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We develop a diagrammatic approach to effective field theories (EFTs) corresponding to deep neural
networks at initialization, which dramatically simplifies computations of finite-width corrections to neuron
statistics. The structures of EFT calculations make it transparent that a single condition governs criticality
of all connected correlators of neuron preactivations. Understanding of such EFTs may facilitate progress
in both deep learning and field theory simulations.
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I. INTRODUCTION

Machine learning (ML) has undergone a revolution in
recent years, with applications ranging from image recog-
nition and natural language processing, to self-driving cars
and playing Go. Central to all these developments is the
engineering of deep neural networks, a class of ML
architectures consisting of multiple layers of artificial
neurons. Such networks are apparently rather complex,
with a deterring number of trainable parameters, which
means practical applications have often been guided by
expensive trial and error. Nevertheless, extensive research
is underway toward opening the black box.
That a theoretical understanding of such complex sys-

tems is possible has to do with the observation that a wide
range of neural network architectures actually admit a
simple limit: they reduce to Gaussian processes when the
network width (number of neurons per layer) goes to
infinity [1–6], and evolve under gradient-based training as
linear models governed by the neural tangent kernel [7–9].
However, an infinitely-wide network neither exists in
practice, nor provides an accurate model for deep lear-
ning. It is therefore crucial to understand finite-width
effects, which have recently been studied by a variety of
methods [10–23].
This line of research in ML theory has an intriguing

synergy with theoretical physics [24]. In particular, it has
been realized that neural networks have a natural correspon-
dence with (statistical or quantum) field theories [25–34].

Infinite-width networks—which are Gaussian processes—
correspond to free theories, while finite-width correc-
tions in wide networks can be calculated perturbatively as
in weakly interacting theories. This allows for a syste-
matically improvable characterization of neural networks
beyond the (very few) exactly-solvable special cases [35–37].
Meanwhile, from an effective theory perspective [21], infor-
mation propagation through a deep neural network can be
understood as a renormalization group (RG) flow. Examining
scaling behaviors near RG fixed points reveals strategies to
tune the network to criticality [38–40], which is crucial for
mitigating the notorious exploding and vanishing gradient
problems in practical applications. In the reverse direction,
this synergy also points to new opportunities to study field
theories with neural networks [33].
Inspired by recent progress, in this paper we further

explore the structures of effective field theories (EFTs)
corresponding to archetypical deep neural networks. To
this end, we develop a novel diagrammatic formalism.1

Our approach largely builds on the frameworks of
Refs. [21,22], which enable systematic calculations of
finite-width corrections. The diagrammatic formalism
dramatically simplifies these calculations, as we demon-
strate by concisely reproducing known results in the main
text and presenting further examples with new results in
the Supplemental Material [42]. Interestingly, the struc-
tures of diagrams in the RG analysis suggest that neural
network EFTs are of a quite special type, where a
single condition governs the critical tuning of all neuron
correlators. The study of these EFTs may lend new
insights into both neural network properties and novel
field-theoretic phenomena.Published by the American Physical Society under the terms of
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1See also Refs. [13,17,18,26,27,31,32,41] for Feynman
diagram-inspired approaches to ML.
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II. EFT OF DEEP NEURAL NETWORKS

The archetype of deep neural networks, the multilayer
perceptron, can be defined by a collection of neurons

whose values ϕðlÞ
i (called preactivations) are determined by

the following operations given an input x⃗∈Rn0 :

ϕð1Þ
i ðx⃗Þ ¼

Xn0
j¼1

Wð1Þ
ij xj þ bð1Þi ;

ϕðlÞ
i ðx⃗Þ ¼

Xnl−1
j¼1

WðlÞ
ij σðϕðl−1Þ

j ðx⃗ÞÞ þ bðlÞi ðl ≥ 2Þ: ð1Þ

Here superscripts in parentheses label layers, subscripts i, j
label neurons within a layer (of which there are nl at the
lth layer), and σðϕÞ is the activation function [common
choices include tanhðϕÞ or ReLUðϕÞ≡maxð0;ϕÞ]. The
weightsWðlÞ

ij and biases bðlÞi (l ¼ 1;…; L) are the network
parameters which are adjusted to minimize a loss function
during training, such that the trained network can approxi-
mate the desired function.
The basic idea of an EFT of deep neural networks is to

consider an ensemble of networks, where at initialization,

each of the l th-layer weights WðlÞ
ij (biases bðlÞi ) is drawn

independently from a Gaussian distribution with mean zero

and variance CðlÞ
W =nl−1 (CðlÞ

b ). The statistics of this
ensemble encode both the typical behavior of neural
networks initialized in this manner and how a particular
network may fluctuate away from typicality. In the field
theory language, these are captured by a Euclidean action,
S½ϕ� ¼ − logPðϕÞ, for all neuron preactivation fields

ϕðlÞ
i ðx⃗Þ, where PðϕÞ is the joint probability distribution.

