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Entanglement degradation appears to be a generic prediction in relativistic quantum information
whenever horizons restrict access to a region of spacetime. This property has been previously explored in
connection with the Unruh effect, where a bipartite entangled system composed of an inertial observer
(Alice) and a uniformly accelerated observer (Rob) was studied, with entanglement degradation caused by
the relative acceleration—and with equivalent results for the case when Alice is freely falling into a black
hole and Rob experiences a constant proper acceleration as a stationary near-horizon observer. In this work,
we show that a similar degradation also occurs in the case of an entangled system composed of an inertial
observer (Alice) and a “diamond observer” (Dave) with a finite lifetime. The condition of a finite lifetime is
equivalent to the restriction of Dave’s access within a causal diamond. Specifically, if the system starts in a
maximally entangled state, prepared from Alice’s perspective, entanglement degradation is enforced by the
presence of the diamond’s causal horizons.
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I. INTRODUCTION

Entanglement is a purely quantum-mechanical correla-
tion between systems that plays a central role in quantum
information science [1], where it is used as an important
resource for miscellaneous tasks [2–4] and applications in
quantum computing [5–7]. It is generally expected that
the entanglement between two systems is prone to
destruction due to environmental effects—a phenomenon
known as entanglement degradation, which is a form of
decoherence [8]. Hence, to keep two systems entangled,
it is essential to find the sources of decoherence and
quantify the amount of degradation of the quantum
correlation between the systems. In this work, we focus
on a source of entanglement degradation involving the
relativistic decoherence effects on entanglement between
two scalar field modes.
In recent years, many cutting-edge experiments have

reached a limit in which relativistic effects become
relevant [9]; therefore, a thorough understanding of entan-
glement in a fully relativistic framework is critically
important at the experimental level. The theory of relativ-
istic quantum information (RQI) is now a well-established
field that grew from the pioneering works of Refs. [10–13],
and which has uncovered novel relativistic quantum proper-
ties of entanglement, and quantum information more gen-
erally. For example, multiple roles played by the causal
propagator in RQI were studied in Ref. [14], and a truly
relativistic quantum teleportation protocol was established
in [15] that considered relativistic propagation of a quantum

field. In addition to theoretical consistency, such realiza-
tions would eventually allow the inclusion of relativistic
effects to improve quantum tasks. From the perspective of
two inertial observers, the entanglement between the two
global field modes remains unchanged, as expected [11].
These ideas led to a prediction of entanglement degrada-
tion when accelerated observers are involved, for scalar
fields [16], and also for fermionic fields [17]; and further
analyzed for the relative acceleration of a falling and
a stationary observer in the Schwarzschild black hole
geometry [18,19], along with a variety of related results on
entanglement degradation of global field modes at the
relativistic level [20–24].
The context for these RQI results is the framework of

quantum field theory in curved spacetime, which was
originally developed to deal with fields in the presence
of gravitational backgrounds [25], including black
holes [26,27], and from the perspective of noninertial
observers [25,28]. In quantum field theory, the notions of
vacuum, particles, and horizons are deeply intertwined: the
particle content is observer dependent except for the
simple case of inertial reference frames [25]. A major
outcome of this program was the development of profound
connections between general relativity and quantum phys-
ics, leading to black hole thermodynamics [29–31], and the
Hawking and Unruh effects. In particular, even in flat
spacetime, a constantly accelerated observer would detect
a thermal distribution of particles at the Unruh-Davies
temperature TU ¼ a=2π, where a is the acceleration—this
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is the Unruh effect [25,28,32,33]. [Here and throughout the
paper, we adopt natural units with c ¼ ℏ ¼ kB ¼ 1; and
the metric convention with signature ð−;þÞ corresponding
to the ordering of time and spatial coordinates.] A similar
effect is Hawking radiation by black holes [26,27], with
Hawking temperature TH ¼ κ=2π, where κ is the black
hole’s surface gravity. One critical discovery of this
program is that causally restricting an observer to a partial
region of spacetime, e.g., in the presence of horizons:
(i) leads to a thermal state because the observer does not
have access to all the degrees of freedom of the quantum
field theory; (ii) creates inequivalent vacuum states, lead-
ing to the observation of particles for some observers in the
vacuum of another set of observers [25]. For the Hawking
effect, this is enforced by the black hole’s event horizon,
while, for the Unruh effect, there exists a Killing horizon
associated with the accelerated motion.
As far as entanglement degradation is concerned, the

results of Refs. [16–24] basically show that entanglement is
generically observer dependent when considering non-
inertial frames, curved spacetimes, and/or the presence
of horizons that restrict spacetime access. The general
framework for these studies of entanglement degradation
involves a pure maximally entangled Bell state, typically
given by

jΨi ¼ 1ffiffiffi
2

p ðj0jAiA ⊗ j0jBiB þ j1jAiA ⊗ j1jBiBÞ; ð1Þ

where the subscripts A and B denote the two observers,
Alice and Bob, who have detectors sensitive to each of the
two entangled modes jA and jB of the field (involving
different frequencies and directions of propagation).
In Eq. (1), the states j0ji and j1ji are the 0-particle and
1-particle states corresponding to each mode j (from the
perspective of an inertial observer). Now, a noninertial
observer in the bipartite system would perceive the initially
prepared pure state of Eq. (1) as a mixed state. Specifically,
if Bob is a uniformly accelerated observer, the states j0jBiB
and j1jBiB appear as mixed—this is the key property of the
Unruh effect [25,28,33]: a uniformly accelerated observer
perceives the Minkowski vacuum as a mixed, thermal state
with temperature TU. Moreover, the mixed nature of the
state (1) correspondingly degrades the degree of entangle-
ment, as shown in Refs. [16–24].
In all the studies of entanglement degradation mentioned

above, the observers have an infinite lifetime. By contrast,
one can consider an observer with a finite lifetime T ¼ 2α,
whose causal access is restricted to a finite region of
spacetime. This region, called the causal diamond or double
cone, is the intersection between the future light cone at
some initial time t0 and the past light cone at some later
time tf.

From the viewpoint of a finite-lifetime (diamond)
observer, the boundary of the associated causal diamond
is an apparent horizon similar to the Rindler horizon, and
restricting causal access. It is this specific setup that we
consider in our paper for the analysis of the entanglement
and total correlations of a bipartite system composed of an
inertial observer (Alice) and a diamond observer (Dave).
The existence of thermodynamic effects associated with a
causal diamond was clearly spelled out in the pioneering
work of Ref. [34] within the thermal time hypothesis [35],
and building on earlier work on modular flows [36–38]
that showed that a conformally invariant vacuum is subject
to the Kubo-Martin-Schwinger condition for thermal
equilibrium [39,40]. In essence, a diamond observer
can detect thermal particles in the Minkowski vacuum,
as was further corroborated in a series of papers [41–47].
Additional work has found generalizations that map the
diamond physics to de Sitter spacetime [48,49] and black
hole horizons [44,50].
The thermal behavior is governed by the diamond

temperature

TD ¼ 2

πT
; ð2Þ

which proportionally scales inversely with the lifetime T
of the observer and is the generalization of the Unruh-
Davies temperature for finite-lifetime observers. Using a
state of the form (1)—initially prepared as maximally
entangled from the perspective of inertial observers—we
show the emergence of entanglement degradation proper-
ties from the restriction of causal horizons that limit the
diamond. This analysis clarifies the origin of observer-
dependent entanglement for finite-lifetime systems intro-
duced in the recent Ref. [47]. As part of this analysis, we
elucidate the conformal mapping between Rindler space
and the diamond, including the subtleties needed for
entanglement degradation.
This article is structured as follows. In Sec. II, we review

the geometry and the conformal mapping needed to
describe the causal diamond and we show how each of
the Rindler wedges is mapped under this transformation. In
Sec. III, we use modes inside and outside the causal
diamond to quantize the scalar field and calculate the
Bogoliubov coefficients that relate the Minkowski and
diamond modes. In Sec. IV, we set up the formalism for
entanglement by properly generalizing Eq. (1) to derive the
properties of entanglement in bipartite systems and apply
this approach to the field modes observed by an inertial
observer and a diamond observer. In Sec. V, we offer
further insight into the significance of these results, and
outline possible future work. The Appendices expand the
discussion of the conformal mapping, the geometry, and the
canonical quantization in causal diamonds.
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II. CAUSAL DIAMOND: GEOMETRY
AND DIAMOND COORDINATES

In this section, we introduce the geometry and coordinate
setup of the causal diamond D in a form that will prove
convenient for the quantum field theory calculations that
follow.

A. Diamond geometry

The basic geometry of a causal diamond, as depicted in
Fig. 1, is defined by the double cone subtended by the
intersection of the future and past light cones of two events
A (“birth”) and B (“death”). This spacetime geometry
encodes the physics of an observer with a finite lifetime
T ¼ 2α, for whom causal access is strictly restricted within
region D ≔ fðx; tÞ∶jtj þ jxj ≤ αg.
The standard way of parametrizing this geometry is via

the physics of Rindler spacetime, considering a conformal
transformation that maps the finite domain of a causal
diamond D inMinkowski spacetime into the infinite domain
of the right Rindler wedge R ≔ fðx̃; t̃Þ∶jtj ≤ x̃ and x̃ ≥ 0g.
This is the generic approach followed in all the papers
dealing with the physics of the causal diamond, including
the seminal work on its thermodynamics by Martinetti and
Rovelli [34]. This conformal approach can be traced back to
the work of Ref. [37], where the modular flow of the double
cone was studied using the method of the Bisognano-
Wichmann theorem [36,38] for wedge regions.
The geometric transformation used in this mapping

requires understanding Rindler spacetime, which is the
natural framework to analyze the motion of uniformly
accelerated observers. Due to their constant proper accel-
eration, observers are restricted to a region of Minkowski
spacetime called a wedge. If we use standard Rindler

coordinates, then Minkowski spacetime is divided into
four regions: the L (left), R (right), F (future), and P (past)
wedges, as can be seen in Fig. 2. The coordinate charts
ðη; ξÞ are restricted to one wedge at a time; thus, as usual,
the maximal extension actually consists of four separate
wedge-restricted charts to cover the whole of Minkowski
spacetime [25,33,51]. By construction, one starts with
accelerated observers, whose spacetime trajectories are in
either one of the two causally disconnected wedges R or L.
The boundaries of these regions are apparent horizons—
diamond observers in region D do not have causal access
to the information in the relevant part D̄ of the outside
region, and viceversa for observers in D̄. Thus, these are
two regions that are entangled for accelerated observers,
and they are the ones of interest for the causal diamond in
our paper [25,32,33].
A key advantage of this conformal approach is that the

causal structure is unaffected by this transformation. It is
also noteworthy that, by construction of the conformal
mapping, the transformation between the Rindler and
diamond spacetimes is one to one and covers the whole
unrestricted Minkowski. Thus, this conformal mapping
naturally allows us to define coordinates for the interior
of the diamond as well as for all of its exterior regions. Next,
in Sec. II B, we construct the complete mapping of all the
regions of diamond Minkowski spacetime, filling a gap in
the existing literature, where only part of the mapping has
been displayed. In addition, we precisely define the dia-
mond coordinates needed for a description of the quantum
fields.

