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We construct the hydrodynamic expansion for a rotating and accelerated medium in a curved space-time,
and establish the relationship between the currents generated by the cosmological constant and the
acceleration. Then we consider the more general case with a nonzero Weyl tensor, and show the duality
between the current in flat space-time and the gravitational axial anomaly. This generalizes the previous
derivation to the case with a nonzero Ricci tensor.
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I. INTRODUCTION

Since the discovery of the chiral anomaly [1,2] its study
has been of great interest. To date, there is a large number
of different effects associated with it found in many
different physical fields [3–7]. Relativistic fluid effects of
the anomalies [3–5,8–11] are of particular interest at the
present time, indicating the nontrivial interplay between the
infrared and the ultraviolet theories. Besides undoubted
theoretical interest, these effects can be applied to describe
processes in heavy-ion collisions [12–14].
Hydrodynamics, which describes physics at large spatial

and temporal distances, is based on the conservation
relations, such as conservation of the stress-energy tensor
and current [15]

∂μTμν ¼ 0; ∂μjμ ¼ 0: ð1:1Þ

In particular, in the case of a viscous and heat-conducting
fluid the equations (1.1) allow us to describe linear dissi-
pative effects [15]. A significant step was made in the
work [8], where an additional linear correction associated

with vorticity (and magnetic field) was obtained. It was
shown that the magnitude of the corresponding vorticity
effect (more precisely, the part with chemical potential), so-
called chiral vortical effect (CVE), in the axial current

jνA;CVE ¼ ðσðTÞT2 þ σðμÞμ2Þων þOð∂3uÞ; ð1:2Þ
is determined by the quantum axial anomaly in the
electromagnetic field Fμν [1],

∂μj
μ
A ¼ CεμναβFμνFαβ; ð1:3Þ

which, being included, modifies the basic hydrodynamic
equations (1.1). In (1.2) T is the proper temperature, μ is the
chemical potential, ωμ ¼ 1

2
εμναβuν∂αuβ is the vorticity,

and Oð∂3uÞ denotes terms cubic in gradients of four-
velocity uμ. The relationship is fixed by the equation,
connecting conductivity σðμÞ with a numerical factor from
the anomaly C

σðμÞ ¼ −8C; ð1:4Þ

which was obtained in [8] from the second law of thermo-
dynamics for entropy current. In particular, for Dirac field
current (1.2) has the form [3,11,16]

jνA;CVE ¼
�
T2

6
þ μ2

2π2

�
ων þOð∂3uÞ; ð1:5Þ

which exactly satisfies the well-known anomaly for the
Dirac field C ¼ −1=ð16π2Þ. In the same way the corre-
spondence (1.4) was demonstrated for spin 3=2 [17] and
spin 1 [18].
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Recently, it was shown that in a similar way the same
effects can be obtained without the use of the entropic
current [19,20], taking advantage of the so-called global
thermodynamic equilibrium [21]. This simplifies the cal-
culations, which made it possible, in particular, to analyze
the second-order gradient effects [19].
Note that the anomalous transport associated with the

electromagnetic chiral anomaly was mainly analyzed (1.3).
However, there are also a number of works [22–25] that
consider the transport associated with the gravitational
axial anomaly [2]

∇μj
μ
A ¼ N ϵαβμνRμνλρRαβ

λρ; ð1:6Þ

where ϵαβμν ¼ 1ffiffiffiffi−gp εαβμν is Levi-Civita tensor in a curved

space-time and N is a numerical constant.
However, there was a problem of direct generalization of

the method of [8,19] to the gravitational chiral anomaly.
Unlike the case with an electromagnetic anomaly (asso-
ciated with a linear order in gradients), it is necessary to
consider higher orders of the gradient expansion. This, as
well as the relative complexity of gravity itself, makes a
generalization of [8,19] somewhat nontrivial and massive.
The solution was recently found in [9], where it was

shown that the imprints of the gravitational chiral anomaly
(1.6) arise in the third order of the gradient expansion for
the axial current. Interestingly, this effect exists even in flat
space-time, when the corresponding current includes only
acceleration and vorticity

jAð3Þμ ¼ ðλ1ω2 þ λ2a2Þωμ; ð1:7Þ

where aμ ¼ uν∂νuμ is acceleration and λ2 and λ1 are dimen-
sionless conductivities. The connection of the current (1.7)
with the gravitational chiral anomaly (1.6) is fixed by the
equation

λ1 − λ2
32

¼ N : ð1:8Þ

In particular, for Dirac fields conductivities in (1.7) were
found directly using the density operator and have the
form [26] (see also [27,28])

jAð3Þμ ¼
�
−

ω2

24π2
−

a2

8π2

�
ωμ: ð1:9Þ

At the same time, the gravitational chiral anomaly for Dirac
fields is well known [2]:

∇μj
μ
A ¼ 1

384π2
ϵαβμνRμνλρRαβ

λρ: ð1:10Þ

It is easy to see that (1.8) is satisfied. Similarly, this relation
was verified in [29] for the Rarita-Schwinger-Adler

model [30] containing fields with spin 3=2 (one mode)
and 1=2 (two modes). The current was obtained from the
quantum-statistical correlators and has the form

jAð3Þμ ¼
�
−

53

24π2
ω2 −

5

8π2
a2
�
ωμ: ð1:11Þ

At the same time, a gravitational chiral anomaly was found
in [31]

