
Spacetime quantum and classical mechanics with dynamical foliation

N. L. Diaz ,1,2 J. M. Matera ,2 and R. Rossignoli 2,3

1Information Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Departamento de Física-IFLP/CONICET, Universidad Nacional de La Plata,

C.C. 67, La Plata (1900), Argentina
3Comisión de Investigaciones Científicas (CIC), La Plata (1900), Argentina

(Received 30 December 2023; accepted 8 April 2024; published 6 May 2024)

The conventional phase space of classical physics treats space and time differently, and this difference
carries over to field theories and quantum mechanics (QM). In this paper, the phase space is enhanced
through two main extensions. First, we promote the time choice of the Legendre transform to a dynamical
variable. Second, we extend the Poisson brackets of matter fields to a spacetime symmetric form. The
ensuing “spacetime phase space” is employed to obtain an explicitly covariant version of Hamilton
equations for relativistic field theories. A canonical-like quantization of the formalism is then presented in
which the fields satisfy spacetime commutation relations and the foliation is quantum. In this approach, the
classical action is also promoted to an operator and retains explicit covariance through its nonseparability in
the matter-foliation partition. The problem of establishing a correspondence between the new noncausal
framework (where fields at different times are independent) and conventional QM is solved through a
generalization of spacelike correlators to spacetime. In this generalization, the Hamiltonian is replaced by
the action, and conventional particles by off-shell particles. When the foliation is quantized, the previous
map is recovered by conditioning on foliation eigenstates, in analogy with the Page and Wootters
mechanism. We also provide an interpretation of the correspondence in which the causal structure of a
given theory emerges from the quantum correlations between the system and an environment. This idea
holds for general quantum systems and allows one to generalize the density matrix to an operator
containing the information of correlators both in space and time.
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I. INTRODUCTION

Classical mechanics is built upon the Lagrangian and
Hamiltonian formulations, both of which were developed
before the advent of relativity and quantum mechanics
(QM). Despite the revolutionary changes brought about
by these later theories, the Lagrangian and Hamiltonian
formalisms have remained largely unmodified. The
Lagrangian approach has proven to be very well suited
in handling the spacetime symmetries revealed by
Einstein’s theories, while the Hamiltonian approach has
widely inspired the QM framework and defines the
canonical procedure to quantize a given theory. The use
of the Hamiltonian formulation in relativity is less natural:
the process of passing from a Lagrangian to a Hamiltonian
involves selecting a specific time variable, which has the
effect of singling out a particular observer. This explicit
breaking of relativistic symmetries is inherited by the
Hamiltonian phase space and carried over to the algebraic
rules beneath every quantum theory.
At the same time, it is widely known that relativistic

quantum field theories (QFTs) yield observer-independent
predictions, even if a canonical Hamiltonian approach
is followed. This important feature discussed in the

foundational years of QFTs [1] is also validated by the
related expressions in the Feynman’s path integral (PI)
formulation [2,3], which emphasizes Lagrangians over
Hamiltonians. The prize to pay by using PIs is that the
conventional Hilbert space structure of canonical QM is
replaced by the use of “sums over histories” in classical
configuration space.
The previous seems to indicate that the asymmetries

between space and time at the quantum level are not
fundamental but rather an artifact of the canonical
Hamiltonian formulation. One can then pose the problem
of formulating QM in a manner that extends the familiar
mathematical elements, such as states and operators, to be
spacetime symmetric. Several discussions related to this
issue, which apply both to relativistic and nonrelativistic
theories, have been advanced recently [4–14]. These dis-
cussions highlight that the previous is an open and chal-
lenging problem of current interest: a genuine solution bears
the potential to extend the insights associated with quantum
correlations to the time domain. For example, the recent
discussion about space emerging from entanglement [15,16]
cannot be extended straightforwardly to time (and then
spacetime). Shifting to more applied areas, quantum

PHYSICAL REVIEW D 109, 105008 (2024)

2470-0010=2024=109(10)=105008(28) 105008-1 © 2024 American Physical Society

https://orcid.org/0000-0002-4321-9649
https://orcid.org/0000-0002-7346-7619
https://orcid.org/0000-0003-3827-2274
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.105008&domain=pdf&date_stamp=2024-05-06
https://doi.org/10.1103/PhysRevD.109.105008
https://doi.org/10.1103/PhysRevD.109.105008
https://doi.org/10.1103/PhysRevD.109.105008
https://doi.org/10.1103/PhysRevD.109.105008


computational protocols that employ quantum time
ideas [17–19] to map temporal to spatial complexities have
already been proposed [20,21]. It is also clear that the issue is
relevant in scenarios where general covariance comes into
play, such as in quantum gravity, in which case the use of
conventional QFTs techniques is no longer enough [22–29].
The problem calls for a critical revision of all the aspects
involved, including the basic formulations of classical
mechanics and, in particular, of the phase space of the
Hamiltonian formulation.
In this work, we introduce a framework that seamlessly

integrates relativistic covariance into an extended phase
space which can be straightforwardly quantized. Our main
focus is the case of special relativistic field theories, a
scenario which allows us to lay the foundations of a
spacetime symmetric QM guided by Lorentz symmetry.
Notably, several insights revealed by the relativistic case,
including a map to conventional QM, can be applied to any
quantum mechanical theory, nonrelativistic theories
included. As we remark throughout the manuscript, one
can regard the final framework as an independent (space-
time symmetric) set of rules to formulate QM, and explore
its consequences from the point of view of QM as a
generalization of classical probability. This complementary
point of view of our work, which seems to be particularly
adequate to tackle the aforementioned foundational prob-
lems, is only preliminarily explored.
The construction begins by modifying the conventional

phase space of Hamiltonian dynamics in two ways: In the
first place, the time choice of the Legendre transformation
which defines the Hamiltonian from a given Lagrangian is
treated as dynamical. Second, spacetime Poisson brackets
(PBs) for matter fields that do not distinguish space and
time are introduced. A straightforward way to recover
classical dynamics by using the enhanced phase space and
the classical action (written in terms of the enhanced phase
space variables) is provided. The new versions of Hamilton
equations are explicitly covariant, a feature which in
conventional classical mechanics is only achieved in
configuration space. All of these classical features are
presented in Sec. II after a “warm up” example provided in
Sec. II A.
A spacetime version of QM is then proposed in Sec. III

by replacing all PBs with commutators (in the bosonic case;
see remarks in Sec. V). A direct consequence is that the
foliation is also quantized, allowing for a geometrical
definition of spacetime transformations, which does not
depend on the dynamics. The action is quantized as well
yielding a “spacetime quantum action” operator, an object
recently introduced in [9,10] (see also [30]), here enhanced
to take into account a dynamical foliation. In this section,
we also show how the diagonalization of free quantum
actions leads to particles with general dispersion relation.
The only difference between on-shell and off-shell particles
is whether they commute or not with the action. In both

cases, their transformation properties are well defined, as
induced by the transformation properties of the fields,
momenta, foliation and action operators of relativistic
theories.
In our framework, operators at different times commute,

and time is treated as a geometrical “index” site, in
complete analogy with space and indistinguishable from
it at the algebra level. This raises the challenge of
recovering conventional QM evolution (in a given
foliation) from within what is essentially a noncausal
framework. Notably, this problem can be solved as
presented recently in [10]. In Sec. III C, we develop
some of the ideas in [10] further to establish a general
correspondence between the spacetime formulation and
conventional QFT through correlation functions at fixed
foliation. The classical limit is also analyzed and some
possible connections with holography are pointed out.
Furthermore, the previous emergence of time evolution

admits a natural interpretation in terms of a generalized
pure state (nonorthogonal projector) involving an environ-
ment correlated with the given system. This mathematical
object, which we may identify with a sensible generaliza-
tion of the notion of state to spacetime, codifies all the
information about the initial state, its evolution, and the
causal structure of the theory. For free theories it can be
built from a pair of conjugate entangled global vacua
encompassing the system and an environment, and in
general it is associated with a generalized purification
involving the quantum action. We also comment on how
the formulation gives new operational meaning to corre-
lation functions, thus allowing the use of quantum compu-
tation protocols for their estimation. All of these features
are described in Sec. III D for a scalar field, while addi-
tional remarks for discrete spacetime and general systems
are provided in Appendixes C and D.
Section IV deals with the fact that invariant eigenstates of

the action are entangled in the matter-foliation partition. As
a consequence, the notion of particle becomes nonseparable
from the foliation. In particular, we show that ladder
operators should be understood as foliation-controlled
operators, thus having entangled eigenstates. Moreover,
invariant eigenstates are necessarily entangled and have the
structure underlying the Page and Wootters (PaW) mecha-
nism [22]. We exploit this analogy to introduce the notion
of conditioning on foliation states, showing that for
classical-like states the correspondence of Sec. III C is
recovered. Finally, we show how the physical predictions
of the theory transform properly and explicitly once the
foliation is quantum. The possibility of genuine quantum
foliation effects is briefly considered as well.
A final discussion about the relevance of our results in

different settings is provided in V, together with future
perspectives regarding general covariance, its possible
relevance in canonical quantum gravity, and in quantum
foundational as well as computational matters.
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II. SPACETIME PHASE SPACE FORMALISM

A. An introductory spatial analogy of the problem

We begin our discussion by providing an example about
how a Legendre transformation of the action and the
ensuing phase space can hide an explicit spatial symmetry
of a system. Consider the following Lagrangian density
L ¼ 1

2
ð∂tϕÞ2 − 1

2
ð∂xϕÞ2 − 1

2
ð∂yϕÞ2. It is clear that the

Lagrangian has a rotational symmetry in ðx; yÞ as part
of its Lorentz symmetry which is manifest in the equations
of motion ∂μ∂

μϕ ¼ ∂
2
tϕ − ∂

2
xϕ − ∂

2
yϕ ¼ 0. Now let us

introduce

H½ϕ; ∂tϕ; ∂xϕ; π� ≔ ∂yϕ
∂L

∂ð∂yϕÞ
− L

¼ −
1

2
π2 −

1

2
ð∂tϕÞ2 þ

1

2
ð∂xϕÞ2 ð1Þ

which is a “Hamiltonian” density defined by the Legendre
transform which replaces −∂yϕ → π. While this is cer-
tainly a poorly motivated change of variables, H should
conserve the complete information of the system, as the
transformation is invertible. In fact, a direct use of the
equation of motion yields the equations

∂yπ ¼ −
∂H
∂ϕ

¼ −∂2tϕþ ∂
2
xϕ

∂yϕ ¼ ∂H
∂π

¼ −π; ð2Þ

which have the form of Hamilton equations in the new
variables. Clearly, after deriving the first equation with
respect to ∂y, the second equation yields ∂μ∂μϕ ¼ 0 back.
One can also obtain (2) from a variation of the action in
phase space variables [31]. Notice that the rhs of (2) can
be written in terms of Poisson brackets (PBs), i.e.,
− ∂H

∂ϕ ¼ fπ; Hg, ∂H
∂π ¼ fϕ; Hg, where H ¼ R dtdxH is

the Hamiltonian and the canonical PBs are here

fϕðt; xÞ; πðt0; x0Þg ¼ δðt − t0Þδðx − x0Þ ð3Þ

at fixed y (with the other PBs vanishing). The quantum
versions (commutators) of such “rotated” PBs were
recently used in [32] to define “timelike entanglement.”
Interestingly, we see that one can recover the proper

equations of motion from PBs which treat t on equal
footing with x. In addition, these canonical relations are
explicitly preserved by a Lorentz transformation of the
form ϕðt; xÞ → ϕðt0; x0Þ, πðt; xÞ → πðt0; x0Þ, which are now
treated as conventional symplectic transformations, in
analogy with rotations.
Instead, rotations in the ðx; yÞ plane can no longer be

treated in their natural geometrical character: from the
phase space point of view, a rotation involves the

“evolution” parameter y; its description becomes formally
a dynamical problem. Note also that only the x derivative
appears inH, and the symmetry is hidden. This is of course
an artifact introduced by the “spatial” Legendre trans-
formation and the associated phase space structure. In fact,
in the conventional Hamiltonian formulation based on π ¼
∂tϕ the PBs fϕðx; yÞ; πðx0; y0Þg ¼ δðx − x0Þδðy − y0Þ are
explicitly preserved by a rotation. Conversely, in this
conventional approach we can no longer treat boost trans-
formations as symplectic transformations.
A clear problem with the previous Legendre trans-

formation is its selection of a particular direction in space.
Clearly, a second “observer” can choose any other direction
y0 and construct its own phase space and canonical PBs at a
fixed y0. Yet, there is no simple rule relating the two
constructions that does not involve dynamical information
unless y ¼ y0 (even if the initial conditions are imposed at
fixed t, the phase spaces do not include y (y0)). To connect
these two different phase spaces we need to somehow keep
track of the momentum’s choice. In addition, in order to
unify them, one must consider an extension of the PBs
which includes all spatial dimensions. These are the main
modifications to the conventional Hamiltonian approach
which we develop in the next section for spacetime.
Notice that another possibility is to include a second

momentum in the x direction and deal with a multisym-
plectic structure. We do not pursue this different approach
which has been explored by other authors [33–37] and
whose quantization is not straightforward [36]. Moreover, it
has recently been shown that one way to quantize these
theories is to construct a canonical momentum from a
polymomentum first [38]. One might use this route to relate
our work to multisimplectic ideas; however, our proposal is
independent of these constructions as it does not require
such a preliminary step.

