
Gribov problem in the eletroweak and gluon confined theories

R. L. P. G. Amaral,1,* V. E. R. Lemes ,2,† O. S. Ventura,3,‡ and L. C. Q. Vilar2,§
1Instituto de Física, Universidade Federal do Fluminense, Avenida Litorânea S/N,

Boa Viagem, Niterói-Rio de Janeiro CEP. 24210-340, Brazil
2Instituto de Física, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524,

Maracanã, Rio de Janeiro—Rio de Janeiro, 20550-013, Brazil
3Departamento de Física, Centro Federal de Educação Tecnológica do Rio de Janeiro,

Avenida Maracanã 249, 20271-110, Rio de Janeiro—Rio de Janeiro, Brazil

(Received 8 February 2024; accepted 8 April 2024; published 2 May 2024)

We show that gauge fields after a spontaneous symmetry breaking (SSB) mechanism do not have a
Gribov problem along the broken directions. In order to make this proof, we describe a gauge fixing
procedure inspired on Morse’s theory leading to the concept of a gauge fixing generating functional. This
approach is specially suited in order to understand the unitary gauges of ’t Hooft. The conclusion is that
after a SSB process, the generalized Faddeev-Popov operator acquires a positive definite value along the
broken directions. We show how this works in the eletroweak SUð2ÞXUð1Þ theory, where such a result is in
fact expected as in this case the gauge fields acquire masses after the SSB. Then we apply this development
to the SLð3; cÞ confining model of Amaral et al. [A path to confine gluons and fermions through complex
gauge theory, Phys. Rev. D 101, 094002 (2020)]. The final result explains why such confining mechanism
is actually a solution to the Gribov problem for the confined gauge fields. These cases show that although
confinement is not a general effect of the solution of the Gribov problem, as we can infer from the
eletroweak example, its solution indeed seems to be necessary in order to achieve confinement. In the end,
these conclusions allow us to speculate that the strong interaction confinement may be the result of some
hidden SSB mechanism yet to be described.

DOI: 10.1103/PhysRevD.109.105005

I. INTRODUCTION

We know that a non-Abelian gauge field theory has the
so-called Gribov problem [1]. This problem is based on
the simple observation that in order to extract physically
meaningful information from the Euclidean partition
function

ZðjÞ ¼
Z

DAe−
R

d4xEð14FA
μνFA

μν−JAμAA
μ Þ ð1Þ

one should take care with the measure. The gauge sym-
metry implies that several physically redundant and
uncountable copies of any given gauge field configuration
are being integrated over in (1), unless a gauge fixing

procedure is built ensuring that just one exemplar is
selected among those copies. One such procedure is, for
example, the imposition of the Landau gauge condition

∂μAA
μ ¼ 0 ð2Þ

which can be implemented in (1) through the Faddeev-
Popov ansatz. The question then is whether once we
generate a gauge copy of a field configuration specified
by (2),

AA
μ → ÃA

μ ¼ AA
μ þ δAA

μ ;

δAA
μ ¼ −

�
∂μϵ

A þ gfABCAB
μ ϵ

C
� ¼ −ðDμϵÞA; ð3Þ

is it possible that this copy could satisfy

∂μÃ
A
μ ¼ 0 ⇒ ∂μDμϵ

A ¼ 0; ð4Þ

the same gauge condition as (2)? If this happens, the gauge
is not completely fixed, and the ambiguity in (1) still
remains. Gribov explicitly showed that this is the case, and
this became known as the Gribov problem. Put in another
way, from (4) we say that the Landau gauge implies that the
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Faddeev-Popov operator admits null eigenvalues, and this
leads to the ambiguity.
This problem has a rereading in terms of Morse theory,

which is the study of topological invariants of any given
manifold in terms of critical points of functions defined on
it [2,3]. This interpretation was given for the first time
in [4], explored in [5], but actually its use may be traced
back to the original construction made by Gribov [1]. Here
we will summarize the more detailed presentation given
in [5]. It begins by seeing a gauge orbit of a given gauge
configuration as a foliation of the whole gauge configura-
tion space. To each of these gauge orbits we will give an
appropriate topography, written as a functional generatorO.
We can choose as a topography, for example, the Hilbert
norm of the gauge field

O ¼
Z

d4x
1

2
AA
μAA

μ : ð5Þ

An infinitesimal displacement along the gauge orbit is
determined by the gauge transformation (3), which in
quantummechanical terms is described by the set of nilpotent
Becchi-Rouet-Stora-Tyutin (BRST) transformations

sAA
μ ¼ −

�
∂μcA þ gfABCAB

μcC
� ¼ −ðDμcÞA;

scA ¼ g
2
fABCcBcC;

sc̄A ¼ ibA; ð6Þ

with cA and bA the usual ghost field and Nakanishi-Lautrup
multiplier respectively. Then, the variation of the gauge
generating functional (5) is given by

sO ¼
Z

d4x cA∂μAA
μ ; ð7Þ

and the demand that a given configuration be a critical point
in its orbit, sO ¼ 0, is equivalent to

δsO
δcA

¼ ∂μAA
μ ¼ 0: ð8Þ

This is the Landau gauge condition (2), now understood as a
critical point of (5). At this point, one can implement this
condition at the quantum action by adding the Faddeev-
Popov gauge fixing sector

Sgf ¼
Z

d4x
�
ibA∂μAA

μ þ c̄A∂μðDμcÞA
�
: ð9Þ

Using the BRST language, we can translate this mechanism
as an operation on the functional (5)