As we review in the Supplemental Material [42], at
initialization the conditional probability distribution at each
layer is Gaussian:

PðϕðlÞjϕðl−1ÞÞ ¼ ½detð2πGðlÞÞ�−nl
2 e−S

ðlÞ
0 ; ð2Þ

SðlÞ
0 ¼

Z
dx⃗1dx⃗2

1

2

Xnl
i¼1

ϕðlÞ
i ðx⃗1ÞðGðlÞÞ−1ðx⃗1; x⃗2ÞϕðlÞ

i ðx⃗2Þ;

ð3Þ

where GðlÞðx⃗1; x⃗2Þ ¼ 1
nl−1

Pnl−1
j¼1 G

ðlÞ
j ðx⃗1; x⃗2Þ, with

GðlÞ
j ðx⃗1; x⃗2Þ ¼ CðlÞ

b þ CðlÞ
W σðϕðl−1Þ

j ðx⃗1ÞÞσðϕðl−1Þ
j ðx⃗2ÞÞ

≡ CðlÞ
b þ CðlÞ

W σðl−1Þj;x⃗1
σðl−1Þj;x⃗2

ð4Þ

for l ≥ 2, and Gð1Þ
j ðx⃗1; x⃗2Þ ¼ Cð1Þ

b þ Cð1Þ
W x1jx2j. We have

taken the continuum limit in input space to better parallel
field theory analyses. ðGðlÞÞ−1 is understood as the pseu-
doinverse when GðlÞ is not invertible. We see that for l ≥ 2,

GðlÞðx⃗1; x⃗2Þ is an operator of the (l − 1)th-layer neurons, so
Eq. (3) is actually an interacting theory with interlayer
couplings. This also means the determinant in Eq. (2) is not
a constant prefactor. To account for its effect, we introduce
auxiliary anticommuting fields ψ , ψ̄ which are analogs of
ghosts and antighosts in the Faddeev-Popov procedure.
Including all layers, we have

e−S½ϕ� ¼
Z

DψDψ̄e−
P

L
l¼1

ðSðlÞ
0

½ϕ�þSðlÞ
ψ ½ϕ;ψ ;ψ̄ �Þ; ð5Þ

where SðlÞ
0 is given by Eq. (3) above and

SðlÞ
ψ ¼ −

Z
dx⃗1dx⃗2

Xnl=2
i0¼1

ψ̄ ðlÞ
i0 ðx⃗1ÞðGðlÞÞ−1ðx⃗1; x⃗2Þψ ðlÞ

i0 ðx⃗2Þ:

ð6Þ

The lth-layer neurons interact with the (l − 1)th-layer and

(lþ 1)th-layer neurons via SðlÞ
0 and Sðlþ1Þ

0 , respectively,
while their associated ghosts have opposite-sign couplings
to the (l − 1)th-layer neurons but do not couple to (lþ 1)
th-layer neurons. This means ϕðlÞ and ψ ðlÞ loops cancel as
far as their couplings to ϕðl−1Þ are concerned, which must
be the case since the network has directionality—neurons
at a given layer cannot be affected by what happens at
deeper layers.

III. NEURON STATISTICS
FROM FEYNMAN DIAGRAMS

We are interested in calculating neuron statistics, i.e.,

connected correlators of neuron preactivation fields ϕðlÞ
i ðx⃗Þ

in the EFT above. More precisely, we would like to track
the evolution of neuron correlators as a function of network
layer l, which encodes how information is processed
through a deep neural network and has an analogous form
to RG flows in field theory. To this end, we develop an
efficient diagrammatic framework to recursively determine
l th-layer neuron correlators in terms of (l − 1)th-layer
neuron correlators.
To derive the Feynman rules, we first note that if