B. Covariant Legendre transform

The situation we have described in space parallels the
conventional spacetime asymmetry which originates from
separating the role of space and time just as (1) separates x
and y in our previous “experiment.” In this section we
generalize the conventional definition of momentum
through a covariant Legendre transformation in order to
eliminate the need for a preferred choice of time.
The key idea is that the conventional momentum con-

jugate to a given field ϕ can be written as

π ¼ ∂L
∂ðnμ∂μϕÞ

ð4Þ

for nμ ¼ ημ0, with the convention for the metric
ημν ¼ diagð1;−1;…;−1Þ. But this choice of nμ is arbitrary,
the only requirement for a flat spacetime and foliation being
a timelike vector nμnμ ¼ 1, such that it describes inertial
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observers (spacelike vectors will not be considered in the
rest of this work).
For example, in the 1þ 1 dimensional case we can

separate time and space by choosing a basis nμ, nμ1 with
nμ1nμ ¼ 0 and nμ1n1μ ¼ −1. One general parametrization is
provided by inertial observers in relative speed v ¼ tanh η
to a “rest” reference frame (nμ ≡ ημ0) such that their choice
corresponds to

nμ ¼ðcoshη;sinhηÞ; nμ1 ¼ðsinhη;coshηÞ:

Now we can introduce a covariant H ¼ H½ϕ; π; nμ1∂μϕ� as
the n-dependent Legendre transformation of L defined as
follows:

H½ϕ; π; nμ1∂μϕ� ≔ πnμ∂μϕ − L: ð5Þ

The Hamiltonian densityH is a function of the momentum
π defined as in (4) but by an arbitrary direction nμ, and the
derivatives which are orthogonal to that direction (in this
case there is only one). Note that this is not a multi-
symplectic formalism: just one momentum has been
introduced, we simply retain the information of the time
choice.
To write (5) explicitly, one needs ∂ρϕ in terms of the

perpendicular derivatives. For the 1þ 1 case, these are
easily obtained as

∂ρϕ ¼ nρnμ∂μϕ − n1ρn
μ
1∂μϕ ¼ nρπ − n1ρn

μ
1∂μϕ: ð6Þ

It is now straightforward to rewrite any L as a function of
the new variables.
As a concrete example consider a scalar field with

Lagrangian density L ¼ 1
2
ð∂μϕÞ2 − 1

2
m2ϕ2. By using

Eq. (6) for writing ð∂ρϕÞ2 ¼ ðnρπÞ2 þ ðn1ρnμ1∂μϕÞ2, the
covariant Hamiltonian density for a timelike nμ can be
written as

H ¼ 1

2
π2 þ 1

2
ðnμ1∂μϕÞ2 þ

1

2
m2ϕ2; ð7Þ

where we are omitting the argument of H for ease
of notation. For nμ ¼ ð1; 0Þ, one recovers the usual
Hamiltonian density H¼ 1

2
π2þ 1

2
ð∂1ϕÞ2þ 1

2
m2ϕ2. Instead,

for general nμ, the contraction of the indices indicates
Lorentz symmetry. Notice also that for a timelike nμ the
Hamiltonian density is positive.
The Hamilton equations corresponding to H have the

same form as before with the time derivatives ∂t generalized
to nμ∂μ. This can be easily seen by applying the principle of
least action in phase space [39] to

S ¼
Z

ddþ1xðπnμ∂μϕ −HÞ; ð8Þ

a result which holds for general fields, theories, and D ¼
dþ 1 dimensions. For the Hamiltonian (7), one obtains

nμ∂μπ ¼ − ∂H
∂ϕ

¼ ðnμ1nν1∂μ∂ν −m2Þϕ ð9aÞ

nμ∂μϕ ¼ ∂H
∂π

¼ π ð9bÞ

automatically implying (by acting with nμ∂μ on the second
equation)

½ðnμnν − nμ1n
ν
1Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

ημν

∂μ∂ν þm2�ϕ ¼ 0 ð10Þ

which is just the Klein-Gordon equation. Clearly, the
conventional Hamiltonian density also yields this covariant
second order equation for ϕ; however, it does not provide
separated first order covariant equations for ϕ and π as the
ones obtained in (9).
Moreover, the covariant aspect ofH is new and not only

formal: under Lorentz transformations one has

ϕðxÞ → ϕðΛxÞ ð11aÞ

nμ → Λμ
νnν ð11bÞ

πðxÞ → πðΛxÞ; ð11cÞ

where equations (11b)–(11c) are a novelty of the formalism,
while (11a) holds for a scalar field. The transformation law
of π follows from π ¼ nμ∂μϕ assuming (11a) and (11b). The
important novelty is that under these transformations the
Hamiltonian density transforms as

HðxÞ → HðΛxÞ; ð12Þ

i.e. it is a Lorentz scalar. This is compatible with the new
relation betweenH and the energy-momentum tensor which
is easily found to be H ¼ nμnνTμν.
All previous properties hold in arbitrary dþ 1 dimen-

sions with the covariantH always defined as in Eq. (5). For
example, the dþ 1 generalization of (7) is

H ¼ 1

2
π2 þ 1

2
ðnμnν − ημνÞ∂μϕ∂νϕþm2

2
ϕ2 ð13Þ

with the tensor nμnν − ημν projecting onto the d spatial
directions nμi orthogonal to nμ, such that the central term
in (13) is

P
d
i¼1ðnμi∂μϕÞ2. This can be easily seen by noting

that the complete “reference frame” axes can be written as
nμα ≡ ∂x0μ=∂xα with nμ0 ≡ nμ and using

N. L. DIAZ, J. M. MATERA, and R. ROSSIGNOLI PHYS. REV. D 109, 105008 (2024)

105008-4



ημν ¼ ∂x0μ

∂xα
∂x0ν

∂xβ
ηαβ ¼ nμnν −

Xd
i¼1

nμin
ν
i ð14Þ

for x0μ related to xμ through a Lorentz transformation. This
allows to write H as a function of nμ only (rather than of
all nμα).
The new transformation properties also imply the invari-

ance of the “integrated” Legendre transform

P0 ≔
Z

ddþ1x π nμ∂μϕ: ð15Þ

As a consequence, the action in phase space variables (8)
has always a Lorentz invariant expression as well. For the
scalar field example, one obtains

S ¼
Z

ddþ1x

�
πnμ∂μϕ −

1

2
π2 −

1

2
ðnμnν − ημνÞ∂μϕ∂νϕ

−
1

2
m2ϕ2

�
: ð16Þ

In contrast, the conventional action in phase space, S ¼R
ddþ1xðπϕ̇ − 1

2
π2 − 1

2
ð∇ϕÞ2 − 1

2
m2ϕ2Þ hides the Lorentz

symmetry as it corresponds to choosing a time direction
nμ ¼ ημ0 in (16).
In general, it is also feasible to leave the length nμnμ

arbitrary (but nonzero), without affecting the final Klein-
Gordon equation (see Appendix A). Let us also mention
that the treatment of nonscalar fields can be developed
along the same lines presented in this section, by simply
adapting the transformation rules (11). This is shown in the
case of a Dirac field in Appendix B. Therein additional
main body results are exemplified for this field, while the
principal example in the main body is the Klein-
Gordon field.

C. Spacetime symplectic structure

The conventional phase space associated with our
previous construction corresponds to canonical algebras
satisfied at fixed hypersurfaces by matter fields. For each
choice of nμ, a symplectic structure should be defined. On
the other hand, our objective is to keep nμ general and to
promote it to a “dynamical” variable, in the sense explained
below Eq. (22), which involves a foliation algebra.
In order to keep the matter-foliation algebras separated,

we introduce another element in the formalism: we extend
the phase space by treating each field in spacetime and its
conjugate momentum as independent canonical variables
satisfying

fϕðxÞ; πðyÞg ¼ δðdþ1Þðx − yÞ: ð17Þ

The PBs are defined as usual but encompass all variables

ff; gg ¼
Z

ddþ1x

�
δf

δϕðxÞ
δg

δπðxÞ −
δg

δϕðxÞ
δf

δπðxÞ
�

ð18Þ

in perfect spacetime symmetry [40] and independent on
how one foliates spacetime.
This extended symplectic structure enables a straightfor-

ward treatment of spacetime symmetries: Note first that
Eq. (17) implies

fϕ;P0g¼ nμ∂μϕ; fπ;P0g¼ nμ∂μπ ð19Þ
meaning that P0, the Legendre transformation integrated in
time, generates time translations in the nμ direction. In this
framework the time translations are geometrical and inde-
pendent of evolution. This is reflected by the fact that P0

generates the transformations and not the Hamiltonian (this
point is further discussed when evolution is considered in
Sec. II D).
For nμ ¼ ð1; 0;…Þ we can also write fϕ;Pμg ¼ ∂μϕ for

Pμ ¼
R
ddþ1xπ∂μϕ which for μ ¼ 1;…; dþ 1 is just the

conventional momentum carried by the field integrated in
time. In addition,

Lμν ≔
Z

ddþ1x πðxμ∂ν − xν∂μÞϕ ð20Þ

generates the Lorentz transformations

fLμν;ϕg ¼ −ðxμ∂ν − xν∂μÞϕ ð21aÞ

fLμν; πg ¼ −ðxμ∂ν − xν∂μÞπ: ð21bÞ

Through exponentiation of the previous transformations
finite general Poincaré transformations are thus obtained. In
particular, the transformation properties of ϕ and π in
Eq. (11) are recovered. The addition of spin is straightfor-
ward but introduced in Appendix B for simplicity.
In order to obtain the transformation law of nμ in a

similar fashion an additional symplectic structure may be
defined: we introduce a conjugated momentum κν such that

fnμ; κνg ¼ ημν : ð22Þ
One can impose nμnμ − 1 ≈ 0 as a weak constraint. It is
now feasible to introduce lμν ¼ nνκμ − nμκν such that

flαβ; nμg ¼ nαδμβ − nβδμα: ð23Þ
Then

J μν ≔ Lμν þ lμν ð24Þ
generates the complete transformation (11). Within this
formalism the statement of a Lorentz invariant theory
becomes explicit [see, e.g., the action in Eq. (16)]:

fS;J μνg ¼ 0: ð25Þ
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Notice that fϕ; nμg ¼ fϕ; κμg ¼ fπ; nμg ¼ fπ; κμg ¼ 0
such that fLμν; lαβg ¼ 0, in other words the algebras
are independent. On the other hand, S has a nonvanishing
PB with all variables except with nμ, in particular
fS;Lμνg ¼ −fS; lμνg ≠ 0. Additionally, it should be noted
that the generators J μν are independent of the Hamiltonian,
meaning that we have successfully separated the coordinate
transformations from the dynamics.
The introduction of a symplectic structure associated

with nμ provides the final piece for an elegant treatment of
spacetime symmetries within a phase space framework.
Yet, at first sight, it seems unjustified physically since no
associated dynamic has been introduced. On second
thought, similar situations arise in many physical scenarios:
consider for example a particle in an external magnetic field
B with coupling Hint ∝ −B ·M for M the magnetic
moment vector associated with the particle. It is clear that
Hint exhibits rotational symmetry, even if we do not
associate a symplectic structure with B that implements
rotations. We can, however, treat B as a formal dynamical
field in an additional phase space and define a total
(product) rotation operator Rtot which also rotates B such
that fHint; Rtotg ¼ 0, even if no momentum dependent
terms appear in Hint (fHint;Bg ¼ 0). The genuine
Hamiltonian description of the field has an associated
symplectic structure which may coincide with the formal
one, but can be ignored when treated as an external source.
We can speculate that a similar situation may arise in

future investigations with S → S þ Snμ for Snμ including
κμ just as Hint → Hint þHAμ makes Aμ and B dynamical.
While we have introduced a foliation phase space for
mathematical convenience, a theory of a dynamical metric
and associated foliations may provide a genuine dynamical
description of nμ (see also the quantum discussion in
Secs. III B–IV). Conversely, the considerations in this work
point to its existence.

D. Equations of motion from extended brackets

In the new framework a “timeless” picture emerges: all
spacetime variables, including t≡ xμnμ, are site indices of
independent fields in spacetime. There is no variable
parametrizing evolution and no causal structure is assumed
a priori. Yet, any dynamical information is to be encoded
within the extended phase space itself given that it already
contains “time.”
Remarkably, the new symplectic structure provides an

elegant way to introduce evolution: the definition of the
extended brackets yields

∂H
∂π

¼fϕ;
Z

ddþ1xHg; −
∂H
∂ϕ

¼fπ;
Z

ddþ1xHg: ð26Þ

As a consequence, the action S defined in (8) naturally
emerges as the difference between Eqs. (26) and (19) in
such a way that

nμ∂μπ þ ∂H
∂ϕ

¼ fπ;Sg ð27aÞ

nμ∂μϕ −
∂H
∂π

¼ fϕ;Sg: ð27bÞ

When set equal to zero they are precisely the Hamilton
equations. We may define a “physical subspace” (or
subvariety) as

fπðxÞ;Sg ¼ fϕðxÞ;Sg ≈ 0; ð28Þ

imposed for all spacetime points x. In this formulation,
these should be regarded as weak equalities with evolution
emerging from the constraints themselves. They impose an
equality between displacements in time, as generated by
P0 [Eq. (19)], and the transformation generated by the
Hamiltonian.
For instance, for the Klein-Gordon field the action is

given by (16) which, with the addition of a potential term
H → Hþ VðϕÞ, yields

fπðxÞ;Sg ¼ nμ∂μπ − ðnμnν − ημνÞ∂μ∂νϕþm2ϕþ V 0ðϕÞ
fϕðxÞ;Sg ¼ nμ∂μϕ − π: ð29Þ

When these are equaled to zero they become the Hamilton
equations [see (9)] implying

ð∂μ∂μ þm2Þϕþ V 0ðϕÞ ¼ 0: ð30Þ

Interestingly, the relation π ¼ nν∂νϕ is compatible with

fκμ;LðxÞg ¼ �πðxÞ − nν∂νϕðxÞ
�
∂μϕðxÞ ≈ 0 ð31Þ

with L the Lagrangian density in (16) [such that
S ¼ R ddþ1xLðxÞ]. Then, since fnμ;Sg ¼ 0 is fulfilled
trivially, while fκμ;Sg ≈ 0 follows from (31), any function
in the foliation phase space “commutes” with the action (in
the physical subspace). If some dynamical part Snμ were
added to S (S → S þ Snμ), the foliation action Snμ would
determine the equations of motion of the foliation inde-
pendently from the original action of matter fields S.
Some comments about units are in order: the fields have

now rescaled units with a factor T−1=2 because of the
additional time delta. This means that a time parameter τ
may be introduced for multiplying ϕ, π by

ffiffiffi
τ

p
. For

quadratic actions this means an overall factor τ such that
τS is adimensional in agreement with an interpretation of S
as generator in “τ evolution.” Equation (28) may then be
identified as the set of conditions defining τ constants of
motion and the extended PB (17) with a canonical algebra
at “equal τ” in a dþ 2 theory. Notice, however, that this
analogy does not extend to the foliation algebra. We
consider that it is more appropriate to treat the formalism
as describingD ¼ dþ 1 theories through a new set of rules
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rather than dþ 2 theories in a canonical approach (see
however the remarks in Sec. III C). In general, if ϕ; π satisfy
the equations of motion arising from a rescaled S, thenffiffiffi
τ

p
ϕ;

ffiffiffi
τ

p
π have the correct units and satisfy the conven-

tional equations of motion. In this section, we simply set
τ≡ 1 but this parameter has important consequences in the
quantum case.
Let us mention that in Appendix B the case of the Dirac

action is also developed. Therein we show how to recover
Dirac’s equation from the previous constraints.
Interestingly, the equation in its Hamiltonian form exhibits
Lorentz covariance explicitly for nμ general. This agrees
with Eq. (25), holding for Dirac’s action and J μν including
the spin angular momentum.
Let us also notice that the present formalism can be

applied to any classical system and not only fields: one
“promotes” variables qi, pj satisfying fqi; pjg ¼ δij to
qiðtÞ; pjðtÞ such that

fqiðtÞ; pjðt0Þg ¼ δijδðt − t0Þ: ð32Þ

To recover evolution, one then introduces an action
S ¼ R dtðpiq̇i −HÞ and imposes

fqi;Sg ¼ q̇i −
∂H
∂pi

≈ 0 ð33aÞ

−fpi;Sg ¼ ṗi þ
∂H
∂qi

≈ 0: ð33bÞ

One recognizes again the Hamilton equations imposed as
constraints.
It is straightforward to see that the physical subspaces are

invariant under transformation symmetries of the action. In
fact, the generator G of any such symmetry satisfies
fG;Sg ¼ 0. Then, for a function F½ϕ; π� (or F½q; p�)
within the physical subspace the Jacobi identity implies

fF;Sg ¼ 0 ⇒ ffG;Fg;Sg ¼ 0; ð34Þ
i.e. the transformed F is also in the physical subspace. An
example is provided by Lorentz symmetry for the scalar
field, as described in (25).