Sgf ¼ s
Z

d4xc̄A
δsO
δcA

; ð10Þ

whichwill be applied later to a generalizedMorse functional.
It is also useful to write this expression in its expanded form

Sgf ¼
Z

d4x

�
ibA

�
δsO
δcA

�
− c̄As

�
δsO
δcA

��
: ð11Þ

Another fundamental feature of the Landau gauge is that
it satisfies the symmetry equation

Z
d4x

�
δSgf
δcA

− igfABCc̄B
δSgf
δbC

�
¼ 0: ð12Þ

The importance of this antighost equation is that it is valid
at the quantum level as it satisfies the quantum action
principle (QAP). Then it plays a major role in the study of
the renormalization of non-Abelian gauge theories (see [6]
for a detailed introduction in BRST renormalization).
Returning to the Gribov ambiguity, the expression (4)

pointing out the possible existence of copies satisfying the
Landau condition can now be translated as a second
variation of the functional (5) at the critical point (8),

s
δsO
δcA

¼ 0 at
δsO
δcA

¼ 0: ð13Þ

In fact, this condition is implicit in the gauge fixing
action (9), as it is just the on-shell equation of the antighost
c̄A when Aμ satisfies (2)

∂
2cA þ gfABCAB

μ ∂
μcC ¼ 0: ð14Þ

It can also be read directly from (11) as the Morse
functional (5) does not depend on c̄A. Then, (13) expresses,
in a generalized Morse functional form, the action on the
ghost of the Faddev-Popov operator. We can now under-
stand in simple terms the nature of the Gribov ambiguity.
The imposition of a null second variation at a critical point
does not fix its nature. Otherwise, if one is able to
implement at the quantum action a condition as

∂
2cA þ gfABCAB

μ∂
μcC > 0; ð15Þ

it would be assured that the theory would be localized at a
minimum of (5), as the Hessian of the Morse functional O
would have only positive definite eigenvalues. In fact, this
is the characterization of Gribov’s first region, and the
implementation of this condition on a gauge theory has
been the subject of several works (see the review [7] for an
account of this extensive literature). Although many break-
throughs were obtained along this research, this imple-
mentation is still an open question. Anyway, it is a general
belief that the correct description of the nonperturbative
region, and consequently of confinement, requires the
solution of this problem.
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Our strategy in order to obtain a relation as (15) is tomodify
the functionalO in such away as to arrive at a different gauge
fixing through (10). Thiswill lead us to a newgauge condition
and an equation of motion for c̄A, that will be interpreted as a
new Gribov equation. Our hope is that we may define the
physical conditions to meet (15) in the end.
In the sequence of this work, we will study other

generating functionals instead of (5). In Sec. II, for
example, we will start from a functional that will lead us
to a gauge fixing displaying characteristics of Feynman and
Curcci-Ferrari gauges. We will show how the antighost
equation again satisfies the QAP but the Gribov ambiguity
remains. Section III starts from a functional involving
scalar fields and then an spontaneous symmetry breaking
(SSB) phase can be reached. In this phase, this functional
will describe a ’t Hooft gauge, and we will see how
unitarity implies that the gauge fields in the broken
directions get localized in Gribov’s first region. The
example of a SUð2ÞXUð1Þ theory is the subject of
Sec. IV. We will show how the Gribov ambiguity is solved
along the broken directions. In Sec. V we approach the
SLð3; cÞ complex gauge field theory of [8]. Once more, the
Gribov ambiguity is solved for the complex gauge fields
along the broken directions, which in this case are related to
i-particles and the formation of gluon condensates. In
Sec. VI we present our conclusions, stressing that the
solution to the Gribov ambiguity may be found on a broken
phase of non-Abelian gauge theories. This may be a signal
that the confinement for the strong interactions is associ-
ated to a spontaneously broken symmetry.

II. GENERALIZING THE MORSE FUNCTIONAL

Before presenting an example of a generalized Morse
functional, let us describe the situation with the Feynman
gauge. As demanded by the standard procedure, this gauge
fixing can be presented as a BRST trivial cocycle

SgfF ¼ s
Z

d4x
�
c̄A∂μAA

μ þ ia
2
bAc̄A

	
: ð16Þ

The gauge condition that results from (16),

∂μAA
μ − abA ¼ 0; ð17Þ

leads to the Feynman gauge propagator, but we can easily
see that it is not helpful in the equation of motion of the
antighost c̄A in order to arrive at a meaningful Gribov
equation. This is not surprising, as the expression in (16)
cannot be directly obtained from a functional form as (10).
On the other hand, we find SgfF as part of a gauge fixing

that is generated by the functional

O2 ¼
Z

d4x

�
1

2
AA
μAA

μ þ a
2
c̄AcA

�
: ð18Þ

This is the first generalized functional that we want to
study. Our interest begins by noticing that once it depends
explicitly on c̄A, the gauge condition will obey the general
pattern

δsO2

δcA
¼ −c̄B

δ

δbA

�
s

�
δsO2

δcB

��
− bB

δ

δbA

�
δsO2

δcB

�
; ð19Þ

where a non-null contribution to the right is expected. This
means that this gauge condition now does not fix the gauge
at critical points of O2. Continuing with the calculations,
the BRST variation of (18) gives

sO2 ¼
Z

d4x

�
cA∂μAA

μ þ ia
2
bAcA −

ag
4
fABCc̄AcBcC

�
;

ð20Þ

and following the recipe given in (10), we find the gauge
fixing action related to this functional,

