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In this manuscript we examine the Unruh-thermalized CERN-NA63 radiation reaction dataset from the
point of view of a diphoton Rindler bath. Under the assumption that these Hawking-Unruh diphoton pairs
are microscopic trans-Planckian black holes, we find the resultant heat capacity describes the measured
energy spectrum and is thus a dual description of the dataset. Then, employing an n-dimensional Stefan-
Boltzmann analysis, we find the power radiated by a black hole in the standard 3þ 1 spacetime dimensions
in complete agreement with the data. Finally, we utilize this power spectrum to directly measure Newton’s
constant of gravitation.
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I. INTRODUCTION

The predictions of particle creation by an expanding
universe by Parker [1], black hole evaporation by
Hawking [2], and the effervescence of particles out of
an accelerated quantum vacuum by Fulling, Davies, and
Unruh [3–5] firmly established quantum field theory in
curved spacetime as an exciting avenue of research into
novel gravitational phenomena. Recent efforts in particle
physics have even brought the Fulling-Davies-Unruh (FDU)
effect into the realm of experimental science [6–10]. In
particular, the high energy channeling radiation experiments
carried out by CERN-NA63 [6] have produced sufficiently
large recoil accelerations that the emitted radiation has
thermalized at the FDU temperature [8]. Moreover, the
presence of thermality in the radiation is also reflected in
a completely independent analysis based on Rindler horizon
thermodynamics [9]. Given that thermality is manifestly
present in the radiation as well as the horizon, we must then
ask if we can find a similar signature of thermalization from
the point of view of the effervescent quantum fluctuations of
the Rindler bath.
In this manuscript, we formulate our analysis based on

the gravitational properties of the particles which comprise
the Rindler bath. We find, based on the area change of the
horizon, a Rindler particle whose gravitational mass is that
of a diphoton, i.e., a photon-antiphoton pair. Then, under
the assumption that this quantum fluctuation can be
described as a microscopic or virtual trans-Planckian black
hole, the resultant thermodynamics and evaporation, at the
associated Hawking temperature, provide an excellent

description of the thermalized NA63 dataset. In particular,
the heat capacity is found to be a surprisingly simple
description of the energy spectrum and also provides a
simple way to determine the thermalization threshold of
these systems. Moreover, in analyzing the n-dimensional
Stefan-Boltzmann power radiated by these trans-Planckian
black holes, we find that the standard 3þ 1 dimensional
spacetime (n ¼ 3 spatial dimensions), agrees with the data
with a reduced chi-squared per degree of freedom below the
1 standard deviation threshold. This energy spectrum is
then used to directly measure Newton’s constant directly
from the dataset; thereby demonstrating the presence of
gravitation at CERN-NA63.

II. RINDLER HORIZON AREA CHANGE

Black hole thermodynamics, and its application to
Rindler horizons, also gives rise to an associated area
change due to the flux of energy through the horizon.
Although the area of the Rindler horizon is formally
infinite, the area change, dA, is well defined and is
determined by the Rindler heat flux, dQ ¼ dωR, of matter
across the horizon [11,12]. As such, we can map the second
law of thermodynamics, dQ ¼ kBTdS, to the Rindler
setting, i.e., using T ¼ TFDU, along with the Bekenstein-
Hawking area-entropy law [2,13], S ¼ A=ð4l2

pÞ. Note, in
the Rindler setting, the heat flux and entropy are defined in
terms of densities as the Rindler horizon is functional
infinite in extent. We are, however, taking the ratio of
these quantities so the total area factors will vanish.
Then, by recalling the energy gap of an Unruh-DeWitt
detector sets the Rindler frequency [8,14,15], we have
ωR ≈Ωþ β⊥ωþ ω2

2m. Here, Ω is the channeling oscillation
frequency, β⊥ω is the resonant term we directly couple to
from the Rindler bath, and ω2

2m is the recoil imparted on the
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positron. As such, we shall have the Rindler heat flux to be
that of resonant Rindler frequency our accelerated charge
couples to, dQ ≈ β⊥dω. We then obtain the Rindler horizon
area change,

dA
dðℏωÞ ¼

4β⊥l2
p

kBTFDU
: ð1Þ

This area change comes directly from the second law of
thermodynamics, which itself maps to the emitted photon
spectrum [9], dN

dωR
¼ αN

dS
dωR

¼ αN
4l2p

dA
dωR

. Here, αN , is the

amount of entropy per thermal photon emitted [16]. This
area change can be integrated to yield the total amount of
area generated. For a radiating positron of mass, m, we will
have the following recoil FDU temperature [8,9],

