
Fuzzy onionlike space as a matrix model

Samuel Kováčik 1,2,* and Juraj Tekel1,†
1Department of Theoretical Physics, Faculty of Mathematics, Physics and Informatics,

Comenius University, Slovakia
2Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University,

Brno, Czech Republic

(Received 5 February 2024; accepted 28 March 2024; published 2 May 2024)

We propose a matrix model realization of a three-dimensional quantum space. It has an onionlike
structure composed of concentric fuzzy spheres of increasing radius. The angular part of the Laplace
operator is inherited from that of the fuzzy sphere. The radial part is constructed using operators that relate
matrices of various sizes using the matrix harmonic expansion. As an example of this approach, we produce
a numerical simulation of a scalar quantum field theory, the classical heat transfer, study the quantum-
mechanical hydrogen atom, and consider some analytical aspects of the scalar field theory on this space.
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I. INTRODUCTION

Some kind of quantum structure of space is expected to
replace the smooth manifold structure at the order of the
Planck scale [1,2], which is inaccessible by particle accel-
erators—now or in any foreseeable future. However, the
effects of such quantum structure of space have astrophysi-
cal and cosmological consequences that are already, or can
shortly be, within the observable range [3–5]. This is one of
the possible motivations for building a model of quantum
space that applies to physics in three-dimensional space.
There are various models of quantum spaces [6–16],

each of which has its benefits and drawbacks. While the
construction is often motivated by instructive mathematical
aspects, here, we intend to define a model closer to possible
physical applications as it describes a three-dimensional
space. Different models of three-dimensional quantum
space are already present in the literature; two of them
are close to our construction. In [11,12,17–19], a model of
quantum field theory was built and studied using different
modifications of star product Moyal space,1 and in [13] a
quantum-mechanical model was described using an aux-
iliary bosonic Fock space. Both had a three-dimensional
space foliated by a set of concentric fuzzy spheres of

increasing radii. This structure also appeared as a black-
hole solution to modified Einstein equations [21], was
identified as a solution of IKKT-like model models [22] and
was independently analyzed in the quantum-mechanical
setting [23–26].
The construction presented here follows our introductory

proposal [27]. It utilizes a similar viewpoint, but wewill use
explicit matrix formulation for the fuzzy spheres [8–10],
together with a different definition of the Laplace operator.
The Laplacian was constructed top-to-bottom in the above-
mentioned works, resulting from the natural structures used
to define the space. We use a bottom-up approach, where
we define a natural way to compare field configurations on
different layers and then build up derivatives and the
Laplace operator. We aim to have a model that is easily
evaluated numerically, for example, using Monte Carlo
(MC) methods [28–30]. Similar methods proved to be
helpful in the case of the fuzzy spheres and various types of
field theories on them [31–36]; the model proposed here
can be treated in the same way. Our approach is based on a
dual model description, either in terms of Hermitian
matrices or their expansion coefficients using matrix
harmonics. We also investigate this dual description, which
is unsuitable for numerical methods but can provide deeper
analytical insight.
We investigate several physical models defined on the

fuzzy onion to test the construction, show its feasibility, and
compare it with previous works. The fuzzy sphere is
currently being most studied either in the context of the
M theory or to understand unresolved issues with formu-
lating a field theory on noncommutative spaces. Therefore,
the first example we elaborate on is the scalar field theory
on the fuzzy onion model with theΦ4-interaction term. The
fuzzy spaces are usually used to investigate quantum
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theories but can also be used in classical settings. Their
main feature—a limited spatial resolution—is expected to
originate from Planck scale physics. Still, they might be
useful as an effective description of granular materials with
mesoscopic features [37], and the limited resolution can
also be used in cases where the limitation is not of a
material cause but due to spatially separated measurements,
such as in meteorological models. In the present work, we
investigate the classical heat transfer problem on the fuzzy
onion. During the construction, the inspiration we had in
mind was the R3

λ model of three-dimensional quantum
space [13]. The Coulomb problem was solved within it, and
the energy spectrum was computed exactly as a function of
the scale of space noncommutativity. Therefore, we natu-
rally solve the problem in the fuzzy onion model and
compare the results.
This paper is organized as follows: in the next section,

we summarize two previous models of quantum spaces:
the matrix formulation of the fuzzy sphere and bosonic
operator construction of the three-dimensional space R3

λ . In
Sec. III, we propose the matrix formulation of the fuzzy
onion model. In Sec. IV, we show examples of this model:
an interacting scalar quantum field theory, the classical heat
transfer, and the quantummechanical Coulomb problem. In
Sec. V, we further analyze the Fourier picture of the model.
We conclude this report with a discussion section and with
technical appendices.

II. THE FUZZY SPHERE S2λ AND THE
THREE-DIMENSIONAL SPACE R3

λ

What is a sphere? The conventional definition states that
it is a set of points with the same distance from a certain
point or an orbit of the SOð3Þ rotation group. Another
definition is that it is a space on which the infinite-
dimensional representation of suð2Þ lives. In other words,
the sphere is described by an algebra of functions—
spherical harmonics—that exist on it. The spherical har-
monics satisfy

h
LðNÞ
i ;
h
LðNÞ
i ;YðNÞ

lm

ii
¼ lðlþ1ÞYðNÞ

lm ;
h
LðNÞ
3 ;YðNÞ

lm

i
¼mYðNÞ

lm ;

ð1Þ

where LðNÞ
i are the rotation generators that obey the

½LðNÞ
i ; LðNÞ

j � ¼ iεijkL
ðNÞ
k relation and (N) denotes the rep-

resentation. The fuzzy sphere model relies on the existence
of finite-size representations satisfying (1). These are
realized as N × N matrices that also serve as a basis for
Hermitian matrices

ΦðNÞ ¼
XN−1

l¼0

Xl
m¼−l

cðNÞ
lm YðNÞ

lm : ð2Þ

The superscript denotes the matrix size, and Φð∞Þ corre-
sponds to the case of the ordinary sphere, that is, Yð∞Þ

lm are
the spherical harmonics. Matrices ΦðNÞ describe fields on
the so-called fuzzy sphere S2λ .
This expansion allows us to interpret the matrices as

fields on the sphere. Both of them can be expanded in terms
of harmonics, and even though their numbers differ,
matrices can be mapped onto fields as

cð∞Þ
lm ¼ cðNÞ

lm for l ≤ N − 1

cð∞Þ
lm ¼ 0 otherwise: ð3Þ

The matrices have a finite number of degrees of freedom,
meaning an exact δ function cannot be constructed, and
the spatial resolution is restricted. Or the same effect
explained differently, invoking an upper limit on momenta,
l ≤ N − 1, invokes a lower limit on the shortest distinguish-
able lengths, λðNÞ ∝ N−1.
An integration in the case of the fuzzy sphere of unit

radius is realized by taking a traceZ
Φð∞ÞdΩ →

4π

N
trNΦðNÞ; ð4Þ

where we have denoted the trace over N × N matrices
accordingly, reserving the standard notation for something
different. The angular Laplace operator is defined using Li

generators. For example, a Φ4-scalar field theory can be
defined on the fuzzy sphere by the action