Sgf ¼
Z

d4x

�
ibA∂μAA

μ −
a
2
bAbA − iagfABCbAc̄BcC

− a
g2

4
fABCfCDEc̄Ac̄BcDcE þ c̄A∂μðDμcÞA

�
: ð21Þ

It is straightforward to see that we obtain a Feynman gauge
propagator once we integrate on the multipliers bA. But the
four ghost interaction resembles the gauge fixing intro-
duced in [9], the Curci-Ferrari model. The novelty is that
here we can derive the same antighost equation of (12),
showing that in this gauge we can control the renormaliza-
tion of the ghost field. Also, as anticipated in (19), the
gauge condition, obtained from the equation of the multi-
plier bA in (21),

∂μAA
μ þ iabA − agfABCc̄BcC ¼ 0; ð22Þ

does not fix a critical point of the functional (18).
Nevertheless, (22) is a critical point of another functional,
as can be easily guessed,

Og ¼
Z

d4x

�
1

2
AA
μAA

μ þ ac̄AcA
�
: ð23Þ

Then we see that this gauge fixing method is still associated
to a minimization process, although not of its generating
functional. Another interesting point is that as we are
dealing with a multiplier, we can fix bA on-shell as

bA ¼ −igfABCc̄BcC; ð24Þ

and from (22) we find that the gauge configurations
will again satisfy the Landau condition. In this way, this
process is meeting the critical points of (23) and of (5)
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simultaneously. This is a novelty allowed by this gauge
fixing method.
Now we follow to the equation of motion of the

antighost. Again, in general terms, from the dependence
of (18) on c̄A we obtain

s

�
δsO2

δcA

�
¼ −

Z
y
c̄By s

�
δ

δc̄A
δsO2

δcBy

�
þ i

Z
y
bBy

δ

δc̄A
δsO2

δcBy
:

ð25Þ

Compared to the Landau case, Eq. (13), we see that, in
principle, the Gribov equation gets changed once we impose
the evaluation of (25) at the critical point (19). There is a hope
tomeet a condition as (15), but oncewe use the condition (22)
on (25), an unexpected cancellation happens and we
find again the same Gribov ambiguity expressed in (14).
This means that our method of constructing the gauge
fixing from the functional O2 in (18), using the gauge
condition (24), is actually fixing the gauge in the same critical
point of (5), with the same ambiguity of the Landau gauge.
Then, the generalization to the functional (18) does not

bring us any closer to Gribov’s first region. Actually, we
could have expected this conclusion, as this gauge fixing is
not associated to a different physical condition, it is just a
mathematical generalization of the Landau case. Possibly
we should look for this answer in the gauge fixing of a
distinct physical context. Anyway, this exercise just done
will be useful, as we will see.

III. MORSE FUNCTIONAL OF A SPONTANEOUS
SYMMETRY BROKEN PHASE

If we want to talk about a SSB process, we must
introduce a scalar field φA transforming as

sφA ¼ gfABCcBφC: ð26Þ

Obviously, as the scalar mass term is invariant under (26),

s
Z

d4xðφAφAÞ ¼ 0; ð27Þ

adding such a term to the generalized functional (18), in
principle, would not make any change in the conclusions
we arrived at the last section. But everything changes if
we move from the symmetric vacuum, implicit when we
write (26), to the vacuum of the broken phase (from now
on, we follow the description and notations of [10]). At this
phase, the scalar field acquires a non-null vacuum expect-
ation value,

φA ¼ χA þ μδAz; ð28Þ

where z is the direction of the breaking. The shift in φ
implies hχi ¼ 0. In the internal space the directions that

commute with z are designated by lowercase letters from
the middle of the alphabet, as i; j; k…. These symmetric
directions of the new vacuum may form subgroups of the
original symmetry group G. Then, in some equations, we
will use a subindex (N) to refer to N possible distinct
subgroups. For example AiðNÞ will refer to the i component
of the gauge field associated to the subgroup of label N. We
also have the broken directions, which do not commute
with z. They are designated by lowercase letters from the
beginning of the alphabet, as a; b; c…. In [10], the
algebraic result of the broken theory is specified by saying
that the structure constants of this phase to have non-null
contributions are only

fzab; fijk; fiab: ð29Þ

This is the Cartan decomposition of a Lie algebra for a
symmetric space when fabc vanishes [11]. This may not be
the most general possibility, but this simplification is
already sufficiently general for our purposes.
As discussed in [10], in the broken phase, physical

observables are characterized by a new set of nilpotent
BRST transformations that were called sq,

sqA
iðNÞ
μ ¼−∂μciðNÞ−gNfijkðNÞAjðNÞ

μ ckðNÞ; sqAz
μ ¼−∂μcz;

sqAa
μ ¼−

X
N

gNfabiðNÞAb
μciðNÞ−g0fabzAb

μcz;

sqχiðNÞ ¼ gNfijkðNÞcjðNÞχkðNÞ; sqχz¼ 0;

sqχa¼
X
N

gNfaibðNÞciðNÞχbþg0fazbczχb;

sqciðNÞ ¼ 1

2
gNfijkðNÞcjðNÞckðNÞ; sqcz¼ 0;

sqca¼
X
N

gNfabiðNÞcbciðNÞ þg0fabzcbcz: ð30Þ

As has been done in [10], the operator δmust be introduced
such that the nilpotent operator sq þ δ allows the definition
of a physically sensible gauge fixing for the broken phase.
Here the following simplified version of the operator δ is
enough to discuss the Gribov problem,

