ

Where γn are the eigenvalues of −Δ, and Q ¼ 10A−
Bþ 2C, with A, B, and C being particular quadratic
polynomials in the Riemann tensor [7], on which we will
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1The work of Kac in [5] is interestingly titled; Can one hear
the shape of a drum?

2Δ≡ 1ffiffiffiffi
jgj

p ∂ið
ffiffiffiffiffijgjp

gij∂jÞ.
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elaborate more in later sections. The idea of hearing in this
context is equivalent to inferring the area or volume of the
manifold M (or the shape of M) from the knowledge of
all the eigenvalues of Δ. Equation (4) therefore certainly
makes the shape ofM audible enough. Considering a more
general case by allowing M to be an open d-dimensional
manifold with compact (d − 1)-dimensional boundary ∂M,
the spectra of −Δ, with Dirichlet boundary conditions
imposed yield the partition function,

Z ¼ T
d
2VolM

ð4πÞd2 −
T

d−1
2 Vol ∂M

4ð4πÞd−12 þ T
d
2
−1 R ffiffiffi

g
p

dxdR

6ð4πÞd2

−
T

d
2
−1

R ffiffiffiffi
g0

p
dxd−1H

6ð4πÞd2 þOðTd−3
2 Þ; ð5Þ

with g0ij being the metric on the boundary ofM i.e. ∂M and
H being the mean curvature on ∂M. Therefore, M is again
audible along with the shape of the boundary ∂M.
It is interesting to note a bridge between statistical

physics and geometric quantities through these formulas
by considering the eigenvalues of Δ as energy eigenstates
of some statistical system. Although not pertaining to the
Laplace-Beltrami operator, the idea of geometric flows
originating from the minimization of energy functionals
can be traced back to the main ideas behind Ricci flow in
[8,9]. The author of [9] started with a metric gij with strictly
positive Ricci curvature Rij and proposed improvement of
the metric by the means of a heat equation known as
Hamilton’s Ricci flow equation. Interestingly Perelman in
[10], was the one to show that the Ricci flow equation can
be formulated as an energy minimization problem through
the Perelman F functional, which can also be thought of as
a string model in dilaton gravity from the physicists
perspective. This was in fact the key step in proving the
Poincaré conjecture. Ricci flow has also been shown to be
the geometric counterpart of the renormalization group
flow for string sigma models in [11,12].
Ricci flow has been studied in various contexts of

physics such as different saddle points or black hole
solutions of four-dimensional gravity [13], study of the
formation of singularity in three dimensions [14] or two-
dimensional flows asymptoting to dilaton black holes [15].
The other forms of geometric flows barring the Ricci flow
has found less space in the physics literature. In this paper,
our goal is to establish an equivalency between entropic and
geometric extremization problems. This is done by con-
structing suitable entropy functions, and understanding
geometric flows as positive entropy flow of the system.
We found relations between the area preserving curve
shortening flow of [16] or the volume preserving mean
curvature flows shown in [17,18], with the law of increment
of entropy or second law of thermodynamics. In the
following we will first discuss Eqs. (4) and (5) from the
perspective of statistical ensembles in Sec. II. Section III
will elaborate on how these two ideas of geometric flows

and entropy functions are actually related. Finally we will
end with a discussion of our results in Sec. IV.

II. THE ENSEMBLES

To establish the relation between geometric flows and
the direction of increasing entropy, first we need to define
suitable ensembles. In the following we look at two such
possibilities.

A. Microcanonical case

Consider an ensemble composed of a system, whose
energy values are given by the eigenvalues of the Laplace-
Beltrami operator. This can be thought of as a particle
moving inside this bounded domainM. Then the number of
energy states lying between ½E;Eþ dE� is given by

νðEÞdE ¼ dN
dE

dE; ð6Þ

with NðEÞ being equivalent to (2), for large values of E.
Thus, one can define a microcanonical ensemble, consist-
ing of all the systems which lie in this energy range, with
entropy