SN ½ΦðNÞ� ¼ 4π

N
trN
�
aΦðNÞKðNÞΦðNÞ þbðΦðNÞÞ2þcðΦðNÞÞ4�;

where we have the kinetic term

KðNÞΦðNÞ ¼
h
LðNÞ
i ;
h
LðNÞ
i ;ΦðNÞ

ii
: ð5Þ

The fuzzy sphere can also be expressed in terms of
noncommuting coordinates xi

½xi; xj� ¼ iεijk
2rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2 − 1
p xk; ð6Þ

where now the radius x2 ¼ r2 is explicit and xi ¼ 2rffiffiffiffiffiffiffiffi
N2−1

p Li.

The scale of noncommutativity is set by λ ¼ rffiffiffiffiffiffiffiffi
N2−1

p where r

is the radius of the sphere. As the quantumness of space is
generally predicted by theories of quantum gravity, λ is
often assumed to be of the order of Planck length. However,
noncommutative spaces can appear in other contexts—for
example, the quantum Hall effect—with a different
length scale.
There is another way of constructing a space whose

coordinates satisfy the relation
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½xi; xj� ¼ 2λiεijkxk: ð7Þ

A particular construction of three-dimensional quantized
space R3

λ has been described in [13] and uses two sets of
auxiliary operators satisfying

½aα; a†β� ¼ δαβ; ½aα; aβ� ¼ ½a†α; a†β� ¼ 0; ð8Þ

and acting on the Fock space F as

ða†1Þn1ða†2Þn2ffiffiffiffiffiffiffiffiffiffiffiffiffi
n1!n2!

p j0i ¼ jn1; n2i: ð9Þ

In this space, denoted R3
λ , the Cartesian and radial

coordinates were defined using Pauli matrices, σi, as

xi ¼ λa†ασiαβaβ; r ¼ λða†αaα þ 1Þ: ð10Þ

These satisfy x2 ¼ r2 − λ2 which recovers x2 ¼ r2 in the
commutative limit, λ → 0. Note that the value of r is
quantized as a†αaα acts as the number operator on F :

rjn1; n2i ¼ λðn1 þ n2 þ 1Þjn1; n2i: ð11Þ

Let us stress that in this construction, λ is a constant that
does not change with N, as opposed to the construction of a
single sphere with a finite radius in the large-N limit. We
hope that which of the two notions we have in mind will be
clear from the context. The space in this model can be
understood as a set of concentric fuzzy spheres of increas-
ing radius with the increment of λ. The kinetic term was
defined as

H0Ψ ¼ 1

2λr

�
a†α; ½aα;Ψ�

�
: ð12Þ

This model was used, for example, in [13,14] to study the
Coulomb problem, where the spectrum was found exactly
to be

EI
λn ¼

ℏ
meλ

2

0
@1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ
�
meqλ
ℏ2n

�
2

s 1
A; EII

λn ¼
2ℏ
meλ

2
−EI

λn:

ð13Þ

Note that one set of energies reproduces the hydrogen atom
spectrum in the λ → 0 limit. Then another set of solutions is
reflected with respect to the Planck scale showing a similar
duality as considered recently in [38]. In one of the later
sections, wewill reproduce this result numerically using the
fuzzy onion model.

III. THE FUZZY ONION Oλ MODEL

In this section, we define the three-dimensional space in
terms of matrices, together with derivative operators and
the action of scalar field theory. The first step, gluing fuzzy
spheres together, is simple, but we do it in detail to set the
conventions and notations. The second step, mapping
between consecutive spheres, is more demanding—
conceptually and technically.

A. The easy part: Gluing spheres together

We will now consider M concentric fuzzy spheres of
increasing radius with a step λ that forms an onionlike
structure. A field on each layer is described by a Hermitian
matrixΦðNÞ, the further the layer, the larger the matrix—the
innermost being described by a single element matrix Φð1Þ.
The configuration of fields on each of those layers can be
described by a block-diagonal matrix

Ψ ¼

0
BBBBB@

Φð1Þ

Φð2Þ

. .
.

ΦðMÞ

1
CCCCCA ð14Þ

of size MðMþ1Þ
2

. The dimension of this space is

d ¼
XM
N¼1

N2 ¼ MðM þ 1Þð2M þ 1Þ
6

: ð15Þ

This matrix now describes field configurations on all
spherical layers. For finite M, this covers a fuzzy ball of
radius R ¼ λM; the field Ψ outside this support is taken to
be vanishing. By takingM → ∞, the layers cover the entire
space R3

λ . On the other hand, keeping λM fixed while
taking λ → 0 leads to an ordinary continuous ball.
The integration of fields is to be understood as summing

the integration over individual layers, which can be related
to a trace over this large matrix Ψ. More precisely, to define
the integral, we recall the standard three-dimensional
integration of a function ψ

Z
d3xψ ¼

Z
r2 dr

Z
dΩψ ð16Þ

and change this to a version discrete in the radial direction

XM
N¼1

ðλNÞ2λ 4π
N

trNΦðNÞ ¼ Trð4πλ2rΨÞ; ð17Þ

where we have defined the radial distance matrix r as
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r ¼

0
BBBBBBB@

λ l1×1
2λ l2×2

3λ l3×3

. .
.

Mλ lM×M

1
CCCCCCCA

ð18Þ

and denoted the trace of the block-diagonal matrices Ψ by
Tr as advertised before.2 The same formula for the
integration measure was obtained in [13] using the defi-
nition of the fuzzy sphere as quantization of the Hopf
fibration.
Functions of the fields can be defined using the expan-

sion series PðΨÞ ¼Pi qiΨi. For example, we can define
potential for quartic scalar field theory this way and use (4)
to define the potential part of the action as follows:

VðΨÞ ¼ 4πλ2TrðbrΨ2 þ crΨ4Þ: ð19Þ

The angular part of the kinetic term can be defined in a
layerwise fashion using (5) as

KLΨ¼r−2

0
BBBBBBB@

Kð1ÞΦð1Þ

Kð2ÞΦð2Þ

Kð3ÞΦð3Þ

. .
.