ϕðl−1Þ
j ðx⃗Þ were classical background fields with no stat-

istical fluctuations, we would simply have a free theory for

ϕðlÞ
i ðx⃗Þ with propagator GðlÞðx⃗1; x⃗2Þ. In this case, the two-

point correlator is given by

hϕðlÞ
i1
ðx⃗1ÞϕðlÞ

i2
ðx⃗2Þi ¼? δi1i2G

ðlÞðx⃗1; x⃗2Þ

¼ δi1i2
1

nl−1

X
j

GðlÞ
j ðx⃗1; x⃗2Þ; ð7Þ

and, by simple Wick contraction, the four-point correlator
is given by
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hϕðlÞ
i1
ðx⃗1ÞϕðlÞ

i2
ðx⃗2ÞϕðlÞ

i3
ðx⃗3ÞϕðlÞ

i4
ðx⃗4Þi

¼? δi1i2δi3i4G
ðlÞðx⃗1; x⃗2ÞGðlÞðx⃗3; x⃗4Þ þ perms

¼ δi1i2δi3i4
1

n2l−1

X
j1;j2

GðlÞ
j1
ðx⃗1; x⃗2ÞGðlÞ

j2
ðx⃗3; x⃗4Þ þ perms: ð8Þ

We have used “¼? ” to indicate that these equations may not

hold when statistical fluctuations of ϕðl−1Þ
j ðx⃗Þ are taken into

account. Indeed, since ϕðl−1Þ
j ðx⃗Þ are integrated over in the

path integral, we should take the ensemble average of
the expressions on the right-hand sides of Eqs. (7) and (8).
This can be represented diagrammatically as:

ð9Þ

ð10Þ

In our diagrammatic notation, all external fields are l th-

layer preactivations ϕðlÞ
i ðx⃗Þ since we are interested in

calculating their correlators. A double wavy internal line
labeled by j and connected to external points x⃗1; x⃗2
represents GðlÞ

j ðx⃗1; x⃗2Þ [an operator made of the (l − 1) th-

layer fields ϕðl−1Þ
j ðx⃗1Þ;ϕðl−1Þ

j ðx⃗2Þ], and a blob means
taking the expectation value of the product of all operators
attached to it. Each ϕ2G vertex comes with a factor of 1

nl−1
,

and external ϕðlÞ
i fields meeting at the same vertex share the

same neuron index. We can similarly write down higher-
point correlators in this diagrammatic notation.
Since we are mostly interested in connected correlators,

it is convenient to decompose GðlÞ
j ðx⃗1; x⃗2Þ into an expect-

ation value piece and a fluctuating piece:

GðlÞ
j ðx⃗1; x⃗2Þ ¼ hGðlÞ

j ðx⃗1; x⃗2Þi þ CðlÞ
W Δðl−1Þ

j ðx⃗1; x⃗2Þ; ð11Þ

where

Δðl−1Þ
j ðx⃗1; x⃗2Þ≡ σðl−1Þj;x⃗1

σðl−1Þj;x⃗2
− hσðl−1Þj;x⃗1

σðl−1Þj;x⃗2
i ð12Þ

for l ≥ 2, and Δð0Þ
j ðx⃗1; x⃗2Þ ¼ 0. Diagrammatically, we can

represent this as:

ð13Þ

A single wavy internal line labeled by j and connected to

external points x⃗1; x⃗2 represents Δ
ðl−1Þ
j ðx⃗1; x⃗2Þ [an operator

made of ϕðl−1Þ
j ðx⃗1Þ;ϕðl−1Þ

j ðx⃗2Þ], and the ϕ2Δ vertex rep-

resents a factor of CðlÞ
W

nl−1
. By definition, the fluctuation

operators are tadpole-free:

ð14Þ

The diagrammatic representation Eq. (13) of the decom-
position Eq. (11) makes it straightforward to extract the
connected part of neuron correlators. Starting from a full
correlator like Eq. (10), we separate each double wavy line
according to Eq. (13). Taking the first term on the right-
hand side of Eq. (13) for any double wavy line would
disconnect the diagram. Therefore, we can replace each
double wavy line by a single wavy line (representing

Δðl−1Þ
j ) when calculating connected correlators. For exam-

ple, the connected four-point correlator is given by:

ð15Þ

Note that the blob representing hΔðl−1Þ
j1

ðx⃗1; x⃗2Þ ×

Δðl−1Þ
j2

ðx⃗3; x⃗4Þi is automatically connected due to
Eq. (14). The only exception to this double → single wavy
line replacement rule is when calculating the two-point
correlator in Eq. (9), which by definition involves the
expectation value piece [first term on the right-hand side of
Eq. (13)] but is trivially connected (note that since we have
normalized