SB ¼ lnðνðEÞdEÞ: ð7Þ

This directly follows from the definition of microcanonical
ensemble for continuous energy spectra. One should note
the crucial dependence of (7) on the energy width dE. For a
finite but arbitrarily small dE, this is the entropy associated
with the microcanonical ensemble. For fixed dE, we can
analogously define the surface entropy as

Ssurf ¼ lnðνðEÞÞ: ð8Þ

B. Canonical case

On the other hand, consider (4) and (5), which are
canonical partition functions. One can define the Gibbs
entropy via these partition functions as

SGibbs ¼
∂½T lnZ�

∂T
; ð9Þ

and the free energy as

U ¼ T2
∂ lnZ
∂T

; ð10Þ

where the volume of the system is supposed to be kept
fixed.
In both of the above cases, we obtain an entropy function

depending on the geometric properties ofM, which leads to
an equivalency between entropic and geometric extremiza-
tion problems.
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III. GEOMETRIC FLOW

Since the ensembles themselves depend on the geometric
quantities, one can imagine a set of geometric configura-
tions in d dimensional space, where each configuration can
be understood as a continuous deformation from the
previous one with respect to some parameter t. These
deformations can then be continuously labeled by increas-
ing values of the entropy function S. Thus, the geometric
flows are defined by the condition dS=dt > 0, with respect
to some global parameter t, which one might be inclined to
call time. Further justification for which is elaborated on in
Sec. III B 2.

A. Area preserving curve shortening flow

Consider the microcanonical case, defined in previous
section, where we take the domain to be bounded by a
simply connected closed curve in the two-dimensional
plane. Let the coordinates of the curve C be
X ¼ ðxðuÞ; yðuÞÞ, parametrized by u∈ ½0; 1�. The length
of the curve L (or the perimeter) and the area A enclosed by
it can then be written as

L¼
Z

1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdxðuÞÞ2þðdyðuÞÞ2

q
¼
Z

1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2
i¼1

�
dxiðuÞ
du

�
2

vuut du

¼
Z

1

0

jXujdu; ð11Þ

and

A ¼ 1

2

I
C
½xdy − ydx�

¼ 1

2

Z
1

0

�
xðuÞ dyðuÞ

du
− yðuÞ dxðuÞ

du

�
du

¼ 1

2

Z
1

0

ϵijxiðuÞ
dxjðuÞ
du

du: ð12Þ

The entropy in (8), can then be written using A and L as

Ssurf ≈ ln

�
dωd

2ð2πÞd E
d−2
2 VolM

�

−
2πðd − 1Þωd−1

4dωd
E−1

2
Vol ∂M
VolM

; ð13Þ

where we have used (2) with the Dirichlet boundary
condition. Applied to d ¼ 2 case, VolM≡ A,
Vol ∂M≡ L, ω2 ¼ π, and ω1 ¼ 2π. Clearly this entropy
increases as the boundary volume Vol ∂M or L decreases,
and as VolM or A increases. It is suitable to keep one of
them fixed (the condition for microcanonical ensemble) for
the analysis. Then, for constant A we have

dSsurf
dt

¼ −
π

2A
E−1

2
dL
dt

;
dA
dt

¼ 0: ð14Þ

The change in the perimeter L and the area A can be
evaluated directly as

dL
dt

¼
Z

1

0

Xu:∂tXu

jXuj
du ¼ −

Z
L

0

∂
2
sX:∂tXds; ð15Þ

dA
dt

¼
Z

1

0

ϵij∂txiðuÞ
dxjðuÞ
du

du; ð16Þ

where “:” represents the normal two-dimensional vector dot
product and ds the infinitesimal arc length. The curvature
dependence of the flow is clear from appearance of the
second derivative ∂2sX. The solution to this problem is well-
known, and is called the area-preserving curve-shortening
flow [16],

∂X
∂t

¼ −
�
κ −

2π

L

�
N ; ð17Þ

whereN is the unit outward normal, and κ is the Euclidean
curvature. A variation of this flow was also proposed in
[16]. The higher-dimensional generalizations of this are
known as the mean curvature flow and the volume-
preserving mean curvature flow ([17,18]). We will elabo-
rate more on these in Sec. III B 2. The famous Ricci flow
problem is also closely related to this. Let VolM ¼
1
d