B. Diamond-Rindler conformal transformation
and diamond coordinates

In this subsection, we briefly summarize our generalized
approach and the main results, and write them in a form that

FIG. 2. Rindler wedges R, L, P, and F. The right Rindler wedge
R (in purple) is mapped to a causal diamond under a conformal
transformation.

FIG. 1. Causal diamond D (in purple) associated with a starting
event A and an end point event B. This double cone is the
intersection of the forward light cone of A (causal future) and the
past light cone of B (causal past). D̄ is the relevant part of the
outside region.
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is tailored for the quantum-field-theory algebra that we will
use for the remainder of the paper.
Different versions of the diamond coordinate trans-

formations have been used in the literature [41–47,52],
following Ref. [34]. The unifying framework that sub-
sumes the existing transformation variants consists of a
systematic two-step method that defines the most general
diamond coordinates via conformal transformations, with
the inclusion of a generic scaling transformation ΛðλÞ
allowed by the scaling symmetry of Rindler space. This
approach is based on a generalization of the procedure of
Ref. [46]. As we show in this paper (Appendix A), the
composite two-step transformations are restricted by
enforcing a condition on physical scaling that yields the
correct scale dimensions. This guarantees that the outcome
of all calculations for observables return the correct value
of the diamond temperature and associated field-theory
quantities in a scale-independent manner. As a result, as we
further prove in Appendix A and Sec. II C, the final
expressions are independent of the chosen scaling λ once
the constraint is implemented. However, as the intermedi-
ate expressions connecting diamond and Rindler space-
time Minkowski coordinates are usually displayed in the
literature, our unifying framework permits an easy com-
parison of apparently dissimilar mappings. For example,
the case with scaling λ ¼ 2 (which provides the maximal
symmetry between the direct and inverse conformal map-
pings) has been used in most of the causal-diamond
literature [41–44,46,47], while the case with λ ¼ 1 (which
has the minimalist structure with no scaling at the level
of the first-step conformal transformations) was selected
in Refs. [45,46,52]. In short, our generalized procedure
consists of two following steps:

(i) using appropriate combinations of conformal trans-
formations [53]; and

(ii) covering the Rindler wedge R with a Rindler
coordinate chart ðη; ξÞ.

The first step involves selecting an appropriate combi-
nation of special conformal transformations KðρÞ, dilata-
tion scalings ΛðλÞ, and translations TðαÞ to generate a
composite, conformal, one-to-one mapping ðt̃; x̃Þ ⟶ ðt; xÞ
from the right Rindler wedge R to the diamond region D,
described via Minkowski coordinates ðt; xÞ. The appro-
priate composition is given by Tð−αÞ∘Kð1=2αÞ∘ΛðλÞ,
which results in

t
α
¼ 2t̃=α̃
ðx̃=α̃þ1Þ2− ðt̃=α̃Þ2 ;

x
α
¼−

1− ðx̃=α̃Þ2þðt̃=α̃Þ2
ðx̃=α̃þ1Þ2− ðt̃=α̃Þ2 ; ð3Þ

where, in these expressions and in the remainder of this
section, the parameter λ only appears through the rescaled
variable α̃ ¼ 2α=λ. The corresponding inverse transforma-
tion is

t̃
α̃
¼ 2t=α
ðx=α− 1Þ2− ðt=αÞ2 ;

x̃
α̃
¼ 1− ðx=αÞ2þðt=αÞ2

ðx=α− 1Þ2− ðt=αÞ2 : ð4Þ

The second step uses an appropriate rescaled version of
the standard relation between the Minkowski coordinates
ðt̃; x̃Þ of the wedge and the Rindler coordinates ðη; ξÞ
[25,32,33], i.e., a Rindler mapping ðη; ξÞ ⟶ ðt̃; x̃Þ. This
mapping, when the scaling factor is λ (and ϵ ¼ �1 for D
and D̄, respectively), is given by

t̃
α̃
¼ ϵe2ξ=α sinhð2η=αÞ; x̃

α̃
¼ ϵe2ξ=α coshð2η=αÞ; ð5Þ

with ranges η; ξ∈ ð−∞;∞Þ. The proper scaling in Eq. (5),
i.e., the choice of the proportionality constants (scaling of
the spacetime coordinates with α̃ and a numerical coef-
ficient equal to one) is determined in Appendix A by a
condition that governs the correct physical dimensions. As
usual, the curves ξ ¼ const in the conformally mapped
Rindler spacetime correspond to uniformly accelerated
observers with acceleration 2ðαe2ξ=αÞ−1, where a ¼ 2=α
is the basic acceleration parameter for the worldline ξ ¼ 0.
In addition, for regions ¯̄D (conformally mapped from the
corresponding Rindler wedges F and P), the roles of the
spatial and temporal coordinates get reversed (t̃ ↔ x̃)—for
the coordinate patches covering these regions, formulas
similar to Eq. (5) can be used with such reversals. Thus,
such extensions of Eq. (5) can be used to cover globally all
regions of the maximally extended diamond spacetime.
In short, combining the two steps, the parametrization

mapping

ðη; ξÞ|ffl{zffl}
Rindler coordinates
inRindler spacetime≡diamondcoordinates

⟷
Rindler

parametrization ðt̃; x̃Þ|ffl{zffl}
Minkowski coordinates
inRindler spacetime

⟷
conformal

transformation ðt; xÞ|ffl{zffl}
Minkowski coordinates
in diamond spacetime

ð6Þ

is established. For our purposes, the existence of this
mapping suggests the presence of entanglement degrada-
tion for observers moving inside a causal diamond D, just
as for accelerated observers in the right Rindler wedge R.
This mapping effectively labels the double cone with
“diamond coordinates” ðη; ξÞ, as they have been called
in the recent literature [43]. The final expressions for the
composite mapping ðt; xÞ ⟶ ðη; ξÞ, and their inverses,
have to be set up separately for the four regions; see
Eq. (A20) and surrounding paragraph in Appendix A. In
short, the transformation ðt; xÞ ⟶ ðη; ξÞ is λ independent,
even though the mapping (3) between Minkowski coor-
dinates of the diamond and Rindler spacetimes does depend
on the scaling λ. Finally, these results can be rewritten more
elegantly in terms of the light-cone variables, as displayed
in the next section, in a form that simplifies the algebra to
follow for the remainder of the paper.
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In summary, our approach generalizes the method of
Ref. [46] to provide a unifying framework for the con-
formal mappings and definition of diamond coordinates.
The different variants of diamond coordinates can be
realized within this framework in step (i) by uniquely
fixing the values of the parameters of the special conformal
transformation KðρÞ and translation TðαÞ to generate a
diamond of size 2T and by picking an arbitrary value of λ
in ΛðλÞ. Once the composite conformal transformation is
chosen, care must be taken when defining the Rindler
coordinate chart in step (ii). There are specific scaling
conditions that must be met so that the physical dimensions
in diamond space are compatible with those in Rindler
space (see Appendix A for details). The value of the
diamond temperature and associated field-theory conse-
quences (including quantum effects such as entanglement)
are dependent on these adjustments. Our generalized
framework ensures that we recover the correct value of
the unique diamond temperature and that we correctly
account for entanglement.

C. Light-cone coordinates

A convenient alternative to the coordinate transformation
used in the previous section, with diamond coordinates
(A20), can be restated in terms of sets of light-cone
coordinates,

Uσ ¼ tþ σx; Ũσ ¼ t̃þ σx̃; uσ ¼ ϵðηþ σξÞ; ð7Þ

where σ ¼ �1 labels the propagation direction (corre-
sponding to left and right movers respectively). This set
includes the advanced Uþ ≡ V ¼ tþ x and retarded U− ≡
U ¼ t − x Minkowski null coordinates; their counterparts
for Rindler spacetime, Ũ� ≡ Ṽ; Ũ ¼ t̃� x̃; and the null
diamond, Rindler-induced coordinates uþ ≡ v ¼ ϵðηþ ξÞ
and u− ≡ u ¼ ϵðη − ξÞ. The sign reversal with ϵ ¼ �1 for
the diamond coordinates in Eq. (7) makes the null coor-
dinates be always future directed. With these definitions of
null coordinates, the following alternative transformation
equations can be established as equivalent to Eq. (4). First,

Ṽ
α̃
¼ 1þ V=α

1 − V=α
;

Ũ
α̃
¼ −

1 −U=α
1þ U=α

; ð8Þ

and their inversion, equivalent to (3), simply involves
switching the roles of V and U. Remarkably, Eq. (8), like
the original (4), is valid in all wedges. Second, in terms of
the Rindler-induced diamond variables uσ,

e2v=α ¼ 1þ V=α
1 − V=α

; e2u=α ¼ 1þU=α
1 − U=α

; ð9Þ

for the diamond interior D and

e2v̄=α ¼ V=α − 1

V=αþ 1
; e2ū=α ¼ U=α − 1

U=αþ 1
; ð10Þ

for the relevant diamond exterior D̄. In Eqs. (9) and (10),
and for the remainder of the paper, we will denote the null
diamond variables separately in the two relevant regions;
specifically, ðv; uÞ and ðv̄; ūÞ refer to the diamond interior
and exterior, respectively. These relations can be easily
inverted to show that

V
α
¼ tanhðv=αÞ; U

α
¼ tanhðu=αÞ; ð11Þ

for the diamond interior D; and V=α ¼ − cothðv=αÞ
along with U=α ¼ − cothðu=αÞ for the relevant diamond
exterior D̄.
Moreover, the basic null-coordinate transformation

Eqs. (9)–(11) are independent of the scaling factor λ, in
a form that is especially useful for the study of the field
modes to be addressed in Sec. III. The technicalities
associated with rescalings for these light-cone variables
are further analyzed in Appendix A.
Finally, the global mapping, i.e., the conformal trans-

formation defined via Eq. (4) or Eq. (8), is shown in Fig. 3,
including the specific mappings of the four Rindler wedges
to the diamond spacetime. This mapping turns the right
Rindler wedge R, ϵ ¼ þ1, into the diamond interior D and
the left Rindler wedge L, ϵ ¼ −1, into the relevant parts D̄
of the diamond exterior entangled with the interior. There
are also exterior regions ¯̄D that can be reached by analytic
continuation from D and D̄, which correspond to the
regions F and P of Rindler spacetime, as shown in
Fig. 3. The details are discussed in Appendix B.