δAa
μ ¼ −

X
N

gNfaibðNÞAiðNÞ
μ cb − g0fazbAz

μcb − ∂μca;

δχa ¼ μfabzcb; ð31Þ

with identically null action on all other fields. The label N
in fabiðNÞ means that the index i belongs to the subgroup N.
Also, distinct couplings gN are introduced for each sub-
group and the coupling g0 is associated to the Abelian
subgroup along the symmetry breaking direction z.
This concludes our summary of the BRST system of a
SSB theory; more details can be obtained in [10].
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Once the symmetry is broken, we can think of the gauge
fixing as independent processes in each gauge direction. In
the case of the unbroken directions, we may follow the
procedure established in the last section, where we saw that
the gauge turns out to be fixed in the critical point of the
functional (5).
Our interest now relies on the broken directions. We can

study the following generalized functional for them:

OBP ¼
Z

d4x

�
1

2
Aa
μAa

μ þ
a1
2
c̄aca þ a2

2
χaχa

�
: ð32Þ

We calculate the first variation of this functional as

δðsq þ δÞOBP

δca
¼ ð∇μAμÞa þ

ia1
2

ba −
a1
2

X
N

gNfabic̄bci

−
a1
2
g0fabzc̄bcz − a2μfabzχb ð33Þ

where ð∇μAνÞa is the covariant derivative defined in [10],

ð∇μAνÞa ¼ ∂μAa
ν −

X
N

gNfabiðNÞAiðNÞ
μ Ab

ν − g0fabzAz
μAb

ν :

ð34Þ

We can also obtain the gauge fixing action for the broken
directions following the same reasoning from (11), adapted
to the broken case

SgfBP ¼
Z

d4x
�
iba

�
δðsq þ δÞOBP

δca

�

− c̄aðsq þ δÞ
�
δðsq þ δÞOBP

δca

��
: ð35Þ

The sector of this SgfBP containing the Lagrange
multiplier ba may be written in the form

Z
d4x

�
ibaGa −

a1
2
baba

�
ð36Þ

with

Ga ¼ ð∇μAμÞa − a1
X
N

gNfabic̄bci − a1g0fabzc̄bcz

− a2gμfabzχb: ð37Þ

In this way we can recognize this gauge fixing as one of the
’t Hooft kind, designed in order to simultaneously show the
unitarity and renormalizability of a theory with a SSB
process. Also this gauge allows the elimination of non-
physical couplings, and the usual choice demands
a1 ¼ −a2 as being the ’t Hooft gauge parameter, which
we take as α from now on. This point deserves to be
highlighted, the achievement of a ’t Hooft gauge fixing
action from a generating functional of the Morse kind. This
is the development that we were looking for in order to deal
with the Gribov problem in the broken phase of a SSB
theory.
The equation of motion of the Lagrange multiplier then

gives us the gauge condition for this gauge, and, as we
learned from the example of the Feynman’s gauge of the
last section, we can fix the multiplier as

ba ¼ igμfabzχb − i
X
N

gNfabic̄bci − ig0fabzc̄bcz; ð38Þ

leading us to the gauge condition

ð∇μAμÞa ¼ 0: ð39Þ

This is the equivalent to the Landau gauge condition here in
this case of a SSB theory. This in fact is the result we obtain
as the critical point of the Morse functional

OM ¼
Z

d4x

�
1

2
Aa
μAa

μ

�
; ð40Þ

under displacements generated by sq þ δ. What we are
saying is that the gauge fixing obtained in (35), with the
gauge conditions (38) and (39), actually fixes the gauge at
the critical points of (40).
Now we can study the equation of motion of the

antighost c̄a in this gauge fixing. In the Landau and
Feynman cases we saw that this equation, when evaluated
at the gauge configurations satisfying the gauge fixing
condition [(13) and (25) respectively], led us to the same
null second order variation (14), which is the source of the
Gribov problem. Then, taking this equation of motion from
SgfBP in (35), and assuming the conditions (38) and (39) we
arrive at

− ∂
2ca − 2

X
N

gNfaibðNÞAiðNÞ
μ ∂μcb − 2g0fazbAz

μ∂μcb − g02fazbfbzcðNÞAz
μAz

μcc

− g0
X
N

gN
�
faibðNÞfbzc þ fazbfbjcðNÞ�AiðNÞ

μ Az
μcc −

X
N

g2Nf
aibðNÞfbjcAiðNÞ

μ AjðNÞ
μ cc ¼ αμ2fabzfbczcc: ð41Þ
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This is the equivalent of (14) in this broken phase. More
than this, one can show that the left-hand side of this
equation is just the second order variation of the Morse
functional (40) at the critical point (39),

ðsq þ δÞ
�
δðsq þ δÞOM

δca

�
¼ αμ2fabzfbczcc: ð42Þ

This becomes a surprise in relation to the usual Landau
case. The vacuum expectation value of the scalar field
induces a contribution to the right-hand side of the
equivalent of the Gribov equation in a SSB theory. And
in the case when we have a breaking with a definite sign for
the algebraic combination fabzfbcz in all possible broken
directions, then the theory with the gauge fixing (35),
constructed from the generating functional (32), will have
its gauge fixed at the configuration corresponding to the
minimum of the Morse functional (40), i.e., it will be
localized in Gribov’s first region. In this case, we say that
the Gribov problem is solved along these broken directions.