∇μj
μ
A ¼ −

19

384π2
ϵαβμνRμνλρRαβ

λρ; ð1:12Þ

Comparing (1.11) and (1.12), we see that the general
expression (1.8) is satisfied again. Thus, there is a new
anomalous transport effect in a vortical and accelerated
medium (1.7), called the kinematic vortical effect (KVE).
However, the derivation in [9] was not the most general,

since it used an assumption about the properties of the
manifold. Namely, Ricci-flat space-times were considered:

Rμν ¼ 0: ð1:13Þ

The question is, will the obtained key relation (1.8) remain
valid beyond this approximation? To answer this question,
in this work we will consider a more general case when the
Ricci tensor is not equal to zero, but is proportional to the
cosmological constant,

Rμν ¼ Λgμν; ð1:14Þ

which, on the one hand, (if we set the Weyl tensor equal to
zero) corresponds to the very important case of (anti–)de
Sitter spaces, while from a technical point of view will
simplify the derivation, since it leads to additional equa-
tions such as ∇ρRμν ¼ 0.
Similar hydrodynamic expansion of the stress-energy

tensor for the medium in the curved space with (1.14)
was recently considered in [32] for the particular case with
a zero Weyl tensor, where the anomaly (1.6) is absent,
and accelerated (nonrotating) medium. In this case, an
alternative confirmation for the Unruh effect in curved
space-time was obtained, with a temperature depending
simultaneously on curvature and acceleration [33]. Below
we will show that the gradient expansion of the axial
current also indicates the generalized Unruh effect in
curved space.
As a warm-up, we start by constructing a hydrodynamic

expansion for the axial current in a vortical and accelerated
medium in the case when the Weyl tensor is equal to zero.
The paper organized as follows. We begin in Sec. II by

considering the simplest case of curved space-time with a
zero Weyl tensor. The relationship between the KVE and
the anomaly cannot be fixed in this case, however, the
relation between the cosmological constant and acceler-
ation will be obtained. In Sec. III we consider the more
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general case of Einstein manifolds with nonzero Weyl
tensor. In this case we obtain the KVE relation, and confirm
the duality between the cosmological constant and accel-
eration obtained in Sec. II. In Sec. IV we discuss some
aspects and implications of our work and give a brief
qualitative description of the obtained effects. In the
Conclusion we summarize the results obtained.

II. RELATIONSHIP BETWEEN COSMOLOGICAL
CONSTANT AND ACCELERATION

A. Riemann tensor and gradient expansion

We consider an uncharged nondissipative fluid of mass-
less fermions, moving with four-velocity uμðxÞ and char-
acterized by proper temperature TðxÞ, placed in an external
gravitational field with the metric gμνðxÞ. The system is
assumed to be in a state of global thermodynamic equi-
librium [21], for which the inverse temperature vector
βμ ¼ uμ

T satisfies the Killing equation,

∇μβν þ∇νβμ ¼ 0; ð2:1Þ

which means that we work with the hydrodynamic β frame.
This equilibrium can also be called “hydrostatic” [34]. Note
that the condition (2.1) is not some artificial condition and
is very close to the known criteria of thermal equilibrium;
we will consider this in more detail in the Discussion
section. In particular, due to (2.1), we obtain for the second-
order covariant derivative

∇μ∇νβα ¼ −Rρ
μναβρ: ð2:2Þ

The antisymmetric combination of covariant derivatives
forms the thermal vorticity tensor [35]

ϖμν ¼ −
1

2

�∇μβν −∇νβμ
�
; ð2:3Þ

which has one vector and one pseudovector compo-
nent, corresponding to (“thermal”) acceleration αμ and
vorticity wμ:

αμ ¼ ϖμνuν; wμ ¼
1

2
ϵμναβuνϖαβ;

ϖμν ¼ ϵμναβwαuβ þ αμuν − ανuμ: ð2:4Þ

Kinematic vorticity ωμ is proportional to the thermal
vorticity wμ, and the kinematic acceleration aμ is propor-
tional to the thermal acceleration in the state of global
equilibrium (2.1)

wμ ¼
ωμ

T
; αμ ¼

aμ
T
: ð2:5Þ

In the general case the Riemann tensor has the form

Rαμβν ¼ Cαμβν −
R
6

�
gαβgμν − gανgμβ

�

þ 1

2

�
Rαβgμν þ Rμνgαβ − Rανgβμ − Rβμgαν

�
; ð2:6Þ

where Cαμβν is the Weyl tensor.
Let us start with the simplest case when the Weyl tensor

is zero and the Ricci tensor is given by the cosmological
constant

Cαμβν ¼ 0; Rμν ¼ Λgμν: ð2:7Þ

Then the Riemann tensor can be decomposed into the
components

Rαμβν ¼
Λ
3
ðgαβgμν − gανgμβÞ; ð2:8Þ

which means that we consider de Sitter space-time (Λ > 0)
or anti–de Sitter space-time (Λ < 0) [36]. Our further ana-
lysis takes place in a state of global equilibrium (2.1), so we
choose a static patch of dS space-time, therefore having a
timelike Killing vector.
Now we construct the hydrodynamic gradient expansion

for the current. The only possibility to add space-time
curvature to the current expression is the scalar curvature R,
which is of the second order in gradients. Then to make
this term pseudovector, one has to multiply it by the axial
quantity wμ, which also contains a derivative and therefore
the axial current will be of the third order. Thus, the
curvature effects arise only in the third order in gradients.
Since the Ricci tensor is proportional to the cosmological
constant, this term will have the form Λwμ,

jAð3Þμ ¼ ξ1ðTÞw2wμ þ ξ2ðTÞα2wμ þ ξ3ðTÞðαwÞαμ
þ ξΛðTÞΛwμ: ð2:9Þ

We will denote the coefficient before the term with the
cosmological constant as ξΛðTÞ. The unknown coefficients
ξnðTÞ and ξΛðTÞ depend on the proper temperature T.