III. FIELD QUANTIZATION
OF THE CAUSAL DIAMOND

For our analysis of the entanglement properties associ-
ated with quantum fields in a causal diamond, we will
consider a free, minimally coupled, scalar massless field Φ
in (1þ 1)-dimensional Minkowski spacetime. This simple
model, despite exhibiting well-known infrared divergences
[54], is a good laboratory to display the basic quantization
procedure and the existence of inequivalent vacua and
thermal properties for the Unruh effect and generalizations.
Quantization in higher dimensions works in basically the
same manner, and, for most generic quantum properties,
extensions to more general fields are straightforward in
principle [25,32,33].

A. Field modes in Minkowski and diamond coordinates

We start our analysis by finding an orthonormal set of
field modes adapted to each coordinate system, and follow
the standard approach [25,32,33] to relate the associated
canonical quantizations of the scalar field Φ. For the casual
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diamond, this involves a comparison between the quanti-
zations in Minkowski coordinates and diamond coordinates
via the mapping of Sec. II.
In Minkowski coordinates, the modes of the massless,

minimally coupled scalar field satisfy the Klein-Gordon
wave equation

ð∂2t − ∂
2
xÞΦ ¼ ∂V∂UΦ ¼ 0: ð12Þ

Thus, they involve a complete set of normalized positive-
frequency eigenfunctions of the Killing vector ∂t, including
left- and right-moving Minkowski modes [33]

fþ;kðVÞ ¼ ð4πkÞ−1=2e−ikV; f−;kðUÞ ¼ ð4πkÞ−1=2e−ikU;
ð13Þ

respectively. As usual, we simplify Eqs. (12) and (13) by
the use of the Minkowski null coordinates U ¼ t − x and
V ¼ tþ x [cf. Eq. (7)].
Similarly, in diamond coordinates ðη; ξÞ, the Klein-

Gordon equation reads

ð∂2η − ∂
2
ξÞ ¼ ∂v∂uΦ ¼ 0; ð14Þ

with the diamond null coordinates v ¼ ϵðηþ ξÞ and u ¼
ϵðη − ξÞ [from Eq. (7)], where we label the two different
regions with ϵ ¼ þ≡ int for the diamond interior D and
ϵ ¼ −≡ ext for the relevant part of diamond exterior D̄.
This labeling originates with Eq. (5); as pointed out in
Sec. II B, these definitions are extended to all regions of
the global diamond spacetime using four separate coor-
dinate patches. In these coordinates, Eq. (14) takes
basically the same form as Eq. (12) due to conformal
invariance; this can also be established directly from the
metric (Appendix A). The corresponding normalized

positive-frequency eigenfunctions of the Killing vector
∂ϵη are generally gσ;ωðuσÞ ¼ 1ffiffiffiffiffiffi

4πω
p e−iωuσ, where the varia-

bles uσ are chosen separately in each region of diamond
spacetime and ω stands for the diamond frequencies.
Then, the diamond modes, restated in terms of the
Minkowski null variables, Eq. (7), are defined with
separate support in each region D and D̄ according to

gðϵÞσ;ωðUσÞ ¼
1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωuσðUσÞθðϵðα − jUσjÞÞ; ð15Þ

where θðzÞ is the Heaviside theta function. Explicitly,
using Eqs. (9) and (10), the left- and right-moving
diamond modes, with support in the interior region D,
become

gðintÞþ;ω ðVÞ ¼
1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωvðVÞθðα − jVjÞ

¼ 1ffiffiffiffiffiffiffiffiffi
4πω

p
�
1þ V=α
1 − V=α

�
−iωα=2

θðα − jVjÞ; ð16Þ

and

gðintÞ−;ω ðUÞ ¼ 1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωuðUÞθðα − jUjÞ

¼ 1ffiffiffiffiffiffiffiffiffi
4πω

p
�
1þ U=α
1 −U=α

�
−iωα=2

θðα − jUjÞ: ð17Þ

Similarly, the left- and right-moving diamond modes with
support in the exterior region D̄ are

FIG. 3. Transformation of the Rindler wedges under the conformal map. The right wedge R in purple maps into the interior diamond
D, the left wedge L in red maps into the four regions of D̄, and the gray and yellow past P and future F wedges map into the
corresponding color-coded regions of ¯̄D.
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gðextÞþ;ω ðVÞ ¼ 1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωv̄ðVÞθðjVj − αÞ

¼ 1ffiffiffiffiffiffiffiffiffi
4πω

p
�
V=αþ 1

V=α − 1

�
iωα=2

θðjVj − αÞ; ð18Þ

and

gðextÞ−;ω ðUÞ ¼ 1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωūðUÞ

¼ 1ffiffiffiffiffiffiffiffiffi
4πω

p
�
U=αþ 1

U=α − 1

�
iωα=2

θðjUj − αÞ: ð19Þ

The quantization of the field can be carried out by
following the canonical procedure in Minkowski and
diamond coordinates. This is reviewed in Appendix C
along the calculation of the Bogoliubov coefficients that
transform between Minkowski modes and diamond modes.
In the next subsection, we generalize the analytic continu-
ation technique originally developed by Unruh for Rindler
spacetime [28], which generates “Unruh-diamond modes”
by an extension of the diamond modes that only includes
positive frequencies. This provides specific information
about the vacuum that is critical for the thermal interpre-
tation and entanglement properties of causal diamonds.

B. Unruh-diamond modes and the relation
between the vacua

The Bogoliubov coefficients provide a systematic way of
relating the different vacuum states (see Appendix C). It is

possible to consider a simplified form of these trans-
formations via the construction of linear combinations of
diamond modes that are Minkowski-positive frequency.
Effectively, such modes model the Minkowski vacuum and
permit an efficient way of writing the general expressions
needed for questions of relativistic quantum information.
This technique consists in the use of analytical continua-
tions of the diamond modes with complex-plane properties
(in the variables Uσ) that guarantees their positive fre-
quency of nature with respect to the Minkowski vacuum.
Let us first consider the modes in region D inside the

causal diamond, as given in Eqs. (16) and (17), and those in
region D̄ outside the causal diamond, as given in Eqs. (18)
and (19). Each one of these can be analytically continued to
the complementary region by using the same approach
pioneered by Unruh for acceleration radiation in Rindler
spacetime [28].
As is the case of Rindler spacetime, the justification for

this method is based on the fact that, when covering a
limited region of the diamond spacetime with a coordinate
patch, we have to perform a mandatory analytic continu-
ation if the solution were to be valid globally. However,
because of the functional form involved, Eqs. (16)–(19),
these are multivalued functions and a specific choice of
branch needs to be made. In order to relate the diamond
modes with the global Minkowski modes, what is needed is
the particular analytic continuation that only consists of
positive frequencies. Then, the positive-frequency analytic
continuations of the internal (starting with region D) and
external modes (starting with region D̄) are the Unruh-
diamond modes,

hðintÞσ;ω ðUσÞ ¼ ð1 − e−πωαÞ−1=2
h
gðintÞσ;ω ðUσÞ þ e−πωα=2gðextÞ�σ;ω ðUσÞ

i
;

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinhðπωα=2Þp h

eπωα=4gðintÞσ;ω ðUσÞ þ e−πωα=4gðextÞ�σ;ω ðUσÞ
i
; ð20Þ

and

hðextÞσ;ω ðUσÞ ¼ ð1 − e−πωαÞ−1=2
h
gðextÞσ;ω ðUσÞ þ e−πωα=2gðintÞ�σ;ω ðUσÞ

i
;

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinhðπωα=2Þp h

eπωα=4gðextÞσ;ω ðUσÞ þ e−πωα=4gðintÞ�σ;ω ðUσÞ
i
: ð21Þ

In what follows, as is common in the literature of
relativistic quantum information [16,18,33], we will para-
metrize these linear combinations, which model the
Minkowski vacuum and are inequivalent to the original
diamond modes, via the variable

rω ¼ tanh−1ðe−παω=2Þ: ð22Þ

Then

hðintÞσ;ω ¼ cosh rωg
ðintÞ
σ;ω þ sinh rωg

ðextÞ�
σ;ω ;

hðextÞσ;ω ¼ cosh rωg
ðextÞ
σ;ω þ sinh rωg

ðintÞ�
σ;ω : ð23Þ

The transformation of field operators can be directly
obtained by inversion of the modes (23) to give the same
generic field operator Φ; then
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cðintÞσ;ω ¼ cosh rωb
ðintÞ
σ;ω − sinh rωb

ðextÞ†
σ;ω ;

cðextÞσ;ω ¼ cosh rωb
ðextÞ
σ;ω − sinh rωb

ðintÞ†
σ;ω : ð24Þ

These linear combinations are effective Bogoliubov
transformations between the diamond modes and
the appropriate linear combinations of Minkowski pos-

itive-frequency modes hðintÞσ;ω and hðextÞσ;ω . With the given

effective Bogoliubov coefficients, αðeffÞω ¼ cosh rω ¼
½2 sinhðπωα=2Þ�−1=2eπωα=4 and βðeffÞω ¼ sinh rω ¼ ½2 sinh×
ðπωα=2Þ�−1=2e−πωα=4, a straightforward formal argu-

ment shows that the coefficient ratio βðeffÞω =αðeffÞω ¼
sinh rω= cosh rω ¼ tanh rω ¼ e−πα yields a Boltzmann

factor ðtanh rωÞ2 ¼ jβðeffÞω =αðeffÞω j2 ¼ e−βω for a thermal
state. For example, this can be shown rigorously by
writing the Unruh-diamond vacuum j0iU , which satisfies

cðintÞ�;ω j0iU ¼ 0 and cðextÞ�;ω j0iU ¼ 0 ð25Þ

for all diamond frequencies ω, in terms of the diamond
vacuum j0iD of Eq. (C8); this is a straightforward
consequence of field-operator relations (24), which imply