IV. THE GRIBOV PROBLEM
IN SUð2Þ × Uð1Þ WITH SSB

In this section we present how we can understand that
there is not a Gribov problem in the SUð2Þ × Uð1Þ gauge
theory after a SSB nechanism. This is an instructive
example, not only for the use of the concepts just
developed, but mainly to answer an old doubt of how it
is possible that the Gribov problem be solved in the
eletroweak theory without demanding the confinement of
its gauge bosons. We begin by fixing the notation. Using
the generators ðTAÞij of the SUð2Þ, we define the gauge
fields Aμij and ghosts cij

Aij
μ ¼ ðTAÞijAA

μ ;

cij ¼ ðTAÞijcA: ð43Þ
We also introduce the Abelian field aμ and its ghost q, and
the BRST transformations

sAij
μ ¼ −

�
∂μcij − igAil

μclj þ igcilAlj
μ
�
;

scij ¼ −igcilclj;

saμ ¼ −∂μq;

sc ¼ 0: ð44Þ
In order to simplify the presentation, we make the redefi-
nitionsBij

μ ¼ Aij
μ þ e

g aμδ
ij andQij ¼ cij þ e

g qδij, obtaining
a condensed form for all the set of BRST transformations

sBij
μ ¼ −

�
∂μQij − igBil

μQlj þ igQilBlj
μ
�
;

sQij ¼ −igQilQlj: ð45Þ

We also have scalar fields transforming as1

sϕi ¼ −igQijϕj;

sϕ†i ¼ igϕ†jQji; ð46Þ

with the covariant derivatives

ðDμϕÞi ¼ ∂μϕ
i − igBij

μ ϕj;

ðDμϕÞ†i ¼ ∂μϕ
†i þ igϕ†jBji

μ : ð47Þ

Then we suppose that this theory undergoes a SSB with the
scalar fields acquiring the vacuum expectation value μ

ϕi → ϕi þ μvi;

ϕ†
i → ϕ†

i þ μvi; ð48Þ

where we opportunely define the following isovectors in
internal space:

v⃗ ⇒

�
0

1

�
u⃗ ⇒

�
1

0

�
: ð49Þ

At the broken phase, in the scalar sector of the theory the
covariant derivatives (47) will generate masses for some of
the gauge fields and the well-known nonphysical coupling.
The quadratic terms dependent on μ are as follows:

1

2
ðDμϕÞiðDμϕÞ†i →

g2

2
μ2vlðBμÞljðBμÞjivi

−
ig
2
μ
�
vl∂μðBμÞljϕj − ϕ†

l ∂
μðBμÞljvj

�
:

ð50Þ

The elimination of this last nonphysical element in the
eletroweak action is a major guide that we will use in the
definition of the physical gauge of the ’t Hooft kind.
At this moment, before we continue to the BRSTanalysis

of the broken phase, we use the isovectors (49) to establish
a projection of the gauge fields Bij

μ onto the form Wþ
μ , W−

μ ,
Zμ e γμ as is usual in the literature,

uiðBμÞijuj ¼ A3
μ þ

e
g
aμ ¼ γμ;

uiðBμÞijvj ¼ A1
μ − iA2

μ ¼ W−
μ ;

viðBμÞijuj ¼ A1
μ þ iA2

μ ¼ Wþ
μ ;

viðBμÞijvj ¼ −A3
μ þ

e
g
aμ ¼ Zμ; ð51Þ

and the respective ghosts

1The charges of the scalar and vector fields have been chosen
equal for notation simplification.
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uiðQÞijuj ¼ c3 þ e
g
qμ ¼ Qγ;

uiðQÞijvj ¼ c1 − ic2 ¼ Q−;

viðQÞijuj ¼ c1 þ ic2 ¼ Qþ;

viðQÞijvj ¼ −c3 þ e
g
qμ ¼ QZ: ð52Þ

Then, it is useful to adopt the same redefinition for the
scalars:

uiϕi ¼ φ1; viϕi ¼ φ2;

ϕ†
i ui ¼ φ†

1; ϕ†
i vi ¼ φ†

2: ð53Þ

If we notice that v⃗ and u⃗ satisfy δij ¼ vivj þ uiuj and
uivi ¼ 0, we realize from (50) that only the gauge field γμ
associated to a residual Uð1Þ symmetry will not develop a
mass at the broken phase. Then we understand that this
field can be associated to the direction z and the others Zμ,
W−

μ , and Wþ
μ to the directions a in the notation introduced

in Sec. III. Then, the BRST operators at this phase will
follow the general structure of (30),

sqγμ ¼ −∂μQγ;

sqWþ
μ ¼ igWþ

μ Qγ; sqW−
μ ¼ −igW−

μQγ;

sqQþ ¼ −igQþQγ; sqQ− ¼ igQ−Qγ;

sqφ1 ¼ −igQγφ1; sqφ
†
1 ¼ igQγφ†

1;

sqQ̄z ¼ ibz;

sqQ̄þ ¼ ibþ; sqQ̄− ¼ ib−; ð54Þ

and (31)

δZμ ¼ −∂μQz;

δWþ
μ ¼ −ð∂μQþ þ igγμQþÞ ¼ −ð∇μQÞþ;

δW−
μ ¼ −ð∂μQ− − igγμQ−Þ ¼ −ð∇μQÞ−;

δφ1 ¼ −igμQ−; δφ†
1 ¼ igμQþ;

δφ2 ¼ −igμQz; δφ†
2 ¼ igμQz: ð55Þ

All other transformations not specified are identically null.
We also introduced the antighosts Q̄z, Q̄þ, Q̄−, and
respective Lagrange multipliers bz, bþ, and b− in (54).
This structure assures that s2q ¼ δ2 ¼ fsq; δg ¼ 0.
Once we have defined the BRST structure of the broken

phase, we can start the construction of the gauge fixing
sector from the analogous of the generalized functional
in (32) translated to this SUð2ÞXUð1Þ case,