B. Axial current divergence

Because of the symmetry of the chosen Riemann tensor
(the Weyl tensor is zero), there is no gravitational anomaly,
and the axial current in this case is conserved:

∇μj
μ
A ¼ 0: ð2:10Þ

The covariant derivatives of the kinematic variables can be
found from (2.1), (2.2) and the condition uμuμ ¼ 1:
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8>><
>>:

∇μT ¼ T2αμ;

∇μwν ¼ Tð−gμνðαwÞ þ αμwνÞ;
∇μαν ¼ T

�
w2ðgμν − uμuνÞ − α2uμuν − wμwν − uμην − uνημ

�
− 1

T
Λ
3
ðgμν − uμuνÞ;

ð2:11Þ

where ημ ¼ ϵμνρσuνwρασ.
An important consequence of considering the system in

global thermodynamic equilibrium is that hydrodynamics
is defined only in terms of the first gradients of velocity
(acceleration and vorticity), and all higher derivatives are
expressed through the lower ones. This is clearly seen from
the system (2.11). Now, substituting (2.9) into (2.10), we
obtain an expression for the axial current divergence:

∇μj
μð3Þ
A ¼ ðαwÞw2

�
T2ξ01 − 3Tξ1 þ 2Tξ3

�
þ ðαwÞα2�T2ξ02 − 3Tξ2 þ T2ξ03 − Tξ3

�

þ ΛðαwÞ
�
T2ξ0Λ − 3TξΛ −

4

3T
ξ3 −

2

3T
ξ2

�
¼ 0:

ð2:12Þ

The pseudoscalar terms before each bracket in this expres-
sion are independent, so we can equate all expressions
in brackets to zero and obtain a system of differential
equations:

8>><
>>:

T2ξ01 − 3Tξ1 þ 2Tξ3 ¼ 0;

T2ξ02 − 3Tξ2 þ T2ξ03 − Tξ3 ¼ 0;

T2ξ0Λ − 3TξΛ − 4
3T ξ3 −

2
3T ξ2 ¼ 0:

ð2:13Þ

Based on dimensional analysis (in a massless theory
without boundary conditions, etc., temperature T is the
only dimensional parameter), we move on to the dimen-
sionless coefficients λ,

ξ1 ¼ T3λ1; ξ2 ¼ T3λ2; ξ3 ¼ T3λ3; ξΛ ¼ TλΛ;

ð2:14Þ

and are left with the system (λ1 remains arbitrary)

�
λ3 ¼ 0;

λΛ ¼ − λ2
3
:

ð2:15Þ

The first equality in (2.15) provides the conservation of the
axial current in flat space-time in the absence of external
fields [26].
The phenomena analyzed in this paper, from the point of

view of conservation laws, can also be derived directly
from the equilibrium perturbation theory [26,35], where
they are determined by the effective interaction with boost
operator (in the case of acceleration) and with operator of

angular momentum (in the case of vorticity). In particular,
in this way the coefficients λ1, λ2, and λ3 were obtained in
flat space-time for the massless spin 1=2 field (1.9). The
key is the second of the relations (2.15). The factor λΛ
cannot be obtained in the same way from the density opera-
tor in flat space-time, but we can obtain it simply using the
duality (2.15) from the flat space transport coefficient λ2. In
particular, using (1.9) and (2.15), we obtain the following
expression for the current of massless Dirac fields:

jμð3ÞA ¼
�
−

ω2

24π2
−

a2

8π2
þ R
96π2

�
ωμ; ð2:16Þ

where we used Λ ¼ R
4
. Thus, we obtained a new term in

the axial current proportional to the scalar curvature in the
hydrodynamic gradient expansion. This current has the
same conductivity as the acceleration term, according to
(2.15), which adds an additional element to the hydro-
dynamic/gravitational duality. We will also return to this
issue in the Discussion section. The same expression for the
axial current in AdS space-time was obtained by another
method in [37].