]55,56 ]

j0iU ¼ Z−1=2
Y
σ;ω

exp

�
e−παω=2

X
σ¼�

bðintÞ†σ;ω bðextÞ†σ;ω

�
j0iD; ð26Þ

¼ Z−1=2
Y
σ;ω

X∞
n¼0

e−nπαω=2jnσ;ωiðintÞ ⊗ jnσ;ωiðextÞ; ð27Þ

where Z ¼ ð1 − e−πωαÞ1=2. Then, the corresponding vac-
uum reduced density matrix ρD of the interior diamond
region D can be derived by tracing out the exterior degrees
of freedom (of region D̄); the result is

ρD ¼ TrD̄ðj0iUh0jÞ ¼ Z−1e−παH; ð28Þ

where H ¼Pσ¼�
R
dωωbðintÞ†σ;ω bðintÞσ;ω represents a mixed

state of thermal nature with an inverse temperature
parameter β ¼ πα that yields the diamond tempera-
ture, Eq. (2).
It should be noted that Eq. (27), leading to a thermal

density matrix (28), is a two-mode squeezed state of the
field, involving only two nonvacuum modes. Moreover, it
has the simple product structure,

j0iU ¼ ⊗
j
j0jiU ; ð29Þ

where the modes are labeled by the multi-index j ¼ ðσ;ωÞ,
and, as in Eq. (27),

j0σ;ωiU ¼ 1

cosh rω

X∞
n¼0

tanhnrωjnσ;ωiðintÞ ⊗ jnσ;ωiðextÞ: ð30Þ

Then, from the Unruh-diamond vacuum state (30), apply-
ing the creation operators, the one-particle Unruh-diamond

states are j1σ;ωiU ¼ cðintÞ†σ;ω j0σ;ωiU , whence

j1σ;ωiU ¼ 1

cosh2rω

X∞
n¼0

tanhnrω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ

p
jðnþ 1Þσ;ωiðintÞ

⊗ jnσ;ωiðextÞ; ð31Þ

and so on. Equations (30) and (31) spell out the thermal and
two-squeezed nature of the vacuum and are key ingredients
for the description of the state used for entanglement
degradation in the next section.

IV. ENTANGLEMENT IN CAUSAL DIAMONDS:
RELATIVISTIC BIPARTITE SYSTEMS

In this section, we consider the standard setup for the
analysis of entanglement in different frames. In this
approach, a scalar field is initially prepared in a state

1ffiffiffi
2

p ðj0jiM ⊗ j0j0 iM þ j1jiM ⊗ j1j0 iMÞ; ð32Þ

which is maximally entangled from the perspective of any
two inertial observers. This is a two-mode entangled state
of the Bell-state form in Eq. (1). In this initial field
configuration, described in the inertial Minkowski basis
M, all the modes except two, labeled by the multi-indices
j ¼ ðσ; kÞ and j0 ¼ ðσ0; k0Þ, are in the vacuum state. The
states j0jiM and j1jiM are the Minkowski vacuum and
one-particle excited states of the mode labeled by j. Here,
the global Minkowski-Fock vacuum state, defined by the
absence of particle excitations of all the modes, is the tensor
product j0iM ¼⊗σ;k j0σ;kiM.
We can consider the traditional operational procedure in

which the modes are probed by one inertial observer, Alice
(A), with a detector sensitive only to mode j; and another
observer, Bob (B), with a detector sensitive only to mode j0.
In this manner, we can focus only on the modes j and j0,
formally tracing out all the other vacuum modes. For a
noninteracting field, these modes do not mix; thus, the
reduced state (32) labeled by j and j0 is a pure state. In the
analysis below, we will only consider the physics generated
by such reduced states.

A. Entanglement description in causal diamonds: States
and density matrices

Our goal is to find the degree of entanglement when a
state of the form (32) is described by diamond observers.
The essence of the effect can be analyzed in the simplest
setting, when the first observer, Alice (A), remains inertial,
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and another observer, Dave (D), is restricted to a causal
diamond. We can then replace the nontrivial two-mode
entangled Bell state (32) by the corresponding state

jΨi ¼ 1ffiffiffi
2

p ðj0jiM ⊗ j0j0 iU þ j1jiM ⊗ j1j0 iUÞ; ð33Þ

where the Unruh-diamond basis U is used for the second
observer, Dave. Correspondingly, the Dave modes j0 ¼
ðσ;ω0Þ involve the diamond frequencies ω0. The key point
is that the Minkowski and Unruh-diamond bases share the
same vacuum j0iM ¼ j0iU ¼⊗σ;ω j0σ;ωiU , which is differ-
ent from the proper diamond vacuum. This is due to the
analytic-continuation structure of the Unruh-diamond
modes via Eqs. (20) and (21). This analytic structure
guarantees that, while the Minkowski modes are a con-
tinuous infinite superposition of diamond modes, the
transformation from the Unruh-diamond basis U to the
proper diamond basis D only involves one mode at a time,
but including both the interior and exterior regions. Thus,
the transformation between the states with respect to U and
D can be derived from the Bogoliubov transformation (24),
giving Eqs. (27) and (30) for the Unruh-diamond vacuum,
and (31) for the one-particle states. This assignment is
subtle, and the replacement is justified for scalar fields with
the single-mode approximation for uniformly accelerated
observers, as discussed in Ref. [57]. Here, we will use a
similar approach for diamond observers, for which the
conformal mapping preserves the basic setup.
In terms of the canonical observers defined above, the

states j0iA ≡ j0iM and j0iD ≡ j0iU are the vacuum states
for Alice and Dave, respectively. In the state jΨi, defined by
Eq. (33), two arbitrary inertial observers would observe
maximal correlations, but these correlations are altered
(degraded) when perceived by a diamond observer. More
generally, this description captures the structure of a
bipartite system in which one of the observers cannot
access the information in a certain region of spacetime.
In effect, even though we set up the state with two observers,
the second observer, Dave, corresponding to region D, is
entangled with region D̄, according to Eqs. (30) and (31).
Using the same notations for the observers and regions
should pose no ambiguity and highlight their one-to-one
correspondence, but we will label the observers with italics
(D and D̄) and the regions with roman characters (D and D̄).
In conclusion, for the physical description of the setup
defined by Eq. (33), the density matrix can be written down
for the total system formed by the inertial observer, Alice;
the diamond observer, Dave; and a third, hypothetical
observer in the exterior diamond region, AntiDave. Thus,
the states in the Minkowski/Unruh-diamond basis are states
of a tripartite system ðA;D; D̄Þ. From the tripartite system,
one can define the bipartition Alice-Dave ðA;DÞ and,
similarly, the bipartition Alice-AntiDave ðA; D̄Þ. The subtle
changes in the nature of entanglement arise from the

restriction of information available to one observer at a
time, in each of the bipartitions, as we describe next.
The tripartite density matrix

ρADD̄ ¼ jΨihΨj ð34Þ

represents the total state of the system. From the viewpoint
of the observers Alice and Dave, i.e., for the bipartite
system ðA;DÞ, a partial trace is needed to exclude the
degrees of freedom of AntiDave. This procedure is for-
mally the same as the one involved in the derivation of
Eq. (28), but now for the composite system that also
includes Alice. Clearly, as in the results described in
Eq. (28), the outcome is a mixed thermal state, which
both encodes the thermal nature of the diamond and leads
to an alteration of the entanglement properties. Specifically,
tracing out the total density matrix (34), with respect to the
exterior diamond degrees of freedom of AntiDave, leads to
the Alice-Dave reduced density matrix

ρAD ¼ TrD̄ðρADD̄Þ ¼ TrD̄ðjΨihΨjÞ; ð35Þ

which can be expanded in terms of the tensor product of
Alice’s and Dave’s states. This can be done as shown
below, using the shorthand notation jmj; nj0 i ¼ jmjiM ⊗
jnj0 iðintÞ for the Alice-Dave states, involving only the tensor
products of Minkowski and interior-diamond regions. This
assumes modes j ¼ ðσ; kÞ and j0 ¼ ðσ;ω0Þ for a particular
propagation direction σ and frequency k (with respect to the
basis M) and ω0 [with respect to the interior diamond
basis DðintÞ ≡ ðintÞ]. Then, the Alice-Dave reduced density
matrix ρAD is given by

ρAD ¼ 1

2cosh2rj0

X∞
n¼0

tanh2nrj0ϱ
ðnÞ
AD; ð36Þ

where

ϱðnÞAD ¼ j0j; nj0 ih0j; nj0 j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þp

cosh rω0

h
j0j; nj0 ih1j; ðnþ 1Þj0 j

þ j1j; ðnþ 1Þj0 ih0j; nj0 j
i

þ ðnþ 1Þ
cosh2rω0

j1j; ðnþ 1Þj0 ih1j; ðnþ 1Þj0 j: ð37Þ

Of course, a similar treatment could be carried out for the
bipartite Alice-AntiDave subsystem, though this is not
directly useful for the description of the physics of a finite-
lifetime observer.
Finally, the reduced density matrices ρA and ρD for the

individual systems A and D (which will be used in the next
subsection) can be derived by tracing out the complemen-
tary states in ρAD (Minkowski and diamond interior,
respectively): ρD ¼ TrAðρADÞ and ρA ¼ TrDðρADÞ [and in
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the case of ρA, most easily by using the initial state (33) or
density (34), and tracing out the states associated with the
diamond-Unruh basis]. As a result,

ρA ¼ 1

2
ðj0jiMMh0jj þ j1jiMMh1jjÞ; ð38Þ

where the 0- and 1-particle states correspond to the
Minkowski mode j ¼ ðσ; kÞ and

ρD ¼ 1

2cosh2rj0

X∞
n¼0

tanh2nrj0
�
1þ n

sinh2rj0

�
jnj0 iðintÞðintÞhnj0 j;

ð39Þ

with n-particle states corresponding to the diamond
mode j0 ¼ ðσ;ω0Þ.

B. Quantum information entanglement
measures in causal diamonds

We are now ready to analyze the relevant quantum
entanglement between an inertial and a diamond observer,
i.e., for the bipartite Alice-Dave subsystem. For this
purpose, we will assume that the two modes j and j0 in
Eqs. (37)–(39) are specified as above. Then, to simplify the
notation, we will remove the mode labels in all the
equations—and it is understood that the parameter r≡
rω0 only involves one diamond frequency ω0.
In principle, a complete understanding of the physics of

the Alice-Dave subsystem is contained in the reduced
density matrix (36) and (37). However, the derivation of
specific measures that quantify this entanglement is not
straightforward. Indeed, there is a large body of literature
addressing this fundamental problem in quantum informa-
tion theory [1,58–62], centered on entanglement and
correlation measures—see details below including specific
probes. In what follows, three standard techniques are used
in this context, among the many other probes available [63]:
(i) the Peres-Horodecki criterion, (ii) logarithmic negativ-
ity, and (iii) quantum mutual information. Specifically, this
treatment is similar to the analyses of entanglement
degradation for accelerated observers [16], more general
accelerated motions [64], and in the presence of black hole
horizons [18].

