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Extreme mass-ratio inspirals, a target source for the space-based gravitational wave detector LISA, are a
sensitive probe of fundamental scalar fields coupled to gravity. We assess the capability of LISA to detect
whether the secondary compact object is endowed with a scalar field, in the case of inclined orbits.
We show that the imprint of the scalar field depends on the orbital inclination, and is significantly larger for
prograde orbits.
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I. INTRODUCTION

Asymmetric binaries with mass ratios q ≪ 1 represent a
new family of gravitational wave (GW) sources, that merge
in a frequency band dim to current interferometers.
Assembled by a massive black hole (BH) (the primary)
and by a lighter stellar mass object (the secondary), either a
BH or a neutron star, such systems typically emit GWs at
frequencies below 1 Hz.1 Among asymmetric binaries,
extreme mass ratio inspirals (EMRIs) with a primary mass
M ≳ 105M⊙ and q < 10−4 feature unique dynamical prop-
erties, coalescing in the mHz regime, with a GW emission
peaking into the bucket of the LISA sensitivity curve [2].
EMRI evolution is mostly dictated by their mass ratio,

with the duration of the inspiral and the number of GW
cycles growing as q decreases [3], allowing such sources to
stay in the LISA band for hundreds of thousands of orbits.
The large number of GW cycles performed on a highly

relativistic dynamics, supplied by the extreme variability of
the orbital evolution, promise measurements of the source
parameters with unparalleled accuracy [2]. Such properties
render EMRIs golden targets to probe a variety of funda-
mental physics science cases [4]. These include precise
tests of general relativity (GR) [5,6], of the multipolar
structure of compact objects [7–14], searches of new

physics at the horizon-scale physics [15–17], of the
existence of exotic compact objects [15–20], and of new
fundamental fields coupled to the gravity sector [21–37].
EMRIs are suitably described through relativistic pertur-

bation theory, exploiting the small mass ratio q as a natural
parameter for the expansion. Taking advantage of this setup,
the self-force (SF) approach provides the best method to
model EMRIs [3]. Parameter estimation requirements ask for
waveform templates accurate at the postadiabatic order, i.e.
yielding anOðqÞ phase error over the course of the inspiral.
Developing such models in GR has provided a formidable
challenge. The first postadiabatic waveforms have been
developed only recently, for quasicircular inspirals around
Schwarzschild BHs [38–40]. Current efforts aim to improve
such models in order to describe BHs on inclined, eccentric
orbits, taking into account spin effects for both the primary
and the secondary [41–52].
Exploiting the full EMRIs potential to test gravity and

detect new fundamental fields requires accurate waveforms
to be compared against data. However, EMRI modeling
beyond GR is at its infancy, with the complexity of
calculations growing fast because of the new fields and
their couplings. This picture is worsened by the lack of a
Kerr-like solution to use as a background for the perturba-
tions. Only recently, Refs. [53,54] proposed a new formal-
ism to derive a generalization of Teukolsky’s equation in
modified theories of gravity.
So far, the vast majority of studies has focused on

assessing the relevance of EMRI observations to probe the
spacetime around the primary BH [5,55]. However, it was
recently shown that, for a wide class of gravity theories
with nonminimally coupled scalar fields, the scalar charge
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1Exotic configurations with a subsolar mass secondary in-

spiralling around an intermediate mass BH could also provide a
new type of EMRI for 3G ground-based detectors [1].