III. ANOMALOUS TRANSPORT:
GRAVITATIONAL ANOMALY AND

COSMOLOGICAL CONSTANT

A. Riemann tensor and gradient expansion

In this section we consider the more general case of
space-time with a nonzero Weyl tensor and generalize the
derivation of [9] to the case with a nonzero Ricci tensor
proportional to the cosmological constant. Our starting
point will be a general decomposition for the Riemann
tensor [9],

Rμναβ ¼ uμuαAνβ þ uνuβAμα − uνuαAμβ − uμuβAνα

þ ϵμνλρuρ
�
uαBλ

β − uβBλ
α

�þ ϵαβλρuρ
�
uμBλ

ν − uνBλ
μ

�
þ ϵμνλρϵαβησuρuσCλη: ð3:1Þ

The tensors Aμν, Bμν, and Cμν are covariant generalizations
of similar three-dimensional tensors. In general, as shown
in [38,39], the Riemann tensor locally can be decomposed
into components of two three-dimensional symmetric
tensors Aik ¼ R0i0k, Cik ¼ 1

4
εilmεknpRlmnp and one asym-

metric traceless pseudotensor Bik ¼ 1
2
εilmR0klm. However,

it is clear that for such a classification it is necessary to
select a frame, in which three-dimensional tensors will be
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defined. Expansion (3.1) corresponds to the choice of the
rest frame of the fluid, which is the most natural application
of classification from [38,39] to hydrodynamics (compare
also with expansions used in [8,40]).
Accordingly, tensors Aμν, Bμν, and Cμν can be defined as

(compare with the formulas for three-dimensional tensors
above)

8>><
>>:

Aμν ¼ uαuβRαμβν;

Bμν ¼ 1
2
ϵαμηρuαuβR

ηρ
βν;

Cμν ¼ 1
4
ϵαμηρϵβνλγuαuβRηρλγ:

ð3:2Þ

These tensors have properties

Aμν ¼ Aνμ; Cμν ¼ Cνμ; Bμ
μ ¼ 0;

Aμνuν ¼ Cμνuν ¼ Bμνuν ¼ Bνμuν ¼ 0: ð3:3Þ

The tensors Aμν and Cμν can be decomposed into a trace-
less and a trace parts, and the pseudotensor Bμν can be
decomposed into symmetric and antisymmetric parts,

Aμν ¼ Ãμν þ
A
3
ðgμν − uμuνÞ;

Cμν ¼ C̃μν þ
C
3
ðgμν − uμuνÞ;

Bμν ¼ Bs
μν þ Ba

μν: ð3:4Þ

Accordingly, we have

Ãμ
μ ¼ C̃μ

μ ¼ 0; Ãμνuν ¼ C̃μνuν ¼ Bs
μνuν ¼ Ba

μνuν ¼ 0;

Aμ
μ ¼ A; Cμ

μ ¼ C; Bs
μν ¼ Bs

νμ; Ba
μν ¼ −Ba

νμ:

ð3:5Þ

The Ricci tensor has the form

Rμν ¼ gαβRαμβν

¼ uμuνðAþ CÞ þ ðAμν þ CμνÞ
− Cgμν þ Bλαuρðuνϵαλμρ þ uμϵαλνρÞ: ð3:6Þ

To illustrate the new elements, we now consider two cases:
the Ricci tensor is equal to zero (the case considered in [9]),
and the Ricci tensor is equal to the cosmological constant
(present case).
(1) Ricci tensor is zero, Weyl tensor is not zero:

Rμν ¼ 0; Cμναβ ≠ 0.
The condition Rμν ¼ 0 leads to additional proper-

ties for the tensors Aμν; Bμν, and Cμν such as
(compare with [38])

Aμν ¼ −Cμν; Aμ
μ ¼ 0; Bμν ¼ Bνμ: ð3:7Þ

This means that

A ¼ C ¼ 0; Ba
μν ¼ 0; Ãμν ¼ −C̃μν: ð3:8Þ

Then, writing the axial current in terms of all
possible pseudovectors arising in the third order
of gradients, we obtain

jAð3Þμ ¼ ξ1ðTÞw2wμ þ ξ2ðTÞα2wμ þ ξ3ðTÞðαwÞαμ
þ ξ4ðTÞÃμνwν þ ξ5ðTÞBs

μνα
ν: ð3:9Þ

By considering the covariant derivative of (3.9) and
considering that it should lead to anomaly (1.6), a
key relation (1.8), fixing duality with gravitational
anomaly was obtained [9].
We note that there could be some extra terms in

the third order, including, for example,

∇λÃμν; ∇λBs
μν; ∇λRμνρσϵ

α1α2α3α4 ;

∇λRμνρσϵ
α1α2α3α4uαuβ; αλRμνρσϵ

α1α2α3α4 : ð3:10Þ

But all of the index contractions which make these
terms pseudovectors will be equal to zero because of
Bianchi identities,

Rμνρσ þ Rμσνρ þ Rμρσν ¼ 0;

∇λRμνρσ þ∇σRμνλρ þ∇ρRμνσλ ¼ 0; ð3:11Þ

and the condition ∇λRμν ¼ 0. In the case Rμν ¼ 0,
considered in [9], this condition is satisfied. How-
ever, it is also valid in the more general case Rμν ¼
Λgμν due to the metricity condition∇λgμν ¼ 0. Also,
there is a possibility to add another type of terms like

ð∇μανÞων; ð∇μωνÞαν; ð∇αÞωμ; ð∇ωÞαμ;
ð3:12Þ

but they can be transformed into terms already
contained in the expression (3.9) for the axial
current.