1. Partial transpose and Peres-Horodecki criterion

The Peres-Horodecki or PPT (positive partial transpose)
criterion [65,66] provides the simplest test for some
aspects of the entanglement properties of a system.
It gives a necessary condition for the joint density matrix
of two quantum mechanical systems A and D to be
separable: that all the eigenvalues of its partial transpose
ρTA
AD be non-negative. The partial transpose (with respect
to subsystem A) [65–67] of a matrix ρAB can be defined
in the tensor product Hilbert space of a bipartite system

AD by the matrix elements hnðAÞ; mðDÞjρTA
ADjkðAÞ; jðDÞi ¼

hkðAÞ; mðDÞjρADjnðAÞ; jðDÞi. Physically, the partial transpose
ρTA
AD corresponds to exchanging the qubits for system A.
Thus, (i) if at least one eigenvalue of the partial transpose
is negative, then the density matrix is entangled; and
(ii) when all the eigenvalues are nonnegative, there is no
distillable entanglement, but bound or nondistillable
entanglement may still exist.
For our bipartite Alice-Dave subsystem, the operator

ρTA
AD can be computed from Eqs. (36) and (37), which
shows that it is represented by an infinite-dimensional
matrix. However, its form is greatly simplified by reducing
it to block form. Simplifying the notation with γn ¼ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
= cosh r and jmðAÞ

j ; nðDÞ
j0 i ¼ jm; ni, the reduced

matrix elements relating orders ðn; nþ 1Þ with respect
to subsystem D read ρðnÞTA ¼ j0; nih0; nj þ γnðj0; nih1; n
þ1j þ j1; nþ 1ih0; njÞ þ γ2nj1; nþ 1ih1; nþ 1j. As this
sequence mixes terms of different orders, a reordering
of the series can be performed such that all the terms
involving orders ðn; nþ 1Þ are hierarchically rewritten in
an infinite series of the form

ρTA
AD ¼ 1

2cosh2r

�
j0; 0ih0; 0j þ

X∞
n¼0

tanh2nrRðnÞ
�
; ð40Þ

where the reduced matrix elementsRðnÞ of order ðn; nþ 1Þ
are 2 × 2 blocks corresponding to the subspace
fj1; ni; j0; nþ 1ig, with

RðnÞ ¼ γ2n−1tanh
−2rj1;nih1;njþ γnðj1;nih0;nþ1j

þ j0;nþ1ih1;njÞþ tanh2rj0;nþ1ih0;nþ1j: ð41Þ

From Eq. (41), the eigenvalues can be straightforwardly
computed in pairs

λðnÞ� ¼ tanh2nr
4cosh2r

�
n

sinh2r
þ tanh2r�

ffiffiffiffiffiffi
Zn

p �
; ð42Þ

where

Zn ¼
�

n
sinh2r

þ tanh2r

�
2

þ 4

cosh2r
: ð43Þ

Equation (40) shows that there is also a first eigenvalue
λ0 ¼ 1=2 cosh2 r corresponding to the ground state. The
form of Eqs. (42) and (43) implies that there is a negative
eigenvalue λðnÞ− for any finite value of the variable r. As r is
defined via the half-size α ¼ T =2 or lifetime T of the
causal diamond by Eq. (22), there is distillable entanglement
for any finite size of the diamond. [This setup corresponds
to the acceleration a in Rindler spacetime via α ¼ 2=a in the
coordinate chart defined by Eq. (5)]. Furthermore, from
Eq. (22), the parameter r is a decreasing function of α and
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T , with limiting values r ¼ 0 and r ¼ ∞. Now, the negative
value of λðnÞ− is reduced as r increases; and in the limit of
zero lifetime, as r → ∞, λðnÞ− asymptotically approaches
zero, yielding no distillable entanglement.

2. Entanglement measures and logarithmic negativity

While the PPT criterion does give some insight into the
entanglement properties of a composite system, what is
really needed is a specific entanglement measure. Such
quantity is best established axiomatically via the concept of
an entanglement monotone [68], EðρÞ, which is defined to
be the following: (i) a convex mapping from density
matrices to nonnegative real numbers, which (ii) does
not increase on average under local operations and classical
communication [69]. One commonly used measure is
provided by the logarithmic negativity ENðρÞ [70,71].
For a bipartite state, the logarithmic negativity is defined by

N AD ≡ ENðρADÞ ¼ log2kρTA
ADk1; ð44Þ

where ρTA
AD is the partial transpose and kMk1 ≡ Tr½

ffiffiffiffiffiffiffiffiffiffiffi
M†M

p
�

is the trace norm of the matrix M [72], i.e., the sum of
the absolute value of its eigenvalues, so that N AD ¼
log2 ð

P
j jλjjÞ (summed over all the eigenstates). The

logarithmic negativity satisfies a number of desirable
properties, both required by the physics and computa-
tionally efficient. First and most importantly, it is an
entanglement monotone [70,71], as defined above.
Second, it is an additive measure, unlike the ordinary
negativity NAD ¼ ðkρTA

ADk1 − 1Þ=2. Third, it provides an
upper bound on the so-called distillable entanglement
EDðρADÞ [70,73]; in particular, whenN AD ¼ 0, there is no
distillable entanglement. And finally, it has additional
convenient features, including that it also provides an
upper bound to teleportation capacity.
For our bipartite Alice-Dave subsystem, from

Eqs. (40)–(43), the relevant sum of the absolute-value
eigenvalues has the form kρTA

ADk1 ¼ λ0 þ
P

n;� jλðnÞ� j, so
that the logarithmic negativity becomes

N AD ¼ log2

�
1

2 cosh2 r
þ Σ

�
; ð45Þ

where

Σ ¼
X∞
n¼0

tanh2nr
2cosh2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n

sinh2r
þ tanh2r

�
2

þ 4

cosh2r

s
: ð46Þ

The logarithmic negativity function N ADðrÞ given by
Eqs. (45) and (46) is plotted in Fig. 4. It is monotonically
decreasing with respect to r, as can be easily seen from its
functional form. It starts with a maximumN ADð0Þ ¼ 1 for
α ¼ T =2 ¼ ∞ (an unlimited lifetime), as it is to be

expected for an unbound system in Minkowski spacetime.
Specifically, the unit value is required by a maximally
entangled state of the form (32)—a pure state of maximally
entangled individual states of systems A and D, initially
prepared as such from the perspective of inertial observers.
Then, N ADðrÞ exhibits a gradual reduction towards the
value limr→∞ N AD ¼ 0 for the opposite limit of a vanish-
ing diamond, α ¼ 0, i.e., zero lifetime, which most
dramatically displays the entanglement degradation prop-
erty. In effect, this vanishing logarithmic negativity yields
no distillable entanglement due to the degradation of
quantum correlations. These results are formally identical
to the corresponding conclusions for uniformly accelerated
observers (via a ¼ 2=α).
In conclusion, the behavior of the logarithmic negativity

N ADðrÞ definitively shows the emergence of entanglement
degradation that increases inversely with the lifetime or
diamond size—and this is associated with the restriction of
causal horizons that limit the diamond.

3. Von Neumann entropy and mutual information

A standard measure of correlations in a system can be
established in terms of information theory measures through
entropy functions. At the quantum level, this is implemented
with the von Neumann entropy S ¼ −Tr½ρ log2ðρÞ�, where
the base-two logarithm is commonly used in quantum
information theory [1].
For a pure state of a bipartite system (composite system

with two subsystems A and B), the individual entropies SA
and SB can be used to measure the entanglement between
their individual states—this is the well-known entanglement
entropy (with SA ¼ SB), which provides the relevant
parameters for its optimal use under local operations and
classical communication [69]. However, the entanglement
entropy fails to be applicable for mixed states with the same
desirable properties. Instead, a preferred measure to assess
the correlations of a mixed state is the quantum mutual

FIG. 4. Logarithmic negativity as a function of r, showing a
monotonic degradation of entanglement as the lifetime T ¼ 2α is
reduced.
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information IðρABÞ≡ IAB [74–78]. This is defined as the
entropy difference IðρABÞ≡ IAB ¼ SA þ SB − SAB, which
is also the same as the relative entropy between the
combined state ρAB and the associated pure tensor-product
state, i.e., IðρABÞ ¼ SðρABkρA ⊗ ρBÞ. Thus, IðρABÞ is a
nonnegative quantity that gives a distance measure of the
state ρAB away from being a product state. Then, it
conceptually measures the amount of information that
subsystem A has about subsystem B (and reciprocally),
thereby describing, for the combined system AB, the
behavior of all classical and quantum correlations. [77]
(A mixed state of AB does include classical correlations,
unlike the entanglement-only correlations of a pure state.)
We now proceed with the analysis of the mutual infor-

mation for the Alice-Dave subsystem. From Eqs. (36)–(39),
the relevant von Neumann entropies are as follows. For the
combined Alice-Dave subsystem, the joint entropy is