R ðr⃗:d̂Þ ffiffiffi
g

p
dxd−1 ¼ R

e−f
ffiffiffi
g

p
dxd−1 be the volume enclosed

by a (d − 1)-dimensional hypersurface, with Vol ∂M ¼R ffiffiffi
g

p
dd−1x being the boundary volume. To keep the

volume invariant we must have the condition,

δVolM ¼ 1

d

Z
e−f

ffiffiffi
g

p
dxd−1

�
−δf þ 1

2
gijδgij

�
; ð18Þ

while the variation of the boundary volume yields,

δVol ∂M ¼
Z ffiffiffi

g
p

dxd−1
1

2
gijδgij: ð19Þ

There are two intuitive ways to get a geometrization via
increasing entropic flow:

(i) If the variation of the metric is chosen to be propor-
tional to the metric as δgij ¼ dt ∂tgij ¼ dt p gij,
such that

δVol ∂M ¼ dt
d
2

Z ffiffiffi
g

p
dxd−1p < 0: ð20Þ

Choosingp ¼ qðhqi − qÞ for some scalar functionon
the boundary ∂M then yields
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δVol ∂M ¼ −dtVol ∂M
d
2
ðhq2i − hqi2Þ < 0: ð21Þ

The choice of equating q with the scalar curvature of
the surface R, closely relates this to the Yamabe flow
as proposed by Hamilton [19].

(ii) One may also choose δgij ¼ dt∂tgij ¼ dtðhmi−
mÞmij, where mij is some second-rank tensor and
m ¼ gijmij. This yields,

δVol ∂M ¼ −Vol ∂M
dt
2
ðhm2i − hmi2Þ < 0: ð22Þ

Choosingmij ¼ hij, the second fundamental form of
∂M, relates this to the volume-preserving mean
curvature flow. We will come back to this later.

The volume constraint on the other hand is imposed by

∂f
∂t

¼ 1

2
gij

∂gij
∂t

: ð23Þ

In fact, there are several other choices that one can make.
One particular case relates the entropic flow to Perelman’s
functional. If the variation of the metric is chosen to satisfy,

δgij ¼ dt
∂gij
∂t

¼ −dte−f2ðRij þ∇i∇jfÞ: ð24Þ

Then the entropy changes as

∂Ssurf
∂t

≈
2πðd − 1Þωd−1

4dωdVolM
E−1

2

Z
e−fðRþ j∇fj2Þ ffiffiffi

g
p

dd−1x;

ð25Þ

which is exactly the Perelman F functional [10]. One can
show that the derivative of this is positive definite following
the same arguments as Perelman by showing,

∂
2Ssurf
∂t2

¼ ∂F
∂t

≈
2πðd − 1Þωd−1

4dωdVolM
E−1

2

Z
e−2f

× jRij þ∇i∇jfj2
ffiffiffi
g

p
dd−1x; ð26Þ

implying the monotonic increment of SsurfðtÞ.

B. Curvature related flows

In the previous microcanonical case, we check that
geometric flow equations naturally satisfy the entropy
condition, dS

dt > 0, but they are not derived directly using
the entropy as a Dirichlet energy functional; the reason of
which being the absence of any curvature dependence in
the two term asymptotic formula for NðEÞ. On the other
hand in the canonical case, curvature dependent terms
appear naturally. It is thus more interesting to study
geometric flows arising from the positivity of the entropy
function in such a case.

1. Closed manifold

Consider the canonical ensemble, and the Gibbs entropy
function (9) evaluated from the partition function (4)

SGibbs ¼
∂

∂T

�
T ln

�
T

d
2VolM

ð4πÞd2
�
þ 1

6

R ffiffiffi
g

p
dxdR

VolM

þ 1

180T

R ffiffiffi
g

p
dxdQ

VolM
−

1

72T

�R ffiffiffi
g

p
dxdR

VolM

�
2

þO

�
1

T2

��
: ð27Þ

Since the generic form of Q in dimensions greater than 2 is
more complicated, we stick to dimension 2 for our
discussion. In that case integral of the scalar curvature is
just 4π times the Euler character, being a constant for the
manifold, while Q ¼ 3R2 [7]. The change of the entropy
with time then yields,