(2) The Ricci tensor is given by the cosmological
constant, the Weyl tensor is not zero: Rμν ¼ Λgμν;
Cμναβ ≠ 0.
Now fixing Rμν ¼ Λgμν does not affect the con-

dition ∇λRμν ¼ 0, and the conditions mentioned
above do not change either and there will be no
extra terms such as (3.10) and (3.12) in the current.
But the equations (3.7) and (3.8) are no longer valid
and the tensors have the form (3.4). Therefore,
using (3.6), (3.5) and Rμν ¼ Λgμν we can write
the following equations and define the constrains
and symmetries of tensors Aμν, Bμν and Cμν:
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8><
>:
uμuνRμν ¼Λ¼ R

4
¼ A;

gμνRμν ¼ 4Λ¼ 4A¼ 2ðA−CÞ⇒ A¼−C;

uμRμν ¼Λuν ¼−CuνþBλαεαλνρuρ ⇒Bλα ¼Bαλ:

ð3:13Þ

Substituting these expressions into the Ricci tensor (3.6),
we obtain the final conditions for the tensors Aμν, Bμν,
and Cμν:

8><
>:

Aμν ¼ −Cμν;

Bαλ ¼ Bλα ¼ Bs
λα

�
Ba
λα ¼ 0

�
;

Λ ¼ R
4
¼ A ¼ −C:

ð3:14Þ

As can be seen, the tensors Aμν and Cμν are related, so we
do not need to add a term with tensor Cμν to the expression
for the current. Since we have separated the traceless
part from the tensor Aμν, a new term proportional to the
cosmological constant should appear in the current, since

Aμνω
ν ¼ Ãμνω

ν þ Λωμ. Therefore we have

jAð3Þμ ¼ ξ1ðTÞw2wμ þ ξ2ðTÞα2wμ þ ξ3ðTÞðαwÞαμ
þ ξ4ðTÞÃμνwν þ ξ5ðTÞBs

μνα
ν þ ξΛðTÞΛwμ:

ð3:15Þ

B. Axial current divergence

Because of the quantum anomaly, the axial current is not
conserved in the presence of external gravitational fields.
The gravitational chiral anomaly (1.6) can be expressed
through the tensors Ãμν and Bs

μν:

∇μj
μ
A ¼ N ϵμναβRμνλρRαβ

λρ ¼ 16N ðAμν − CμνÞBs
μν

¼ 32N ÃμνBs
μν: ð3:16Þ

In the case under consideration with a nonzero Weyl tensor,
instead of (2.11), we obtain

8>>>>>>>>>>><
>>>>>>>>>>>:

∇μT ¼ T2αμ;

∇μuν ¼ T
�
ϵμναβuαwβ þ uμαν

�
;

∇μwν ¼ T
�
−gμνðαwÞ þ αμwν

�þ 1
T B

s
μν;

∇μαν ¼ Tðw2ðgμν − uμuνÞ − α2uμuν − wμwν − uμην − uνημÞ − 1
T

�
Ãμν þ Λ

3

�
gμν − uμuν

�	
;

∇μ
�
Ãμνwν

� ¼ −3TBs
μνwμwν þ 1

T Ã
μνBs

μν;

∇μ
�
Bs
μνα

ν
� ¼ 3TÃμνwμαν − 1

T Ã
μνBs

μν − TBs
μνwμwν − TBs

μνα
μαν:

ð3:17Þ

Now for clarity, let us write out the derivatives of each term of the axial current (3.15):

8>>>>>>>>>>><
>>>>>>>>>>>:

∇μ

�
ξ1w2wμ

� ¼ ðαwÞw2
�
T2ξ01 − 3Tξ1

�þ Bs
μνwμwν

�
2
T ξ1

�
;

∇μ

�
ξ2α

2wμ
� ¼ ðαwÞα2�T2ξ02 − 3Tξ2

�þ Ãμνα
μwν

�
− 2

T ξ2
�þ ΛðαwÞ�− 2

3T ξ2
�
;

∇μ

�
ξ3ðαwÞαμ

� ¼ ðαwÞ
α2�T2ξ03 − Tξ3
�þ w2ð2Tξ3Þ þ Λ

�
− 4

3T ξ3
��þ Ãμνα

μwν
�
− 1

T ξ3
�þ Bs

μνα
μαν

�
1
T ξ3

�
;

∇μ
�
ξ4Ãμνwν

� ¼ Ãμνα
μwνðξ04T2Þ þ Bs

μνwμwνð−3Tξ4Þ þ ÃμνBs
μν

�
1
T ξ4

�
;

∇μ
�
ξ5Bs

μνα
ν
� ¼ Bs

μνα
μαν

�
T2ξ05 − Tξ5

�þ Bs
μνwμwνð−Tξ5Þ þ ÃμνBs

μν

�
− 1

T ξ5
�þ Ãμνα

μwνð3Tξ5Þ;
∇μðξΛΛwμÞ ¼ ΛðαwÞ�T2ξ0Λ − 3TξΛ

�
:

ð3:18Þ

Combining (3.16) and (3.18) we obtain

∇μj
μð3Þ
A ¼ ðαwÞw2ðT2ξ01 − 3Tξ1 þ 2Tξ3Þ þ ðαwÞα2�T2ξ02 − 3Tξ2 þ T2ξ03 − Tξ3

�

þ ÃμνBs
μν

�
1

T
ξ4 −

1

T
ξ5

�
þ Ãμνα

μwν

�
−
2

T
ξ2 −

1

T
ξ3 þ 3Tξ5 þ T2ξ04

�

þ Bs
μνwμwν

�
2

T
ξ1 − 3Tξ4 − Tξ5

�
þþBs

μνα
μαν

�
T2ξ05 − Tξ5 þ

1

T
ξ3

�

þ ΛðαwÞ
�
T2ξ0Λ − 3TξΛ −

4

3T
ξ3 −

2

3T
ξ2

�
¼ 32N ÃμνBs

μν: ð3:19Þ
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As in (2.12) all pseudoscalars are independent, so we can
write a system of equations,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