KðMÞΦðMÞ

1
CCCCCCCA
:

ð20Þ

To summarize, a field on a single fuzzy sphere is
described using a matrix, so we describe a field living
on multiple fuzzy spheres using a larger matrix that
encompasses them all. The kinetic structure on individual
layers (in the angular directions) is inherited from the single
fuzzy sphere construction. Now, the nontrivial task is to
connect consecutive layers.

B. The difficult part: Defining the radial derivative

To take the derivative of Ψ in the radial direction, we
need to be able to compare fields on consecutive layers.
However, these are expressed using matrices of different
sizes and, therefore, have different degrees of freedom.
This is a crucial point we need to overcome. To do so, we

can use the same trick utilized to define the map (3). The
idea is to expand the matrices, i.e., the field configurations
on the given layers, in terms of matrix harmonics, compare
coefficients that can be compared, and set the rest to zero.
To be exact, we define two maps, one going one layer up,

U∶ðNÞ → ðN þ 1Þ and one going one layer down,
D∶ðN þ 1Þ → ðNÞ, as follows:

for ΦðNÞ ¼
XN−1

l¼0

Xl
m¼−l

cðNÞ
lm YðNÞ

lm ;

ΦðNþ1Þ ¼
XN
l¼0

Xl
m¼−l

cðNþ1Þ
lm YðNþ1Þ

lm

D∶ΦðNþ1Þ → ΦðNÞ ¼
XN−1

l¼0

Xl
m¼−l

cðNÞ
lm YðNÞ

lm ;

cðNÞ
lm ¼ cðNþ1Þ

lm for l ≤ N − 1 ð21Þ

U∶ΦðNÞ→ΦðNþ1Þ

¼
XN
l¼0

Xl
m¼−l

cðNþ1Þ
lm YðNþ1Þ

lm ;

(
cðNþ1Þ
lm ¼ cðNÞ

lm for l≤N−1

cðNþ1Þ
Nm ¼ 0

:

ð22Þ

Or expressed in words: when making a matrix larger, add

necessary coefficients, all with zero value, cðNþ1Þ
lm ¼ 0.

When making a matrix smaller, drop the unmappable,
largest momentum coefficients. This procedure makes
sense as the highest moments on the (N þ 1) sphere are
above the cutoff of the (N) sphere.
Now, we use these two maps to define the first and

second derivatives for a given layer as

∂
ðNÞ
r ΦðNÞ ¼ DΦðNþ1Þ − UΦðN−1Þ

2λ
; ð23Þ

and

∂
2ðNÞ
r ΦðNÞ ¼ DΦðNþ1Þ − 2ΦðNÞ þ UΦðN−1Þ

λ2
; ð24Þ

clearly motivated by the finite version of the expressions

f0ðxÞ ¼ lim
ε→0

fðxþ εÞ − fðx − εÞ
2ε

;

f00ðxÞ ¼ lim
ε→0

fðxþ εÞ − 2fðxÞ þ fðx − εÞ
ε2

; ð25Þ

which themselves arise from the Taylor expansion of the
function

fðx� εÞ ¼ fðxÞ � εf0ðxÞ þ 1

2
ε2f00ðxÞ þ…: ð26Þ

An issue arises on the innermost and the outermost
layers, where there is no next layer to compare with. We
thus define UΦðMÞ andDΦð1Þ to vanish, which is consistent

2As a check, we can see that the integral of identity matrix
yields, in the large M limit, the volume of a sphere with
radius λM.

SAMUEL KOVÁČIK and JURAJ TEKEL PHYS. REV. D 109, 105004 (2024)

105004-4



with zero Dirichlet boundary conditions at the outer layer3

but is a new condition, put in by hand, at the inner layer.
However, in the largeM limit, this should not play any role.
In some examples, such as the heat transfer equation, one
might prefer to choose the Neumann boundary condition
instead.
We can now define the radial part of the Laplace

operator as

KRΨ¼ ∂
2
rΨþ 2r−1∂rΨ;

∂rΨ¼

0
BBBBBBBB@

∂
ð1Þ
r Φð1Þ

∂
ð2Þ
r Φð2Þ

∂
ð3Þ
r Φð3Þ

. .
.

∂
ðMÞ
r ΦðMÞ

1
CCCCCCCCA
;

ð27Þ

and similarly for ∂2rΨ. Here, we abused the notation a little
since the action of ∂r is not truly block diagonal and mixes
values at different layers, i.e., different blocks. The action
of ∂r can not be expressed as a simple matrix action of
anything on the matrix Ψ; we will return to this issue in
Sec. V. This can, in turn, be used to express the action of the
radial part of the kinetic term as follows:

KRΨ¼
X
N;l;m

ðNþ1ÞcðNþ1Þ
lm þðN−1ÞcðN−1Þ

lm −2NcðNÞ
lm

Nλ2
YðNÞ
lm :

ð28Þ

Clearly, the choice of the derivatives (23), (24) is to some
extent ambiguous. With our definitions, the second deriva-
tive differs from the first derivative applied twice,
∂
2
r ≠ ∂r∂r.

4 A version of the second radial derivative, which
would fix this issue, would be

∂
2ðNÞ
r ΦðNÞ ¼ DΦðNþ2Þ − 2ΦðNÞ þ UϕðN−2Þ

4λ2
: ð29Þ

This would, however, involve five layers in the computa-
tion of the second derivative and thus make the boundary
effects more pronounced. The same would happen if we
used more precise versions of finite differences in (25).
Definition (29) also makes the second derivative more
nonlocal, and we prefer sensitivity to nearby layers to the
compatibility of the derivatives. On the other hand, we

could have defined the first derivative (23) using just oneD
or U operation, but this would lead to an asymmetric matrix
for ∂r. Finally, expression (25) are compatible in the sense
that at finite ε they are both ε2 approximations of the
corresponding derivative.
The choice of the radial Laplacian in (27) is not fixed

also, we could have as well used r−2∂rr2∂rΨ there. We have
experimented with other choices and will comment on
these attempts where appropriate. This choice is justified
because it is simple and leads to reasonable results. Since
we are using three layers to compute the second derivative,
our results agree up to the second order with the continuum
limit. The f000ðrÞ correction can be removed by including
two more layers in the calculation and so on for higher
derivative corrections. There are also boundary effects at
the outermost layer due to the Dirichlet boundary con-
dition. In principle, these could be alleviated by Neumann
boundary conditions, which we do in the study of heat
transfer. Also, one can show that with this definition of the
radial kinetic Laplacian, matrix r−1 is the Green’s function
up to the above-mentioned boundary effect, i.e., KRr−1

yields a function which is positive on the innermost layer
and zero elsewhere and that that TrðKRr−1Þ ¼ 1.
Together, we are finally set to define the fuzzy onion

space O3
λ as a configuration space of block-diagonal

matrices Ψ of the form (14) equipped with the Laplace
operator that introduces the geometry of the space as
governed by (20) and (27). Together, we define the kinetic
operator on the fuzzy onion as