∂SGibbs
∂t

≈ −
1

60T2VolM

Z ffiffiffi
g

p
dx2

�
1

2
R2gij∂tgij þ 2R∂tR

�

¼ −
1

30T2VolM

Z ffiffiffi
g

p
dx2

×

�
−
1

4
R2gij þ∇i∇jR − gijΔR

�
∂tgij; ð28Þ

where Δ≡ gij∇i∇j and we have used the fact that in two
dimensions Rij ¼ R

2
gij. Now the condition on positivity of

∂S
∂t yields the gradient flow of the functional SGibbs (without
the volume constraint),

∂tgij ¼
R2

4
gij −∇i∇jRþ gijΔR: ð29Þ

To impose the volume constraint along with the require-
ment of the positivity of the change in entropy, we can
follow [9] to define the normalized flow as

∂tgij ¼
R2 − hR2i

4
gij −∇i∇jR; ð30Þ

where the mean of R2 is defined generally as

hR2i ¼
R ffiffiffi

g
p

ddxR2R ffiffiffi
g

p
ddx

: ð31Þ

With this flow, one can also check that,

Z ffiffiffi
g

p
d2xgij∂tgij ¼ 0; ð32Þ

while
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∂SGibbs
∂t

≈
1

30T2VolM

Z ffiffiffi
g

p
dx2

�
R2

8
ðR2 − hR2iÞ

− ΔR
hR2i
4

þ ð∇i∇jRÞð∇i∇jRÞ − ðΔRÞ2
�

¼ 1

240T2
ðhR4i − hR2i2Þ > 0; ð33Þ

where we get rid of the last three terms in the first line using
Stokes’ theorem. The change of the Ricci scalar can also be
computed as

∂tR ¼ −Rij
∂tgij þ∇i∇j

∂tgij − Δgij∂tgij; ð34Þ

which gives

∂tR ¼ −
R
4
ðR2 − hR2iÞ − 1

2
ð∇iRÞð∇iRÞ: ð35Þ

We can check the behavior of the above equation under a
perturbation from the mean scalar curvature, which is fixed
(4πE=VolM), as R ¼ hRi þ σ, generating the relation,

∂tσ¼−
hRi2
2

σ−
1

2
∇iσ∇iσ−

hRi
4

ð3σ2−hσ2iÞþOðσ3Þ: ð36Þ

If we consider only the linear-order term, then the pertur-
bation exponentially falls off. Hence, the metric goes to that
of M if the perturbation is small.
In the generic case, we have the relation due to [7] as

Q ¼ 5
2
R2 − RijRij þ RijklRijkl. Therefore, one can check

that in any dimension d, it is possible to get a geometric flow
implying ∂SGibbs

∂t > 0, although as one increases the dimension,
the geometric flowbecomesmore andmore complicated. For
example, In d ¼ 3, RijklRijkl ¼ 4RijRij − 3

2
R2, rendering

the relationQ ¼ 3RijRij þ 3
2
R2. Following the same steps as

before, in this case

N
∂SGibbs
∂t

¼ ∂

∂t

Z ffiffiffi
g

p
dx3

�
5

2
hRiR−3RijRij−

3

2
R2

�
; ð37Þ

where N ¼ 180T2VolM. This equation is exactly the
classical action for higher-derivative gravity [20], albeit
for the three-dimensional situation with specified values
of the coupling constants. After taking the variation with t,
one can write,

4N
∂SGibbs
∂t

¼
Z ffiffiffi

g
p

dx3½10hRiðRgij − 2RijÞ − 6RabRabgij

− 24gjbgikRabkeRea þ 12ΔRij þ 18gijΔR

þ 12RRij − 3R2gij − 24∇i∇jR�∂tgij: ð38Þ

Therefore, we have the flow equation as (without the volume
constraint)

∂tgij ¼ 10hRið2Rij − RgijÞ þ 6gijRabRab þ 24∇i∇jR

− 12RRij þ 24gikgjbRabkeRea − 12ΔRij

þ 3R2gij − 18gijΔR: ð39Þ

Although the flow gets complicated as the number of
dimensions increase, one can consider the flow for max-
imally symmetric spacetimes in any dimension, where the
calculations are simple enough to track. For a maximally
symmetric d-dimensional space, we have