III. SPACETIME QUANTUM MECHANICS

A. Extended quantization

The first step in the conventional canonical quantization
of a Hamiltonian theory is to promote the canonical PBs to
canonical commutators. We impose the same to the
extended algebra (17) implying (we set ℏ≡ 1)

½ϕðxÞ; πðyÞ� ¼ iδðdþ1Þðx − yÞ; ð35Þ
with the other commutators vanishing (we have also assumed
a bosonic algebra). Then, any function of the phase space

variables is also promoted to an operator (up to the usual
ordering ambiguities). Remarkably, in the extended scheme
this means that not only the Hamiltonian, but also the action
S expressed as in (8), are now promoted.
It is worth remarking that ϕðxÞ ¼ ϕðt;xÞ is not the field

operator evolved in the Heisenberg picture, but for each
time an independent field and associated momentum is
present. In particular,

½ϕðt;xÞ;ϕðt0;x0Þ� ¼ 0 ð36Þ

even for causally connected regions. This is a stronger
statement than microcausality, in fact, there is no causal
connection between fields (and momenta) at different
spacetime points. Accordingly, one possible basis for this
Hilbert space is provided by states jϕðxÞi representing field
configurations in spacetime, such that

ϕ̂ðxÞjϕðxÞi ¼ ϕðxÞjϕðxÞi; ð37Þ

with hϕðxÞjϕ0ðxÞi ¼ δ∞½ϕðxÞ − ϕ0ðxÞ� equivalent to the
continuum limit of

Q
x¼ðt;xÞ δ½ϕx − ϕ0

x�. We can also regard
these states as “quantum trajectory” states of conventional
field eigenstates at a given time jϕðxÞi in the sense that
jϕðxÞi≡ ⊗t jϕtðxÞi [with hϕðxÞjϕ0ðxÞi ¼ δ∞½ϕðxÞ−
ϕ0ðxÞ�, see also [9,10] for a more detailed discussion].
In other words, the Hilbert space which arises from (35) is
isomorphic to a tensor product of copies in time of the
traditional Hilbert space (this statement becomes rigorous
only after a proper discretization, see Appendix D). This is
valid for a bosonic algebra, the fermionic case can be
developed along similar lines with commutators replaced
by anticommutators.
As in the classical Hamiltonian case, the advantage of the

extended algebra is the explicit and geometric treatment of
spacetime symmetries. In fact, with these definitions one
can promote P0 and Lμν to operators such that a quantum
version of Eqs. (19) and (21) is readily obtained by
replacing f; g → −i½; �. Then, e.g., P0 generates geometric
time translations such as eiτP0ϕðxÞe−iτP0 ¼ ϕðx0 þ τ;xÞ
for τ∈R and nμ ¼ ημ0.
In addition, we promote (22) to

½nμ; κν� ¼ iδμν ð38Þ

as an algebra independent of the matter fields, such that

½ϕðxÞ;nμ� ¼ ½ϕðxÞ;κμ� ¼ ½πðxÞ;nμ� ¼ ½πðxÞ;κμ� ¼ 0: ð39Þ

We can now introduce the total angular momentum
operator J μν ¼ Lμν þ lμν, as in Eq. (24), with both L
and l now promoted to operators. Then, within the
complete Hilbert space we can write the transformation
of the operators ϕ, nμ, and π in the unified form
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U†ðΛÞϕðxÞUðΛÞ ¼ ϕðΛxÞ ð40aÞ

U†ðΛÞnμUðΛÞ ¼ Λμ
νnν ð40bÞ

U†ðΛÞπðxÞUðΛÞ ¼ πðΛxÞ; ð40cÞ

where

UðΛÞ ≔ expðiωμνJ μν=2Þ ð41Þ

is the unitary Lorentz operator corresponding to the trans-
formation Λ ¼ eω (x0μ ¼ Λμ

νxν). Equations (40) are of
course the quantum version of (11). It is worth noting
that the definition of UðΛÞ does not involve the
Hamiltonian, meaning that it is theory independent.
The final version of the Hilbert space that includes the

“quantum foliation” is depicted in Fig. 1 and has one basis
of the form

fjϕðxÞi ⊗ jnig ð42Þ

for n̂μjni ¼ nμjni (jni≡ jn0…ndi) and

UðΛÞjϕðxÞi ⊗ jni ¼ jϕðΛ−1xÞi ⊗ jΛ−1ni: ð43Þ

Of course, in the foliation sector more general states jψi ¼R
dnψðnÞjni (dn≡ dn0…dnd) are possible including, e.g.,

momentum eigenstates, coherent states, and Fock states.
One can also implement the condition nμnμ ≈ 1 as the
quantum constraint ðnμnμ − 1Þjψi ¼ 0 which only allows
the superposition of n2 ¼ 1 states (implicitly assumed
throughout this section).
Notably, a general state will clearly exhibit entanglement

between the matter-foliation partition. This feature emerges

naturally from the formalism even when no physical
mechanism has been imposed (we have not considered
interactions between the matter-foliation sectors). In par-
ticular, the quantum action S is not a product operator but
rather a controlled-like operator, i.e.,

S ≡ Sðn̂μÞ ¼
Z

dnSðnμÞ ⊗ jnihnj: ð44Þ

This fact has consequences which are discussed in
Secs. III B and IV. For the moment, we remark that it is
precisely because of this structure that we can write

½S;J μν� ¼ 0; ð45Þ

indicating the covariance of the action explicitly while

½S;Lμν� ¼ −½S; lμν� ≠ 0: ð46Þ

Note also that the Hilbert of n is isomorphic to a dþ 1
particle. Interestingly, this observation suggests possible
connections with the recent quantum reference frame
transformations [7] where the notion of quantum particle’s
rest frame is defined (however the constraint emphasizes
important mathematical and interpretational differences, at
least at this stage of development).
It is important to mention that in the context of the

consistent-history approach to QM [24], the need for a
quantized foliation has also been reported [37], a result
which unfortunately has not attracted much attention or
further development. While the treatment in [37] has been
different (both classically and in its quantized version) the
reasons for its introduction are the same: a proper treatment
of Lorentz transformations in a QFTwith extended algebra

(a) (b)

FIG. 1. Standard phase space and quantization vs the spacetime approach. (a) In Hamiltonian classical mechanics a symplectic
structure is defined for a fixed choice of time. The quantization is thus performed in a given d dimensional hypersurface by promoting
ϕðxÞ and πðxÞ to quantum operators. One possible basis of the ensuing Hilbert space is given by field configurations in the hypersurface,
detoned by jϕðxÞi. (b) In the spacetime approach, both Poisson brackets and commutators are spacetime symmetric and the foliation is
dynamical. A basis of the Hilbert space is given by the tensor product between spacetime configurations of the field jϕðxÞi and the
foliation eigenstates jni≡ jn0; n1;…ndi. General operators, such as the spacetime quantum actions and ensuing ladder operators
(associated with extended off-shell particles) are nonseparable in the matter-foliation partition. Their explicit covariant features become
feasible in the complete Hilbert space only.
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(also a characteristic of Isham’s approach to continuum
histories [25]).

B. Extended particles

Having introduced the proper kinematical framework, we
begin to discuss how to introduce dynamics within the
formalism. A basic observation is that since fields at
different spacetime points are independent, no causality is
assumed a priori, and evolution cannot correspond to a
parametrized unitary transformation as usual: while “t” is a
parameter, it has a completely different meaning that in
conventional QFT. It is here treated as a “site” index just as
“x.” Yet, we would like to recover the same predictions of
traditional QMs concerning evolution, at least under rea-
sonable assumptions such as conventionalHamiltonians and
“classical” foliations (we postpone most of the discussion
about effects related to a quantum foliation to Sec. IV).
As suggested by the classical case, evolution should arise

from the action S, now a quantum operator. Consider as a
concrete example the Klein-Gordon action (16) with
ϕ; π; nμ operators. Let us discuss first its diagonalization.
Being a quadratic operator for each fixed nμ [see Eq. (44)]
its diagonal form is easily achieved: we expand the fields as

ϕðxÞ ¼
Z

dDp
ð2πÞD

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EpðnÞ

p �
aðpÞe−ipx þ H:c:

� ð47aÞ

πðxÞ ¼
Z

dDp
ð2πÞD ð−iÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
EpðnÞ
2

r �
aðpÞe−ipx − H:c:

� ð47bÞ

for a†ðpÞ, aðpÞ extended creation(annihilation) operators
satisfying

½aðpÞ; a†ðp0Þ� ¼ ð2πÞðDÞδðDÞðp − p0Þ; ð48Þ
with other commutators vanishing. In these expressions

D ¼ dþ 1; ð49Þ
and we have defined

EpðnÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pμpνðημν − nμnνÞ þm2

q
ð50Þ

for nμ an operator: a function F of the operators nμ should
be interpreted as F½n�≡ R dnF½n�jnihnj [for simplicity we
have here worked within the subspace ðnμnμ − 1Þjψi ¼ 0;
see Sec. IV and Appendix A].
In terms of these extended ladder operators, the action (16)

has the normal form

S ¼
Z

dDp
ð2πÞD ðpμnμ − EpðnÞÞa†ðpÞaðpÞ; ð51Þ

where we have dropped a “constant” related to the vacuum
energy (interestingly, the term arising as usual from normal

ordering the operators remains an operator in the foliation
sector; see Sec. IV). Notice the two different contributions to
the “normal frequencies” pμnμ − EpðnÞ, with EpðnÞ asso-
ciated with the Hamiltonian density H (see also Sec. IV)
while

P0 ¼
Z

dDp
ð2πÞD pμnμa†ðpÞaðpÞ: ð52Þ

One can show that this normal form of P0 is not unique [9].
For nμ ≡ ημ0, one has pμnμ − EpðnÞ → p0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
,

i.e., EpðnÞ≡ Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
the conventional relativistic

energy.
The previous diagonalization of S mimics the expres-

sions of conventional QFTs concerning the diagonalization
of a free Hamiltonian in d ¼ D − 1 dimensions. However,
important differences should be noted: the expansion of the
fields in particle operators is completely off shell, with p0

unrelated to p. Yet, the quantity EpðnÞ which appears in the
normal form of the Hamiltonian part of S is positive for all
p, allowing the expansion (47). The positivity follows from
Eq. (14) which implies pμpμðημν − nμnνÞ ¼

P
iðpμn

μ
iÞ2.

Moreover, on shell, i.e., for p0 ¼ Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
a

direct computation yieldsEpðnÞ ¼ EΛp forΛ defined as the
Lorentz transformation that brings a normalized nμ to the
“canonical” time direction nμ ¼ ημ0. In other words, EpðnÞ
on shell corresponds to the energy measured by the
observer with axis nμ.
A basic consistency requirement for the extended, in

general off-shell, particles is that different inertial observers
agree on their notion (e.g., their number) and properties
(after transforming their momenta). For this to be fulfilled,
in consistency with the transformation rules of the fields,
and their expansion in extended modes, it is crucial that nμ

is an operator such that

U†ðΛÞEpðnÞU ¼ EpðΛnÞ: ð53Þ

In fact, by noting that EpðΛ−1nÞ ¼ EΛpðnÞ and that dDp is
an invariant measure, one easily finds

U†ðΛÞaðpÞUðΛÞ ¼ aðΛpÞ: ð54Þ

In summary, the extended particles transform properly
(even off shell) because EpðnÞ is also affected by the
quantum transformation. This requires a quantum nμ.
One can gain further insight by noting that this requires

½aðpÞ; lαβ� ≠ 0, which is only possible if the creation/
annihilation operators act nontrivially in the foliation
Hilbert space. This can be seen explicitly by inverting
the relations (47). The result is
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aðpÞ ¼
Z

dD x eipx
 ffiffiffiffiffiffiffiffiffiffiffiffi

EpðnÞ
2

r
ϕðxÞ þ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EpðnÞ
p πðxÞ

!
;

ð55Þ

where we recall that nμ is an operator and as a consequence
½aðpÞ; κα� ≠ 0. The very notion of quantum particle, as an
excitation of the (extended) fields, becomes inseparable
from the quantum foliation. We revisit and expand upon
this point in Sec. IV.
We now return to the notion of physical subspace

suggested by the classical discussion of Sec. II D. By
using the classical version of the expansion (47), one can
show that the constraints (28) imposed for all times are
equivalent to fS; aðpÞg ≈ 0 imposed for all p (and its
conjugate). We can impose half of these infinite constraints
at the quantum level by requiring that physical states are
annihilated by the conditions, namely,

½S; aðpÞ�jΨiphys ¼ 0: ð56Þ

This requires that the only particles present in the physical
subspace are those on shell, as it follows from ½S; aðpÞ� ¼
−½pμnμ − EpðnÞ�aðpÞ which vanishes only for p0 ¼ Ep.
An on-shell particle is physical in any reference frame as it
follows from ½J μν;S� ¼ 0 and Jacobi’s identity.
In this simple free case, it is straightforward to recover

dynamical information from physical states. For example,
for quadratic theories under a translation in time on-shell
ladder operators “move through time” as if they were
evolving. This fact can be employed to obtain conventional
transition amplitudes from the extended formalism, as
shown in [9]. Another interesting feature to notice is that
single particle (sp) states have the form of the Page and
Wootters (PaW) states [17,22], as shown in [8,9,41]. In this
sense, one can state that the excitations of the fields, in their
extended approach, are particles formulated as in quantum
time/string-inspired formalisms [42].
In the free case the physical subspace has a clear

interpretation as the linear space of particles on shell
(see also the results in [8,43] regarding the normalization
of states). Nonetheless, as interactions come into play, the
notion of particle becomes less clear, and the meaning of
physical subspaces as well. In the following, we develop a
much more powerful approach to map extended quantities
to standard quantum evolution which holds for interacting
theories. The concept of physical subspace appears again
naturally when considering scattering processes in which
case the external particles are (roughly speaking) regarded
as asymptotically free in the usual sense.