R
Dϕe−S ¼ 1, disconnected diagrams involv-

ing vacuum bubbles sum to zero).
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From the discussion above it is clear that each ϕ2Δ
vertex comes with a factor of 1

n (where n collectively
denotes n1;…; nL−1). In the infinite-width limit, n → ∞,
the EFT is a free theory, whereas for large but finite n, we
have a weakly-interacting theory where higher-point con-
nected correlators can be perturbatively calculated as a 1

n
expansion. Meanwhile, each sum over internal neuron
indices (like

P
j in Eq. (9) above) gives rise to a factor

of n. We will see below that no n
n terms arise, so we have a

valid perturbative expansion.
To see how this 1

n expansion works, let us first take a
closer look at the two-point correlator Eq. (9). We can
expand it as:

hGðlÞðx⃗1; x⃗2Þi ¼
X∞
p¼0

1

npl−1
KðlÞ

p ðx⃗1; x⃗2Þ: ð16Þ

The leading-order (LO) term KðlÞ
0 is known as the kernel; it

is the propagator for ϕðlÞ
i in the free-theory limit n → ∞.

Evaluating hGðlÞðx⃗1; x⃗2Þi in this limit amounts to using

free-theory propagators Kðl−1Þ
0 for the previous-layer neu-

rons ϕðl−1Þ
j in the blob in Eq. (13):

KðlÞ
0 ðx⃗1; x⃗2Þ ¼

X
j

1

nl−1
hGðlÞ

j ðx⃗1; x⃗2ÞiKðl−1Þ
0

¼ CðlÞ
b þ CðlÞ

W hσx⃗1σx⃗2iKðl−1Þ
0

: ð17Þ

Here subscript Kðl−1Þ
0 means the expectation value is

computed with the free-theory propagator Kðl−1Þ
0 , namely:

hOðϕðl−1Þ
i ðx⃗1Þ;ϕðl−1Þ

i ðx⃗2Þ;…ÞiKðl−1Þ
0

≡
R
DϕOðϕðx⃗1Þ;ϕðx⃗2Þ;…Þe−

R
dy⃗1dy⃗2

1
2
ϕðy⃗1ÞðKðl−1Þ

0
Þ−1ðy⃗1;y⃗2Þϕðy⃗2Þ

R
Dϕe−

R
dy⃗1dy⃗2

1
2
ϕðy⃗1ÞðKðl−1Þ

0
Þ−1ðy⃗1;y⃗2Þϕðy⃗2Þ

: ð18Þ

On the right-hand side of Eq. (17), we have dropped both
neuron and layer indices on σ because the Kðl−1Þ

0 subscript
already indicates the layer, and the expectation value is
identical for all neurons in that layer. One can further
evaluate hσx⃗1σx⃗2iKðl−1Þ

0

for specific choices of activation

functions σ, but we stay activation-agnostic for the present
analysis.

Equation (17) allows us to recursively determine KðlÞ
0

from Kðl−1Þ
0 , and has been well known from studies of

infinite-width networks. It may also be viewed as the
RG flow of K0, with ultraviolet boundary condition

Kð1Þ
0 ðx⃗1; x⃗2Þ ¼ Cð1Þ

b þ Cð1Þ
W
n0

x⃗1 · x⃗2. It is straightforward to
extend the diagrammatic calculation to Kp≥1. We present
a simple derivation of the RG flow of K1 in the
Supplemental Material [42].
Next, consider the connected four-point correlator in

Eq. (15). Following Ref. [21], we separate the neuron index

structures and define the vertex function VðlÞ
4 as follows:

hϕðlÞ
i1
ðx⃗1ÞϕðlÞ

i2
ðx⃗2ÞϕðlÞ

i3
ðx⃗3ÞϕðlÞ

i4
ðx⃗4ÞiC

¼ δi1i2δi3i4
1

nl−1
VðlÞ
4 ðx⃗1; x⃗2; x⃗3; x⃗4Þ þ perms; ð19Þ

We can obtain 1
nl−1

VðlÞ
4 ðx⃗1; x⃗2; x⃗3; x⃗4Þ by setting i1 ¼ i2,

i3 ¼ i4 in the diagram in Eq. (15). For simplicity we will
leave implicit the pairwise-equal neuron index labels for the
external fields, writing:

ð20Þ

To evaluate the diagram, we need to consider two cases,
j1 ¼ j2 and j1 ≠ j2. For j1 ¼ j2 ≡ j, we can use the free
theory to evaluate the blob at LO:

ð21Þ

As in Eq. (17), we have dropped the layer and neuron
indices on Δ. Note that each ϕ2Δ vertex comes with a

factor of CðlÞ
W

nl−1
, while the neuron index sum yields a factor of

nl−1, so the final result is Oð1nÞ. For j1 ≠ j2, free-theory
propagators cannot connect Δj1 and Δj2 , and the leading
contribution is from inserting a connected four-point
correlator of the (l − 1)th layer:
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ð22Þ

In this diagram, internal solid lines (labeled with neuron

indices j1, j2) denote ϕðl−1Þ
j1

, ϕðl−1Þ
j2

propagators.