TFDU ¼ ðℏωÞ2
2παTmc2kB

: ð2Þ

Here, the parameter, αT , characterizes the time duration of
the acceleration, Δta, in terms of the number of photon
periods [9], Δta ¼ αT

ω . Note, this formulation of the area
change, Eq. (1), relies only on the Raychaudhuri equation
and second law of thermodynamics, [11]. Using this temper-
ature in our differential area change, Eq. (1), we can integrate
it to determine the total area added to the horizon. Hence,

AR ¼ 8παTβ⊥l2
pmc2

ℏω
: ð3Þ

Here we have a positive sign in the area change because
the energy flux is going into the horizon by the positron.
From this area we shall determine the mass/energy content
which is associated with the area of the resultant horizon. In
the case of a black hole, we can determine its mass by
examining the area-temperature product. With an area given
by A ¼ 16πM2G2=c4, and a Hawking temperature given
by, T ¼ ℏc3

8πGMkB
, we then find the product is given by

AkBT ¼ 2Mc2l2
p. Thus the mass associated with the black

hole, or Rindler horizon, can be determined by this product.
For the case of the Rindler horizon, with the recoil FDU
temperature, we have the mass/energy, ER ¼ ARkBTFDU, is
given by,

ER ¼ 2β⊥ðℏωÞ
≈ 2ωR: ð4Þ

The fact that we have twice the photon energy, or Rindler
frequency, here reflects the notion of pair creation at the
horizon as being responsible for Hawking-Unruh radiation
emission. This can also be viewed as the fact that detailed
balance implies both the emission of particles into and
absorption of particles from the Rindler bath as being the
covariant description of radiation emission as measured in
the laboratory [14]. Ultimately, it seems that this diphoton

pair plays a role in the subsequent dynamics. Now that we
have established an area changewhich implies that existence
of the diphoton, let us now confirm that it is indeed the
source of gravitation.

A. The Rindler-Einstein diphoton ring

To better understand the nature of this area change, let us
look at the gravitational lensing of the system.We shall find
that the area generated, or area change of the Rindler
horizon, will be determined by the area of an Einstein ring
which is sourced by the diphoton pair [17]. Recalling that
the angular size, θ, of an Einstein ring generated by a mass,
M, is given by

θ ¼ 2

�
4GM
c2

d1
d2d

�
1=2

: ð5Þ

In the Rindler frame, see Fig. 1, the distance between
the positron and the horizon is d ¼ c2=a, with a being the
proper acceleration of the positron. We then take the
gravitating matter to be located at the midpoint between
the positron and horizon. Thus the distance between the
horizon and the matter, d1, and the distance between the
positron and the gravitational mass, d2, are both given by
d1 ¼ d2 ¼ d=2. Finally, the Einstein ring projected back
onto the horizon will have a radius, r ¼ θd=2, and an
area given by A ¼ πðθd

2
Þ2 ¼ 4πGM=a. Upon substitution

of M ¼ ð2ωRÞ=c2 ¼ 2β⊥ðℏωÞ=c2 and a ¼ ω2ℏ
αTmc, we

d = c /  a
2

d  =  d  /  2

d  =  d  /  2

A

r

M

2

1

FIG. 1. Diagrammatics of the Rindler-Einstein ring produced
via the gravitational lensing by the diphoton. The area of the
resultant Einstein ring is equivalent to the area generated by the
flux of energy across the horizon.
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reproduce the area generated by the diphoton at the recoil
FDU temperature, Eq. (3). Note, the above formulation
relied on the bending of light rays in general relativity, i.e.,
gravitational lensing, while the previous analysis, Eq. (3),
relied on geodesic deviation and the second law of
thermodynamics. With the Einstein equation being an
equation of state [11], these two formulations are indeed
equivalent. Both analyses indeed imply the presence of
gravitation in this system in the form of the diphoton. This
pair is responsible for not only the area change, but also
corresponds to that actual photons measured in the lab
frame [8,14].