SAD ¼ −
1

2cosh2r

X∞
n¼0

tanh2nr

�
1þ nþ 1

cosh2r

�

× log2

�
tanh2nr
2cosh2r

�
1þ nþ 1

cosh2r

��
; ð47Þ

for the subsystem of the inertial observer, Alice, the
individual entropy is

SA ¼ 1; ð48Þ

and for the subsystem of the diamond observer, Dave, the
individual entropy is

SD ¼ −
1

2cosh2r

X∞
n¼0

tanh2nr

�
1þ n

sinh2r

�

× log2

�
tanh2nr
2cosh2r

�
1þ n

sinh2r

��
: ð49Þ

Therefore, the mutual information for the combined sub-
system AD is given by

IAD ¼ SA þ SD − SAD

¼ 1 −
1

2
log2ðtanh2rÞ −

1

2cosh2r

X∞
n¼0

tanh2nrI ðnÞ
AD; ð50Þ

where

I ðnÞ
AD ¼

�
1þ n

sinh2r

�
log2

�
1þ n

sinh2r

�

−
�
1þ nþ 1

cosh2r

�
log2

�
1þ nþ 1

cosh2r

�
: ð51Þ

The mutual information IAD given by Eqs. (50) and (51) is
plotted in Fig. 5. It can be used to assess the correlations,

including information about entanglement. From the strong
subadditivity entropy property, with Eq. (48), it is required to
satisfy the bound IAD ≤ 2. Most importantly, and similarly

to the logarithmic negativity (45) and (46), the function I ðnÞ
AD

is monotonically decreasing with respect to the parameter r,
and makes a smooth transition for the system AD between
the following: (i) a bipartite pure and maximally entangled
state (r ¼ 0, with SAD ¼ 0, SA ¼ 1, SD ¼ 1) and (ii) a
bipartite entangled and maximally mixed state (r ¼ ∞, with
SAD ¼ 1, SA ¼ 1, SD ¼ 1). These limiting cases are pre-
dictable: when r ¼ 0, this corresponds to infinite lifetime
(i.e., unrestricted Minkowski spacetime, or diamond of size
α ¼ ∞, with zero temperature), and the mutual information
is at the maximum value IAD ¼ 2; and in the opposite
limiting case, when r → ∞, corresponding to zero lifetime
(i.e., a diamond of zero size, α ¼ 0, with infinite temper-
ature), all the subsystems under consideration are maximally
mixed, yielding a mutual information IAD ¼ 1. The latter
limit of the bipartite system AD gives a state with zero
distillable entanglement, where only bound entanglement
and purely classical correlations are left. These trends can be
understood in terms of the concept of distributed entangle-
ment [79]; for the combined system ADD̄, the trade-off of
entanglement by pairs reduces to IAD ¼ 2 − IAD̄ ¼
1þ SD − SD̄ (as SAD ¼ SD̄ due to the initial state being
pure), and the ensuing entanglement degradation ofAD from
r ¼ 0 to r ¼ ∞ is related to the entanglement sharing
property [80] of the global tripartite system.
In summary, we have described various measures of

entanglement for the diamond system as detected by a
finite-lifetime observer. These results show, via the func-
tions N AD and SAD, how the degradation of entanglement
increases monotonically as the lifetime is reduced from
infinity to zero, corresponding to the transition from an
ordinary Minkowski spacetime to a system behaving
thermally with infinite temperature.

FIG. 5. Mutual information as a function of r, showing a
monotonic degradation of entanglement as the lifetime T ¼ 2α is
reduced.
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V. CONCLUSIONS AND OUTLOOK

In this paper, we generalized the approach to define
diamond coordinates, which extends existing work in the
literature. Moreover, we have derived the entanglement
degradation perceived by finite-lifetime observers,
described by their restricted access to a causal diamond.
In addition to elucidating a consistent realization of the
conformal mapping used to describe the causal diamond,
we have showed the various technical arguments that
display its fundamental thermal character. In turn, thermal-
ity has a direct impact upon the diamond’s entanglement,
with the most important result of the present work: this
quantum resource is subject to degradation.
While our derivation shows that, for massless scalar fields,

there is reduction of the maximal entanglement initially
perceived by inertial observers, additional calculations
would help provide robust predictions for this generic
phenomenon. Possible generalizations, in progress, are the
addition of mass to the scalar field, the corresponding
behavior of fermionic fields [17,19], and a broader analysis
with wave packets and the validity of the single-mode
approximation [57]. Moreover, it would be useful to know
how entanglement would be affected if finite lifetime were
combined with uniform acceleration (Rindler) [16], arbitrary
accelerated motions [64], and black hole horizons [18].
These are different manifestations of the observer-dependent
nature of relativistic entanglement [23]. It is remarkable that
the entanglement resources are perceived differently in the
presence of horizons, generating a frame-dependent out-
come. Clearly, as it has been suggested, a relativistically
covariant notion of entanglement is needed, along with a
more general notion of quantum correlations [23], and this
would be a natural framework for all quantum-information
questions about causal diamonds. In addition to its con-
ceptual value for the completeness and consistency of the
relativistic theory, such framework would yield practical
results for the realization of quantum computational proto-
cols involving observers in arbitrary configurations,
motions, and restrictions in spacetime.
The thermal behavior of causal diamonds has been

studied previously, but a complete understanding of the
connection between thermal effects, horizons, and quantum
effects still remains elusive. A tunneling approach [81–83]
and path integral treatments of conformal quantum
mechanics (e.g., see [84]) for the analysis of time evolution
within a causal diamond may be relevant for many gain
insights on these connection and to generalizations men-
tioned in the paragraph above. It would also be worthwhile
to study the effect of superpositions of causal diamonds
(e.g., see [85,86]) in the entanglement of scalar field modes.
We are currently exploring connections between instabil-
ities and thermal effects in causal diamonds, which will be
reported elsewhere.
Finally, experimental results on finite-lifetime observers

could lead to useful tests of this relativistic quantum

information framework. Some estimates of the thermal
aspects of causal diamonds, interpreted with energy-scaled
detectors, and involving time-dependent Stark or Zeeman
effects have been mentioned in the literature [43], but a
more thorough investigation of the experimental setups is
in order.
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APPENDIX A: DIAMOND GEOMETRY—
GENERAL FRAMEWORK FOR CONFORMAL
MAPPINGS AND DIAMOND COORDINATES

This appendix provides a generalization of the procedure
of Ref. [46], including supporting background and calcu-
lations for Sec. II, with an outline of some subtleties and the
generalized formulas.
The composite conformal mapping between Rindler and

Minkowski coordinates for the causal diamond (6) consists
of the two steps spelled out in Sec. II:

(i) using appropriate combinations of conformal trans-
formations [53]; and

(ii) covering the Rindler wedge R with a Rindler
coordinate chart ðη; ξÞ.

The main ingredients for step (i) are special conformal
transformations KðρÞ, dilatations ΛðλÞ, and translations
TðαÞ. The dilatation transformation ΛðλÞ rescales the
Rindler coordinates ðt̃; x̃Þ to x0μ ¼ λx̃μ; at the level of the
metric (see below), this implies a quadratic rescaling with
λ2. The special conformal transformation KðρÞ with
parameter ρ ¼ 1=α (with the notation of Ref. [46]) brings
the infinite Rindler wedge to a finite diamond of size 2α
centered at ð0; 1=2ρÞ in the ðt; xÞ plane. This is given by the
standard definition [53]

ðt0; x0Þ ⟶KðρÞ ðt00; x00Þ∶ x00μ ¼ x0μ − bμðx0 · x0Þ
1− 2ðb · x0Þ þ ðb · bÞðx · x0Þ

ðA1Þ

with bμ ¼ ð0;−ρÞ being the special-conformal vector, here
restricted to (1þ 1)-dimensional spacetime; the generali-
zation to higher dimensions can be implemented trivially
[43,47]. Translations TðαÞ are defined via TðαÞx ¼ xþ α.
The Minkowski inner product is performed with signature
ð−;þÞ for the ordering of time and spatial coordinates.

ENTANGLEMENT DEGRADATION IN CAUSAL DIAMONDS PHYS. REV. D 109, 105003 (2024)

105003-13



1. First step: Conformal mapping

For the first step, we will use a conformal mapping given
by the compositionMðα; λÞ ¼ Tð−αÞ∘Kð1=2αÞ∘ΛðλÞ. This
involves first a dilatation transformation ΛðλÞ, i.e., a
rescaling of the Rindler coordinates ðt̃; x̃Þ with a scaling
factor λ; and is followed in a sequence by the special
conformal transformation Kðρ ¼ 1=2αÞ, and a translation
Tð−αÞ defined in the usual way to place the diamond
centered at the spacetime origin.
After performing the transformation Mðα; λÞ, the

Minkowski coordinates ðt; xÞ of the diamond region D
are the conformal image of the Minkowski coordinates
ðt̃; x̃Þ of the right Rindler wedge, given by

ðt̃; x̃Þ ⟶
Mðα;λÞ ðt; xÞ∶ t

α
¼ 2t̃=α̃

Fþðt̃=α̃; t̃=α̃Þ
;

x
α
¼ −

Nðt̃=α̃; t̃=α̃Þ
Fþðt̃=α̃; t̃=α̃Þ

; ðA2Þ

with its inverse mappingM−1ðα; λÞ ¼ Λ−1ðλÞ∘K−1ð1=2αÞ∘
T−1ð−αÞ ¼ Λð1=λÞ∘Kð−1=2αÞ∘TðαÞ being

ðt; xÞ ⟶
M−1ðα;λÞðt̃; x̃Þ∶ t̃

α̃
¼ 2t=α

F−ðt=α; t=αÞ
;

x̃
α̃
¼ Nðt=α; t=αÞ

F−ðt=α; t=αÞ
; ðA3Þ

where, for both types of spacetime coordinates, ðt; xÞ and
ðt̃; x̃Þ, the functions

F�ðt=γ; x=γÞ ¼ ðx=γ � 1Þ2 − ðt=γÞ2
and Nðt=γ; x=γÞ ¼ 1 − ðx=γÞ2 þ ðt=γÞ2 ðA4Þ

are defined. In Eq. (A4), γ ¼ α; α̃ are the basic scale units in
diamond and Rindler spacetimes, respectively; and the
latter is given by

α̃ ¼ 2α

λ
: ðA5Þ

The definition of the basic functions F�ðt=γ; x=γÞ and
Nðt=γ; x=γÞ of Eq. (A4) is due to the form of the special
conformal transformation (A1). In particular, for the trans-
formation x̃μ ⟶ xμ, the numerator in Eq. (A1) is
Fþðt0=γ; x0=γÞ, with γ ¼ 2α; the inverse transformation
would define a denominator F−ðt00=γ; x00=γÞ, and
Nðt0=γ; x0=γÞ corresponds to the x component (μ ¼ 1) in
both cases. However, because of the dilatation factor λ,
when x0μ ¼ λx̃μ, for the transformation x̃μ ⟶ xμ, these
functions, when written in terms of the original
Minkowskian coordinates of Rindler spacetime, take the
form

F̃þ ≡ Fþðt̃=α̃; x̃=α̃Þ; Ñ ≡ Nðt̃=α̃; x̃=α̃Þ; ðA6Þ

where α̃ ¼ γ=λ ¼ 2α=λ. As a result, after performing a final
translation Tð−αÞ to place the diamond centered at the
spacetime origin, Eqs. (3) and (A2) are established. A
similar analysis leads to the functions F− ≡ F−ðt=α; x=αÞ
and N ≡ Nðt=α; x=αÞ for the inverse transformation
xμ ⟶ x̃μ, thus establishing Eqs. (4) and (A3).
Finally, using the light-cone variables (7), the transitional

transformation equations (A2)–(A5) can be rewritten with

F�ðt=γ; x=γÞ ¼ ð1þ U�=γÞð1 −U∓=γÞ
and Nðt=γ; x=γÞ ¼ 1þ ðU=γÞðV=γÞ; ðA7Þ

where γ ¼ α; α̃ for F∓; and the corresponding types of
spacetime coordinates, ðt; xÞ and ðt̃; x̃Þ, along with their
associated light-cone variables U� and Ũ� should be used.
In particular, for the transformation xμ ⟶ x̃μ, the generic
Eqs. (A7) lead to

t̃
α̃
¼ U=αþV=α
ð1þU=αÞð1−V=αÞ ;

x̃
α̃
¼ 1þ ðU=αÞðV=αÞ
ð1þU=αÞð1−V=αÞ ;

ðA8Þ

whence the Rindler light-cone variables ŨðϵÞ
σ ¼ ϵðt̃þ σx̃Þ

take values according to

ŨðϵÞ
σ

α̃
¼ σ

�
1þ UðϵÞ

σ =α

1 −UðϵÞ
σ =α

�σ

: ðA9Þ

Then, the relation (A9) directly gives Eq. (8) with the
assignments σ ¼ �1.