C. Spacetime correlators and map
to conventional QM at a fixed foliation

Besides particles, another key element of QFTs (and
QMs in general) are correlators. Conventional correlators

are associated with spacelike separations between opera-
tors. For Hermitian operators such correlators can be
interpreted as the mean value of an observable. Instead,
correlators involving timelike separated observables do not
correspond to Hermitian operators, but usually appear
associated with transition amplitudes, e.g., in perturbation
theory. In this section, we show in complete generality how
the extended formalism allows to recover both in a unifying
way. This introduces a general correspondence between the
spacetime version of QM and the conventional approach.
Let us recall first that quadratic operators are fully

determined by their basic contractions (Wick’s theorem).
In the diagonal case, one has essentially the correlator

ha†kali≔
Tr½expð−Piλia

†
i aiÞa†kal�

Tr½expð−Piλia
†
i aiÞ�

¼ 1

expðλkÞ−1
δkl: ð57Þ

Here the indices k, l are “spacelike separated,” in the sense
that the operators a†k, al are not evolved in the given
reference frame and correspond to orthogonal modes. We
have also assumed a bosonic algebra ½ak; a†l � ¼ δkl, the
fermionic case is analogous. Similarly, one may consider
instead the position-momentum correlators hqiqji and
hpipji for ½qi; pj� ¼ iδij, which correspond to the mean
value of Hermitian operators.
The extended algebra (35) allows us to apply Eq. (57) to

both space and time indices. Equivalently, we can apply it
to off-shell correlators, as now permitted by (48).
Remarkably, when we use it in conjunction with a quadratic
action operator S, and “insert” operators at different points
in time, the propagators of conventional QM naturally
emerge. Conversely, one could “rediscover” the operator S
as the only quadratic operator whose spacetime contrac-
tions are the conventional free propagators.
This result, recently proven in [10] without nμ, provides

a general map between conventional QM in d dimensions
and the extended formulation with algebras in D ¼ dþ 1
dimensions. It also leads directly to a redefinition of the
path integral (PI) formulation as a trace involving the
quantum action S. We provide here a new derivation of
the map particularly suited for field theories thus unveiling
new features. In Sec. III D, we further develop it by
providing an interpretation in terms of generalized states
and “pseudo” correlations. In this section, we consider a
classical nμ. The extension to a quantum nμ is developed in
Sec. IV, building on the classical foliation case.
We want to exponentiate the action operator, which is

not adimensional, so we introduce a time or inverse
energy scale τ (regarded as a positive real parameter for
convenience) and define Sτ ¼ τS in the free case.
Additional comments on this new “coordinate” are made
at the end of this section, while a complementary time-
slice approach is presented in Appendix D. Similarly, in
order to consider fields with correct units we will add a
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factor
ffiffiffi
τ

p
for each operator. We indicate the extended

correlators of eiSτ as

hOi ≔ TreiSτO
TreiSτ

: ð58Þ

By recognizing that for a quadratic S equation (58) can
be regarded as a particular instance of (57), any spacetime
correlator can be easily obtained. We consider the example
of the Klein-Gordon action which in its diagonal form (51),
characterized by off-shell particles, yields

ha†ðpÞaðkÞi¼
Tr½expfiτR dDp0

ð2πÞD ðp00−Ep0 þ iϵÞa†ðp0Þaðp0Þga†ðpÞaðkÞ�
Tr½expfiτR dDp0

ð2πÞD ðp00−Ep0 þ iϵÞa†ðp0Þaðp0Þg�
¼ 1

expf−iτðp0−Epþ iϵÞg−1
ð2πÞDδðDÞðp−kÞ;

ð59Þ

where we have replaced Ep → Ep − iϵ and assumed for
simplicity nμ ¼ ημ0 (the general case corresponds to
p0 − Ep → pμnμ − EpðnÞ). It is interesting to consider
the small τ case of this expression. One has ha†ðpÞaðkÞi ¼
1
τ

i
ðp0−EpþiϵÞ ð2πÞDδðDÞðp − kÞ þOðτÞ whose Fourier trans-

form in p0 yields a Heaveside theta function in the
conjugate variable, i.e., in the time variable.
It is important to notice that (59) cannot correspond

to a genuine correlator [having the “spacelike” form of
Eq. (57)] in traditional QM, essentially because the
extended formalism has extra indices. In other words,
since time is an “index site” indicating independent field
operators, p0 becomes also a label and denotes independent
ladder operators: most correlators in the extended Hilbert
space do not correspond to a single “contraction” of
traditional QM. Only for those with operators inserted at
a single time slice a one-to-one identification is possible.
As wewill now show, evolution emerges from this apparent
“redundancy.”
Equation (59) is the basic off-shell momentum space

correlator from which spacetime-localized correlators can
be obtained. The latter are defined by the expansion (47). In
particular, it is straightforward to compute

hϕðxÞϕðyÞi ¼ 1

τ

Z
dDp
ð2πÞD

i
p2 −m2 þ iϵ

e−ipðx−yÞ þOðτÞ;

ð60Þ

where we used i
p0−Epþiϵ −

i
p0þEp−iϵ

≡ 2Ep
i

p2−m2þiϵ and we

are considering a small τ. One immediately recognized
the expression of the Feynman propagator which allows us
to write

lim
τ→0

h ffiffiffi
τ

p
ϕðxÞ ffiffiffi

τ
p

ϕðyÞi ¼ h0jT̂ϕHðxÞϕHðyÞj0i: ð61Þ

On the right-hand side, ϕHðx; tÞ ≔ eiHtϕðxÞe−iHt is
the conventional (nonextended) field operator in the

Heisenberg picture and j0i is the usual ground state of
the free Klein-Gordon Hamiltonian H, while T̂ denotes
time ordering. On the left-hand side, the operators are not
evolved with some evolution operator, instead, their “posi-
tion in time” has determined the amount of evolution: the
lhs of (61) can always be understood as a correlator such as
the one in Eq. (57), even for jx − yj timelike in which case
evolution emerges. Notice also that instead of considering
the small (positive) τ limit, which reflects the intuition of a
discrete spacetime (see Appendix D), one might consider
integrating around loops in the complex plane and exploit-
ing the pole structure of correlators.
The previous results also define the proper treatment of

interacting field theories: consider Sτ → Sτ þ Sint½
ffiffiffi
τ

p
ϕ�

for Sint½
ffiffiffi
τ

p
ϕ� having the classical functional form on the

fields, e.g., for a classical action Sint ¼ −
R
dDx λ

4!
ϕ4, one

has Sint ¼ −
R
dDx λ

4!
τ2ϕ4. Then in the small τ limit, the

“interacting” correlator of fields, defined by considering the
whole action in (58), has the following expansion:

lim
τ→0

h ffiffiffi
τ

p
ϕðxÞ ffiffiffi

τ
p

ϕðyÞiint¼
h0jT̂eiSint½ϕI �ϕIðxÞϕIðyÞj0i

h0jT̂eiSint½ϕI �j0i : ð62Þ

The equality is a direct consequence of (61) and Wick’s
theorem (for Gaussian “states”) applied to the free part of
the action, with the interacting part expanded perturba-
tively for small τ. For this reason, the evolution which
emerges is the one that would correspond to the interact-
ing picture, i.e., ϕIðt;xÞ ¼ eiH0tϕðxÞe−iH0t for H0 the free
Klein-Gordon Hamiltonian. One also recognizes in the rhs
of (62) the perturbative expansion of the interacting
correlator hGSjT̂ϕHðxÞϕHðyÞjGSi, with jGSi the ground
state of the interacting Hamiltonian. Assuming as usual
the validity of perturbation theory, we conclude that

lim
τ→0

h ffiffiffi
τ

p
ϕðxÞ ffiffiffi

τ
p

ϕðyÞiint ¼ hGSjT̂ϕHðxÞϕHðyÞjGSi: ð63Þ

From these expressions scattering amplitudes can be
computed as usual, e.g., by using the Lehmann-Szymanzik-
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Zimmermann reduction formula [44]. One can show that
the dþ 1 dimensional Fourier transform involved trans-
lates to inserting on-shell ladder operators in the correla-
tors. In other words, scattering amplitudes are proportional
to correlators of the form hQi aðkiÞ

Q
j a

†ðpjÞiint for pj (ki)
the “in” (“out”) momenta (see also [10] and Sec. III D).
Note also that for a fixed but general nμ, one just needs to

make the replacement p0−Ep →pμnμ−EpðnÞ in Eq. (59).
Equations (60)–(63) remain unchanged.
Before proceeding further, we would like to remark that

the similarities between the previous expressions and the PI
ones are not a coincidence. While the previous results have
been obtained from Hilbert space techniques, associated
with the algebra of operators, and are thus independent of
Feynman’s approach, one can evaluate the previous traces
explicitly on a given basis. If one chooses the spacetime
basis of field configurations jϕðxÞi [see Eq. (37)] Feynman
PIs emerge, as shown in [10]. In this sense, the formalism is
embedding the PI formulation in a Hilbert space.
It is also interesting to discuss how the extended classical

formalism of the previous section can be recovered in the
limit ℏ → 0. In first place, let us notice that

½ϕðxÞ;Sτ� ¼ iϕ̇ðxÞ − ½ϕðxÞ;
Z

dDzH�

−½πðxÞ;Sτ� ¼ iπ̇ðxÞ þ ½πðxÞ;
Z

dDzH� ð64Þ

have the form of Heisenberg equations if set to zero
(and absorbing the τ factors in the fields). Notably,
since the cyclicity of the trace implies h½…;Sτ�i ∝
TrfeiSτ ½…;Sτ�g ¼ 0 for any operator, we have
h½ϕðxÞ;Sτ�i ¼ h½πðxÞ;Sτ�i ¼ 0, which according to our
map (holding for small τ) agrees with Heisenberg equations
in conventional QM. On the other hand, by following a
similar argument as in the standard PI formulation, for
ℏ → 0 the only contributions to the trace come essentially
from extreme classical configurations of the action (see
also [10]). At the same time, since the form of the extended
commutators and extended PBs is the same we can write

0 ¼ h½…;Sτ�i ∼ℏ→0f…;Sgjon shell; ð65Þ

where the commutator is applied to any extended quantum
operator, and the PB to the associated extended-phase space
function (the ordering becomes irrelevant in the small ℏ
limit). The latter is first computed according to the extended
algebra (17) and then evaluated at a solution of the
equations of motion. We conclude that the quantum result
h½…;Sτ�i ¼ 0, together with Eq. (27), imply Hamilton
equations for ℏ → 0. Interestingly, they emerge as a limit of
spacetime QM through the extended PBs of spacetime
classical mechanics.

The previous results establish a basic connection
between the extended and conventional QFTs at zero
temperature (i.e., associated with the ground state of the
Hamiltonian in question). It is also interesting to briefly
mention how thermal propagators arise for a finite time
window of length T. Essentially, the diagonalization of the
free Klein-Gordon action now yields

S ¼ 1

T

X
n

Z
ddp
ð2πÞd ðwn − EpÞa†nðpÞanðpÞ; ð66Þ

for w ¼ 2πn=T, the Matsubara frequencies, here arising
from the diagonalization of P0. We are also assuming a
compactified time (periodic conditions) such that (48) is
replaced by ½anðpÞ; a†n0 ðkÞ� ¼ Tδnn0 ð2πÞdδdðp − kÞ while
the expansions (47) hold by replacing the integral in p0

with a sum over n [with also ð2πÞ−1 → T−1].
If one now considers Ep → −iEp, it is straightforward to

see that (61) is replaced by the Matsubara expansion of the
(thermal) correlator [45]. The corresponding temperature
is β≡ T.
If one also discretizes time in N ¼ T=ϵ steps, results

such as (61) become exact for operators “inserted” at time
commensurable with ϵ. One also dispenses with τ which is
replaced by the time step ϵ (see Appendix D for the details
and the definition of the quantum action for discrete
spacetime). Moreover, since all spacelike correlators are
obtained from the quantum action by simply considering,
e.g., operators in the initial slice

e−βH ¼ Trt≠0 eiS; ð67Þ

i.e., we can recover the conventional thermal state from the
quantum action by considering a partial trace over all times
except the initial slice (we are assuming a Wick rotation of
the Hamiltonian part of the action; this does not affect P0).
Here β≡ T. This also implies Z ≔ Tre−βH ¼ TreiS.
Interestingly, partial traces over arbitrary spacetime regions
can be considered in the extended formalism. In principle,
only those associated with spacelike hypersurfaces corre-
spond to conventional quantum states (and real entropies,
see Sec. III D) but the partial trace is well defined in
general [10].
We finally mention that if one is interested in states (or

transitions) besides thermal ones or ground states, these can
be specified by adding a projector on the “initial slice,” as
developed in [10] and shown in Appendix D.
Let us also mention that in [10] a version with finite τ

has also been constructed, which may be employed to
define rigorously the limit τ → 0 (a result which is not
required here). Instead, for large τ, one can rewrite the
map as an asymptotic mean value of more complicated
(τ evolved) operators [10]. The previous mean value may
then be associated to a Dþ 1 ¼ dþ 2 theory with
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spacetime volume ∝ ddþ2x ¼ dτddþ1x, essentially by
considering τ as an evolution parameter in the conven-
tional sense.

D. Spacetime generalized states

Arguably, the most fundamental element of the math-
ematical framework of QM is the notion of state.
Conventional pure states encode all the information about
a quantum system at a given time. The state is thus
associated with physical predictions at a specific moment,
as determined by QM axioms.
While we have established a general map between

quantities of the extended formalism to quantities involving
conventional states, this map relies on the operator eiSτ

which is clearly not a state nor a density matrix [46]. Yet,
since in principle, all predictions of the system at different
times can be extracted from the spacetime correlators, one
could argue that some notion of “spacetime state” may be
assigned to the previous map. Conversely, if a notion of
spacetime state can be properly defined it should be related
to it.
Equation (59), which is essentially the Bose-Einstein

distribution with the role of the thermal state replaced by
eiSτ , suggests an interesting course of action: one may
consider some sort of purification of eiSτ such as the ones
considered in thermofield dynamics to treat thermal effects
in QFTs with zero temperature techniques [45]. Therein
thermal traces are replaced by mean values on properly
defined “enlarged” pure states. This idea is further rein-
forced by the fact that by considering the free S as the τ
evolution generator in a dþ 2 theory, eiτS takes the role of a
dþ 1 “thermal” state with imaginary temperature −iτ.
Moreover, Eq. (67) explicitly shows that the information of
conventional d thermal states for arbitrary Hamiltonians
can also be contained in eiSτ . While a thermofield-like
approach is strictly speaking not necessary (one can use the
previous map in the form of Sec. III C), it leads to
interesting insights on the nature of the non-Hermitian
operator eiSτ.
A “purification” of eiSτ is easily obtained by considering

two different states living in a duplicated Hilbert space.
Considering for simplicity the T → ∞ limit and the free
Klein-Gordon theory, we indicate the “environment” oper-
ators as, e.g., ãðpÞ [with ½ãðpÞ; ã†ðkÞ� ¼ ð2πÞDδðDÞðp − kÞ]
and environment states as jΨ̃i. Then, by considering a partial
trace over the environment E, we can express eiSτ as a
reduced generalized state:

eiSτ

TreiSτ
¼TrERτ; Rτ ≔

jΩτ⟫⟪Ω̄τj
⟪Ω̄τjΩτ⟫

; ð68Þ

wherewe have introduced the two distinct global pure states,

jΩτ⟫ ≔ exp
�Z

dDp
ð2πÞD eiτðp0−EpþiϵÞ=2a†ðpÞã†ðpÞ

�
jΩ⟫

jΩ̄τ⟫ ≔ exp

�Z
dDp
ð2πÞD eiτðEp−p0þiϵÞ=2a†ðpÞã†ðpÞ

�
jΩ⟫;

ð69Þ

with jΩ⟫ ¼ jΩijΩ̃i the global vacuum and aðpÞjΩi ¼ 0,
ãðpÞjΩ̃i ¼ 0∀ p (even off shell). The states (69) are in fact
system-environment entangled Bogoliubov vacua of global
annihilation operators [see Appendix C for details and proof
of (68)].
In (68) we have defined the nonorthogonal (non-

Hermitian) projector R (R2 ¼ R) having trace 1 (and hence
a single nonzero eigenvalue 1), such that it can be
considered as a generalization of the notion of pure state.
We also notice that