III. EXPERIMENTAL METHODS

The CERN-NA63 experimental site performs systematic
studies of strong field QED [18,19] and here we shall focus
on their high energy channeling radiation experiment
which was successful in measuring radiation reaction [6].
There, ultrarelativistic 178.2 GeV positrons traverse a
3.8 mm thick single crystal silicon sample along the
h111i axis. These “channeled” positrons undergo a trans-
verse harmonic oscillation and a photon builds up around
the positron as it is excited up the ladder of harmonic
oscillator states. In this manner, the photon energy becomes
comparable to the positron rest mass and upon emission,
the positron experiences an enormous recoil acceleration.
This acceleration is sufficiently strong enough to thermalize
the system via the Unruh effect [8,9].
In order to compare our theory to the NA63 dataset, we

simply transform their power spectrum, dE
dðℏωÞdt into an

energy spectrum, dE
dðℏωÞ. With the crystal crossing time being

given by, Δt ¼ ð3.8 mmÞ=c, we simply multiply the power
spectrum by this time to formulate the energy spectrum.
Hence,

dE
dðℏωÞ ¼

dEdata

dðℏωÞdt
�
3.8 mm

c

�
: ð6Þ

We must also examine the thermalization time for the
system, T therm. Thus, if we take an experimentally mea-
sured power spectrum, dPEXP

dω [6], we can automatically
compute its thermalization, or decay, time in a completely
model independent fashion;

T thermðωÞ ¼
�Z

ω

0

dPEXP

dω0
1

ω0 dω
0
�
−1

ð7Þ

A plot of this thermalization time is contained below in
Fig. 2. Note that we indeed find a thermalization threshold
at ωt ∼ 13 GeV. Beyond this energy scale, the system has
sufficient time to thermalize.
We will now turn to the theoretical description of this

data based on aspects of Hawking radiation from the trans-
Planckian diphoton black holes.

IV. N-DIMENSIONAL TRANS-PLANCKIAN
BLACK HOLES

If we are to examine the Unruh effect from the point of
view of the Rindler bath, let us note two of its key properties.
First, the radiation emitted is thermal. Second, the Rindler
bath appears, in this case, to be comprised of diphoton pairs
which also serve as sources of gravitation. In this regard, let
us consider a dual description of the Unruh effect where we
assume the particles which comprise the Rindler bath are, or
can be described as, trans-Planckian black holes. Thus, the
creation of the photons seen in the laboratory are sourced by
the decay of these diphoton black holes. With an energy of
ER ¼ 2ωR, we shall make use of the associated higher
dimensional Myers-Perry Hawking temperature is given
by [20],

TH ¼ TP
n − 2

4
ffiffiffi
π

p
�
EP

ER

n − 1

8Γðn
2
Þ
� 1

n−2 ð8Þ

Note, here the dimension, n, characterizes the number of
spatial dimensions and is restricted to n ≥ 3. This Hawking
temperature is well above the Planck temperature,

TP ¼ 1
kB

ffiffiffiffiffi
ℏc5
G

q
¼ 1.4 × 1032 K. The Rindler energy which

sets the temperature is given by ωR ≈ β⊥ðℏωÞ, with β⊥ ≈
:012 [8,9]. The photon energies measured by NA63, i.e., for
energies ranging from 0–150 GeV, will then yield a maxi-
mum n ¼ 3 temperature, T150 ¼ 2.0 × 1049 K.

A. Heat capacity

With this dual Hawking temperature, we can examine the
heat capacity at constant volume, Cv ¼ dER

dTH
. Hence,

Cv ¼ −
kB

ffiffiffi
π

p ðn − 1Þ
2Γðn

2
Þ

�
TPðn − 2Þ
TH4

ffiffiffi
π

p
�
n−1

: ð9Þ

FIG. 2. Here we present model independent thermalization time
measured the dataset, Eq. (7). We find a thermalization threshold
at ωt ¼ 13 GeV.
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Note, this relation also encodes the entropy via [21],
Cv ¼ −ðn − 1ÞS. In order to utilize this heat capacity to
examine the NA63 dataset, we shall formulate a dimen-

sionless spectrum via dðkBTHÞ
dðℏωÞ ¼ kB

Cv

dER
dðℏωÞ. This spectrum,

will be “initialized” by the ratio with the heat capacity
at the thermalization threshold ℏω0. As an example, for