K ¼ KL þKR: ð30Þ

This construction produces a three-dimensional space of
concentric fuzzy spheres of increasing radius. Note an
interesting feature—while the spherical quantization has a
momentum-cutoff structure on each layer, the radial direc-
tion is quantized in a latticelike way. The same structure
was observed forR3

λ space [13]. The most appealing feature
of this case is that the model is formulated in terms of
Hermitian matrices and thus is accessible for numerical
simulations.
Let us briefly discuss how this formulation compares to

some previous constructions. As we will see in Sec. IV C,
our definition seems to be compatible with the Laplace
operator (12) from [13]. It differs from the Laplace operator
of [11,12], where the radial part only couples modes on the
same layer and does not connect different layers together. It
would be interesting to see how the construction of [17,19]
compares to ours, but since it is not carried out in a matrix
base, it is unclear what the connections are. The introduc-
tion of the matrix basis is not completely new and was
introduced as early as [12]. Our proposal, however, does
this explicitly, which makes the structure of the functions
and operators more transparent. It also allows for the use of

3A different way to view this is that the value of any function
anywhere outside the ball of radius λM is zero.

4Considering Taylor expansions of fðr� εÞ and fðr� 2εÞ we
can see that the difference between ∂r∂r and ∂

2
r is of the order λ2

and is proportional to the fourth derivative of fðrÞ.
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well-established matrix methods to be presented in the next
section.

IV. EXAMPLES

With the definition of Ψ and K, one can do a lot of
physics. We have chosen three examples. These are meant
to illustrate in different physically relevant and interesting
situations the workings, advantages, and limitations of our
construction. This section is thus a proof-of-concept of the
matrix formulation and the radial Laplacian (27).
The first example is the MC study of the scalar field

theory, one of the most thoroughly studied examples of the
fuzzy sphere model. The second example is heat transfer,
showing that one can do classical physics on a fuzzy space.
The third example is the quantum-mechanical Coulomb
problem, as it was studied in the bosonic formulation of the
three-dimensional noncommutative space that should be, in
results, similar to the fuzzy onion model presented here.

A. The Φ4-scalar field theory

A scalar field theory can be defined in a straightforward
way using the matrix action

S½Ψ� ¼ 4πλ2TrrðaΨKΨþbΨ2þcΨ4Þ; K¼KRþKL:

ð31Þ

The mean value of observables is defined in the usual way:

hOðΨÞi¼ 1

Z

Z
dΨe−SðΨÞOðΨÞ; dΨ¼

YM
N¼1

dΦðNÞ: ð32Þ

The integration goes over all matrices of the form (14) and
can be evaluated numerically using the Hamiltonian
Monte Carlo method (HMC) in the same way as for other
fuzzy spaces [33–36]. There is an additional difficulty in
computing the kinetic term; the simulation has to compute
the Fourier transformation at every step. One can, in
principle, set up the simulation primarily in terms of the
expansion coefficients, but then defining the momentum
matrix in HMC is suitably being done in the Ψ represen-
tation and one has to perform the Fourier transformation
nonetheless.
Let us briefly discuss the behavior of the scalar field

theory on fuzzy spaces in general. The theory is expected to
recover the behavior of its continuous counterpart in the
infinite matrix size limit. With the action (31), one can
choose a ¼ 1. The continuous theory then has two phases
depending on the values of b and c. Above certain value,
b > bcðcÞ the field has zero expectation value, below it
becomes nonzero. In fuzzy spaces, the existence of a third
phase has been observed where the field oscillates in a
stripelike fashion between two nonzero values; for a review
see Ref. [39].

Usually, one characterizes matrix theory by the prob-
abilistic distribution of the matrix eigenvalues. The striped
phase mentioned above is characterized by an eigenvalue
distribution defined on two separate intervals. This phase is
also called the nonuniformly ordered phase.
As an example, we have set up the model with the

maximal matrix size M ¼ 10 and coefficients a ¼ 1;
b ¼ −3; c ¼ 5, which is expected to be in the nonun-
iformly ordered phase. The simulations were initiated from
a state of all elements being zero and thermalized, so one
can expect the eigenvalues to split between two different
minima. We have used the HMC algorithm as described
in [30] with the eigenvalue procedure flipped off as it has
not been tested in this context before. The step length in
simulations has been tuned to reach around 80% accep-
tance rate and checked the Schwinger constrain to be within
1%. For this same setup, we ran two simulations: one with
the full kinetic term (30) and one without the radial part,
KR. After a sufficient number of steps, of the order of 106,
the current state Ψ has been saved and we use the map (3)
translated into spherical harmonics Yl;mðθ;φÞ. which are
shown in Fig. 1.
In the case without the radial part of the kinetic term, the

fields on different layers are separated—as seen in the
upper part of Fig. 1. The fluctuations on individual layers
are not coupled in the radial direction. Also, notice that
lower layers contain less detailed structures than the upper
ones, as the smaller matrices have fewer degrees of free-
dom. On the other hand, the bottom part of the image shows
the theory with the radial part of the kinetic term included.
Notice that fields across various layers are organized, and
for given values of θ and ϕ, the fluctuations on different
layers are similar.

B. Heat transfer

With the kinetic term (30), we are set up to study many
classical systems, such as wave propagation or heat trans-
fer. We opt for the latter example, but it is straightforward to
write down equations for the other cases. The heat transfer
equation reads

KΨðtÞ ¼ α∂tΨðtÞ: ð33Þ
Here ΨðtÞ is understood as a time-dependent matrix of the
form (14). In numerical simulations, we consider it as a
sequence of matrices Ψi; i ¼ 0;…; T=Δt and where ti ¼
t0 þ iΔt is the discretized time.
As an example, we have initiated the model with M ¼ 5

in a state with a single nonzero element at the outermost
layer:

ΦðMÞ ¼

0
BB@
1 0

0 0

. .
.

1
CCA and ΦðM0Þ ¼

0
BB@
0 0

0 0

. .
.