Exchanging the two ϕðl−1Þ
j1

lines or the two ϕðl−1Þ
j2

lines
results in the same diagram, hence a symmetry factor
1
22
¼ 1

4
. The smaller blob at the center (together with the

attached propagators) represents a connected four-point

correlator of the (l − 1)th layer, 1
nl−2

Vðl−1Þ
4 . The larger

blobs give rise to the correlators in the second line of
Eq. (22); they are automatically connected since

hΔðl−1Þ
j ðx⃗1; x⃗2Þi ¼ hϕðl−1Þ

j ðx⃗Þi ¼ 0. A correlator hϕðx⃗Þ…i
by its standard definition includes the propagators

Kðl−1Þ
0 ðx⃗; y⃗Þ… (with y⃗ to be integrated over), so when

we use correlators to build up diagrams, each internal
propagator connecting two correlators (blobs) is counted
twice. To avoid double-counting we thus insert an inverse
propagator for each internal line in the diagram. This

explains the factors of ðKðl−1Þ
0 Þ−1 in the first line of

Eq. (22), which effectively amputate the connected four-
point correlator (or equivalently the larger blobs in the
diagram). The final expression in Eq. (22) is obtained by

Wick contraction, which yields factors ofKðl−1Þ
0 that cancel

ðKðl−1Þ
0 Þ−1. Compared to the j1 ¼ j2 case in Eq. (21), we

now have an extra factor of 1
nl−2

from the insertion of the
(l − 1) th-layer connected four-point correlator and an
extra factor of nl−1 from neuron index summation, so
the result is again Oð1nÞ.
Adding up Eqs. (21) and (22) gives the final result for

VðlÞ
4 in terms Vðl−1Þ

4 and Kðl−1Þ
0 , i.e. the RG flow of V4,

which agrees with Refs. [14,21]. Both equations are Oð1nÞ,
so VðlÞ

4 defined by Eq. (19) is Oð1Þ.
We would like to note that the way we use Feynman

diagrams in neural network EFT calculations is perhaps

slightly different from what one is used to in other contexts.
Usually one would derive Feynman rules for propagators
and interaction vertices, and use them to build diagrams
from which one can calculate correlators in terms of
parameters of the theory. In the present case, however,
our goal is to derive RG flows, which are relations between
correlators. As we have seen above, the general strategy is
to first write l th-layer ϕ correlators in terms of (l − 1) th-
layer Δ correlators, i.e. expectation values of (products of)

Δðl−1Þ
j ’s, using the ϕ2Δ vertex [last diagram in Eq. (13)],

and then calculate these (l − 1) th-layer Δ correlators in
terms of (l − 1) th-layer ϕ correlators. In the second step, if
a Δ correlator involves identical neuron indices [e.g. in
Eq. (21)], it simply takes its free-theory value expressed in
terms of free propagators (i.e. two-point ϕ correlators) at
LO; if distinct neuron indices are involved, we need to
insert mixed Δ-ϕ correlators [e.g. the larger blobs in
Eq. (22)] to bridge the Δ’s and four- or higher-point ϕ
correlators. In either case, we can express the result in terms
of free-theory expectation values of (l − 1)th-layer single
neuron operators, Eq. (18), withO a product of Δ’s and ϕ’s
[with the exception of the LO two-point correlator K0

where O ¼ σx⃗1σx⃗2 ; see Eq. (17)]. By Wick contractions we
can then rewrite these expectation values in terms of those
of functional derivatives of Δ’s [as in e.g. Eq. (22)].
The diagrammatic calculation extends straightforwardly

to higher-point connected correlators, and provides a
concise framework to systematically analyze finite-width
effects in deep neural networks. In the Supplemental
Material [42] we present new results for the connected
six-point and eight-point correlators as further examples.
The RG flow can also be formulated at the level of the