the standard n ¼ 3 case, we have Cv0 ¼ − T2
PkB

T2
H0
8π
, and

TH0 ¼ ℏc5
8πGð2β⊥ℏω0ÞkB. Thus, in terms of the heat capacity,

we will have a relatively simple spectrum,

dEC

dðℏωÞ ¼
Cv0

Cv
¼

�
ℏω0

ℏω

�n−1
n−2
: ð10Þ

This heat capacity spectrum is presented in Figs. 3 and 4
for 3 ≤ n ≤ 10. We note that beyond n > 10, the best
fit threshold will be below the 13 GeV cutoff from the
thermalization time, Fig. 2. From the radiation analysis [8],
we have a chi-squared threshold of ℏωχ ¼ 30 GeV which
then deviates at about ω ¼ 120 GeV. As such, our fit was
performed over the data range of 30–120 GeV. Below, we
include the best fit threshold energies and their associated
chi-squared per degree of freedom.
Due to the fact that the signal for the standard n ¼ 3 case

is the strongest, let us also examine the relationship
between the diphoton Hawking temperature, Eq. (8) and
the recoil FDU temperature, Eq. (2), in this setting.
Specifically for the case of radiation reaction where both
temperatures are functions of the photon frequency, we
have

TFDU ¼ kBT4
P

512π3mc2β2⊥αTT2
H
: ð11Þ

On the Unruh side, it is the photon energy which sets the
recoil acceleration and thus FDU temperature. On the
Hawking side, this photon also defines the mass/energy
of the diphoton black hole. Therefore, one can view the
FDU temperature as a measurement of the heat capacity of
the black holes which comprise the Rindler bath. Hence,

TFDU ¼ T2
PCv3

ð8πβ⊥Þ2αTmc2
: ð12Þ

Another intriguing aspect of this Hawking/Unruh duality is
that when analyzing the power radiated by an accelerated
emitter, the emission rate is determined by a thermal
distribution with a Boltzmann factor, eER=TFDU . Thus the
standard thermal factors which present themselves in these
systems is comprised of the ratio of the Rindler energy,
which characterizes the Hawking effect, and the standard
FDU temperature, which characterizes the Unruh effect. In
this sense, the Rindler energy/Hawking temperature defines
the relevant energy of the Rindler bath microstate which we
are probing in the ensemble. Again, the implication being
that the Rindler bath is comprised of micrsocopic trans-
Planckian black holes. Thus, by tuning the Rindler energy,
i.e., β⊥, one can tune the interaction so as to select the
desired black hole microstate from the Rindler bath.

B. N-dimensional Stefan-Boltzmann power

There has been much interest in the dimensionality of
black holes as well as the possibility of creating them at
CERN [22]. In this regard, we shall examine the power
radiated by the trans-Plankian diphoton black holes which,
we hypothesize, comprise the thermal bath associated with
theUnruh effect. Forn spatial dimensions, then-dimensional
Stefan-Boltzmann power law for a radiating hypersphere of
radius, R, is given by [23],

FIG. 3. Here we present the black hole heat capacity energy
spectrum, Eq. (10), for n ¼ odd. For each of the best fit thresholds,
ℏω0, we have the following chi-squared per degree of freedom
χ2n=ν: χ23=ν ¼ 1.88, χ25=ν ¼ 3.97, χ27=ν ¼ 5.91, and χ29=ν ¼ 6.90.

FIG. 4. Here we present the black hole heat capacity energy
spectrum, Eq. (10), for n ¼ even. For each of the best fit thresholds,
ℏω0, we have the following chi-squared per degree of freedom
χ2n=ν: χ24=ν¼ 2.30, χ26=ν¼ 5.12, χ28=ν¼ 6.48, and χ210=ν¼ 7.23.
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Pn ¼
2nζðnþ 1Þ

π

�
kB
ℏc

�
n
ckBRn−1Tnþ1: ð13Þ

Here, ζðxÞ is the standard Riemann zeta function. Now,
recalling the radius of the black hole is given byR ¼ n−2

4πT ðℏckBÞ,
we then note the product ðRTHÞn−1 ¼ ðn−2

4π ðℏckBÞÞn−1.
Combining everything together yields a power law which,
for any dimensions, radiates as ∼T2