Rij ¼
R
d
gij; Rijkl ¼

R
dðd − 1Þ ðgjkgil − gljgikÞ: ð40Þ

Hence, Q turns out to be

Q ¼ CR2; C ¼ 5

2
−
1

d
þ 2

dðd − 1Þ : ð41Þ

Following the same footsteps as above one can thenwrite the
flow equation as

∂tgij ¼ 5hRiR
�
1

d
−
1

2

�
gij þ CR2

�
2

d
−
1

2

�
gij

− 2C∇i∇jRþ 2CΔRgij: ð42Þ

The volume constraint can be imposed in similar manner as
in d ¼ 2.

2. Open manifold

Let us now consider the Gibbs entropy function for the
partition function in the case of a d-dimensional manifold
with a codimension-one boundary as established in (5).
Take the d-dimensional space to be a flat Euclidean
manifold for simplicity. In that case,

Z ¼ T
d
2VolM

ð4πÞd2 −
T

d−1
2 Vol ∂M

4ð4πÞd−12 −
T

d
2
−1

R ffiffiffiffi
g0

p
dxd−1H

6ð4πÞd2 ;

which makes the Gibbs entropy function,

SGibbs ≈
∂

∂T

�
T ln

�
T

d
2VolM

ð4πÞd2
�
−
T

1
2

ffiffiffiffiffiffi
4π

p
Vol ∂M

4VolM

−
R ffiffiffiffi

g0
p

dxd−1H
6VolM

−
1

2

� ffiffiffiffiffiffi
4π

p
Vol ∂M

4VolM

�
2

−
T−1

2

ffiffiffiffiffiffi
4π

p
Vol ∂M

R ffiffiffiffi
g0

p
dxd−1H

24ðVolMÞ2
�
: ð43Þ

For simplicity, let us denote hVol ∂M ¼ R ffiffiffiffi
g0

p
dxd−1H.

Hence,
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∂SGibbs
∂t

≈ −
T−1

2

ffiffiffiffiffiffi
4π

p

8VolM

Z ffiffiffiffi
g0

p
dxd−1

1

2
g0ij∂tg0ij

þ T−3
2

ffiffiffiffiffiffi
4π

p
Vol ∂M

48ðVolMÞ2
Z ffiffiffiffi

g0
p

dxd−1

×

�
h
1

2
g0ij∂tg0ij þ

1

2
g0ij∂tg0ijH þ ∂tH

�
: ð44Þ

If we consider the leading-order term only which is of the
order OðT−1

2Þ, then the analysis is quite similar to the
microcanonical case discussed earlier. Since the volume of
the manifold M is kept fixed, we can employ the volume-
preserving mean curvature flow of [18], under which
Vol ∂M is a monotonically decreasing function. A gener-
alization of this can be constructed following similar steps
as [18], to satisfy the volume constraint as well; let F⃗ðx⃗; tÞ
be a family of d-dimensional hypersurfaces M smoothly
embedded in Rnþ1, then define the evolution equation as

∂tF⃗ ¼ Nν⃗þ Ni ∂F⃗
∂xi

; ð45Þ

where ν⃗ is a normal vector to the surface, and N and Ni are
functions on M. The evolution of the metric g0ij is then
given by