2. Second step: Diamond (Rindler-like) coordinates

In the second step, the diamond coordinates η; ξ∈
ð−∞;∞Þ (and ϵ ¼ �1 for D and D̄, respectively) are
generally defined via

t̃ ¼ κϵ
1

a
eaξ sinhðaηÞ; x̃ ¼ κϵ

1

a
eaξ coshðaηÞ; ðA10Þ

where a is a standard Rindler acceleration parameter and κ
is an arbitrary scale factor. In this analysis, it should be
noted that the sign convention in Eqs. (5) and (A10)
enforces the physical condition that the Rindler Killing
vector ∂η ∝ x̃∂t̃ þ t̃∂x̃ (boost in the x̃ direction), which is
timelike in the Rindler wedges L and R, is future directed in
R, but past directed in region L. Thus, ∂η is opposite ∂t̃ in
the Rindler wedge L [51]. This could be more straightfor-
wardly described by a coordinate ρ∈ ð−∞;∞Þ replacing
ϵeaξ=a above [32], but the use of ξ simplifies the formulas
using light-cone coordinates. Moreover, for the wedges F
and P, the Killing vector ∂η is spacelike, with a reversal of
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the roles of spatial and temporal coordinates. Finally, these
standard assignments of Rindler spacetime are conformally
mapped into diamond spacetime via Eq. (A2).
In addition, Eq. (A10) implies that

ŨðϵÞ
σ

α̃
¼ δσϵ exp ½σϵauðϵÞσ �; ðA11Þ

where

δ ¼ κλ=ð2aαÞ ðA12Þ

is dimensionless. Combining these equations, the relation
between light-cone diamond and Minkowski variables
follows:

δσϵ exp ½ϵauðϵÞσ � ¼ 1þ UðϵÞ
σ =α

1 −UðϵÞ
σ =α

: ðA13Þ

In particular, for ϵ ¼ þ (interior diamond region D),

δeav ¼ 1þ V=α
1 − V=α

and δ−1eau ¼ 1þ U=α
1 −U=α

ðA14Þ

(and similar relations for ϵ ¼ −1, with sign changes and
inversions).

3. Constraints on parameters and physical scales

In this section, the analysis of the general mapping
between Rindler spacetime and diamond spacetime has not
yet enforced any specific constraints related to physical
scales. Clearly, this is an important requirement to establish
the final equations. Now, Eq. (A10) includes the scale
factor κ that is needed to adjust the physical dimensions in
diamond space to be compatible with those in Rindler
space. In addition, there has to be a specific relation
between the diamond half-size α and the acceleration
parameter a. In particular, the value of diamond temper-
ature and associated field-theory consequences (including
quantum effects such as entanglement) dependent on these
adjustments, which reduce the equations to the simple form
(5) of Sec. II.
The correct choice of constraints can be justified in a

number of ways. For example, expand the relations in
Eq. (A14) near the center of the diamond and enforce
their mutual compatibility. With the light-cone variables
being zero at the center of the diamond, Eq. (A14) gives
δð1þ avÞ ∼ 1þ 2V=α and δ−1ð1þ auÞ ∼ 1þ 2U=α.
These relations imply that δ ¼ 1 and a ¼ 2=α, which
combined with δ ¼ κλ=ð2aαÞ, lead to the constraints

κ ¼ 4

λ
⇔ δ ¼ 1 and a ¼ 2

α
: ðA15Þ

These constraints precisely fix the value of the acceler-
ation parameter in relation to α and enforce the appropriate
scale relations (between λ and μ) that guarantee the correct
physical dimensions of the transformed spacetimes. As a
result, Eq. (A15) reduces the formulas of this appendix to
those of Sec. II—see next subsection.
Finally, one can verify the consistency of the appropriate

scale relations, κ ¼ 4=λ by examining the metric. First, the
complete composite mapping can be represented by
extending (6), with the labeling of the intermediate vari-
ables:

ðη;ξÞ⟶
Rindler
mapping

Eq:ðA10Þ
ðt̃; x̃Þ⟶dilatation

ΛðλÞ
ðt0;x0Þ ⟶

specialconformal
transf

Kð1=2αÞ
ðt00;x00Þ⟶translation

Tð−αÞ
ðt;xÞ;

ðA16Þ

see Eqs. (A1) and (A10). Then, from the relation between
the following two metrics,

ds2 ¼ −dt2 þ dx2 and ds̃2R ¼ κ2e2aξð−dη2 þ dξ2Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ds2R

;

ðA17Þ

i.e., the standard Minkowskian metric ds2 ¼ gμνdxμdxν

[with metric elements diagð−1; 1Þ] and the rescaled
Rindler-diamond metric ds̃2R, where the usual scaling for
ds2R corresponds to κ ¼ 1. The metric is transformed in the
implementation of the mapping (A16), where two non-
trivial scalings are involved: a simple scaling dilatation with
factor λ and a conformal transformation with conformal
scaling factor Ω, so that

ds2 ¼
�
λ

Ω

�
2

ds̃2R ¼
�
λκ

F̃þ

�
2

ds2R: ðA18Þ

Moreover, the conformal scaling factor is given by

Ω≡ F̃þ ¼ Fþðt̃=α̃; x̃=α̃Þ ¼ ð1 − Ũ=α̃Þð1þ Ṽ=α̃Þ
¼ 4ð1þ U=αÞ−1ð1 − V=αÞ−1; ðA19Þ

where the “tilde functions,” including F̃þ, are given in
Eq. (A6). The rightmost side of Eq. (A19) shows the
approximate value near the center of the diamond (with
diamond coordinates η, ξ ≈ 0) and is Fþ ¼ 4. Therefore,
the Rindler andMinkowski-diamond scales can be assessed
via their spacetime variables ðt; xÞ and ðη; ξÞ (which, in flat
spacetime, correspond to specific lengths), leading to the
scaling constraint λκ=4 ¼ 1 as in Eq. (A15).

4. Final expressions for the coordinate transformations

With the constraints imposed by the physical scaling
conditions, the final expressions for the coordinate trans-
formations take a somewhat simpler form.
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Specifically, the constraints of Eq. (A15) reduce the
formulas involving diamond coordinates ðη; ξÞ, i.e.,
Eqs. (A10)–(A14) to those of Sec. II. In particular,
Eq. (5) is established for the setup of ðη; ξÞ with κ=a ¼ α̃.
Most importantly, this also implies that the composite

mapping ðt; xÞ → ðη; ξÞ, and its inverse, is independent
of the scaling factor λ—this is unlike the transitional
λ-dependent mapping (3). Specifically, this procedure has
to be set up separately for the four different regions of
Rindler spacetime with separate coordinate patches. For the
most relevant diamond regions D and D̄ (ϵ ¼ �), the final
expressions take the form

2η

λ
¼ tanh−1

�
2t=α

Nðt=α; x=αÞ
�
;

2ξ

λ
¼ ln

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Nðt=α; x=αÞ�2 − ð2t=αÞ2

p
F−ðt=α; x=αÞ

!
; ðA20Þ

it should be noticed that one could use a different notation
ðη̄; ξ̄Þ for D̄ (ϵ ¼ −), as in Eq. (10). In addition, for the two
regions in ¯̄D, the reversal t̃ ↔ x̃ can be enforced, yielding
the switch of variables 2t=α ↔ Nðt=α; x=αÞ in Eq. (A20),
with sets of different Rindler parameters. We have thus
covered with diamond coordinates all regions of the
maximally extended diamond spacetime in a scale-
independent manner.
Finally, the corresponding expressions between light-

cone diamond and Minkowski variables can be derived by
recasting Eq. (A13) into the form

ϵ exp ½2ϵuðϵÞσ =α� ¼ 1þ UðϵÞ
σ =α

1 −UðϵÞ
σ =α

; ðA21Þ

which are, of course, also λ independent. Equation (A21)
gives the explicit Eqs. (9) and (10) for ϵ ¼ �1, respectively.

APPENDIX B: DIAMOND GEOMETRY—GLOBAL
PROPERTIES AND CLASSIFICATION OF

CAUSAL REGIONS

It is noteworthy that, in the existing literature, only the
transformation of the right Rindler wedge R to the main
diamond D is fully displayed. However, Eqs. (3) and (4)
cover all of Minkowski space, allowing for a complete
mapping of all the wedges and identifying the properties of
both the interior and the exterior of the causal diamond. In
particular, these equations display the setup of the diamond
geometry, as follows:
(1) The straight-line boundaries x̃ ¼ �t̃ of the Rindler

wedges transform to the four straight lines that limit
both the diamond itself and the demarcations of the
boundaries of its external region: t ¼ �ðx� αÞ
(with all four combinations of signs).

(2) The four vertices of the diamond can be identified
from the relevant origin and the different types of
infinity of Rindler space: the left vertex ðt; xÞ ¼
ð0;−αÞ from the Rindler-space origin, the right
vertex ðt; xÞ ¼ ð0; αÞ from the Rindler-space spatial
asymptotic infinity (along the axis x̃), the top vertex
ðt; xÞ ¼ ðα; 0Þ from the Rindler-space future asymp-
totic infinity of accelerated observers, and the bottom
vertex ðt; xÞ ¼ −ðα; 0Þ from the Rindler-space past
asymptotic infinity of accelerated observers.