1
CCA for M0<M:
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This means that the temperature was initially zero every-
where but near the north pole of the outermost layer. We
have used the Neumann boundary condition so there was
no leakage from the innermost and outermost layers. The
time evolution was obtained by Euler integration, with the
time step small enough to avoid numerical instabilities. We
can see that with α ¼ 1 after a total time of 0.8 has passed,
the heat has been distributed nearly evenly across all layers;
see Fig. 2.
In principle, it is possible to search for the eigenstates of

the kinetic term, that is, solutions of the following equation:

KΨn ¼ λnΨn; where λn ≤ 0; ð34Þ

and then expanding the initial state into modes Ψn. All of
them but the one with λ0 ¼ 0 decay exponentially.
Nonetheless, we have opted for the numerical simulation
to test our code. Also, numerical methods make adding new
features, such as time-dependent heat sinks or sources, easy.

C. The Coulomb problem

Let us now investigate the problem of the Schrödinger
equation with Coulomb potential in the fuzzy onion space.
As mentioned above, this quantum-mechanical situation
has been considered in a different formalism [13,14],
so comparing those results with our formulation offers

FIG. 1. Plots of Φðθ;φÞ obtained using (3) for each of the layers from an HMC simulation using (31) with a ¼ 1; b ¼ −3; c ¼ 5, and
N ¼ 10 without the radial part of the kinetic term (panel (a) and with it (panel b). We can observe that the fields are more correlated for
given θ and φ (not jumping between negative and positive values) when the radial part of the kinetic term is included.
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important insight. The Hamiltonian is given by

H ¼ −
ℏ2

2me
K − qr−1 ð35Þ

where we taken ℏ ¼ me ¼ q ¼ 1 and look for solutions of
the eigenvalue problem5

HΨ ¼ EΨ: ð36Þ

Recall that the Coulomb problem in ordinary quantum
mechanics is solved by splitting the solution between the
radial and angular parts. We can do something similar by
fixing ðl; mÞ and solving only for the radial part. Notice that
one can think of the matrix Ψ we have been using so far as
an array of matrices Ψ ¼ ðΦð1Þ;Φð2Þ;…Þ. However, when

FIG. 2. Simulation of the heat transfer from (33) with α ¼ 1, M ¼ 5. Horizontally, we have fields on five different layers; vertically,
the time goes from top to bottom in steps ti ¼ 0, 0.2, 0.4, 0.6, 0.8. It can be seen that the heat initially positioned close to a pole of the
outermost layer slowly dissipates across all layers and moves toward thermal equilibrium.

5This also sets the Bohr radius a0 ¼ 1.
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ðl; mÞ is fixed, each layer is represented only by the single

coefficient cðNÞ
lm and the entire function is represented by

Clm ¼
	
cðlþ1Þ
lm ;…; cðMÞ

lm



: ð37Þ

Note that only spheres with N > lþ 1 can carry states with
the angular momentum l so those below have been omitted
without losing any information. Alternatively, we can
define them to be zero. In the next section, we will
reformulate in detail the model in terms of the vector C
and rewrite operators as d × d matrices acting on such
vectors. For the moment, let us denote representation in
terms of such matrices by boldface letters and continue.
We have the Schrödinger equation of the form

HClm ¼ EClm: ð38Þ

Since the Hamiltonian and the space are radially symmet-
ric, we expect the energies not to depend on l andm and for
the sake of simplicity, we can analyze the l ¼ 0 state. So the
C is an M-dimensional vector and the Hamiltonian is

H ¼ −
1

2
KR − r−1: ð39Þ

The upshot of the l ¼ 0 restriction is also the fact that the
matrix representation of the derivative operators (49), (C1),
(C2) is a straightforward matrix with nonzero entries on the
main diagonal and/or the next two diagonals above and
below. The matrix-eigenvalue problem (38) can be solved
by usual methods—for example numerically, as we have
done for M up to 3200.6

1. Comparison of the results

By first choosing M ¼ 50 and λ ¼ 1, we can calculate
the eigenvalues of matrix H to obtain the values given in
Table I. We obtained six negative eigenvalues, naively
representing bound states. These values are greater than the
standard values in continuous spaces, in accordance with
the intuition of the wave function of the electron being
smeared away from the origin due to the nonlocality of the
space and being squeezed into a volume region of the fuzzy
onion. However, the most striking feature is how well these
results reproduce the energies (13) obtained previously
in [13,14]. The ground state energy is numerically con-
sistent in the first 35 digits, the second in the first 15, and
only the last one differs considerably. The situation is even
better when we increase the size of the matrix, and for
M ¼ 300 we obtain 15 negative energy levels, the first two

in more than 100-digit agreement with (13) and the rest also
reproducing this formula with striking accuracy.
The other thing that we need to look at is the behavior of

the energy levels by changing λ. Table II gives these values
for various pairs of λ and M. It can be summarized as
follows. As we lower λ for a fixed number of layers, the
energy levels start to differ significantly from (13) and stop
resembling the hydrogen atom problem completely. This is,
however, to be expected because we shrink the region
where the fuzzy structure exists, and the space becomes
dominated by the outside region, where no dynamics at all
are defined. But we can also see that we can always
increase the number of layers such that the spectrum again
becomes very well described by (13). Since this formula
reproduces the spectrum of standard commutative quantum
mechanics, it is reasonable to expect that the simultaneous
limit λ → 0;M → ∞ of the fuzzy onion as defined in

TABLE I. Negative eigenvalues of the Hamiltonian (39) for
M ¼ 50 and λ ¼ 1, with the values (13) and appropriate energies
of the hydrogen atom in the standard quantum mechanics.

n 1 2 3 4 5 6

En −0.4142 −0.1180 −0.0541 −0.0307 −0.0179 −0.0031

EI
λn −0.4142 −0.1180 −0.0541 −0.0307 −0.0198 −0.0138

ECQM
n −0.5 −0.125 −0.0556 −0.0313 −0.02 −0.0139

TABLE II. Relative difference of the eigenvalues of the
Hamiltonian (39) and the corresponding values from (13) for
different values of M and λ. The tables are for the n ¼ 1 and
n ¼ 2 eigenvalues, respectively. � � � means that the given Ham-
iltonian does not have enough negative eigenvalues. One can see
excellent agreement in the cases where the condition Mλ ≫ 1 is
satisfied.