∂tg0ij¼ ∂t

�
∂F⃗
∂xi

:
∂F⃗
∂xj

�
¼Nhijþ

∂

∂xi
Nlg0ljþNlΓk

ilg
0
kjþNhij

þ ∂

∂xj
g0ilþNlΓk

jlg
0
ik; ð46Þ

which can be simply written as

∂tg0ij ¼ 2Nhij þ ð∇iNj þ∇jNiÞ; ð47Þ

with the volume constraint

dVolM
dt

¼
Z ffiffiffiffi

g0
p

dxd−1N ¼ 0: ð48Þ

The choice N ¼ h −H and Nl ¼ 0 reduces this to the
volume-preserving mean curvature flow, which is dis-
cussed in more detail in [18]. A careful look at (47) reveals
that one can consider g0ij as the dynamic variable that
evolves with the parameter “t”, with N and Ni denoting the
difference between the hypersurfaces defined through g0ij
and the displacement of points in the hypersurface. One
should therefore note the similarity of the Eq. (47) to the
Arnowitt-Deser-Misner (ADM) formalism of gravity [21].
At this point one should note a subtlety that in our case the
metric g0ij of the boundary maniford ∂M is Euclidean
whereas the ADM formalism is usually applied to the
Lorentzian signature, where the notion of time direction is

inherent or natural. To further explore the relevance, one
can work out the change in the second fundamental form
hij as

∂thij ¼ −∇i∇jN þ Nhjmhmi þ hjl
∂

∂xi
Nl þ hil

∂

∂xj
Nl

þ Nl ∂

∂xl
hij: ð49Þ

Hence the identification of N to the lapse and Ni to the shift
function and the parameter t to time is immediate. Now
keeping OðT−1

2Þ in (44), the change of entropy with time
becomes,

∂SGibbs
∂t

≈ −
T−1

2

ffiffiffiffiffiffi
4π

p

8VolM

Z ffiffiffiffi
g0

p
dxd−1NH: ð50Þ

The choice N ¼ ðh −HÞ, preserves the enclosed volume,
and gives the condition that the volume of the boundary
manifold continuously decreases with time, as the entropy
increases with time, as

∂SGibbs
∂t

≈ −
T−1

2

ffiffiffiffiffiffi
4π

p

8VolM

Z ffiffiffiffi
g0

p
dxd−1ðhH −H2Þ

≈
T−1

2Vol ∂M
ffiffiffiffiffiffi
4π

p

8VolM
ðhH2i − hHi2Þ ≥ 0; ð51Þ

since the variance of H is strictly non-negative. If on the
other hand, we had not taken the d-dimensional space to be
a flat Euclidean manifold, then the free energy lnZ will be

ln

�
T

d
2VolM

ð4πÞd2
�
−
T−1

2

ffiffiffiffiffiffi
4π

p
Vol ∂M

4VolM

þ
R ffiffiffi

g
p

dxdR −
R ffiffiffiffi

g0
p

dxd−1H

6TVolM
þOðT−3

2Þ: ð52Þ

One can recognize the third term as the Euclidean Einstein-
Hilbert action with the Gibbons-Hawking boundary term. It
is interesting to note, imposition of the constraints VolM ¼
constant and Vol ∂M ¼ constant, and extremization of the
free energy provides a connection similar to [22]. We
intend to look at these directions in the future.

IV. DISCUSSION

In this paper we started by considering the eigenvalues of
the Laplace-Beltrami operator as the energies of some
system, using which we define microcanonical and canoni-
cal statistical ensembles. In both cases we studied the
resulting geometric flows defined through the condition
dS
dt > 0 or the second law of thermodynamics. For the
microcanonical ensemble, we found that the area preserv-
ing curve shortening flows will naturally satisfy the second
law for a two-dimensional plane with a compact boundary
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(one-dimensional). A simple higher-dimensional generali-
zation leads to volume preserving Yamabe-type flow and
the mean curvature flow. It is also shown that by choosing a
flow closely related to gradient flow introduced by
Perelman, there is equivalence between the positivity of
the derivative of Perelman F function and the monotonic
increment of entropy.
The positivity of entropy function in the canonical case is

more interesting because of its natural relation with the
curvature dependent terms which are absent in the asymp-
totic formula of Weyl. We separately studied the geometric
flows arising in this case for open and closed manifolds.
Geometric flows arising in the closed manifold seem to
become more and more complicated as one increases the
dimension of the manifold. We show how one can derive
the flow for general dimensions but have not studied the

short-time stabilities of these flows, which we will study in
a separate paper.
Interestingly, considering open manifolds for the canoni-

cal ensemble we observed a close connection with the
ADM formalism rendering the parameter t, that labels the
flow direction, to be the time direction itself. In the future
we plan to explore this avenue in more detail.
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