T2ξ01 − 3Tξ1 þ 2Tξ3 ¼ 0;

T2ξ02 − 3Tξ2 þ T2ξ03 − Tξ3 ¼ 0;

− 2
T ξ2 −

1
T ξ3 þ 3Tξ5 þ T2ξ04 ¼ 0;

2
T ξ1 − 3Tξ4 − Tξ5 ¼ 0;

T2ξ05 − Tξ5 þ 1
T ξ3 ¼ 0;

1
T ξ4 −

1
T ξ5 ¼ 32N ;

T2ξ0Λ − 3TξΛ − 4
3T ξ3 −

2
3T ξ2 ¼ 0:

ð3:20Þ

By redefining dimensionless constants as we did it in
(2.14), we obtain

ξ1 ¼ T3λ1; ξ2 ¼ T3λ2; ξ3 ¼ T3λ3; ξ4 ¼ Tλ4;

ξ5 ¼ Tλ5; ξΛ ¼ TλΛ: ð3:21Þ

Then

8>>>>>><
>>>>>>:

λ3 ¼ 0;

−2λ2 þ 3λ5 þ λ4 ¼ 0;

2λ1 − 3λ4 − λ5 ¼ 0;

λ4 − λ5 ¼ 32N ;

−2λΛ − 2
3
λ2 ¼ 0:

ð3:22Þ

From here we can finally write the solution

λ1 − λ2 ¼ 32N ; λ4 ¼
λ1
2
þ 8N ; λ5 ¼

λ1
2
− 24N ;

λΛ ¼ −
λ2
3
: ð3:23Þ

The first three equalities in (3.23) are consistent with the
work [9], while the last one tells us that the coefficients
between the cosmological constant term the squared acce-
leration term square are related as in the simpler case
with the zero Weyl tensor (2.15). Thus, if we know the
gravitational chiral anomaly, then the current in third order
in gradients is determined to within one arbitrary coef-
ficient. It is convenient to choose λ1 as this arbitrary co-
efficient, since it can be calculated in flat space-time. As a
result, knowing only one transport coefficient in flat space-
time, we complete the full expression for the current in
curved space in the third order. As a result, we have for the
general case

jAð3Þμ ¼
�
λ1ω

2 þ �
32N − λ1

��R
12

− a2
�

ωμ

þ
�
8N þ λ1

2

�
Rαμβνuαuβων

þ
�
λ1
4
− 12N

�
Rηρ

βνϵαμηρuαuβaν; ð3:24Þ

where we moved from the tensors Aμν and Bμν to the
Riemann tensor by means of (3.2).
Formula (3.24) is our main result. It describes the axial

current of massless particles in a vortical and accelerated
medium in global thermodynamic equilibrium in curved
space with a nonzero Weyl tensor, and the Ricci tensor
of the form (1.14). One can also assume that by adding
also the linear order (1.2), the formula will be accurate
(all higher orders will be zero) at sufficiently high
temperatures.1

In the particular case of massless Dirac fields, we know
the anomaly N ¼ 1=ð384π2Þ (1.10) and the coefficient
λ1 ¼ −1=ð24π2Þ (1.9). As a result, the current will have
the form

jAð3Þμ ¼
�
−

ω2

24π2
þ 1

8π2

�
R
12

− a2
�

ωμ

−
1

24π2
Rηρ

βνϵαμηρuαuβaν; ð3:25Þ

which generalizes the formulas (1.9) and (2.16).

IV. DISCUSSION

A. Thermodynamic equilibrium

From the very beginning we used the assumption that the
system is in the so-called global thermodynamic equilib-
rium, which corresponds to the entropy maximum (as well
as invariance of the density operator with respect to the
choice of hypersurface) [21]. Beyond this equilibrium our
results may be unfair (or give only zero order contribution).
We will discuss the global thermodynamic equilibrium in
more detail.
A consequence of this equilibrium is that the inverse

temperature vector should be the Killing vector (2.1). Since
its square βμβ

μ ¼ T−2 > 0 is related to the temperature,
this vector should be timelike and also future directed,
since β0 ¼ u0=T > 0 [44]. The spaces containing timelike

1This polynomiality is a fairly rare and interesting phenome-
non for quantum field theory. The absence of higher order terms
has been directly shown in a number of approaches for specific
cases [23,27,41,42] and is characteristic only for the massless
theory. Formally, the absence of higher order terms corresponds
to the absence of negative powers of temperature. At low
temperatures, however, the phase transitions associated with
the singularity of modes at the horizon are expected [43] at least
for half integer spins, which will modify the obtained formulas.
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Killing vector are well-known stationary spaces. In par-
ticular, any static space-time whose components do not
depend on time is stationary. Thus, our derivation is valid
only for stationary spaces. In Sec. II we considered the case
of (A)dS spaces. For (A)dS space we can choose a static
metric,

ds2 ¼
�
1 −

Λ
3
r2
�
dt2 −

1

1 − Λ
3
r2
dr2

− r2
�
dΘ2 þ sin2Θdϕ2

�
; ð4:1Þ

where the positive sign Λ > 0 corresponds to the metrics of
a static patch in de Sitter space-time, and Λ < 0 corre-
sponds to static coordinates of the anti–de Sitter space-time.
Not all types of space-times are stationary and, accord-

ingly, global equilibrium is not always possible. In par-
ticular, it is not obvious whether global equilibrium is
possible in the expanding Universe, since, for example,
the Friedman metrics clearly depends on time (but local
thermodynamic equilibrium should be possible [45]).
The conditions of global equilibrium (2.1) are consistent

with other known criteria of thermodynamic equilibrium.