TreiSτ ¼ ⟪Ω̄τjΩτ⟫; ð70Þ

which is nonzero.
Interestingly, this kind of generalization of the tradi-

tional purification has been recently introduced in [47] and
in the context of the dS=CFT correspondence to define a
notion of timelike entanglement [32,47–50] (in conven-
tional, nonextended QM where there is no action oper-
ator).
It has also been employed to define a dual quantity (a
pseudo entropy) to minimal area surfaces in time-
dependent spacetimes [47], according to the AdS=CFT
correspondence [51]. The fact that these generalized states
emerge naturally both in those contexts and in the present
spacetime version of QM, may be an indicator that they are
in fact required in any (sufficiently general) extension of the
notion of state to the time domain [52]. One observation in
support of this hypothesis is that, contrary to conventional
states, they lead to complex entropies [47–49], which may
be related to the pseudo-Riemannian nature of classical
spacetime (we recall the conjectures of space emerging from
entanglement [15,16,53]).
With these results at hand, we can write spacetime

correlators (58) as

hOi ¼ ⟪Ω̄τjO ⊗ 1EjΩτ⟫

⟪Ω̄τjΩτ⟫
¼ Tr½RτO ⊗ 1E�: ð71Þ

For instance, Feynman’s propagator can be written as
⟪Ω̄τjϕðxÞϕðyÞjΩτ⟫ ∝ h0jT̂ϕHðxÞϕHðyÞj0i [see (61)].
Interestingly, we see that evolution emerges from correla-
tions between the system and the (so far) abstract envi-
ronment: since there is no indication in the operators
ϕðxÞ;ϕðyÞ on whether x, y are space or time variables it
is clear that all the information about the causal structure of
the theory is encoded in the entangled states jΩτ⟫, jΩ̄τ⟫, as
represented in Fig. 2. The correlations responsible for the
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time evolution emergence are precisely the ones which the
recently introduced pseudo entropies aim to quantify [e.g.,
SðRτÞ ¼ −TrRτ logRτ ¼ 0 but the subsystem state eiSτ is
not a projector]. The complete information about conven-
tional spacelike correlations of the state j0i is also encoded
in Rτ, since the correlators h0jϕðxÞϕðyÞj0i, h0jπðxÞπðyÞj0i
are particular cases of (71) corresponding to O ¼
ϕðx; t0Þϕðy; t0Þ, O ¼ πðx; t0Þπðy; t0Þ, i.e., to the insertion
of operators on spatial slices. These appear, e.g., in the
definition of spacelike entanglement [54].
We also notice that a quantity of the type (71) for

Hermitian operators also appears in conventional QM
where it is denoted as weak value [55]. A spacetime
correlator can then be understood as the weak value of
O ⊗ 1E for O Hermitian. We recall that while, e.g.,
T̂ϕHðxÞϕHðyÞ is not Hermitian for a timelike separation,
O ¼ ϕðxÞϕðyÞ is always an observable. As a consequence,
one can use existent techniques (see, e.g., [56] for ways of
measuring weak values) to access (71) through measure-
ments. This is an interesting result on its own since it
provides timelike correlators a direct operational meaning,
a remark that holds for general quantum systems, as

discussed in Appendix D. In addition, it is well known
how to compute such quantities in quantum computers (see
Fig. 3; for a recent development about quantum circuits
measuring weak values see [57]).
Another case of interest is the evaluation of scattering

amplitudes. Equation (63) suggests to consider O ¼
aðk1Þaðk2Þ…aðkmÞeiSinta†ðp1Þa†ðp2Þ…a†ðpnÞ. In fact,
for on-shell momenta hOi is proportional to the S matrix
elements (the proportionality must be chosen to agree
with the Lehmann-Szymanzik-Zimmermann formula, such
that it “amputates” external lines). To show this it is
sufficient to notice that ⟪Ω̄τjϕðxÞa†ðpÞjΩτ⟫ ∝ e−ipx and
use the results of the previous subsection to recover the
Feynman rules in position space. A direct application of the
usual techniques can then be used to obtain finite physical
predictions. As a final remark, we notice that by using
Eq. (71) one can write the elements of the scattering matrix
as a transition amplitude between states created by on-shell
(extended) modes on the global vacua (69). These states
can also be explicitly related to the physical states defined
in Eq. (56) by writing jΩτ⟫, jΩ̄τ⟫ as Bogoliubov trans-
formations on the product vacuum jΩ⟫ (see Appendix D).

IV. MATTER-FOLIATION ENTANGLEMENT

A. Particles as foliation controlled operators

Having discussed the classical case, its quantization, and
how to establish a general map to conventional QM for a
fixed nμ (with an interpretation of evolution emerging from
generalized spacetime states), we dedicate a final section to
lay the foundations to handle a full quantum foliation.
Before proceeding with a mathematical exposition, it is

worth dedicating some discussion on why considering a
full quantum nμ could be physically relevant beyond the
consistency of the formalism. We recall that the introduc-
tion of an algebra associated with nμ, pν was a mathemati-
cal necessity: a proper transformation rule of the extended
off-shell particles can only be achieved if the foliation is
modified by the transformation, in turn requiring a quantum
nμ. As we show below, this is fundamental when consid-
ering expectation values as well: by taking into account the

FIG. 2. Scheme of the correspondence between the QM
formulations (fixed nμ). In the spacetime formulation, we can
codify all the information about a given system and its evolution
in generalized states, encompassing an environment correlated
with the system. By “measuring” on the system only (see
the remarks on weak values) conventional propagators and
Feynman rules are recovered. The example of the Feynman
propagator is depicted, which corresponds to the Hermitian
observable ϕðxÞϕðyÞ. Contrary to canonical QM (CQM) where
½ϕHðxÞ;ϕHðyÞ� ≠ 0 inside the light cone, in the spacetime
formulation every field ϕðxÞ is independent from the others
and ½ϕðxÞ;ϕðyÞ� ¼ 0 for any spacetime points (a much stronger
statement than microcausality). The information about evolution
and causality is contained in the generalized system-environment
state Rτ and one can think that it emerges from the (“generalized/
pseudo”) correlations between the two. Since the environment is
ignored, one can also work with the partial state of the system
eiSτ directly, as described in Sec. III C. It was shown in [10] that
particular evaluations of the ensuing traces lead to the PI
formulation (see also Appendix D).

FIG. 3. Quantum circuit for computing a quantity of the form
hφjOjψi. The scheme is a Hadamard test where measurements
are performed in the ancillary qubit (on top) to estimate the real
and imaginary parts of hψ jVOjψi, and where we choose V so that
jφi ¼ V†jψi. By using states jψi, jφi that define a generalized
state, one can compute spacetime correlation functions (see also
Appendix D).
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transformation properties of the foliation we can prove the
explicit covariance of all mean values, conditioned to
classical values of the foliation. On the other hand, there
is nothing preventing the use of more general foliation
states. While it is reasonable to suspect that this may be
pointing to something deeper physically, gaining further
insight requires additional development like the application
of the extended quantization scheme to dynamical space-
times (beyond the scope of the present work).
On the other hand, it is easy to come up with scenarios in

which some notion of quantum uncertainty is assigned to
observers. Since the formalism provides a rigorous frame-
work containing this feature, it is interesting to explore it
even if for this reason only. Many such scenarios can be
constructed by appealing to the argument that in practice
observers need to perform measurements to establish their
own notion of space and time. Since thosemeasurements are
fundamentally described byQM then onemay conclude that
a quantum uncertainty is inherited. This argument can be
found in the literature in different contexts [7,11,14,58–61],
usually related to some generalization of QM and in
relation to the “problem of time.” One particularly interest-
ing observation is that according to the cosmological
principle [62] a cosmic foliation (or cosmic time) can be
defined such that the universe looks homogeneous and
isotropic at each moment. At an early stage of the universe,
where quantum effectsmay become important these hypoth-
eses need not hold, and the foliation could become “fuzzy.”
We now return to the example of the free Klein-Gordon

theory and the notion of extended particles introduced
in III B but focus on a completely quantum nμ. Similar
ideas hold for other field theories. Let us first notice that
the operator aðpÞ we have introduced can be properly
written as

aðpÞ ¼
Z

dn aðp; nÞ ⊗ jnihnj ð72Þ

for aðp; nÞ the annihilation operator obtained by replacing
the operators nμ in Eq. (55) with the fixed value n. Each
aðp; nÞ is a genuine annihilation operator satisfying
½aðp; nÞ; a†ðp0; nÞ� ¼ ð2πÞDδðDÞðp − p0Þ, while strictly

½aðpÞ; a†ðp0Þ� ¼ ½aðp; nÞ; a†ðp0; nÞ� ⊗ 1̂n ð73Þ

which was implicit in (48). Here 1̂n is to be read as the
projector on the subspace generated by those jni with nμ

timelike. Note, however, that we can let knk2 > 0 arbitrary
in these expressions. All expressions in Sec. III B hold

for EpðnÞ ¼ knk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnμnνknk2 − ημνÞpμpν þm2

q
, as shown in

Appendix A.
Equation (72) reveals that aðpÞ has the form of a

controlled operator in which the values of the foliation
states determine which aðp; nÞ acts (one can compare this
with a control-not operation between qubits Ucontrol-not ¼

P
n¼0;1ðσxÞn ⊗ jnihnj for σx the x-Pauli matrix acting on

the controlled qubit). This way of writing aðpÞ makes its
transformation properties more clear: the operator aðp; nÞ
acts on the matter sector and is transformed with UϕðΛÞ ≔
expðiωμνLμν=2Þ the boost operator that transforms the
fields but not the foliation. In fact, the complete trans-
formation of aðpÞ can be understood as

U†ðΛÞaðpÞUðΛÞ ¼
Z

dn
�
U†
ϕðΛÞaðp; nÞUϕðΛÞ

�
⊗ jΛnihΛnj ð74Þ

which, comparing with (54) yields

U†
ϕðΛÞaðp; nÞUϕðΛÞ ¼ aðΛp;ΛnÞ; ð75Þ

a relation which can also be obtained from (55) by fixing n.
By employing (55), one can also show that the different
annihilation operators aðp; nÞ and aðp; n0Þ are related by
Bogoliubov transformations such that in general
½aðp; nÞ; aðp0; n0Þ� ≠ 0 for n ≠ n0. In particular, (75) does
not preserve the particle number, only the complete trans-
formation does.
The previous also leads to the proper treatment of vacuum

fluctuations. Notice first that a similar controlled expansion
is assigned toHðn̂Þ ¼ R dnHðnÞ ⊗ jnihnjwithHðnÞ acting
on the matter sector. Then, each integrated HðnÞ can be
diagonalized as a usual quadratic Hamiltonian, in analogy
with the results in Sec. III B but with a classical n:

Z
dDxHðnÞ ¼

Z
dDp
ð2πÞD EpðnÞa†ðp; nÞaðp; nÞ þ λðknkÞ

ð76Þ

with λðknkÞ an n-dependent constant that arises from having
normal ordered the ladder operators aðp; nÞ. Surprisingly,
when this constant is taken into account in the complete
operator, one has

Z
dDxHðn̂Þ ¼

Z
dDx∶Hðn̂Þ∶þ λðkn̂kÞ; ð77Þ

with kn̂k ¼ R dnknkjnihnj, i.e., rather than a constant shift,
the (integrated) Hamiltonian picks a vacuum energy oper-
ator acting on the foliation Hilbert space.
One can show that the associated vacuum energy density

operator is just ρ̂vac ≔ ρvackn̂k, with ρvac the conventional
vacuum energy density. In this simple scenario, the only
quantum foliation effect on the vacuum density could be a
statistical average over energy scales induced by jψðnÞj2 ¼
jhnjψij2 ≠ 0 for knk ≠ 1.
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B. Matter-foliation entangled states
and explicit covariance of expectation values

Another interesting consequence of the operator expan-
sion (72) is that its eigenstates are in general entangled in
the matter-foliation partition. The same is true for the
quantum action S [see Eq. (44)]. Consider in fact the
concept of vacuum. For each fixed n, the operators aðp; nÞ
have a vacuum jΩni such that

aðp; nÞjΩni ¼ 0 ð78Þ
for all, in general off-shell, values of p. These vacua are all
states in the matter sector and may be explicitly expanded
as jΩni ¼

R
DϕðxÞΨn½ϕðxÞ�jϕðxÞi in the basis (37) with

Ψn½ϕðxÞ� their wave function.
On the other hand, we may introduce a history-like

vacuum as

jΩi ¼
Z

dnjΩni ⊗ jni; ð79Þ

satisfying aðpÞjΩi ¼ 0, with aðpÞ≡ aðp; n̂Þ. The state jΩi
contains the information of the vacua of all possible time
directions simultaneously. It achieves so through its entan-
glement with the quantum foliation. In fact, we can recover
the vacuum of a given observer as jΩni ¼ hnjΩi, i.e., by
conditioning on the foliation. Remarkably, this feature and
the structure of (79) resemble the PaW formalism where
evolution emerges from stationary history states by con-
ditioning on internal “clocks readings” [17,22].
Lorentz symmetry makes the entangled state jΩi pref-

erable over other eigenstates of aðpÞ: this state satisfies
UðΛÞjΩi ¼ jΩi or equivalently

J μνjΩi ¼ 0; ð80Þ

which may be compared with the PaW universe equ-
ation [17], a Wheeler-DeWitt like equation. This pro-
perty is a direct consequence of (75) which implies
UðΛÞjΩni ⊗ jni ¼ jΩΛ−1ni ⊗ jΛ−1ni. The integral in (79)
undoes this transformation via a trivial change of vari-
ables (j detðΛÞj ¼ 1). Clearly, the invariance is not satis-
fied for more general superposition, i.e., by states which
add weights to the sum (79). In particular, product states
jΩni ⊗ jni are annihilated by aðpÞ but break Lorentz
symmetry explicitly.
The previous structure holds for general states. This can

be seen by considering a basis of Fock states which as usual
can be obtained by acting with creation operators a†ðpÞ on
the vacuum jΩi. For example, a two particle Fock state can
be written as

a†ðp1Þa†ðp2ÞjΩi ¼
Z

dn a†ðp1; nÞa†ðp2; nÞjΩni ⊗ jni:

ð81Þ

In general, we have jΨi ¼ R dnjΨni ⊗ jni so that hnjΨi ¼
jΨni for jΨni the state for that particular choice of time,
thus recovered by conditioning on the foliation. All of
these states satisfy the constraint equation J μνjΨi ¼ 0.
Interestingly, one can consider conditioning with respect to
more general states jψi ¼ R dnψðnÞjni which correspond
to a quantum superposition of foliations. In this case,
hψ jΨi ¼ R dnψðnÞjΨni which induces a particular super-
position of matter states.
On the other hand, we have seen in Sec. III C that the

correspondence between the extended approach and con-
ventional QM is nontrivial, in the sense that it requires a
sum (trace) over extended states (Sec. III C). This trace
can be purified (Sec. III D) and rewritten as a generalized
mean value in a duplicated Hilbert space. We can then
employ the states

jΩτ⟫ ¼
Z

dnjΩτn⟫ ⊗ jni

jΩ̄τ⟫ ¼
Z

dnjΩ̄τn⟫ ⊗ jni ð82Þ

for jΩτn⟫, jΩ̄τn⟫ defined in (69) with the n dependence
codified in p0 − Ep → pμnμ − EpðnÞ and the vacuum
jΩn⟫ ¼ jΩnijΩ̃ni (the states in Sec. III D should be written,
in the notation of this section, with a subindex n≡ ημ0).
Notice that we use a single foliation Hilbert space for both
the system and the environment. Lorentz transformations
are defined as before with the complete “angular momen-
tum” operator being

J μν ¼ Lμν þ L̃μν þ lμν: ð83Þ

The history states (82) satisfy the Lorentz invariance
condition

J μνjΩτ⟫ ¼ J μνjΩ̄τ⟫ ¼ 0: ð84Þ

With these definitions andnotation, the representation (71)
of spacetime correlators should be written as hOin ¼
⟪Ω̄τnjO ⊗ 1EjΩτn⟫=⟪Ω̄τnjΩτn⟫. We add the subindex
n to indicate that the mean value corresponds to the
fixed foliation nμ. In order to recover hOin from the history
states (82) we resort to conditioning which can be written
in compact form as

hOin ¼
⟪Ω̄τjO ⊗ 1EΠnjΩτ⟫

⟪Ω̄τjΠnjΩτ⟫
; ð85Þ

with Πn ≔ jnihnj and O non-necessarily a separable oper-
ator in the matter-foliation partition but commuting with nμ