H. Hence,

Pn ¼
2n
π
ζðnþ 1Þ

�
n − 2

4π

�
n−1 k2B

ℏ
T2
H: ð14Þ

What is interesting to note, is that since this power law
radiates asT2

H, then the photon frequency dependencewill go
as∼ω− 2

n−2. As such, the dimensionality of the black holeswill
be encoded in the steepness of the spectrum. The above
expression is the power that is radiated by each diphoton
black hole in theRindler bath.The total evaporation time,Δτ,
for each black hole can be obtained by direct integration,

Δτ ¼ ðn − 2Þ
n

ER

Pn
: ð15Þ

We also expect that there should be a thermal distribution, at
the FDU temperature, of such black holes. However, just as
the dimension of the black hole dictates the spectral steep-
ness, so too does the dimensionality of the Rindler bath
dictate the thermal statistics [24]. For even spatial dimensions
we will have Fermi-Dirac statistics and for odd spatial
dimensions we will have Bose-Einstein statistics. Taking
into account detailed balance wewill have both spontaneous
emission and stimulated decay. Summing over both will
yield the following thermal factors [8,14],"

1

e
ER

kBTFDU þ ð−1Þn

#
þ
"

1

e
ER

kBTFDU þ ð−1Þn
þ 1

#

≈
2kBTFDU

ER
; n ¼ odd

≈ 2; n ¼ even: ð16Þ

Finally, we must weight our power radiated by the appro-
priate dimensional thermal factor. We must also boost the
FDU temperature back to the lab frame [9],TFDU → TFDU=γ.
Hence,

Podd ¼
4n
π
ζðnþ 1Þ

�
n − 2

4π

�
n−1 k3B

ℏ
T2
HTFDU

γER

Peven ¼
4n
π
ζðnþ 1Þ

�
n − 2

4π

�
n−1 k2B

ℏ
T2
H: ð17Þ

We must now formulate the power spectrum, dPn
dðℏωÞ. This can

be accomplished by noting the following derivatives;

dTH
dðℏωÞ ¼ − TH

n−2
1
ℏω,

dTFDU
dðℏωÞ ¼ 2TFDU

ℏω , and dER
dðℏωÞ ¼ ER

ℏω. With these

derivatives, we then have d
dðℏωÞ ð

T2
HTFDU

ER
Þ ¼ − T2

HTFDU

ðℏωÞER
ð4−nn−2Þ and

dT2
H

dðℏωÞ ¼ − 2T2
H

ðℏωÞðn−2Þ. Thus, combining all the appropriate

pieces and weighting our power spectrum by the appropriate
thermal distribution factors, our power spectrum will then
take the following form,

dPodd

dðℏωÞ ¼
nð4 − nÞ

π2
ζðnþ 1Þ

�
n − 2

4π

�
n−2 k3B

ℏ
T2
HTFDU

γðℏωÞER

dPeven

dðℏωÞ ¼
2n
π2

ζðnþ 1Þ
�
n − 2

4π

�
n−2 k2B

ℏ
T2
H

ðℏωÞ : ð18Þ

Here, we have dropped the overall minus signs since the
power radiated by the black hole is minus the power radiated
by the positron. What is interesting to note is that for odd
spatial dimensions,we are restricted ton ¼ 3 in order to have
a positive definite power spectrum. This prescription is by
necessity in that had we not defined the black hole power as
being the negative of the power radiated by the positron, then
the dimensionality, for both odd and even dimensions, would
have strictly ruled out the n ¼ 3 case. This situation seems
rather unphysical given that we know 3 dimensional black
holes exist [25] and their existence does not depend on their
statistical distribution. In order to compare the above power
spectra, to theNA63 dataset wemustmultiply by the average
black hole evaporation time Eq. (15), Δτ̄, to produce the
energy spectra,

dEodd

dðℏωÞ ¼
nð4 − nÞ

π2
ζðnþ 1Þ

�
n − 2

4π

�
n−2 k3B

ℏ
T2
HTFDUΔτ̄
γðℏωÞER

dEeven

dðℏωÞ ¼
2n
π2

ζðnþ 1Þ
�
n − 2

4π

�
n−2 k2B

ℏ
T2
HΔτ̄
ðℏωÞ : ð19Þ

We must also note that if the properties of the radiation
emitted by these diphoton black holes does not depend on the
statistics of the Rindler bath, then our base power spectrum,
dP0

dðℏωÞ, will be the same as the case for n ¼ even up to an

overall scaling factor of 2. Thus,

dE0

dðℏωÞ ¼
n
π2

ζðnþ 1Þ
�
n − 2

4π

�
n−2 k2B

ℏ
T2
HΔτ̄
ðℏωÞ : ð20Þ

These spectra, for various spatial dimensions, n, are pre-
sented in Figs. 5–7 and compared to the dataset. For all cases
we have used β⊥ ¼ :012 [26] and αT ¼ 1