In particular, there is a well-known Tolman-Ehrenfest
thermodynamic equilibrium criterion [46,47], according
to which the temperature in space with the metric gμνðxÞ is
distributed according to the law

TðxÞ ¼ T0ffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðxÞ

p ; ð4:2Þ

which for stationary space-times can be written in covariant
form [47,48],

TðxÞ ¼ T0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνðxÞξμðxÞξνðxÞ

p ; ð4:3Þ

where ξμ is a dimensionless Killing vector. It is clear that
(4.3) is in full agreement with the global equilibrium,
according to which the temperature is also defined in
exactly the same way by the Killing vector as βμβ

μ ≡
gμνβμβν ¼ T−2.
Also, it is easy to see that in global equilibrium (2.1)

the dissipative contribution to the stress-energy tensor
vanishes, which also corresponds to equilibrium [49],

Tdiss
μν ¼ −η

�∇μuν þ∇νuμ − uμuα∇αuν − uνuα∇αuμ
�
−
�
ζ −

2

3
η

�
∇αuαðgμν − uμuνÞ

¼ −η
�
T
�∇μβν þ∇νβμ

�þ uμ

�∇νT
T

− aν

�
þ uν

�∇μT

T
− aμ

�

þ
�
ζ −

2

3
η

��
T∇αβ

α þ∇αT
T

uα
��

gμν − uμuν
� ¼ 0: ð4:4Þ

The same, of course, applies to dissipative effects in a
current.
Thus, the conditions of global equilibrium look like a

fairly general and natural assumption about the properties
of the system. Note also that, generally speaking, equilib-
rium can lead to additional restrictions on the external field,
as was the case with the electromagnetic field [19,20]. Such
limitations are not significant in this paper, but we hope to
explore them in the future.

B. Qualitative description

Current (3.24) [as well as (3.25)] does not explicitly
depend on the properties of the medium, such as temper-
ature or chemical potential, although it depends on the
kinematic properties of the medium, such as acceleration
and vorticity. This distinguishes it from CVE (1.2) or
chiral magnetic effect [16]. On the other hand, this makes it
similar to the effects in an external electromagnetic field
[50] or in an accelerated frame [51].
We are interested in at least an approximate qualitative

picture of our effect. Consider, for example, the term with

scalar curvature and acceleration in the current (3.25)

jAμ ¼ 1

2

jaj2 þ R=12
ð2πÞ2 ωμ: ð4:5Þ

To understand at a qualitative level the meaning of (4.5),
it is enough to take into account two phenomena. First,
according to the famous Unruh effect [52], thermal radi-
ation occurs in an accelerated medium with the Unruh
temperature

TU ¼ jaj
2π

: ð4:6Þ

Similarly, in de Sitter space the vacuum state is also
characterized by a certain temperature [53]

TR ¼
ffiffiffiffiffiffiffiffiffiffiffi
R=12

p
2π

: ð4:7Þ

Temperatures (4.6) and (4.7) can be combined [32,33] if
we take into account that the de Sitter space is embedded
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in a five-dimensional flat space. In this case, the radiation
temperature is determined by the five-dimensional accel-
eration,

TaR ¼ ja5j
2π

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj2 þ R=12

p
2π

; ð4:8Þ

which is also true for anti–de Sitter space.
On the other hand, we need to recall the well-known

CVE (1.9), according to which an axial current,

jAμ ¼ T2

6
ωμ; ð4:9Þ

arises in a rotating (in flat space) medium at finite temper-
ature. CVE can be associated with the alignment of spins in
a magnetic field, taking into account that rotation is similar
to a magnetic field. Combining (4.9) and (4.8), that is,
considering radiation in a vacuum as a medium with
temperature (4.8), we automatically obtain that a current
should arise, which, up to the overall coefficient, coincides
with (4.5).
Of course, the picture described is rough and is more

intended to give an intuitive qualitative understanding of
the effects occurring. To be more precise, it is necessary to
take into account all the peculiarities of the space with
a horizon (which is not quite equivalent to a thermal
medium [54]), which, in particular, is the reason for the
difference in the overall coefficient.