EFT action. The idea is to consider a tower of EFTs, SðlÞ
eff

(l ¼ 1;…; L), obtained by integrating out the neurons and
ghosts in all but the lth layer. They take the form:
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SðlÞ
eff ¼

Z
dx⃗1dx⃗2ðKðlÞ

0 þ μðlÞÞ−1ðx⃗1; x⃗2Þ
�
1

2
ϕðlÞ
i ðx⃗1ÞϕðlÞ

i ðx⃗2Þ − ψ̄ ðlÞ
i0 ðx⃗1Þψ ðlÞ

i0 ðx⃗2Þ
�

−
Z

dx⃗1dx⃗2dx⃗3dx⃗4λðlÞðx⃗1; x⃗2; x⃗3; x⃗4Þ
�
1

8
ϕðlÞ
i ðx⃗1ÞϕðlÞ

i ðx⃗2ÞϕðlÞ
j ðx⃗3ÞϕðlÞ

j ðx⃗4Þ

−
1

2
ϕðlÞ
i ðx⃗1ÞϕðlÞ

i ðx⃗2Þψ̄ ðlÞ
j0 ðx⃗3Þψ ðlÞ

j0 ðx⃗4Þ þ
1

2
ψ̄ ðlÞ
i0 ðx⃗1Þψ ðlÞ

i0 ðx⃗2Þψ̄ ðlÞ
j0 ðx⃗3Þψ ðlÞ

j0 ðx⃗4Þ
�
þ � � � ð23Þ

where summation over repeated indices is assumed. To
determine the EFT couplings μðlÞ; λðlÞ ∼Oð1nÞ, we can

calculate the connected correlators hϕðlÞ
i1
ðx⃗1ÞϕðlÞ

i2
ðx⃗2Þi,

hϕðlÞ
i1
ðx⃗1ÞϕðlÞ

i2
ðx⃗2ÞϕðlÞ

i3
ðx⃗3ÞϕðlÞ

i4
ðx⃗4ÞiC using Eq. (23), and

require the results match those derived above from
Eq. (5). Then their RG flows directly follow from those

of hGðlÞðx⃗1; x⃗2Þi, VðlÞ
4 ðx⃗1; x⃗2; x⃗3; x⃗4Þ discussed above. The

calculation of neuron correlators from Eq. (23) follows a
separate set of Feynman rules which in fact closely
resemble the familiar ones from standard field theory
calculations and should be evident from the equations
below. For example, matching the connected four-point

correlator relates λðlÞ to VðlÞ
4 and KðlÞ

0 :

ð24Þ

where we use an elongated vertex to indicate
pairing of the four arguments of λðlÞ. For the two-
point correlator, the calculation involves the following
diagrams:

ð25Þ

The alternative pairing of legs at the quartic vertex in
the last diagram results in an OðnnÞ contribution, which,
however, is canceled by diagrams with ghost loops due
to the opposite-sign coupling:

ð26Þ

Similar cancellations also explain the exclusion of Oð nn2Þ
loop diagrams in the calculation of the connected four-
point correlator in Eq. (24).2

IV. STRUCTURES OF RG FLOW
AND CRITICALITY

The RG analysis of neuron statistics is highly relevant for
the critical tuning of deep neural networks. The necessity of
tuning has long been appreciated in practical applications
of deep learning, especially in the context of mitigating the
infamous exploding and vanishing gradient problems
which make it difficult to train deep networks given finite
machine precision. In the EFT framework, this is related to

the fact that generic choices of hyperparameters CðlÞ
b ; CðlÞ

W
lead to exponential scaling of neuron correlators under RG.
Taming the exponential behaviors requires tuning the
network to criticality by judiciously setting these hyper-
parameters [38–40]. At the kernel level, the criticality
analysis of Ref. [21] reveals two prominent universality
classes which networks with a variety of activation func-
tions fall into: scale-invariant (including e.g. ReLU) and

K⋆ ¼ 0 (including e.g. tanh). In each case, KðlÞ
0 flows

toward a nontrivial fixed point as l increases; crucially,
the scaling near the fixed point is power-law rather than
exponential, which allows information to propagate
through the layers so the network can learn nontrivial
features from data.
While previous criticality analyses have mostly focused

on the two-point correlator, it is important to also
consider higher-point correlators because they encode
fluctuations across the ensemble. In other words, it is
not sufficient to require the networks are well-behaved on
average, but the scaling behavior of each network must
be close to the average. At first sight, criticality seems to