[e.g.,O ¼ a†ðpÞaðkÞ]. Thismay also be rewritten as hOin ¼
TrRτnOn with
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Rτn ≔
hnjΩτ⟫⟪Ω̄τjni
⟪Ω̄τjΠnjΩτ⟫

; ð86Þ

the generalized state conditioned to the foliation value nμ.
This is how one recovers conventional QM associated with
fixed foliations in the complete formalism with quantum
foliations. In other words, we have recovered the correspon-
dence of Sec. III C between the spacetime approach and
conventional QM by introducing the idea of conditioning
with respect to eigenstates of nμ.
In addition, as evidenced by Eq. (83), the foliation

participates now in spacetime transformations. This is
reflected in the transformation properties of mean values
as well. What we find is that for relativistic theories the
statement of Lorentz invariance becomes explicit:

hOðΛxÞiΛn ¼
⟪Ω̄τjU†ðΛÞðO ⊗ 1EΠnÞUðΛÞjΩτ⟫

⟪Ω̄τjU†ðΛÞΠnUðΛÞjΩτ⟫

¼ hOðxÞin; ð87Þ

where we have considered an operator which depends
explicitly on a certain number of spacetime points for
concreteness [e.g., OðxÞ≡Oðx1;x2;…Þ¼ πðx1Þϕðx2Þ…].
Notice that the first equality is not a dynamical statement: it
is just a consequence of the geometrical transformation
rules (40). As such it holds independently of the theory.
Instead, the second equality holds only for relativistic
actions satisfying (45) and implying (84). The important
result (87) tells us that for relativistic theories the quantum
expectation values are functions of both the spacetime
coordinates x and the foliation nμ vector, combined in
invariant ways. This includes functions such as momentum
integrals containing terms p2 −m2, as in the Feynman
propagator, but in addition terms such as pμnμ, EpðnÞ are
allowed within these integrals, and in fact appear, e.g., in
(regularized) momenta correlators hπðxÞπðyÞin which are
now invariant quantities as well. The same holds true for
any other mean value, non-necessarily localized in certain
spacetime points. Thus in our approach, all physical
predictions are explicitly covariant.
The previous conclude the exposition on how the

extended approach allows one to recover conventional
physical predictions, while at the same time making their
spacetime symmetries explicit. Let us now briefly com-
ment on the possibility of going beyond conventional
physics, by looking for genuine quantum foliation effect.
Notice that if we now replace the projector Πn with a
statistical mixture of foliations Πn → ρn ¼

R
dnpðnÞΠn

we obtain ⟪Ω̄τjOρnjΩτ⟫ ¼ hψ jTreiSτOjψi for jψi ¼R
dn eiϕn

ffiffiffiffiffiffiffiffiffiffi
pðnÞp jni;ϕn ∈R which is just a statistical

(classical) mixture of mean values. By employing eiSτ

in the current form (commuting with nμ) no genuine
quantum effect arises from the foliation. This is in
principle expected from a noninteracting matter-foliation

theory. We can however postulate that the proper gener-
alization of the previous expression to a full quantum
(pure) foliation is achieved by using other quantum
projectors Πψ ¼ jψihψ j:

hOiψ ¼ ⟪Ω̄τjO ⊗ 1EΠψ jΩτ⟫

⟪Ω̄τjΠψ jΩτ⟫
ð88Þ

which corresponds to the conditioning hψ jΩτii with jψi
an arbitrary state of the foliation [at least for O acting
trivially in the foliation, e.g., O ¼ ϕðxÞϕðyÞ; ladder
operators may be assigned to the states themselves].
These new mean values can be explicitly evaluated by
using, e.g., that aðp; nÞ and aðp; n0Þ are related by a
Bogoliubov transformation.
Notice that the individual terms ⟪Ω̄τn0 jO ⊗ 1EjΩτn⟫

arising from (88) cannot be written in terms of eiSτ unless
n0 ¼ n. Thus the partial trace over the environment now
generalizes the action nontrivially. In other words, we can
access this quantum effect of the foliation only through the
system and environment representation of spacetime cor-
relators (for matter noninteracting with the foliation). The
validity of this generalization may depend on whether we
attribute real physical existence to the environment or not.
One can begin to address such a question by considering
observables O which do not ignore the environment as the
one considered in Sec. III D (i.e., use O ≠ O ⊗ 1E).

V. CONCLUSIONS AND OUTLOOK

We have shown that QM admits a spacetime symmetric
Hilbert space formulation that treats all spacetime coor-
dinates of matter fields as site indices and describes the
possible foliations of spacetime through quantum states.
We have obtained the formalism by quantizing an aug-
mented classical phase space which keeps the time choice
of the Legendre transform as dynamical and that yields an
explicitly covariant version of Hamilton equations. The
quantization process leads to off-shell actions and particle
operators that are nonseparable in the matter-foliation
partition, highlighting the necessity of a quantum foliation
to preserve Lorentz symmetry.
The challenge of recovering conventional unitary evo-

lution in a framework with field operators commuting for
different spacetime points (even those causally connected
in the conventional sense) has been raised and overcome.
The crucial finding is the existence of a correspondence
between the extended geometrical correlators, associated
with the quantum action, and conventional propagators
associated with the ground state of a given Hamiltonian
and unitary evolution. Thermal propagators can also be
obtained by compactifying time. Correlators at equal times
(for a given foliation) correspond to conventional correla-
tors such as the ones defining spacelike entanglement, but
for operators inserted at different times, the unitary

SPACETIME QUANTUM AND CLASSICAL MECHANICS WITH … PHYS. REV. D 109, 105008 (2024)

105008-17



evolution in the Heisenberg picture emerges. From these
considerations, Feynman’s rules and the classical limit (in
the extended version) are also recovered. Some remarks
about reinterpreting this map as a holographic-like corre-
spondence, with the dþ 1 dimensional theory arising from
a dþ 2 dimensional theory, have also been presented. In
particular, the time scale τ, which appears naturally when
defining the map, might be identified with a holographic
coordinate. These aspects, eventual relations with well-
known holographic dualities, and whether the presence of a
time scale τ yields some insight into the renormalization
process, are left for future investigations.
We have also shown that the previous emergence of time

evolution can be understood in terms of correlations with
an environment by using techniques recently introduced in
the AdS=CFT (dS=CFT) context [47,48]. From this point
of view, the system and environment are globally described
by a generalized pure state containing the causal informa-
tion of the theory. This perspective also provides a direct
operational meaning to timelike propagators in terms of
weak values. This raises the natural question of whether
one can regard the environment as a real unaccessible
physical system whose correlations with the system induce
its evolution in time. The situation resembles the PaW
mechanism, according to which time evolution emerges
from the entanglement [18] between a system and “the
rest.” Another similar proposal is the “thermal time
hypothesis” which uses the thermalization of a statistical
state to define “internal” time [63] (see also [64]). While
our formalism is in principle significantly different from
these proposals, these previous ideas on the emergence of
time, of current interest in the literature (see introduction),
encourage one to investigate the issue of the environment
further.
The foliation-independent quantization of matter fields

allows for a very simple and explicit definition of spacetime
transformations. These preserve the geometrical character
of Einstein’s relativity as they are defined independently
from the dynamics. In this sense, our proposal “disen-
tangles” transformations that mix space and time from
dynamical information, the latter being encoded in gener-
alized states as described above. In a very precise sense, the
spacetime transformations appear again intertwined with
the dynamics: the quantum action and particle operators are
foliation-controlled operators. Moreover, we have seen that
the Lorentz invariant eigenstates of invariant actions, such
as the vacuum of the off-shell particles of the given theory,
are entangled in the matter-foliation partition. They also
have the same structure as in the PaW formalism [22], a
similarity that has been used to introduce the concept of
conditioning on the foliation. The conditioning specifies
the observer relative to whom the dynamical description of
the system is given (as opposed to the emergence of
evolution in the PaW approach). By conditioning with
respect to fixed classical states of the foliation, one recovers

conventional QM, in the sense of the previous correspon-
dence. We have then discussed under what conditions
quantum effects of the foliation could arise.
In this manuscript, we have focused on a constant

foliation and Minkowski spacetime. Even if spacetime is
flat one obvious generalization is to consider a nonconstant
foliation nμ ¼ nμðxÞ, e.g., associated with Rindler coordi-
nates. In other words, the formalism admits an obvious
generalization to the case of a foliation field. It is, e.g.,
straightforward to see that by replacing nμ → nμðxÞ in S
for the scalar field, a version of Hamilton equations for a
general curved foliation is obtained, equivalent to the Klein-
Gordon equation. According to our proposal, one would
also impose fnμðxÞ; κνðyÞg ¼ δμνδðDÞðx − yÞ classically and
½nμðxÞ; κνðyÞ� ¼ iδμνδðDÞðx − yÞ in the quantum case so that
the foliation Hilbert space would now be spanned by states
jnðxÞi representing field configurations in spacetime
(n̂μðxÞjnðxÞi ¼ nμðxÞjnðxÞi). Moreover, one can introduce
an angular momentum for this field lμνðxÞ ≔ nνðxÞκμðxÞ −
nμðxÞκνðxÞ so that one can unitarily transform any foliation
field eigenstate to another. In particular, in Minkowski
spacetime any curved foliation eigenstate is unitarily related
to jημ0i, i.e., jnðxÞi ¼ exp½i R dD x lμνðxÞΛμνðxÞ�jημ0iwhich
is a quantum version of the concept of momentarily
comoving reference frame. This unitary transformation is
separable in spacetime reflecting our classical intuition, yet
the quantum treatment of the foliation allows for manymore
exotic possibilities, as states of the foliation entangled across
different spacetime points.
As in the case of constant foliations, changing observers

does not affect the algebra of fields in agreement with
½lμνðxÞ;ϕðxÞ� ¼ ½lμνðxÞ; πðxÞ� ¼ 0. This should be con-
trasted with the usual treatment in QFT that requires to
quantize on a given hypersurface, e.g., when considering a
Rindler observer and deriving the Unruh effect [65,66]. A
change of observer does however affect the action S. In
particular, it is clear that a free action conditioned to a
curved foliation is still a quadratic form but different from
the one corresponding to an inertial observer. The normal
modes then differ in general by a Bogoliubov transforma-
tion induced by the curvature of nμðxÞ which changes the
vacuum state (we recall that for two constant foliations, no
change in the vacuum arises). This would be the derivation
of the Unruh effect from within the spacetime approach.
There is yet another interesting feature in flat spacetime

to be considered, which is preliminary to extending our
treatment to genuinely curved manifolds. While we have
employed Minkowski coordinates to define our basic
algebra of fields and quantization, it is feasible to describe,
e.g., the action in different curvilinear coordinates. In
general, this leads to replacing conventional derivatives
with covariant derivatives ∂μ → ∇μ such that a contraction
of the form nμ∇μ corresponds to invariance under general
coordinate transformations. One can easily show that the
Hamilton equations derived for general nμ in other
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coordinate charts have precisely this form. It is in principle
feasible to obtain these results by directly imposing
algebras (of matter fields and foliations alike) with respect
to other coordinate systems, which seems to indicate that
the relation between charts might have a quantum repre-
sentation, another interesting possibility opened by work-
ing with spacetime algebras. Interestingly, a quantum
treatment allowing for general parametrizations is also
the main objective of the so-called “parametrized field
theories” [23,29], an approach in which matter fields are
functions of arbitrary curvilinear coordinates. These coor-
dinates are associated with possible foliations of spacetime
and are quantized as well [67]. However, even for
Minkowski spacetime, this approach suffers from problems
in spacetime dimensions other than 1þ 1. These difficul-
ties might be circumvented by developing further our
proposal since, as we mentioned above, the dynamical
and geometrical information are decoupled.
Some remarks on the possibility of applying the for-

malism to gravity may also be appropriate (although
currently speculative): beyond the mathematical and sym-
metry-based justifications for a dynamical foliation, we
have also suggested that a dynamical spacetime could
naturally lead to this concept. It would be interesting (and
self-consistent) if this could be derived by applying the
extended approach to gravity, at least working on a semi-
classical level. We notice that the formalism employs
actions defined in phase space variables, meaning that a
Hamiltonian always needs to be introduced. This seems to
lead directly to the conventional Arnowitt-Deser-Misner
approach [68] and its quantization. However, this is not the
case: while the usual canonical quantization is based on
unitarily evolving metrics on hypersurfaces, our formalism
would treat the metric of each hypersurface as independent.
This feature, together with a quantum foliation seems to
lead instead to a description where the physical degree of
freedom is the complete spacetime metric (with some
eventual constraints). In such a construction, yet to be
fully developed, the natural type of queries would not be of
a dynamical nature, but instead intrinsically geometrical
and associated with correlations, in analogy with the case of
fields we developed in this manuscript.
Regarding matter fields, the main example we have

employed is that of a scalar field. While most results and
ideas hold for general field theories, some new consid-
erations need to be made in the quantum treatment of
spinorial fields related to how the coupling between the
foliation and the spin affects the definition of momenta.
This discussion, and the case of gauge theories, typically
associated with fields with spin, is postponed. Nonetheless,
several remarks are presented in Appendix B, where the
classical treatment of a Dirac field is also fully developed.
Remarkably, most of the concepts we have developed for

fields apply to any quantum mechanical system, including
nonrelativistic ones. In fact, the idea of extending a

conventional algebra to “spacetime” can always be applied.
This allows one to construct the quantum action operator
associated with a certain quantum Hamiltonian, a pro-
cedure that does not require a classical theory. Notably,
unitary evolution is always recovered via its associated
timelike correlators, as shown in [10] and Appendix D. As
a concrete example, we develop the spacetime extension of
a qubit representation of the suð2Þ algebra in Appendix D.
A generalized purification, as the one we have employed
for the Klein-Gordon free action, can also be introduced in
general. While this is nontrivial (and we do not present the
general case), we provide some ideas and examples in the
same Appendix. By these means, one can replace the
conventional notion of state and unitary evolution of QM
with generalized states codifying not only the initial state
but also the evolution and causal structure of a given theory.
These considerations pave the way to developing and
applying new quantum informational and computational
schemes, as we have discussed in Sec. III D. At the same
time, they provide a formulation capable of addressing the
quantum foundational questions posed in the Introduction.
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APPENDIX A: CLASSICAL AND QUANTUM
EXPRESSIONS FOR A GENERAL TIMELIKE nμ

In this Appendix we show explicitly how the classical
and quantum relations involving the foliation are modified
by a non-normalized nμ.
We define jjnjj ¼ ffiffiffiffiffiffiffiffiffiffi

nρnρ
p

and assume
P

i jjnijj2 ¼
−jjnjj2 (fixed speed of light) and nμi nμ ¼ 0. Then
Eq. (14) is replaced by

nμnν −
Xd
i¼1

nμi n
ν
i ¼ jjnjj2ημν: ðA1Þ

Equations such as (6) need to be rescaled also, e.g.,
∂ρϕ¼ jjnjj−2ðnρnμ∂μϕ−niρn

μ
i ∂μϕÞ. For the Klein-Gordon

free case, one obtains the classical equations

nμ∂μϕ ¼ knk2π ðA2Þ

and
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H¼kn2k1
2
π2þ1

2

�
nμnν

knk2−ημν
�
∂μϕ∂νϕþ1

2
m2ϕ2: ðA3Þ

The Hamilton equations are

nμ∂μπ ¼
�
nμnν

knk2 − ημν
�
∂μ∂νϕ −m2ϕ ðA4aÞ

nμ∂μϕ ¼ knk2π ðA4bÞ

which yield one again the Klein-Gordon equation

ðημν∂μ∂ν þm2Þϕ ¼ 0: ðA5Þ

An analogous expression is found with the addition of a
potential. These can be recovered as before from S ¼R
dDxðπnμ∂μϕ −HÞ and setting fϕ;Sg ¼ fπ;Sg≡ 0.
After quantization, the diagonalization of

R
dDxH now

leads to

EpðnÞ ¼ knk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
nμnν

knk2 − ημν
�
pμpν þm2

s

¼ knk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

�
nμi pμ

knk
�

2

þm2

s
: ðA6Þ

All equations of Sec. III B hold with EpðnÞ given by (A6)
and πnμ∂μϕ → kn2k−1πnμ∂μ, in agreement with the new
definition of π, equivalent to a rescaling of Ep. In the
normal expansion of the action, one should also replace
pμnμ → kn2k−1pμnμ accordingly. One can then show that
physical quantities such as the Feynman propagator remain
invariant, namely independent of kn2k.
Notice that for m ¼ 0 and D ¼ 1þ 1, one has a

conformal field theory (CFT) and any choice of nμ can
be made to diagonalize S through normal modes.