M λ ¼ 0.1 λ ¼ 0.01 λ ¼ 0.001

50 6.24 × 10−3 � � � � � �
100 1.27 × 10−6 � � � � � �
200 1.97 × 10−13 2.81 � � �
400 1.56 × 10−13 3.41 × 10−2 � � �
800 5.22 × 10−13 4.9 × 10−5 � � �
1600 4.8 × 10−14 1.13 × 10−11 � � �
3200 9.02 × 10−15 5.75 × 10−12 1.26 × 10−1

M λ ¼ 0.1 λ ¼ 0.01 λ ¼ 0.001

50 � � � � � � � � �
100 1.01 × 10−1 � � � � � �
200 9.61 × 10−5 � � � � � �
400 6.05 × 10−12 � � � � � �
800 6.72 × 10−12 4.7 × 10−1 � � �
1600 1.53 × 10−12 1.99 × 10−3 � � �
3200 9.99 × 10−13 4.97 × 10−9 � � �

6We have also computed the spectrum of a matrix correspond-
ing to nonzero values of l and m, for smaller M, however. The
results confirm that the energies indeed do not depend on l and m
as expected.
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Sec. III does so too. Keep, however, in mind that in order to
recover the full three-dimensional commutative space, one
must take the limit in such a way that R ¼ λM → ∞ (in
theory) or λM ≫ a0 (in practice),wherea0 is theBohr radius.
This is not a rigorous proof that Laplacians (30) [or (49)]

and (12) are equivalent, but strongly indicates that this is
the case, at least for our needs. We thus conclude that,
presumably, the radial Laplacian (30) reproduces the
dynamics of the Laplacian (12) considered in [13],

including the correct commutative limit. We leave rigorous
proof of this statement for future work.
It would be interesting to see whether the spectrum of

Hamiltonian (49) also includes the scattering states, or at
least states that become the scattering states in the large M
limit; the found positive energy states are natural candi-
dates. Another unanswered question is whether the spec-
trum includes the positive energy bound states in (13). We
leave these questions for future work, too.

FIG. 3. In all the figures, the horizontal axis gives the distance from the origin in units of the Bohr radius, which equals 1 in our units.
The black dots denote the location of the onion layers in the particular case. The blue line represents the radial probability distribution for
the electron in the fuzzy onion space R3

λ for the given values of parameters. The dashed red line represents the radial probability
distribution of the corresponding state in the continuous space R3. The values of the parameters are, left to right, top to bottom,
as follows: M ¼ 50; λ ¼ 1; n ¼ 6; M ¼ 50; λ ¼ 0.1; n ¼ 1; M ¼ 150; λ ¼ 1; n ¼ 7; M ¼ 50; λ ¼ 5; n ¼ 2; M ¼ 150; λ ¼ 5; n ¼ 9;
M ¼ 150; λ ¼ 5; n ¼ 9 again, but a closeup to the origin. For discussion of the plots, see the main text.
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We can go beyond the energy levels of the hydrogen
atom and look at the corresponding electron distributions.
These were obtained from the eigenvectors of (38). We
show several examples of radial probability distributions in
Fig. 3. This will help us gain insight into what is happening
in the system. If the fuzzy onion is not large enough, i.e.,
the classical electron has a significant part of its wave
function outside, the NC wave function gets squeezed,
considerably increasing its energy. If the classical wave
function is almost completely localized within the fuzzy
onion, we see two different behaviors. Suppose the length
scale λ is comparable to or smaller than the Bohr radius. In
that case, the radial probability for the electron has
essentially the same features as in the classical case, being
slightly repelled away from the origin. If, however, λ is
greater than the Bohr radius, there are features of the
classical wave function that fall completely within the one
step in the radial direction and are washed away in the
noncommutative case. And the noncommutative wave
function starts to resemble the classical distribution only
when the features extend over distances larger than λ. All of
this behavior was to be expected and confirms our intuition
about the model.
To conclude this section, let us briefly mention the

results for different Laplacians. We have obtained the
energy levels for a symmetrized version of (27) (including
a finite lattice-like correction) and results for a matrix
version of the r−2∂rr2∂r case. In the first case, we obtained
a spectrum that was in complete contradiction with the
expected commutative limit and with the spectrum (13)
of [13,14]. In the latter case, however, we have obtained a
reasonable spectrum with energy doublers and energy
levels that were different from (13).

V. THE FUZZY ONION AS A VECTOR MODEL

A. Definition of the model

The inconvenient—but perhaps necessary—part of our
construction of the fuzzy onion model is the necessity to
keep computing the expansion coefficients c, while work-
ing in the matrix base ΦðNÞ. We will show here that the
model can be expressed fully in terms of the expansion
coefficients. In practical cases, such as examples analyzed
before, this comes with additional difficulties but we still
find it useful, at least to understand the model better.
First, let us rephrase the functions on a single layer ΦðNÞ

as a vector model of dimensionN2. The advantage of such a
formulation is that the Laplacian term (30) will now be
expressed as an action of a single matrix. We first expand
the matrix ΦðNÞ into a Hermitian basis7 Tμ

ΦðNÞ ¼
XN2−1

μ¼0

cðNÞ
μ TðNÞ

μ ¼ cðNÞ
0 TðNÞ

0 þ
XN2−1

a¼1

cðNÞ
a TðNÞ

a ; ð40Þ

which is normalized so that

trN
	
TðNÞ
μ TðNÞ

ν



¼ 1

2
δμν: ð41Þ

See Appendix A for our other conventions and some useful
identities. We will denote the N2-dimensional column
vector of c’s as

CðNÞ ¼
	
cðNÞ
0 ; cðNÞ

1 ;…; cðNÞ
N2−1



T
: ð42Þ

In the Hermitian basis, the c’s of a Hermitian matrix ϕ are
all real and independent. The action of the kinetic term is
given by

KðNÞTðNÞ
a ¼ lðlþ 1ÞTðNÞ

a ; ð43Þ

with l being the corresponding angular momentum, and we
refrain from using the subscript to have a less cluttered
notation. In what follows, we will do our best to avoid
confusion by denoting operators in their N2 × N2, or later
d × d, matrix version by boldface letters. There are N
different possible values for l ¼ 0; 1;…; N − 1.
For the full fuzzy onion, we can now write

C ¼ ðCð1Þ; Cð2Þ;…; CðMÞÞT; ð44Þ

which is a d-dimensional (15) vector and essentially gives
the coefficients of the matrix Ψ in the basis

TA¼

0
BBBBBBBBB@

01×1

. .
.

TðNÞ
a

. .
.

0M×M

1
CCCCCCCCCA
; A¼1;…;d: ð45Þ

Let us now define other operators as acting on C in (44).
The matrix r is a block-diagonal matrix

r ¼

0
BBBBBBBB@

λ l1×1
2λ l4×4

3λ l9×9

. .
.