(3) All of the above assignments, as well as more
detailed information, can be easily derived using
the relationship between the light-cone variables
ðṼ; ŨÞ ↔ ðV;UÞ, as given by Eq. (8) and/or their
inverse relations.
In particular, (i) the signs of the coordinates

ðṼ; ŨÞ permit the identification of the Rindler
wedges; and (ii) the values of jVj and jUj, compared
with unity, permit the identification of the location of
the correspondingly conformally mapped regions in
diamond spacetime. The result of this full mapping
is shown in Fig. 3, where one can identify the
following:
(a) The known right Rindler wedge (Ṽ > 0; Ũ < 0)

mapping into the causal diamond (jVj; jUj < 1),
as described above, and in accordance with the
literature.

(b) The left Rindler wedge (Ṽ < 0; Ũ > 0) mapping
into four unconnected diamond wedges attached
to the four vertices (jUj; jVj > 1).

(c) The future (Ṽ > 0; Ũ > 0) and past Rindler
wedge (Ṽ < 0; Ũ < 0) mappings into two un-
connected semi-infinite rectangular regions
each, which extend to the outside of the causal
diamond boundaries. (The image of the future
wedge consists of the top left and bottom right
rectangles with jVj < 1; jUj > 1. And the image
of the past wedge consists of the top right and
bottom left rectangles with jVj > 1; jUj < 1.)

APPENDIX C: CANONICAL QUANTIZATION
AND BOGOLIUBOV COEFFICIENTS IN CAUSAL

DIAMONDS

In this appendix, we review the canonical quantization
in diamond coordinates and establish a comparison
between two quantization schemes, in terms of diamond
and Minkowski modes by computing the Bogoliubov
coefficients.

1. Canonical quantization

From Eqs. (12) and (13), the quantum field can be
expanded in Minkowski modes as
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Φ ¼ ΦþðVÞ þΦ−ðUÞ

¼
Z

∞

0

dk½aþ;kfþ;kðVÞ þ a−;kf−;kðUÞ þ H:c:�; ðC1Þ

where H.c. stands for the Hermitian conjugate, and it is
understood that the field Φðx; tÞ is written in terms of
Minkowski null coordinates. In Eq. (C1), the field oper-
ators satisfy the commutator relations

½aσ;k; a†σ0;k0 � ¼ δσ;σ0δðk − k0Þ; ½aσ;k; aσ0;k0 � ¼ 0;

½a†σ;k; a†σ0;k0 � ¼ 0 ðC2Þ

for all traveling directions σ; σ0 and all Minkowski frequen-
cies k, k0. Here, the left and right movers, ΦþðVÞ and
Φ−ðUÞ, do not interact with each other, i.e., all the left-
mover operators aþ;k commute with all the right-mover
operators a−;k0 for all Minkowski frequencies k, k0; thus,
they can be treated independently. Then, the Minkowski
vacuum j0iM is the state is that satisfies

a�;kj0iM ¼ 0; ðC3Þ

for all frequencies k. The notation M is used for the basis
defined by the set of inertial modes (13) in Minkowski
spacetime.
An alternative quantization scheme can be set up in

diamond coordinates, for which the solutions inside and
outside the diamond form a complete set. Thus, the field
can be expanded in the form

Φ ¼ ΦþðvðVÞÞ þΦ−ðuðUÞÞ; ðC4Þ

where ΦþðvðVÞÞ and Φ−ðuðUÞÞ are the same operators
ΦþðVÞ and Φ−ðUÞ as in Eq. (C1) but rewritten in terms of
the diamond modes (15)–(19), i.e.,

Φþ ¼
Z

∞

0

dω½bðintÞþ;ωg
ðintÞ
þ;ωðVÞ þ bðextÞþ;ω g

ðextÞ
þ;ω ðVÞ þ H:c� ðC5Þ

and

Φ− ¼
Z

∞

0

dω½bðintÞ−;ω g
ðintÞ
−;ω ðUÞ þ bðextÞ−;ω gðextÞ−;ω ðUÞ þH:c�: ðC6Þ

In Eqs. (C4)–(C6), the field operators are subject to the
commutator relations

½bðintÞσ;ω ; bðintÞ†σ0;ω0 � ¼ δσ;σ0δðω − ω0Þ;
½bðextÞσ;ω ; bðextÞ†σ0;ω0 � ¼ δσ;σ0δðω − ω0Þ; ðC7Þ

along with all the other commutators being identically zero.
Again, these relations involve all traveling directions σ; σ0

and diamond frequencies ω;ω0. Then, the diamond vacuum
state j0iD satisfies

bðintÞ�;ω j0iD ¼ 0 and bðextÞ�;ω j0iD ¼ 0 ðC8Þ

for all diamond frequencies ω. This is the confor-
mally mapped counterpart of the Rindler vacuum, via
Eqs. (A2)–(A4), and the notation D stands for the basis
defined by the set of diamond modes (15).
Both the remarkable thermal behavior of diamond

observers and the ensuing entanglement degradation are
a consequence of the inequivalence of these quantization
schemes in Minkowski and diamond coordinates. This
issue is discussed next.

2. Bogoliubov coefficients

The comparison between the two quantization schemes,
in terms of diamond and Minkowski modes, can be
established through the Bogoliubov transformations

gðintÞσ;ω ðUσÞ ¼
Z

∞

0

dk½αðintÞσ;ωkfσ;kðUσÞ þ βðintÞσ;ωkf
�
σ;kðUσÞ� ðC9Þ

and

gðextÞσ;ω ðUσÞ ¼
Z

∞

0

dk½αðextÞσ;ωkfσ;kðUσÞ þ βðextÞσ;ωkf
�
σ;kðUσÞ�;

ðC10Þ

where σ ¼ � for the left- and right-movers, with αðintÞσ;ωk,

βðintÞσ;ωk, α
ðextÞ
σ;ωk, and βðextÞσ;ωk being the Bogoliubov coefficients.

The expressions for the diamond modes (16)–(17), along
with the corresponding Minkowski modes (13), show that
not only the left- and right-movers are independent, but
their associated equations have the same form, so that their

Bogoliubov coefficients are identical: αðintÞþ;ωk ¼ αðintÞ−;ωk and

βðintÞþ;ωk ¼ βðintÞ−;ωk, and similarly with the external diamond
modes (18)–(19). In addition, consistent with the invariant
nature of the field, the creation and annihilation operators
satisfy the reciprocal Bogoliubov relations (covariant rather
than contravariant transformations),

bðintÞσ;ω ¼
Z

∞

0

dk
�
αðintÞ�σ;ωk aσ;k − βðintÞ�σ;ωk a

†
σ;k

	
; ðC11Þ

and

bðextÞσ;ω ¼
Z

∞

0

dk
�
αðextÞ�σ;ωk aσ;k − βðextÞ�σ;ωk a†σ;k

	
: ðC12Þ

Then, the Bogoliubov coefficients can be computed
by projection via the generic Klein-Gordon inner product
[32,33] ðΦ1;Φ2Þ ¼ i

R
Σ Φ

�
1∂

μ
↔
Φ2

ffiffiffiffiffiffi−gp
dΣμ (where the
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integral is performed on a spacelike hypersurface). However,
a useful shortcut can be taken: given the specific form of the
Minkowski modes (13), i.e., fσ;kðUσÞ ∝ e−ikUσ , it follows
that Eqs. (C9) and (C10) have the functional form of Fourier
transforms with conjugate variables k and Uσ . Thus, it is
straightforward to invert these transforms with respect to
Minkowski frequencies k in the positive and negative
frequency ranges, to yield integral expressions for the
Bogoliubov coefficients with respect to the light-cone
coordinates (Uσ ¼ V, U),

αðintÞσ;ωk ¼
ffiffiffiffiffiffiffiffi
4πk

p Z
∞

−∞

dUσ

2π
gðintÞσ;ω ðUσÞeikUσ

¼ α

2π

ffiffiffiffi
k̂
ω̂

s Z
∞

0

dÛσ

�
1þ Ûσ

1 − Ûσ

�−iω̂=2
eik̂Ûσ ;

¼ α

4

ffiffiffiffiffiffiffi
ω̂ k̂

p
sinhðπω̂=2Þ e

−ik̂Mð1 − iω̂=2; 2; 2ik̂Þ; ðC13Þ

and

βðintÞσ;ωk ¼
ffiffiffiffiffiffiffiffi
4πk

p Z
∞

−∞

dUσ

2π
gðintÞσ;ω ðUσÞe−ikUσ

¼ α

2π

ffiffiffiffi
k̂
ω̂

s Z
∞

0

dÛσ

�
1þ Ûσ

1 − Ûσ

�−iω̂=2
e−ik̂Ûσ ;

¼ α

4

ffiffiffiffiffiffiffi
ω̂ k̂

p
sinhðπω̂=2Þ e

ik̂Mð1 − iω̂=2; 2;−2ik̂Þ; ðC14Þ

where Mðμ; ν; zÞ is Kummer’s confluent hypergeometric
function and all the variables with a hat are dimensionless

rescaled versions with the diamond parameter α (see
Appendix A), i.e., ω̂ ¼ ωα, k̂ ¼ kα, and Ûσ ¼ Uσ=α.
With appropriate adjustments in the definitions used, these

results agree with Refs. [43,47]. In particular, αðintÞσ;ωk can be

obtained from βðintÞσ;ωk by the replacement k → −k, except
within the prefactor

ffiffiffi
k

p
. A similar calculation follows for the

Bogoliubov coefficients relating the external modes with the
Minkowski modes.
From the Bogoliubov coefficients, using standard tech-

nology [25,32,33], the particle number creation for each
mode, for each propagation direction σ and frequency ω,

can be computed as nσ;ω ¼ h0jbðintÞ†σ;ω bðintÞσ;ω j0i ¼Pk jβðintÞσ;ωkj2.
In the continuum limit, this needs to be regularized and can

be formally rewritten in the form
R
∞
0 dkβðintÞ�σ;ωk β

ðintÞ
σ;ω0k ¼

δðω − ω0Þnσ;ω. Specifically, this integral can be computed
using the original integral expressions (C14), showing
[43] that this yields a Bose-Einstein distribution nσ;ω ¼
ðeβω − 1Þ−1 for scalar fields, where the inverse temperature
is β ¼ πα. A complete analysis involves writing the vacua
(see Sec. III B in the main text). As a result, one concludes
that the diamond vacuum is a thermal state with temper-
ature given by Eq. (2).
In addition to this standard analysis via Bogoliubov

coefficients, this result on thermality has been shown by the
use of an Unruh-DeWitt energy-scaled detector [43] and by
the use of an open quantum systems approach [46]. In
Sec. III B, this is further confirmed by modeling the
Minkowski vacuum with a generalization of Unruh’s
analytic continuation technique (originally conceived for
Rindler spacetime) [28].
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