APPENDIX B: THE DIRAC FIELD CASE

In this Appendix we consider the application of the
formalism of the main body to the case of a free Dirac
Lagrangian density LD ¼ ψ̄ðiγμ∂μ −mÞψ. While inter-
actions may be introduced along the line developed in
the free scalar case, we focus on this simple example as the
aim is to show how the spin is treated in a framework with a
dynamical foliation. Our main focus is the classical case,
with some remarks on the quantization at the end of the
section.
The generalized momentum for a general timelike nμ is

defined as before, yielding

π ¼ ∂LD

∂ðnμ∂μψÞ
¼ iψ̄γμnμ: ðB1Þ

For nμ ¼ ημ0 we recover the usual relation π ¼ iψ†, since
ψ̄ ¼ ψ†γ0 and ðγ0Þ2 ¼ 1 as it follows from the Clifford
algebra of the gamma matrices fγμ; γνg ¼ 2ημν, with the
brackets indicating (only here) anticommutators.
On the other hand, by noting that γμnμγνnν ¼ γ00γ00 ¼ 1,

where we have defined γ00 ≔ γμnμ as the first matrix from a
new possible set of gamma matrices (satisfying the Clifford
algebra as well), one can invert the momentum relation and
write ψ̄ ¼ −iπγμnμ. Then, taking the covariant Legendre
transform HD ¼ πnμ∂μψ − LD yields

HD ¼ π½ðnμ − γνγμnνÞ∂μ − imγνnν�ψ : ðB2Þ

We can show that in this form HD only depends on spatial
derivatives:

ðnμ − γνγμnνÞ∂μ ¼ γργμnρðnμnν − ημνÞ∂ν;

where we recall that nμnν − ημν projects onto the spatial
hypersurfaces orthogonal to nμ. Interestingly, Lorentz
invariance is explicit in this form (see also below), while
the conventional Dirac Hamiltonian density does not exhibit
the symmetry explicitly. The latter is recovered from
nμ ¼ ημ0 which implies γνnν ¼ γ0 so that the first term
becomes ðnμ − γ0γμÞi∂μ ≡ −iα · ∇ (with αi ¼ βγi; β ¼ γ0).
The Hamilton equation for ψ yields

nμ∂μψ −
∂H
∂π

¼ −iγνnνðγμi∂μ −mÞψ ¼ 0 ðB3Þ

which automatically implies the Dirac equation in its
covariant form. Moreover, if we now introduce the classical
spacetime algebra (17), i.e.,

fψðxÞ; πðyÞg ¼ δðdþ1Þðx − yÞ; ðB4Þ

we recover the previous from

fψ ;SDg ¼ −iγνnνðγμi∂μ −mÞψ ; ðB5Þ

after setting fψ ;SDg≡ 0. Here the Dirac action in space-
time phase space variables is

SD ¼ −
Z

ddþ1x i πγνnνðγμi∂μ −mÞψ ; ðB6Þ

as immediately obtained by replacing ψ̄ with the momen-
tum using the inverse relation of (B1) as before.
Let us now discuss more about the transformation

properties of the fields. We assume the usual transformation
rule ψðxÞ → SΛψðΛ−1xÞ, where we have introduced the
matrix

SΛ ≔ expð−iωμνσ
μν=4Þ; ðB7Þ
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for σμν ¼ ½γμ; γν�. This implies as usual S−1Λ γμSΛ ¼ Λμ
νγ

ν.
We also impose, in agreement with the transformation of
xμ, nμ → ðΛ−1Þμνnν. If we now combine these rules with the
definition of momentum in Eq. (B1) we obtain

πðxÞ → iψ̄ðΛ−1xÞS−1Λ γμΛ ν
μ nν ¼ iψ̄ðΛ−1xÞγνnνS−1Λ

¼ πðΛ−1xÞS−1Λ :

This allows us to summarize the transformation properties
as

ψðxÞ → SΛψðΛ−1xÞ ðB8aÞ

nμ → ðΛ−1Þμνnν ðB8bÞ

πðxÞ → πðΛ−1xÞS−1Λ : ðB8cÞ

Notice that as a consequence, the algebra (B4) is explicitly
preserved by a Lorentz transformation, both in the space-
time components and in the spinorial ones. Similarly,
quantities such as SD and

R
ddþ1xH are in fact explicitly

invariant: the transformations of ψ , π imply γμ → S−1Λ γμSΛ
for all gamma matrices, and they always appear contracted
to nμ or ∂μ.
Equations (B8) are the spinorial generalization of the

main body equations (11) (the slight difference in con-
vention regarding the coordinates is common for spinorial
fields). In order to recover these transformations from the
extended phase space algebra, we consider the total angular
momentum

J μν ¼ Lμν þ Sμν þ lμν ðB9Þ

with

Lμν ≔ −
Z

ddþ1x πðxμ∂ν − xν∂μÞψ ðB10Þ

Sμν ≔
i
2

Z
ddþ1x π σμνψ ðB11Þ

lμν ≔ nμκν − nνκμ: ðB12Þ

The only novelty with respect to the scalar field case is the
spinorial part Sμν, as expected. Then Eq. (B8) can be
obtained from the action of the exponential of the total
angular momentum on the fields. Let us show this explicitly
up to first order [Λ ¼ 1þ ωþOðω2Þ] for the spinorial
part:

ψ þ ωμν

2
fSμν;ψg ¼



1 −

i
4
σμνωμν

�
ψ ¼ SΛψ þOðω2Þ

π þ ωμν

2
fSμν; πg ¼ π



1þ i

4
σμνωμν

�
¼ πS−1Λ þOðω2Þ:

In addition, one can easily prove that fLμν;Sαβg ¼ 0 since
σαβ does not depend on field coordinates while ðxμ∂ν −
xν∂μÞ is independent of spinorial components. We also have
ψðxÞ þ ωμν

2
fLμν;ψðxÞg ¼ ψðΛ−1xÞ þOðω2Þ so that com-

plete series of nested brackets yield

ψðxÞ þ ωμν

2
fJ μν;ψðxÞg þ � � � ¼ SΛψðΛ−1xÞ

nρ þ ωμν

2
fJ μν; nαg þ � � � ¼ ðΛ−1Þραnα

πðxÞ þ ωμν

2
fJ μν; πðxÞg þ � � � ¼ πðΛ−1xÞS−1Λ ; ðB13Þ

where the dots indicate higher-order nested brackets, e.g.,
the next order being 1

2!

ωμνωαβ

4
fJ μν; fJ αβ;…gg. These are

precisely the transformations in Eq. (B8).
Let us now make a few comments regarding the

quantization of Dirac’s field according to the extended
scheme. The first natural difference with the scalar field
case is that anticommutation rules should be imposed,
namely, now one promotes the spacetime algebra (B4) to a
spacetime anticommutator. This guarantees the positivity of
the energy (as in the usual case). This also means that
the map we have established in Sec. III C, and that we
discussed for more general quantum systems in
Appendix D, needs to be modified: since fields at different
times do not commute, no underlying product structure is
present. Instead, one can construct a correspondence to
conventional QM via Wick’s theorem in analogy with the
approach in Sec. III C by replacing (57) with its fermionic
version, with some additional proper modifications related
to fermionic parity.
Additional subtleties arise in the quantum case related to

the fact that −iπ ≠ ψ† for general nμ, namely the anticom-
mutation relation is not between the field and its conjugate.
One can show that this is in perfect agreement with explicit
Lorentz covariance and again a reason for introducing nμ:
e.g., notice that the algebra fψðxÞ; iψ†ðyÞg ¼ δðdþ1Þðx − yÞ
is not invariant since SΛ is not a unitarymatrix, but (B4) is. In
fact, Lorentz transformations are unitary with respect to a
proper definition of the inner product, induced by the
previous. This is also related to the covariant inner product
introduced in [43] for Dirac particles. Finally, a generalized
purification scheme may also be introduced for fermions.
While none of these features pose a particular challenge,
their detailed expositions warrant a separate discussion, to
be addressed in future work.

APPENDIX C: GENERALIZED PURIFICATION
FOR GENERAL FREE BOSONS

In this Appendix, we discuss the generalized purification
introduced in (67). We consider the case of “generalized
density” operators of the form
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ρ ¼ e−H

Tr e−H
; H ¼

X
k

Hk ¼
X
k

λka
†
kak; ðC1Þ

where we let λk be a general complex number with
ReðλkÞ > 0 (for λk ∈R, ρ is a thermal state with quadratic
diagonal Hamiltonian).
These operators can of course be written as

ρ ¼ ⊗
k
Z−1
k e−λka

†
kak ¼ ⊗

k
Z−1
k

X
nk

e−λknk jnkikhnkj ðC2Þ

so that we only need to purify each ρk ¼ e−Hk (with
ρ ¼⊗k ρk) and take the tensor product at the end. Here
we have also defined the “partition functions” Zk ≔ Tre−Hk

such that Z ≔ Tre−H ¼Qk Zk. Notice that the free Klein-
Gordon action eiSτ has precisely this form with the index k
corresponding to the D dimensional momentum.
We now introduce for each k the two distinct states (for

ease of notation we omit the k indices in the states)

j0λk⟫ ¼
X
n

e−
λkn
2 jnijni ¼ exp



e−

λk
2 a†kã

†
k

�
j0⟫

j0̄λk⟫ ¼
X
n

e−
λ�
k
2
njnijni ¼ exp



e−

λ�
k
2 a†kã

†
k

�
j0⟫; ðC3Þ

with j0⟫ ≔ j0i ⊗ j0̃i. We may refer to the states jñi as
environment states with j0λk⟫, j0̄λk⟫ vectors of a doubled
Hilbert space spanned by jnijñi, just as in a standard
bosonic thermal purification. Notice that j0̄λk⟫ corresponds
to the replacement λk → λ�k in j0λk⟫ so that

j0λk⟫k⟪0̄λk j ¼
X
n;n0

e−λk
nþn0
2 jnihn0j ⊗ jñihñ0j: ðC4Þ

Then, the partial trace over the environment yields

e−Hk ¼ TrEj0λk⟫⟪0̄λk j; ðC5Þ
where we used hñjñ0i ¼ δnn0 . This also implies

Zk ¼ k⟪0̄λk j0λk⟫: ðC6Þ

To obtain the complete ρ we take the product of the
previous states and define

j0λ⟫ ¼ ⊗
k
j0λk⟫k ¼ exp

�X
k

e−
λk
2 a†kã

†
k

�
j0⟫

j0̄λ⟫ ¼ ⊗
k
j0̄λk⟫ ¼ exp

�X
k

e−
λ�
k
2 a†kã

†
k

�
j0⟫; ðC7Þ

for j0⟫¼ j0i⊗ j0̃i now the complete vacua (j0i ¼⊗k j0ik,
j0̃i ¼⊗k j0̃ik). It is now clear that

e−H ¼ TrEj0λ⟫⟪0̄λj ðC8Þ

and

Z ¼ ⟪0̄λj0λ⟫: ðC9Þ

It is worth noting that for λ∈R, jΨ̄⟫ ¼ jΨ⟫ and all the
previous expressions reduce to the ones in conventional
purification.
Notice also that j0λ⟫, j0̄λ⟫ are Bogoliubov vacua of the

annihilation operators

a0k ≔ uðλkÞak þ vðλkÞã†k
ã0k ≔ uðλkÞãk þ vðλkÞa†k
ā0k ≔ uðλ�kÞak þ vðλ�kÞã†k
˜̄a0k ≔ uðλ�kÞãk þ vðλ�kÞa†k; ðC10Þ

respectively, for

uðλkÞ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−e−ReðλkÞ
p vðλkÞ¼−

e−λk=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e−ReðλkÞ

p ðC11Þ

satisfying juðλkÞj2 − jvðλkÞj2 ¼ 1 (and hence ½a0k; a0†l � ¼
½ã0k; ã0†l � ¼ ½ā0k; ā0†l � ¼ ½ ˜̄a0k; ˜̄a0†l � ¼ δkl with the other com-
mutators vanishing). This can be easily proven by explicitly
showing that

a0kj0λ⟫ ¼ ã0kj0λ⟫ ¼ ā0kj0̄λ⟫ ¼ ˜̄a0kj0̄λ⟫ ¼ 0: ðC12Þ

One may then apply the formalism developed in [69] to
express the generalized mean values [such as Eq. (71)] as a
vacuum expectation value in biorthogonal bases.
In order to obtain Eq. (69), one can take the continuum

limit of (C7) directly within the sums. This step can be
further justified by considering first a finite spacetime
volume which renders the momentum indices p discrete,
with the algebra (48) recovered as the large volume
limit (see also the conventional thermofield dynamics
approach [45]). Notice that these results apply directly to
a finite T and ϵ which allows the recovery of thermal
correlators from the same purification scheme (see III C).