Oew ¼
Z

d4x
�
Wþ

μ W−
μ þ 1

2
ZμZμ þ αðφ†

1φ1 þ φ†
2φ2Þ

þ α0ðQ̄þQ− þ Q̄−Qþ þ Q̄zQzÞ
�
: ð56Þ

If we follow the same steps according to (32) we find

δðsq þ δÞOew

δQþ ¼ ð∇μWμÞ− − iα0gQ̄−Qγ þ iαgμφ1 þ iα0b− ≡G− þ iα0b−;

δðsq þ δÞOew

δQ− ¼ ð∇μWμÞþ þ iαgQ̄þQγ − iαgμφ†
1 þ iα0bþ ≡Gþ þ iα0bþ;

δðsq þ δÞOew

δQz ¼ ∂μZμ þ iαgμðφ2 − φ†
2Þ þ iα0bz ≡Gz þ iα0bz: ð57Þ

We then use these results to obtain the gauge fixing action of the ’t Hooft kind for this eletroweak theory,

Sgfew ¼ ðsq þ δÞ
Z

d4x
�
Q̄þðG− þ iα0b−Þ þ Q̄−

�
Gþ þ iα0bþ

�þ Q̄zðGz þ iα0bzÞ�: ð58Þ

As before, if we fix the multipliers as

2b− − 2gQ̄−Qγ þ
α

α0
gμφ1 ¼ 0;

2bþ þ 2gQ̄þQγ −
α

α0
gμφ†

1 ¼ 0;

2bz
α

α0
gμ
�
φ2 − φ†

2

� ¼ 0: ð59Þ
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The gauge conditions coming from the equations of motion
of these multipliers lead us to

ð∇μWμÞ− ¼ 0; ð∇μWμÞþ ¼ 0; ∂μZμ ¼ 0: ð60Þ

These may be seen as the first order variation of the
functional

OMew ¼
Z

d4x

�
Wþ

μ W−
μ þ 1

2
ZμZμ

�
: ð61Þ

This means that under the conditions (59), the gauge fixing
(58) obtained from (56) is fixing the gauge on the critical
point of OMew. Finally, we see that the Gribov conditions
for this theory calculated as the equations of motion for the
antighosts Q̄þ, Q̄−, and Q̄z from (58), after setting α ¼ α0,
may be rewritten as

−ðsq þ δÞ δðsq þ δÞOM

δQþ ¼ αg2μ2Q−;

−ðsq þ δÞ δðsq þ δÞOM

δQ− ¼ αg2μ2Qþ;

−ðsq þ δÞ δðsq þ δÞOM

δQz ¼ 2αg2μ2Qz: ð62Þ

The conclusion is that the gauge fixing action (58) is
actually fixing the gauge on the minimum of the Morse
functional (61). In other words, the gauge configurations
allowed by this gauge fixing belong to Gribov’s first region
when we define the topography for the gauge configura-
tions’ manifold as the Morse functional (61). This shows
how the Gribov problem is solved in the broken phase of
the eletroweak theory.

V. THE SLð3; cÞ COMPLEX THEORY

We now address this analysis to the SLð3; cÞ complex
gauge theory of [8], an environment where a SSB
mechanism triggers the confinement of gauge bosons
and fermions simultaneously. In its symmetric phase, the
theory displays a SLð3; cÞ gauge symmetry with a pair of a
complex gauge fieldAA

μ and its conjugate ĀA
μ . They couple

to a pair of real scalar fields φA and ψA in an action given by

S ¼
Z

d4x

�
i
4
F a

μνF a
μν −

i
4
F̄ a

μνF̄ a
μν

þ Trð∇μφÞð∇μψÞ þ Vðφ;ψÞ
�
þ SGF; ð63Þ

with F the curvature defined by

F μνðAÞ ¼ ∂μAν − ∂νAμ − ig½Aμ;Aν�; ð64Þ

and F̄ its complex conjugate. The covariant derivatives
when expressed in terms of commutators and anticommu-
tators are

∇μφ ¼ ∂μφþ ig
2

�
−fĀμ −Aμ;φg − ½Āμ þAμ;φ�

�
;

∇μψ ¼ ∂μψ þ ig
2

�fĀμ −Aμ;ψg − ½Āμ þAμ;ψ �
�
: ð65Þ

The symmetry breaking potential Vðφ;ψÞ

Vðφ;ψÞ ¼ −
m2

2
φaψa þ λ

4
ðφaψaÞ2; ð66Þ

has minima along the condition

hφaψai ¼ m2

λ
: ð67Þ

In the broken phase, the scalar fields acquire vacuum
expectation values

φ ↦ φþ μ;

ψ ↦ ψ þ μ; ð68Þ

and in the special case when

μ ¼ μ̃

g

� ffiffiffi
2

p
ffiffiffi
3

p T8 −
1ffiffiffi
3

p T0

�
; T0 ¼ 1ffiffiffi

6
p I; ð69Þ

with

μ̃ ¼ mgffiffiffi
λ

p ; ð70Þ

this phase will develop gluon condensates [8].
After the SSB, as shown in [12], the independent

cohomological classes are identified by the broken phase
nilpotent BRST operator sq,

sqAi
μ ¼ −ð∂μci þ g1fijkA

j
μckÞ ¼ −ðDμcÞi; sqĀ

i
μ ¼ −ð∂μc̄i þ g1fijkĀ

j
μc̄kÞ ¼ −ðDμcÞi;

sqAa
μ ¼ −ðg1fabiAb

μci þ g0fab8Ab
μc8RÞ; sqĀ

a
μ ¼ −ðg1fabiĀb

μc̄i þ g0fab8Āb
μc8RÞ;
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sqA8
Rμ ¼ −∂μc8R; sqA8