2We can reproduce the effective theory of Ref. [21] by
integrating out the ghosts from Eq. (23). Calculations within
this ghostless effective theory give rise to Oðnl−1nl

Þ terms, neces-
sitating either working in the regime nl ≫ nl−1 ≫ 1 or margin-
alizing the action over all but an Oð1Þ number of neurons in the
(l − 1)th layer to have a perturbative 1

n expansion. Retaining
the ghosts avoids such subtleties, rendering μðlÞ genuinely Oð1nÞ
and the difference between λðlÞ and the (amputated) connected
four-point correlator genuinely Oð 1n2Þ.
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impose more constraints than the number of tunable
hyperparameters, if we require power-law scaling of
all higher-point correlators at arbitrary input points.
However, as we will show, the structures of RG flow,
manifest in the diagrammatic formulation, are such that
tuning K0 to criticality actually ensures power-law scal-
ing of all higher-point connected correlators near the
fixed point.
Let us start with the two-point correlator. The asymptotic

scaling behavior (exponential vs power-law) can be
inferred from the following question: upon an infinitesimal
variation at the (l − 1)th layer,

hGðl−1Þðx⃗1; x⃗2Þi → hGðl−1Þðx⃗1; x⃗2Þi þ δhGðl−1Þðx⃗1; x⃗2Þi;
ð27Þ

how does hGðlÞðx⃗1; x⃗2Þi change? Diagrammatically, this
can be calculated as follows:

ð28Þ

where a blob labeled “δ” denotes the variation of the (two-
point) correlator. The result is

δhGðlÞðx⃗1; x⃗2Þi ¼
Z

dy⃗1dy⃗2χðlÞðx⃗1; x⃗2; y⃗1; y⃗2Þ

× δhGðl−1Þðy⃗1; y⃗2Þi; ð29Þ

or, equivalently:

δhGðlÞðx⃗1; x⃗2Þi
δhGðl−1Þðy⃗1; y⃗2Þi

¼ χðlÞðx⃗1; x⃗2; y⃗1; y⃗2Þ; ð30Þ

where

χðlÞðx⃗1; x⃗2; y⃗1; y⃗2Þ

¼ CðlÞ
W

2

Z
dz⃗1dz⃗2ðKðl−1Þ

0 Þ−1ðy⃗1; z⃗1ÞðKðl−1Þ
0 Þ−1ðy⃗2; z⃗2Þ

× hΔðx⃗1; x⃗2Þϕðz⃗1Þϕðz⃗2ÞiKðl−1Þ
0

þO
�
1

n

�

¼ CðlÞ
W

2

�
δ2Δðx⃗1; x⃗2Þ
δϕðy⃗1Þδϕðy⃗2Þ

�
Kðl−1Þ

0

þO
�
1

n

�
: ð31Þ

We can clearly see the structural similarity to Eq. (22)
above. Ultimately, the same subdiagram enters both equa-
tions, and we can write:

ð32Þ

where the ϕðl−1Þ
j legs on the right side are amputated, and

an exchange symmetry between them in the full diagram is
assumed [hence a symmetry factor 1

2
in Eq. (31)].

The same pattern persists for higher-point connected
correlators. For the connected four-point correlator, an

infinitesimal variation of Vðl−1Þ
4 ðx⃗1; x⃗2; x⃗3; x⃗4Þ results in a

change in VðlÞ
4 ðx⃗1; x⃗2; x⃗3; x⃗4Þ:

ð33Þ

and we find:

nl−2
nl−1

δVðlÞ
4 ðx⃗1; x⃗2; x⃗3; x⃗4Þ

δVðl−1Þ
4 ðy⃗1; y⃗2; y⃗3; y⃗4Þ

¼ 1

2
½χðlÞðx⃗1; x⃗2; y⃗1; y⃗2ÞχðlÞðx⃗3; x⃗4; y⃗3; y⃗4Þ

þ χðlÞðx⃗1; x⃗2; y⃗3; y⃗4ÞχðlÞðx⃗3; x⃗4; y⃗1; y⃗2Þ�; ð34Þ
where the symmetrized form arises because

VðlÞ
4 ðx⃗1; x⃗2; x⃗3; x⃗4Þ ¼ VðlÞ

4 ðx⃗3; x⃗4; x⃗1; x⃗2Þ.
Generally, the connected 2k-point correlator is

defined by

hϕðlÞ
i1
ðx⃗1Þ…ϕðlÞ

i2k
ðx⃗2kÞiC

¼ δi1i2 � � � δi2k−1i2k
1

nk−1l−1
VðlÞ
2k ðx⃗1; x⃗2;…; x⃗2k−1; x⃗2kÞ þ perms;