APPENDIX D: CORRESPONDENCE
WITH CONVENTIONAL QM

FOR DISCRETE SPACETIME AND
GENERAL QUANTUM SYSTEMS

In this Appendix we discuss how the main text corre-
spondence to conventional QM works for discrete time and
for general systems and theories. The notion of spacetime
generalized state, arising from the purification of the map,
can be applied as well, as we show in a simple qubit system.
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1. Discrete formalism

Let us first write a discrete spacetime version of the
extended algebra (35):

½ϕim; πjn� ¼ iδijδmn; ðD1Þ
where i, j represent time sites, and m, n spatial sites. The
corresponding conventional canonical algebra is ½ϕm; πn� ¼
iδmn at equal times.Notice that in the standard approach field
operators at different points in space commute meaning that
the total Hilbert space has the product structureH ¼⊗m hm
with h the Hilbert space of a single bosonic mode.When we
extended the algebra as in (D1) this is generalized to time,
with the new Hilbert space structure being

H ¼⊗i Hi ¼⊗i;m him: ðD2Þ
Wesee that a tensor product structure is applied to both space
and time. In fact, there is nothing which distinguishes time
and space in (D1), we only fixed a convention in order to
introduce dynamics below.
Such a product structure in time can be defined for any

quantum system (the fermionic case is more subtle as
discussed in Appendix B): one considers a Hilbert space h
and then constructs an extended Hilbert space H ¼⊗i hi
for a given number of times. If the Hilbert space h has a
basis of states jni, then

H ¼ spanfjn1n2…nNig; ðD3Þ
i.e., it has a “quantum trajectory”-like basis, with N the
number of time slices. Let us now define an extended
operator eiϵP0 such that

eiϵP0 jn1n2…nNi ≔ jnNn1n2…i: ðD4Þ

It can be easily shown [10] that

Tr½eiϵP0 ⊗i O
ðiÞ
i � ¼ Tr½T̂ΠiOðiÞ�; ðD5Þ

where the first trace is taken in the extended Hilbert space
while the second in the conventional one. The time ordering
operator T̂ indicates that the product of operators on the right
should follow the time ordering (from larger to smaller) on
the left. This is the essence behind the correspondence: the
operator eiϵP0 is translating traces of tensor products of
operators to traces of conventional composition of those
same operators. For concreteness let us show this forN ¼ 2:

Tr½eiϵP0A ⊗ B� ¼
X
n1;n2

hn2n1jA ⊗ Bjn1n2i

¼
X
n1;n2

hn1jBjn2ihn2jAjn1i

¼
X
n

hnjBAjni ¼ Tr½BA�; ðD6Þ

which is Eq. (D5) for A ¼ Oð1Þ, B ¼ Oð2Þ. Notice that for
N ¼ 2, eiP0 is just the Swap operator, and the previous is
essentially a Swap test [70]. Notice also that this same
correlator can be represented in an extended Hilbert space
with an arbitrary number of times, as depicted in Fig. 4 in
tensor network’s notation.
The next step is to relate the previous kinematic con-

struction to actual correlators and to the action operator. In
this scenario the proper definition of the action for a time
step ϵ is

eiS ≔ eiϵP0 ⊗i e−iϵHi ¼ eiϵðP0−
P

i
HiÞ: ðD7Þ

It was in fact proven in [10] that

Tr½jψi0hψ jeiS ⊗i O
ðiÞ
i � ¼ hψ ; TjT̂ΠiO

ðiÞ
H ðtiÞjψi ðD8Þ

with ti ¼ ϵi, T ¼ ϵN, and jψ ; ti ≔ eiHtjψi. In other words,
replacing P0 with the action S in (D5) corresponds to
adding evolution. The amount of evolution of each operator
is determined by the Hilbert space in which they act. In
addition, to specify the initial state we insert it in the initial
time slice (jψi0hψ j≡ jψi0hψ j ⊗ 1).
Let us also notice that it is straightforward to extend (D8)

to time-dependent Hamiltonians by defining the action as
eiS ¼ eiϵP0 ⊗i Ui½ðiþ 1Þϵ; iϵ� with Uiðt0; tÞ the time evo-
lution operator, evolving from t to t0, acting on the slice i.
An explicit time dependence might be also added to the
operators OðiÞ. The time ordering is then preserved as long
as the position in time and the external time dependence
are consistent [e.g., if one is considering an operator

(a)

(c)

(b)

FIG. 4. Tensor network representation of the correspondence.
The operator eiϵP0 allows one to translate traces in H ¼⊗i hi to
traces in hi, as easily seen in tensor network notation. The
notation is introduced in (c) while the planes in (a) and (b) have
been added to emphasize that a Hilbert space is assigned to each
time slice. For QFTs each plane represents the Hilbert space of
fields quantized in a given hypersurface. In (a) we represent
Eq. (D6). In (b) we show the representation of the same trace with
a larger number of time slices.
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O ¼ jðtÞϕm, with jðtÞ a function, one should insert Oi ¼
jðtÞϕim for iϵ ¼ t].
If one is only interested in the ground state, one can omit

the initial state by adding an imaginary part to time (all the
previous holds for a non-Hermitian H [9]) and considering
the large time limit, just as it is usually done in the PI
formulation. Our main body example might be reinterpreted
in this way. One can also consider thermal correlation
functions by making the replacement (Wick rotation)
H → −iH in the definition of the operator S. A simple

relabeling of the previous equations gives Tr½eiS ⊗i O
ðiÞ
i � ¼

Tr½e−βHT̂θΠiO
ðiÞ
H ðθiÞ�, where OHðθÞ≡ eHθOe−Hθ indicat-

ing “thermal evolution,” namely the operator “evolved” up
to inverse temperature θ and θi ¼ iϵ. This also implies
Eq. (67) in the main body and Tr½eiS� ¼ Tr½e−βH�.

2. Spacetime treatment of qubit systems

Let us now show in a very simple example how the
generalized purification applies beside the bosonic field
case. We first introduce a conventional situation of two
qubits separated in space at a given time for comparison. In
this scenario we describe the associated state of the system
through a density matrix which can be written as

ρ ¼
X3
i;j¼0

hPi ⊗ PjiρPi ⊗ Pj ðD9Þ

with hPi ⊗ Pjiρ ¼ Tr½ρPi ⊗ Pj� and Pi Pauli matrices for
P0 ¼ 1. This means that the state completely defines the
correlators at a given time and vice versa. If the state is not
pure we can always consider a purification and rewrite
the previous as a pure state mean value. For example, for
ρ ¼ pj00ih00j þ ð1 − pÞj11ih11j we can write

hPi ⊗ Pjiρ ¼ ⟪ΨjPi ⊗ Pj ⊗ 1EjΨ⟫; ðD10Þ

where the global state involving the “environment” can be
chosen as jΨ⟫ ≔ ffiffiffiffi

p
p j000i þ ffiffiffiffiffiffiffiffiffiffiffi

1 − p
p j111i such that

ρ ¼ TrEjΨ⟫⟪Ψjj: ðD11Þ

Now let us consider the case of a single qubit and two
times in the new approach. The new formalism describes
the situation through a Hilbert space which is isomorphic to
the one of the previous example involving two qubits. In
fact, we conventionally describe the Hilbert space of a qubit
as the smallest (irreducible) representation of the algebra
½Pi; Pj� ¼ 2iϵijkPk, where i, j, k ¼ 1; 2; 3 and ϵijk is the
Levi-Civita symbol. Our formalism imposes then

½Pti; Pt0j� ¼ δtt02iϵijkPtk; ðD12Þ

with the prescription of employing the conventional Hilbert
space representation for each fixed time slice.
On the other hand, according to the previous discussion,

the operator of interest, namely the one yielding the
correlators in spacetime [see Eq. (D8)] is not ρ but

ρ̄ ≔ jψihψ j ⊗ 1eiS ¼
X1
i¼0

jψihi; ϵj ⊗ jiihψ ; ϵj; ðD13Þ

where we assumed an initial pure state jψi for simplicity
and used that for two times eiS ¼ eiP0e−iϵH ⊗ e−iϵH. We
also recall that jψ ; ϵi≡ eiϵHjψi. As any other operator, ρ̄
can be written in terms of the correlators as

ρ̄ ¼
X3
i;j¼0

hPi ⊗ Pjiρ̄Pi ⊗ Pj; ðD14Þ

where we know by construction that the mean values
satisfy hPi⊗Pji¼Tr½ρ̄Pi⊗Pj� ¼ hψ ;TjPjðϵÞPijψi, with
T ¼ 2ϵ. We can verify this explicitly:

hPi ⊗ Pjiρ̄ ¼
X
i

hψ ; ϵjPjjiihi; ϵjPjjψi

¼
X
i

hψ ; 2ϵjPjðϵÞji; ϵihi; ϵjPjjψi

¼ hψ ; TjPjðϵÞPijψi;

where we rearranged the terms in the first equality and used
the completeness relation in the last. Notice how the
operators appear according to the temporal order on the
left-hand side, in agreement with (D8). The previous
implies that ρ̄ is the unique operator in this Hilbert space
whose correlators in time are the conventional propagators.
Notice that correlators in time are now treated exactly as in
our previous spatial example. The difference between the
two situations is codified in the different characteristics of
ρ, ρ̄, with the first being a state but not the second.
Remarkably, we can interpret ρ̄ as arising from a

generalized state: Without loss of generality let us write
jψi ¼ j0i. We now introduce a couple of states correlated
with a qubit environment:

jΨ⟫ ≔
j000i þ j011iffiffiffi

2
p

jΦ⟫ ≔ ðeiϵH ⊗ eiϵH ⊗ 1Þ j000i þ j101iffiffiffi
2

p : ðD15Þ

One can easily verify that

hPi ⊗ Pjiρ̄
Trρ̄

¼ ⟪ΦjPi ⊗ Pj ⊗ 1EjΨ⟫
⟪ΦjΨ⟫ ¼ h0; TjPjðϵÞPij0i

h0; Tj0i ;

ðD16Þ
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as it follows from

ρ̄

Trρ̄
¼TrER; R≔

jΨ⟫⟪Φj
⟪ΦjΨ⟫ ; ðD17Þ

with R a generalized state, i.e., a nonorthogonal projector.
We also have 2⟪ΦjΨ⟫ ¼ Trρ̄ ¼ h0; Tj0i, where the factor 2
may be absorbed in the states without changing the con-
dition R2 ¼ R. We have thus obtained a generalized puri-
fication of ρ̄, as the ones we discussed in the main body’s
Sec. III D and Appendix C for a bosonic field. In fact, one
can show that obtaining R is possible for any system and
evolution (see also the recent discussion in the context of
time-dependent holographic spacetimes [32,48–50]).
The previous example shows once again how the new

formalism treats space and time equally, with the Hilbert
space of one qubit and two times having dimension 22 and
being the same as the one of two qubits separated in space
at a single time. Equations (D9) and (D14) are formally the
same, with the differences codified in the correlators. We
also see that the generalized purification (D17) is analogous
to the traditional one shown in (D11). Of course, consid-
ering, e.g., two qubits and two times leads to a space of
dimension 24 with all variables on equal footing. The
differences between space and time are not apparent at the
Hilbert space level, instead, they manifest in the properties
of states with jΨ⟫⟪Ψj being an orthogonal projector but not
R. The latter codifies not only the initial state but also the
evolution and causal structure of the theory.

3. Bosonic case and continuum limit

It is interesting to see the consequences of this map in the
case of the bosonic field in discrete spacetime. As an
example, the previous let us write

Tr½jϕi0hϕjeiSϕimϕjn�¼ hϕ;TjT̂ϕHmðtiÞϕHnðtjÞjϕi ðD18Þ

which is the “Feynman propagator” for a finite timewindow
T and for an initial and finite configuration of the field in
space jϕi ≔⊗m jϕmi (ϕ̂mjϕi ¼ ϕmjϕi in a given time slice,
where we have introduced the hat for clarity).
Notice that the right-hand side can be naturally written as

a path integral between the configurations ϕ⃗ and inserting
two field operators. The left-hand side looks suspiciously
similar to such a construction, except for the fact that
involves operators and a trace in (the extended) Hilbert
space. To understand the relation between the two, one
must expand the trace in some basis. While infinite choices
are possible, the field spacetime eigenbasis jϕi ≔⊗i;m

jϕimi (ϕ̂imjϕi ¼ ϕimjϕi [71]) leads directly to Feynman
PI [10]. In this sense, the PI formulation emerges from the
formalism as well. For example, it is easily seen that

hϕjeiϵP0 jπi¼ exp

�
iϵ
X
i;m

πim
ðϕiþ1;m−ϕimÞ

ϵ

�
hϕjπi; ðD19Þ

revealing that P0 is related to the Legendre transform,
where jπi ≔⊗i;m jπimi is the field momentum eigenbasis.
One can further justify the appearance of the Legendre

transform by employing a normal mode representation of
P0. Given annihilation (creation) operators aim, a

†
im sat-

isfying ½aim; a†jn� ¼ δijδmn (linearly related with ϕim, πim),
one can define Fourier modes in time via akm ≔
1ffiffiffi
N

p
P

j e
iωkjϵajm where ωk ¼ 2πk=T and k takes N ¼ T=ϵ

different values. Then

P0 ¼
X
k;m

ωka
†
kmakm ðD20Þ

yields eiϵP0ajme−ϵP0 ¼ ajþ1;m in agreement with (D4). If

we now rewrite P0 in the time basis we have P0 ¼P
m;j;j0 a

†
j0miDjj0ajm with D ≔ − 1

N

P
k iωkeiωkðj−j0Þϵ which

is a discrete version of a derivative in time of the Kronecker
delta δjj0 . The form is once again that of the Legendre

transform, now in the “variables” ajm; a
†
jm. Notice also

that Eq. (D20) is a discrete version of the main body
expression (52) for canonical foliation.
Moreover, consider the continuum spacetime limit in

Hilbert space. The procedure is the same as it is usually
done in space, so let us first review the conventional
spacelike scenario. Given a constant spacing a, one con-
siders operators ϕðxÞ ≔ ϕm

ad=2
, πðxÞ ≔ πm

ad=2
for x ¼ am

(assuming d dimensions) and m a vector of integer entries.
Then, the canonical algebra ½ϕm; πm0 � ¼ iδm;m0 implies

½ϕðxÞ; πðx0Þ� ¼ ia−dδm;m0 → iδðdÞðx − x0Þ

in the limit a → 0. The same treatment can be applied to

obtain (35) from (D1) by defining ϕðxÞ ≔ ϕjmffiffi
ϵ

p
ad=2

, πðxÞ ≔
πjmffiffi
ϵ

p
ad=2

, with x ¼ ðϵj; amÞ, so that

½ϕðxÞ; πðx0Þ� ¼ iϵ−1a−dδjj0δm;m0 → iδðdþ1Þðx − x0Þ:

While there is no longer a countable number of time slices
(nor of spatial slices), one can still define a time translation
operator and relate it to the previous version. In fact, one
can rigorously show [9,10] that the expansion (D20)
(holding with the index k taking arbitrary integer values)
leads to P0 →

R
dDxπðxÞϕ̇ðxÞ for ϵ; a → 0, as suggested

by (D19) but holding at the operator level and in agreement
with the main body results. The limit of small spacing also
assumes ϵN ¼ T constant, as well as the usual spatial
condition aM ¼ L (for M the number of spatial slices and
L the total length of the “box”). One can then take the limits
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T; L → ∞ to recover the formalism of the main body. In
this case, the Fourier creation (annihilation) operators
satisfy a continuum algebra as well, according to
Eq. (48): e.g., keeping L finite, one defines amðp0Þ ≔ffiffiffiffi
T

p
akm with p0 ¼ 2πk=T so that ½amðp0Þ; a†m0 ðp00Þ� ¼

Tδkk0δmm0 → 2πδðp0 − p00Þδmm0 .
Notice that the continuum time limit is well defined for the

operator P0 itself, so that eiτP0 implements geometric time
translations such as ϕðxÞ → ϕðx0 þ τ;xÞ for τ∈R. On the
other hand, if onewould like to consider the limitN → ∞ first
(keeping ϵ finite, such that j ¼ − N

2
;…; N

2
andT ¼ ϵN → ∞)

the FT now leads to continuous p0 ∈ ð−Λ;ΛÞ with

Λ ≔ ð2ϵÞ−1 functioning as a natural cutoff, so that the proper
definition of the generator of translations in time becomes
P0 ≔

P
m

RΛ
−Λ dp

0p0a†mðp0Þamðp0Þ, which takes the place
of (D20). Then eiϵP0ajme−iϵP0 ¼ ajþ1;m for any integer j. In
conclusion, in all of these limits the generator of translations
in time is properly defined. These definitions constitute a
natural extension of the case of a compactified discrete time
and agreewith the possible limits (namely small spacing and/
or large T) of that basic scenario.
Notice that a similar treatment might be employed for

other spacetime algebras, such as the one in Eq. (D12),
leading to the replacement δtt0 → δðt − t0Þ.
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