π [9]. It is clear that
n ¼ 3 for the odd case andn ¼ 4 for both the even n and base
case is favored. This is due to the fact that for these cases, the
spectrum will go as ∼ω−2.
Let us examine, in more detail, the relevant chi-squared

statistics and evaporation time threshold, ℏω�, for each of
our black hole power spectra. Recalling the Unruh radiation
analysis [8] that our chi-squared statistic goes to 1 between
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the regions 30–120 GeV. The low energy cutoff at 30 GeV
is due to the thermalization time threshold, computed from
the best fit power spectrum, of about 22 GeV. This small
transient regime, between 22 and 30 GeV, reflects the onset
of thermalization. The deviation of the chi squared at about
120 GeV is, in all likelihood, due to higher order processes
and the subject of ongoing investigation. In this regard, we
compute our chi-squared statistics for the black hole power
spectra in the same 30–120 GeV window. Next, in
examining the evaporation time threshold, we must recall
that in both the Unruh radiation analysis [8] as well as the
1-d Planck moving mirror observation [10], the average
acceleration which sets the temperature scale of both of
these systems. As such, we should expect an average
evaporation time threshold, ℏω�, to determine the overall
black hole evaporation time, Δτ̄ðℏω�Þ. This threshold is
found via best fit for each black hole power spectrum. We
can also compute the average photon frequency of our
dataset and we expect this average to characterize the data
in the same way the average acceleration sets the radiation
analysis. As such, from the experimental bin values, we
have a thermalization threshold of 13.1 GeV and an upper
bound on the data of 149 GeV. The computation of the
average and variance yields ℏω� ¼ 68.2� 38.3 GeV.
Thus, we expect our threshold scale to reside in this
window. We do indeed find that the standard nodd ¼ 3
case does indeed fit this criterion. A table of the best chi-
squared fits for our black hole power spectra, for various
dimensions, and their associated threshold energy is pre-
sented in Table I.
The reduced chi-squared per degree of freedom as a

function of low energy cutoff for the nodd ¼ 3 case is
presented in Fig. 8. What is interesting to note is that in the
radiation analysis of the Unruh effect [8], the chi-squared
converges to the 1-standard deviation threshold at
ℏωχ ¼ 30 GeV. Then, the Hawking analysis also con-
verges to the 1-standard deviation threshold at ∼2ℏωχ ,
which further corroborates the presence of the diphoton. In
both cases, the chi-squared statistic deviates outside the
threshold above ∼120 GeV.

FIG. 5. Here we present the black hole energy spectrum,
Eq. (19), for n ¼ odd. We find the best fit evaporation time
threshold, ℏω� ¼ 67.3 GeV, and a chi-squared per degree of
freedom χ23=ν ¼ 1.88.

FIG. 6. Here we present the black hole energy spectrum,
Eq. (19), for n ¼ even. We find the best fit evaporation time
threshold, ℏω�, we have the following chi-squared per degree of
freedom χ2n=ν: χ24=ν ¼ 1.81, χ26=ν ¼ 2.28, χ28=ν ¼ 3.96,
and χ210=ν ¼ 5.11.

FIG. 7. Here we present the base black hole energy spectrum,
Eq. (20), for 3 ≤ n ≤ 6. We find the best fit evaporation time
threshold, ℏω�, we have the following chi-squared per degree
of freedom χ2n=ν: χ23=ν ¼ 12.9, χ24=ν ¼ 1.88, χ25=ν ¼ 1.44,
χ26=ν ¼ 2.30.

TABLE I. The reduced χ2 per degree of freedom for the more
accurate best fits and their associated evaporation time threshold,
ℏω�. Note, the evaporation time threshold is set by the average
photon frequency set by the bandwidth beyond the thermalization
threshold. From the mean and variance of the experimental data,
we ℏω� ¼ 68.2� 38.3 GeV. As such, with all other thresholds
outside the experimental bounds on the photon frequency, we
find the nodd ¼ 3 to be a viable candidate.