Mλ lM2×M2

1
CCCCCCCCA

ð46Þ

of matrices λN lN2×N2 for N ¼ 1; 2;…;M. Note that before
r in (18) has been a similar block-diagonal matrix, however,

7For simplicity, we will denote the pair of indexes l, m by one
index μ, such that l ¼ m ¼ 0 corresponds to μ ¼ 0.
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with the size of blocks N. This is a crucial difference.
Before, the matrix r acted on matrix Ψ by matrix multi-
plication; now, it acts on the vector C. Before, there was no
nice way to express the action of the derivatives ∂r on the
function Ψ; now, they act as matrices on vector C. The
angular part of the kinetic term is block diagonal

KL ¼ r−2

0
BBBBBBB@

Kð1Þ

Kð2Þ

Kð3Þ

. .
.

KðMÞ

1
CCCCCCCA
; ð47Þ

with KðNÞ being an angular Laplacian on the given
layer, itself a block diagonal matrix of matrices lðlþ
1Þ1ð2lþ1Þ×ð2lþ1Þ for l ¼ 0; 1;…; N − 1 due to (43).
The radial part (27), when interpreted as a matrix acting

on the vector C, is off diagonal even in the block sense as it
connects terms across various layers. Since operators U and
D are used to express the derivatives (24) that are defined in

terms of the coefficients cðNÞ
lm , it is straightforward to write

the d × d version DR of ∂r and D2
R of ∂2r from (24), with

explicit formulas given in Appendix C.
Finally, let us repeat the definition of the Laplacian, now

understood as a d × d matrix acting on a d-dimensional
vector space of C’s:

K ¼ KL þKR; ð48Þ

KR ¼ D2
R þ 2r−1DR; ð49Þ

with matrices r;KL;DR;D2
R given by (46), (47), (C1),

and (C2).
Once again, let us stress that this formulation is useful

because the kinetic term acts explicitly as a matrix here.
The drawback is that the function multiplication, before a
straightforward matrix multiplication, is now rather com-
plicated. In [12], a spectrum of the Laplacian constructed
in [11] was calculated on the same basis, and it was shown
that the Laplacian is block diagonal, i.e., it does not couple
modes on different layers of the onion. This is different
from the above construction, where the KR part of the
Laplace operator is nonvanishing also in the off-diagonal
blocks.

B. Field theory on the fuzzy onion
as a random vector model

As we have seen, the functions on the fuzzy onion can be
thought of in terms of d-dimensional vectors and the
operators acting on them in terms of d × d matrices. In
this section, we would like to investigate the consequences

of such an approach for fuzzy field theory. First, let us look
at how this translates for functions on a single layer.
As mentioned in Sec. III, the action for the field theory is

SN ½ΦðNÞ� ¼ 4π

N
trN
�
aΦðNÞKðNÞΦðNÞ þ b

�
ΦðNÞ�2

þ cðΦðNÞÞ4�: ð50Þ

The quadratic part of this expression is straightforward, and
we obtain

SN;0 ¼
1

2

�
CðNÞ�T · P−1 · CðNÞ;

P ¼ N
4π

ð2aKðNÞ þ 2b1N2×N2Þ−1: ð51Þ

From now on, we will always assume the first vector in the
expressions like above to be a transposed row and drop the
explicit T. Since the matrix P is diagonal, its inverse is
straightforward to compute.
The interaction term is more involved, but after some

algebra, summarized in Appendix B, we obtain

trN
�ðΦðNÞÞ4�¼ 1

4N

�
CðNÞ ·CðNÞ�2þ1

8

�
CðNÞ ·GðNÞ

a ·CðNÞ�2;
ð52Þ

where the interaction matrices are given by

GðNÞ
a ¼

 
0 ðvðNÞ

a ÞT
vðNÞ
a DðNÞ

a

!
;

	
DðNÞ

a



ij
¼ 2Tr

	n
TðNÞ
i ; TðNÞ

j

o
TðNÞ
a



;

	
vðNÞ
a



b
¼

ffiffiffiffi
2

N

r
δab: ð53Þ

This leaves us with the vector model action

SðNÞ ¼ 1

2
CðNÞ · P−1 · CðNÞ þ 4π

N
c

�
1

4N
ðCðNÞ · CðNÞÞ2

þ 1

8
ðCðNÞ ·GðNÞ

a · CðNÞÞ2
�
: ð54Þ

When we now couple the layers together, we need to add
the radial part of the Laplacian into the action and obtain

S ¼ 4πTr rðaΨKΨþ bΨ2 þ cΨ4Þ

¼ 1

2
C · P−1 · C þ 4πλ3

XM
N¼1

cN

�
1

4N

�
CðNÞ · CðNÞ�2

þ 1

8

�
CðNÞ ·GðNÞ

a · CðNÞ�2�; ð55Þ
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P ¼ 1

4πλ2
ð2arKþ 2brÞ−1: ð56Þ

We can see that the propagator is now not diagonal.
Moreover, the interaction part of this expression cannot
be nicely expressed in terms of the vector C. We would
instead like to write something like

S¼ 1

2
C ·P−1 ·Cþ4πcλ3

�
1

4
ðC ·CÞ2þ1

8
ðC ·GA ·CÞ2

�
ð57Þ

for the action, where GA’s is a set of d −M block-diagonal

matrices with one of the NGðNÞ
a ’s in the proper place on the

diagonal and zeros everywhere else. This would be a very
different model from (55) and would introduce nonlocality
of the interaction in the radial direction. In this case, the
interaction is introduced among all the layers in the radial
direction, which is perhaps more nonlocal than necessary
but is still a reasonable first proposition.
Models such as (54), (55), and (57) are random vector

models which, in principle, can be studied by correspond-
ing analytical and numerical techniques. The first one is
quite well understood as a matrix model, so it could be used
as a sandbox for understanding the tools in this setting, and
then the other two could be studied to obtain new results.