C. Duality between hydrodynamics and gravity

The result we obtained continues to develop the entropy
approach to gravity, which explains the effects of general
relativity using the statistical properties [55]. Actually, the
possibility of such a dual description suggests that the
effects in gravitational fields should be accompanied by
similar partner phenomena within statistical approaches.
There are a number of examples where such a relation-

ship has been revealed, and the effects of gravity appear
essentially in the limit of zero Newton’s constant or zero
curvature. This includes, for example, the well-known
Unruh effect [52]—despite the fact that the accelerated
system has zero curvature, it, like a black hole, is filled with
thermal radiation bath. In this regard, we note a number of
works [44,56,57], where the Unruh effect was analyzed
from the point of view of statistical approaches. Another
example is the statistical derivation of the Einstein
equation [58], in which, for example, Newton’s constant
itself arises as the inverse entropy.
Our result adds more elements to this duality. Indeed, on

the one hand, there is an essentially gravitational effect—a
gravitational chiral anomaly (1.6). Let us emphasize
that this anomaly occurs only when space has nonzero
curvature Rμναβ ≠ 0, while upon transition to a noninertial

system, the curvature remains equal to zero Rμναβ ¼ 0.
However, we see, according to (3.23), that this anomaly is
“hidden” in the properties of the kinematic current (1.7) in
an accelerated and vortical medium.
We also note the relationship (2.15) between the current

jAμ ∼ a2ωμ in an accelerated vortical medium, and
jAμ ∼ Rωμ, in a vortical medium in the presence of a
gravitational field, which indicates the similarity between
scalar curvature R and acceleration a2.
The statements made above can be made more concrete,

if we remember both theories, within the framework of
which the gravitational anomaly (1.6) and current (3.25)
can be obtained. The anomaly is associated with funda-
mental gravitational interaction. In the lowest order, by the
definition, the corresponding vertex contains the stress-
energy tensor,

δS ¼ −
1

2

Z
d4xδgμνTμν: ð4:10Þ

On the other hand, current (1.7) can be obtained using the
statistical density operator [26,35]

ρ̂ ¼ 1

Z
exp

�
−βμP̂μ þ ζQ̂ − αμK̂

μ
x − wμĴ

μ
x
�
; ð4:11Þ

where ζ ¼ μ=T, P̂μ is the four-momentum operator, and Q̂
is the charge operator. The first two terms correspond to
the usual grand canonical distribution, while the last two
terms contain effective vertices, which describe statistically
induced interaction, with the angular momentum operator
Ĵμx, associated with vorticity wμ ¼ ωμ=T and the boost
operator K̂μ

x, associated with acceleration αμ ¼ aμ=T (the
operators are shifted by the vector xμ). Moreover, (4.11) is
exact for global thermodynamic equilibrium (2.1), which
further illustrates the statistical nature of (4.11). Current
(1.7) can be obtained within the framework of the equi-
librium perturbation theory [35]. For example, the term
λ1ω

2ωμ in (1.7) is given by a correlator of the form [26,29]

λ1 ¼ −
1

6

Z jβj

0

dτxdτydτzhTτĴ
3
−iτx Ĵ

3
−iτy Ĵ

3
−iτz ĵ

3
Að0ÞiβðxÞ;c;

ð4:12Þ

where the operators are shifted along the axis of the
imaginary time along which integration is carried out
from 0 to the inverse temperature jβj ¼ 1=T, and the index
h� � �iβðxÞ;c means that the averaging is taken using grand
canonical distribution [i.e., using (4.11) with αμ¼wμ¼0].
Note that (4.11) and (4.12) are written in flat space-time.
Moreover, they are written in ordinary Minkowski metrics.
However, as we have shown in the main part of our work,
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the effects of the types (4.11) and (4.10) are related by the
equations (3.23).
At the same time, our result can be interpreted as a

confirmation of the equivalence principle, according to
which acceleration effects are equivalent to the effects in
gravitational field. In most cases only the “linear order” is
considered, that is, the equivalence at the level of accel-
eration and Christoffel symbols. Our derivation demon-
strates the relationship between inertial effects and gravity
at higher orders of metric and velocity derivatives.
Thus, apparently, it can be argued that there is a class

of theories that reproduce gravitational properties, despite
the fact that they themselves do not contain gravity.
Such theories can be considered as a limiting case when
Newton’s constant tends to zero. The role of such a limit is
also evidenced by recent results on the algebra of observ-
ables [59].

D. Quantum or classical?

The conclusion we presented is completely unrelated
to quantum theory calculations, which could create the
illusion of the classical nature of the current (3.24).
Evidently, this is not the case, since hydrodynamics, like
thermodynamics, is a universal approach for describing
both classical and quantum phenomena (just remember
black hole radiation or superfluidity).
The quantumness of (3.25) becomes evident, if we

analyze the way it can be directly obtained using the
perturbation theory. In particular, ω2ωμ and a2ωμ terms are
expressed through loop diagrams of the form (4.12), which,
of course, are elements of quantum theory.

V. CONCLUSION

In this paper we generalize the previously obtained
kinematic vortical effect [9] to the case of a nonzero
Ricci tensor, proportional to the cosmological constant.
We continue to consider the medium in a state of global or
hydrostatic equilibrium and obtain not only the conserva-
tion of a previous result for the KVE, but also an entirely
new term in the axial current, generated by the scalar
curvature in a vortical fluid. Analyzing the conservation of
axial current, we relate this new term with the transport
coefficient of the quadratic acceleration term.
We discover the relationship between kinematic and

gravitational effects, expressed in a system of equations
connecting transport coefficients of two types, which
indicates the gravitational-hydrodynamic duality and con-
firms the equivalence principle in the higher orders of
gradient expansion. This relationship allows one, by con-
sidering kinematic effects in a relativistic fluid (for exam-
ple, in a quark-gluon plasma, in which sufficiently large
vorticity and acceleration can be generated), to simulate
quantum field effects in the gravitational field in the
absence of real strong gravity.
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