Statistics Odd Even Base Base

n 3 4 4 5

χ2=ν 1.88 1.81 1.88 1.44
ℏω� ½GeV� 67.3 154 218 342
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Let us finalize this section by analyzing the relevant length
scales of the system. The overarching length scale which
defines this system is set by the proper acceleration,
xa ¼ c2=a. For the average photon frequency of ℏω� ¼
68.2 GeV,we then have an acceleration of 89PeV, and thus a
distance scale of xa ¼ 2.2 × 10−24 m. As such, it appears
that the down to these length/energy scales, the trans-
Planckian black holes which, under assumption here, com-
prise the Rindler bath are described by the standard 3þ 1
dimensional spacetime. This is consistent with high energy
cosmic rays [27] and, in fact, pushes back the energy scale of
extra dimensions to MD > 89 PeV. Although we have not
found convincing evidence for extra dimensions, these
systems do raise the intriguing possibility of exploring
various aspects of gravitation in particle physics. As an
example, we have found evidence for a trans-Planckian black
hole Rindler bath, as suchwe can then utilize this description
to measure Newtons constant directly from the dataset.

V. MEASUREMENT OF NEWTONS CONSTANT

Given the fact that our most viable candidate, the
nodd ¼ 3 spectrum, Eq. (19), depends on the Hawking
temperature, we can then utilize the dataset to provide a
direct measurement of Newton’s constant, G. In doing so,
we confirm the presence of gravitation in these systems and
thus provide a novel experimental platform for probing
gravity. In particular, the high statistics typically associated
with particle physics may indeed yield high precision
measurements of Newtons constant, thereby shedding light
on the problem of its precision measurement [28,29]. The
Solving this spectrum for G yields,

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

122880

c8

αTβ
3⊥π2

ℏ
m
Δt
γ

1
dE

dðℏωÞ

s
: ð21Þ

The measurement of Newton’s constant is presented in
Fig. 9. Here we have used αT ¼ 1

π, β⊥ ¼ :012, and the best
fit evaporation time threshold, ℏω� ¼ 67.3 GeV. From the
dataset, we average the measured value of G over the
region, 30–120 GeV. This is where the chi-squared statistic
remains below the 1-standard deviation threshold in the
radiation analysis [8]. Over this region, we obtain a value of
G ¼ 6.33� :616 × 10−11 m3 kg−1 s−2. The accepted value
of the Newton’s constant from the particle data group
(PDG) is G ¼ 6.67 × 10−11 m3 kg−1 s−2 [30].

VI. CONCLUSIONS

In this manuscript we examined the Unruh effect,
measured by the high energy channeling experiments of
CERN-NA63, from the point of view of the diphoton
quantum fluctuations which comprise the Rindler bath.
Under the assumption that these diphoton pairs are born out
of the Hawking evaporation of microscopic trans-Planckian
black holes, we find the resultant heat capacity and
n-dimensional Stefan-Boltzmann energy spectrum in
excellent agreement with the data. The resultant chi-
squared analysis also places the theory within the 1
standard deviation threshold. In particular, we find a
thermalization energy scale of the Hawking radiation at
twice that of the Unruh radiation, thereby demonstrating
consistency across mutually exclusive analyses. Moreover,
the dimensionality of the energy spectrum demonstrates
that the diphoton black hole, and subsequent Hawking
radiation, is consistent with a 3þ 1 dimensional spacetime
down to ∼89 PeV. We finalize the analysis with a direct
measurement of Newton’s constant, and thereby provide
confirmation of the presence of gravitation at NA63.

FIG. 8. The reduced chi-squared per degree of freedom of the
standard nodd ¼ 3 Stefan Boltzmann energy spectrum compared
to the Unruh effect radiation analysis [8]. Here, 13 GeV is the
thermalization time threshold, ℏωχU ¼ 30 GeV is the chi-
squared threshold of the Unruh effect analysis. Note the BH
case goes below the 1 standard deviation threshold at
∼2ℏωχU ¼ ℏωχH ¼ 60 GeV, i.e., at the associated diphoton
energy.

FIG. 9. Here we present the direct measurement of Newton’s
constant, Eq. (21), from the NA63 dataset. We find
G ¼ 6.33� :616 × 10−11 m3 kg−1 s−2. As such, we confirm
the presence of gravitation in high energy channeling/radiation
reaction experiments.
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