VI. CONCLUSION AND DISCUSSION

In this paper, we have introduced an explicit matrix
formulation of three-dimensional fuzzy space with rota-
tional symmetry called the fuzzy onion, Oλ. The main idea
was to connect matrices describing individual fuzzy
spheres into one large matrix and use the standard angular
kinetic operator for each layer. Neighboring layers are
connected by a radial derivative term computed in the base
of expansion coefficients while disregarding those that
cannot be matched due to different degrees of freedom. We
have also shown how to formulate the model purely in
terms of expansion coefficients, C, which is illuminating,
but we used the matrix formulation for practical purposes.
This way, we have constructed a discrete three-

dimensional structure with two different behaviors.
Angular discreteness is of a noncommutative nature with
the full rotational symmetry. However, the radial direction
is latticelike and rigid, with finite steps between the layers.
It would be interesting to see if one could alleviate this
rigidness into something more fuzzylike, e.g., by smearing
the radial part of the function over several layers [27].
We have investigated three different physical models on

the fuzzy onion. For the Φ4 scalar field theory, without the
radial part of the kinetic term, the structures appearing on
each layer were disorganized. But they align when the
radial part of the kinetic term is turned on, showing that the
construction of the radial Laplacian indeed brings the layers
into contact. We plan to analyze the phase structure of the

theory in future research. We have shown that the model
can be used in the classical setting for perhaps the simplest
case—heat transfer without a source—and the spreading of
the heat across layers facilitated by the radial Laplacian
behaved in an expected way. Formulating something more
demanding, such as Navier-Stokes theory, is left for future
research. Finally, we have investigated the quantum-
mechanical hydrogen atom problem. In our case, the
problem turned into finding eigensystems of large matrices,
which a computer can do reasonably quickly. The agree-
ment with the previous construction was beyond any
expectations, and we can conclude that the results are
equivalent after taking the radius of the onion space to
infinity. This is, however, still left to be proved rigorously
and working in the l ¼ 0 regime might help since the
matrices for radial derivatives simplify significantly.
Working with a finite size ofM yields interesting questions;
for example, the Hamiltonian has a finite number of
positive and negative eigenvalues. What dictates their ratio,
and how do they match the spectrum known from previous
studies? As before, we leave this for future work.
We have focused on building the model and analyzed

physical systems mostly as a proof of concept. In future
studies, we plan to investigate those in greater detail. As a
three-dimensional space model, the fuzzy onion is a good
place to test the phenomenological consequences of such a
structure, e.g., for light propagation, the behavior of matter
or the dynamics of the space(time) itself.
In [40] the field theory on the fuzzy sphere has been

described on a different basis, formed by extended string-
like objects called string states. The string’s energy is given,
in the large-N limit, by the length of the string. In the model
we have presented here, only the modes with ends at the
same layer are present, and it does not contain the modes
extending from one layer to a different one.8 One possible
way to extend our construction would be to include these
modes extending between the layers, together with the
natural Laplacian, which is, however, going to be more
complicated due to the finite N effects. In [17] a star
product has been constructed, different from [11], to define
a noncommutative version of Rd. It would be interesting to
see the relationship of this construction’s d ¼ 3 case to the
one presented here.
One is also tempted to interpret the radial direction of the

model as a temporal and not spatial coordinate. In this case,
the model would describe an expanding quantum sphere—
perhaps a helpful toy model to study the expansion
of quantum space with a growing number of degrees of
freedom, allowing us to study the quantum origin of
primordial fluctuations in the Universe. Also, one can
study relativistic objects with rotational symmetry, such as
the Schwarzschild black hole in a quantum space [21].
Here, the separation of layers λ can be taken to depend on

8We thank Harold Steinacker for this observation.
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the radius λðrÞ, or perhaps to be even made angular
dependent. In this way, we would describe a space-time
with a curved and deformed structure in a way that
resembles a realistic onion even more.
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APPENDIX A: CONVENTIONS

This section briefly overviews our suð2Þ generator
conventions and some important formulas. In this and
the following section, we will deal only with quantities
defined on a single fuzzy sphere with a fixed N, so we will
drop the superscript (N) distinguishing between the layers.
We express the field on the basis of polarization tensors Tμ

as follows:

Φ ¼
XN2−1

μ¼0

cμTμ ¼ c0T0 þ
XN2−1

a¼1

caTa ðA1Þ

and such that

trðTμÞ¼
ffiffiffiffi
N
2

r
δ0μ; or T0¼

1ffiffiffiffiffiffiffi
2N

p 1N2×N2 and trðTaÞ¼ 0;

ðA2Þ

trðTaTbÞ ¼
1

2
δab; ðA3Þ

trðTaTbTcÞ ¼
1

4
dabc þ antisymmetric; ðA4Þ

trðTaTbTcTdÞ ¼
1

4N
ðδabδcd − δacδbd þ δadδbcÞ

þ 1

8
ðdabedcde − dacedbde þ dadedbceÞ

þ antisymmetric; ðA5Þ

where antisymmetric stands for terms that are antisym-
metric in a pair of indexes and thus will not be relevant in
our calculations. Also

dabc ¼ 2trðfTa; TbgTcÞ ðA6Þ

is the completely symmetric tensor of suðNÞ.

APPENDIX B: INTERACTION TERM IN THE
RANDOM VECTOR FORMULATION

We will briefly outline the calculation of (54). Using
identities from Appendix A we calculate

trðΦ4Þ¼
X

μ1;…;μ4

c1c2c3c4trðT1T2T3T4Þ¼ ðB1Þ

¼c40
1

4N
þc206

1

4N
cacaþ4c0

1

4
ffiffiffiffiffiffiffi
2N

p cacbccdabc

þ 1

4N

�ðcacaÞ2−ðcacaÞ2þðcacaÞ2
�

þ1

8
cacbcccdðdabedcde−dacedbdeþdadedbceÞ: ðB2Þ

The last two terms cancel due to the c ↔ d symmetry.
The first, second, and fourth set of terms combine to
ðC · CÞ2=4N, since

ðC · CÞ2 ¼ ðc20 þ cacaÞ2 ¼ c40 þ ðcacaÞ2 þ 2c20caca;

and thus

trðΦ4Þ ¼ 1

4N
ðC · CÞ2 þ 1

N
c20caca þ

1ffiffiffiffiffiffiffi
2N

p c0cacbccdabc

þ 1

8
cacbcccddabedcde: ðB3Þ

After some work, the last three terms can be written in
terms of the N2 − 1 matrices of size N2 × N2

Ge ¼
�

0 ve

ve De

�
; ðB4Þ

where

vea ¼
ffiffiffiffi
2

N

r
δae; ðDeÞij ¼ dije; ðB5Þ

as follows:

trðΦ4Þ ¼ 1

4N
ðC · CÞ2 þ 1

8
ðC ·Ga · CÞ2: ðB6Þ

APPENDIX C: RADIAL DERIVATIVE
OPERATORS

The explicit form of the d × d version of ∂r in (27) can be
expressed as follows:
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and zeros are understood in the empty spaces. For the second derivative in radial direction (24), we have
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