Iμ ¼ 0;

sqci ¼
g1
2
fijkcjck; sqc̄i ¼

g1
2
fijkc̄jc̄k; sqc8R ¼ 0;

sqφa ¼ ig1
2

ðdabjφbðc − c̄Þj þ ifabiφbðcþ c̄ÞiÞ − g0fab8φbc8R;

sqψa ¼ ig1
2

ð−dabjψbðc − c̄Þj þ ifabiψbðcþ c̄ÞiÞ − g0fab8ψbc8R;

sqca ¼ g1fabicbci þ g0fab8cbc8R; sqc̄a ¼ g1fabic̄bc̄i þ g0fab8c̄bc8R;

sqqA ¼ −ibA; sqbA ¼ 0;

sqq̄A ¼ ib̄A; sqb̄A ¼ 0; bA → ðbi; ba; b8Þ: ð71Þ

The new coupling constant g1 is associated to the residual
SLð2; CÞ symmetry of the new vacuum. Also, from (71), we
recognize an Abelian symmetry with coupling g0 associated
to the real part A8

Rμ of the complex gauge component A8
μ.

This expression also shows that the imaginary partA8
Iμ now

becomes a vectorial matter field. This happens because the
imaginary component c8I ceases to be a ghost of the BRST
operator sq, and only the real component c8R appears as an
Abelian ghost after the phase transition. This frame is
actually responsible for the development of a confining
fermionic potential in the asymmetric phase of the complex

theory [8]. Equation (71) feature another fundamental out-
come of the phase transition: they sign the braking of the
holomorphicity of the complex theory. This has an amazing
impact on the physics of this theory, and is ultimately
responsible for the emergence of gluon condensates as
composite particles [12].
After this brief resume of the previous results on the

SLð3; cÞ complex gauge theory, we may now proceed to the
application of the general analysis established in Sec. III
to this specific case. For this, we start by writing the
analogous of the delta operator in (31)

δAa
μ ¼ −

�
∂μca þ g1faibAi

μcb þ g0fa8bA8
Rμc

b
�≡ −ð∇μcÞa;

δAμ
a ¼ −

�
∂μc̄a þ g1faibAμ

ic̄b þ g0fa8bĀ8
Rμc̄

b
�≡ −ð∇μc̄Þa;

δφa ¼ −i
μ̃

3
ffiffiffi
2

p ðca − c̄aÞ þ i
μ̃ffiffiffi
6

p da8cðcc − c̄cÞ − μ̃ffiffiffi
6

p fa8cðcc þ c̄cÞ;

δψa ¼ i
μ̃

3
ffiffiffi
2

p ðca − c̄aÞ − i
μ̃ffiffiffi
6

p da8cðcc − c̄cÞ − μ̃ffiffiffi
6

p fa8cðcc þ c̄cÞ: ð72Þ

This choice assures that sq þ δ becomes nilpotent. This
is a requirement in order that this combined operator be
used in the construction of the gauge fixing sector SGF of
the action (63) in the broken phase, i.e., a gauge fixing of
the ’t Hooft kind. We must remember that, as before, we are
implicit assuming that there is a conventional gauge fixing
along the directions that remain symmetric, and our
attention is now exclusively on the broken directions. It
is also convenient to show that in the special case of
the breaking described in (69) the following expression
applies:

dab8 ¼ −
1

2
ffiffiffi
3

p δab: ð73Þ

Following the procedure of Sec. III, we define the
functional analogous of (32) adapted to the present case

O ¼
Z

d4x

�
i
2
Aa

μAa
μ −

i
2
Āa

μĀ
a
μ þ a2φaψa

þ a1ðqaca − q̄ac̄aÞ
�
: ð74Þ
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Using (71)–(73), the first variation of this functional is

ðsq þ δÞO ¼
Z

d4x

�
ðicað∇μAμÞa − ic̄að∇μĀ

μÞaÞ − ia1ðb̄ac̄a þ bacaÞ

− a1ðg1fabiqacbci þ g0fab8qacbc8R − g1fabiq̄ac̄bc̄i − g0fab8q̄ac̄bc8RÞ

þ a2

�
i

ffiffiffi
2

p

4
μ̃ðca − c̄aÞðφa − ψaÞ − 1ffiffiffi

6
p μ̃fab8ðca þ c̄aÞðφb þ ψbÞ

��
; ð75Þ

and then

δðsq þ δÞO
δca

¼ ið∇μAμÞa − ia1ba − a1g1fabiqbci − a1g0fab8qbc8R

þ i
μ̃

2
ffiffiffi
2

p a2ðφa − ψaÞ − μ̃ffiffiffi
6

p a2fab8ðφb þ ψbÞ≡Ga − ia1ba; ð76Þ

δðsq þ δÞO
δc̄a

¼ ið∇μĀ
μÞa − ia1b̄a þ a1g1fabiq̄bc̄i þ a1g0fab8q̄bc8R

− i
μ̃

2
ffiffiffi
2

p a2ðφa − ψaÞ − μ̃ffiffiffi
6

p a2fab8ðφb þ ψbÞ≡ Ḡa − ia1ba: ð77Þ

With these results we can define the adapted version of the gauge fixing of a broken phase given in (35) to this complex
gauge theory yielding