ð35Þ

where VðlÞ
2k can be shown to be Oð1Þ [22]. Its variation

follows from:

ð36Þ

and we have

�
nl−2
nl−1

�
k−1 δVðlÞ

2k ðx⃗1; x⃗2;…; x⃗2k−1; x⃗2kÞ
δVðl−1Þ

2k ðy⃗1; y⃗2;…; y⃗2k−1; y⃗2kÞ

¼ sym

�Yk
k0¼1

χðlÞðx⃗2k0−1; x⃗2k0 ; y⃗2k0−1; y⃗2k0 Þ
�
; ð37Þ
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where “sym.” means symmetrizing the expression in the
same way as in Eq. (34).
The quantity χðlÞðx⃗1; x⃗2; y⃗1; y⃗2Þ in the equations above is

a generalization of the parallel and perpendicular suscep-
tibilities, χk and χ⊥, introduced in Ref. [21] when analyzing
the special case of two nearby inputs. In the nearby-inputs
limit, tuning the network to criticality means adjusting the

hyperparameters CðlÞ
W , CðlÞ

b such that the kernel recursion
Eq. (17) has a fixed point K⋆ where χk ¼ χ⊥ ¼ 1. In the
Supplemental Material [42], we show that, at least for the
scale-invariant and K⋆ ¼ 0 universality classes, this tuning
actually implies a stronger condition is satisfied (at LO in 1

n):

χðlÞðx⃗1; x⃗2; y⃗1; y⃗2ÞjKðl−1Þ
0

¼K⋆

¼ 1

2
½δðx⃗1 − y⃗1Þδðx⃗2 − y⃗2Þ þ δðx⃗1 − y⃗2Þδðx⃗2 − y⃗1Þ�: ð38Þ

Equation (38) ensures perturbations around the fixed
point stay constant through the layers, not just for the
two-point correlator, δhGðlÞðx⃗1; x⃗2Þi ¼ δhGðl−1Þðx⃗1; x⃗2Þi,
but for the entire tower of higher-point connected correlators,
1

nk−1l−1
δVðlÞ

2k ðx⃗1;…; x⃗2kÞ ¼ 1
nk−1l−2

δVðl−1Þ
2k ðx⃗1;…; x⃗2kÞ. This in

turn implies that for all of them, RG flow toward the fixed
point is power-law instead of exponential, once the single
condition Eq. (38) is satisfied. The discussion abovemakes it
transparent that power-law scaling of higher-point connected
correlators at criticality (previously observed inRefs. [21,22]
up to eight-point level in the degenerate-input limit) has its
roots in the structures of EFT interactions, as manifested by
the common structure shared by the diagrams in Eqs. (28),
(33) and (36).

V. SUMMARY AND OUTLOOK

In this paper, we introduced a diagrammatic formalism
that significantly simplifies perturbative calculations of
finite-width effects in EFTs corresponding to archetypical
deep neural networks. The concise reproduction of known
results and derivation of new results highlights the effi-
ciency of the diagrammatic approach, while the incorpo-
ration of ghosts vastly simplifies 1

n counting in the EFT
action. Our analysis also made transparent the structures of
such EFTs which underlie the success of critical tuning in

deep neural networks. In fact, a universal diagrammatic
structure emerges in the RG analysis of all higher-point
connected correlators of neuron preactivations, which
means criticality (i.e. power-law as opposed to exponential
scaling) of all the neuron statistics at initialization is
governed by a single condition, Eq. (38).
From the deep learning point of view, the neuron

correlators at initialization that we calculated provide the
initial conditions for understanding training of neural
networks. It is worth noting that the statistics at initializa-
tion already contain useful information as criticality is
known to ensure trainability of neural networks [21,40,43].
An obvious next step is to extend the diagrammatic
formalism to incorporate gradient-based training and sim-
plify perturbative calculations involving the neural tangent
kernel [7,8] and its differentials [11–13,21].
From the fundamental physics point of view, we are

hopeful that much more can be learned from the intimate
connection between neural networks and field theories.
Understanding the structures of EFTs corresponding to
other neural network architectures (e.g. recurrent neural
networks [32,44] and transformers [45]) will allow us to
gain further insights into this connection and potentially
point to novel ML architecture designs for simulating field
theories (see Refs. [27,33,46] for recent progress in this
direction).
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