SGF ¼ ðsq þ δÞ
Z

d4x

�
qa

δðsq þ δÞO
δca

þ q̄a
δðsq þ δÞO

δc̄a

�

¼
Z

d4x

�
−ibaðGa − ia1baÞ þ ib̄aðḠa þ ia1b̄aÞ − qaðsq þ δÞ δðsq þ δÞO

δca
− q̄aðsq þ δÞ δðsq þ δÞO

δc̄a

�
: ð78Þ

This gauge fixing restores the unitarity of the action (63) in
the broken phase when the vacuum of (68)–(70) is chosen.
For this, the relation a1 ¼ −ia2 is demanded and we will
use it in the next expressions.
The gauge conditions are then obtained in an analogous

way as done in (38) and (39), requiring

− 2ba þ 2ig1fabiqbci þ 2ig0fab8qbc8R

þ i

ffiffiffi
2

p

4
μ̃ðψa − φaÞ þ 1ffiffiffi

6
p μ̃fac8ðψc þ φcÞ ¼ 0; ð79Þ

− 2b̄a − 2ig1fabiq̄bc̄i − 2ig0fab8q̄bc8R

þ i

ffiffiffi
2

p

4
μ̃ðψa − φaÞ þ 1ffiffiffi

6
p μ̃fac8ðψc þ φcÞ ¼ 0; ð80Þ

so that

ð∇μAμÞa ¼ 0;

ð∇μĀμÞa ¼ 0: ð81Þ

These last expressions are the equivalent of the Landau
gauge condition for the broken directions in the complex

theory. They are obviously associated to a critical point
condition for the complex Morse functional,

O1 ¼
Z

d4x

�
i
2
Aa

μAa
μ −

i
2
Āa

μĀ
a
μ

�
: ð82Þ

Now, assuming a Landau gauge fixing along the unbro-
ken directions i and 8, we obtain equations of the Gribov
type for the ghosts ca and c̄a from the equations of motion
of the antighosts qa and q̄a respectively,

−
δSGF
δqa

����
ð∇μAμÞa¼0

¼ −ð∇μ∇μcÞa þ α

4
μ̃2ca ¼ 0;

−
δSGF
δq̄a

����
ð∇μĀ

μÞa¼0

¼ ð∇μ∇μc̄Þa þ α

4
μ̃2c̄a ¼ 0: ð83Þ

Here we have set 2a1 ¼ iα according to the language
in [12].
Finally, these Eq. (83) may be interpreted as local

minimum conditions for the Morse functional (82) at the
critical points determined by (81).
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VI. CONCLUSION

In this work we searched for an answer to why Gribov’s
problem for non-Abelian gauge theories may be solved in
practice in situations as different as the eletroweak theory,
with its non-Abelian SUð2Þ symmetry, or at the same time
in the case of the confining gluon theory. Our under-
standing is that the possible explanation would be asso-
ciated to the SSB mechanism. In the eletroweak example,
this mechanism is already well known, and in Sec. IV we
succeeded in applying the general structure proposed in
Sec. III, where we approached this problem by the point of
view of Morse theory. There we showed how the con-
struction of a gauge fixing action of the ’t Hooft kind may
be built from a Morse functional principle, and afterwards
how a Gribov condition can be derived from such
development. In the case of the eletroweak theory, this
reasoning led to the expressions (62), allowing an inter-
pretation that the gauge configurations are limited to
Gribov’s first region once they are restricted by the gauge
fixing constructed from the Morse functional (56).
Thenwe applied the same treatment for a prototype theory

with gluon confinement. The SLð3; cÞ theory that we
proposed in [8] becomes a natural choice for this research,
as it has a confined phase after a SSB process. Again starting
from the functional (74) we derived the gauge fixing action
(78) of the ’t Hooft type for this phase of the complex theory,
and this enabled us to show how this gauge fixes the gauge
configurations as minima of the Morse functional (82) as
expressed by the Gribov conditions (83).

This point deserves to be reinforced. The broken phase
of the SLð3; cÞ theory confining fermions and gluons is
achieved at the vacuum defined by (69). As explained
in [8], this option is in fact mandatory, as no other vacuum
choice gives us the necessary characteristics to provide
such confinement. Now, in the present work, we see that
among all possible vacua for the broken phase, the same
choice (69) is just the one appropriate to lead to the Gribov
conditions (83), as it is the one which provides, in the
general expression (42), a definite sign for the algebraic
combination fabzfbcz in all possible broken directions.
Other possible breaking directions would not allow the
gauge fixing described in Sec. V, and then would not fix the
gauge configurations in Gribov’s first region. The fact that
it is the same and unique vacuum that accomplishes both
confinement and solves Gribov’s problem simultaneously
at this theory is remarkable. Some cautionary words
should, however, be stressed as regards to the implication
of these findings to the QCD model. There is still a
theoretical gap in transposing the SL(3,C) framework here
addressed to the SU(3) symmetric QCD case.
As a final statement, we would like to point out that such

conclusions may be interpreted as arguments in favor of the
comprehension of confinement as a phase of a theory after a
SSB mechanism yet to be fully understood. However a
complete study of the remaining gauge copies within the
Gribov horizon, the fundamental modular region issue, is
still lacking. Should it be possible to recast this problem in
terms of Morse theory?
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