PHYSICAL REVIEW D 109, 104079 (2024)

2470-0010=2024=109(10)=104079(13) 104079-1 © 2024 American Physical Society

https://orcid.org/0009-0001-4470-3694
https://orcid.org/0000-0001-7321-2512
https://orcid.org/0000-0001-8515-8525
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.104079&domain=pdf&date_stamp=2024-05-31
https://doi.org/10.1103/PhysRevD.109.104079
https://doi.org/10.1103/PhysRevD.109.104079
https://doi.org/10.1103/PhysRevD.109.104079
https://doi.org/10.1103/PhysRevD.109.104079


of the secondary could leave a significant imprint on
the EMRI emission, measurable with exquisite precision
by LISA [27]. Working in an effective field theory
approach it was also pointed out that, in such theories,
the scalar charge of the primary is negligible at the leading
order in q. This leads to drastic simplifications for the
EMRI treatment beyond GR, with the primary being
adequately described by the Kerr metric, and the devia-
tions from GR fully controlled by the charge of the
secondary.2 More recently, this framework was framed
into a rigorous SF scheme, developing a consistent
formalism to compute perturbations at the first and second
order in the mass ratio, and derive postadiabatic waveform
corrections [57].
Within this approach some of us studied the adiabatic

evolution of EMRIs with massless scalar fields on equa-
torial circular [27,58] (hereafter paper I and II, respec-
tively) and eccentric orbits [29] (paper III), investigating
the relevance of the secondary charge on the binary
dynamics, and its detectability by LISA (for similar
computations for a specific class of scalar-tensor theories,
see [22]). Motivated by the complex orbital configurations
expected for EMRIs, in this paper we make a step forward
and study the GW emission of such systems on inclined
circular trajectories. A seminal work, focused on comput-
ing the scalar-field SF for a body moving on such
configuration with a given value of the scalar charge,
was carried out in [59]. Here, we compute the energy and
angular momentum fluxes, which are related to the leading
dissipative SF contribution, and we use them to evolve
binaries with different charge values. We compute the
emitted gravitational waveforms and assess, for the first
time, the accuracy of the measurements of the scalar
charge by LISA observations.
The rest of the paper is organized as follows. In Sec. II

we describe the theoretical setup for modelling EMRIs with
circular, inclined orbits, in the presence of massless scalars;
we derive the main equations and discuss the numerical
implementation needed to compute the GW fluxes. In
Sec. III we assess the relevance of orbital inclination on the
distinguishability between waveforms with and without the
additional scalar charge. Conclusions and future prospects
are discussed in Sec. IV.

II. EMRIS AND SCALAR FIELDS: THE
THEORETICAL MINIMUM

In this section we briefly recall the theoretical back-
ground of our approach; for further details see papers I–III.
We use geometrical (G ¼ c ¼ 1) units.

A. Massless scalar fields in the Kerr spacetime

We consider a general action of the form (see papers I, II
and [57]),

S½g;φ;Ψ� ¼ S0½g;φ� þ αSc½g;φ� þ Sm½g;φ;Ψ�; ð1Þ

where g is the spacetime metric, φ is a real, massless scalar
field,

S0 ¼
Z

d4x
ffiffiffiffiffiffi−gp

16π

�
R −

1

2
∂μφ∂

μφ

�
; ð2Þ

and R is the Ricci scalar. The coupling between the scalar
field and the metric is encoded in the action αSc, which we
assume to be analytic in φ. Our formalism can be easily
extended tomassive scalars, as discussed in [60].We assume
that the coupling constant α has dimensions ðmassÞn, with
n > 1, namely that the interactions are suppressed by some
characteristic energy scale (in physical units). Matter fields,
denoted by Ψ, are described by the action Sm.
The action (1) yields the field equations

Gμν ¼ 8πTscal
μν þ αTc

μν þ Tm
μν; □φ ¼ Tc þ Tm; ð3Þ

where □ ¼ ∇μ∇μ, Tscal
μν ¼ 1

16π ½∂μφ∂νφ − 1
2
gμνð∂φÞ2� and

Tc
μν ¼ −

16πffiffiffiffiffiffi−gp δSc
δgμν

; Tm ¼ −
16πffiffiffiffiffiffi−gp δSm

δφ
: ð4Þ

We shall now discuss the key simplifications that occur for
EMRIs, and allow one to disentangle tensor and scalar
perturbations at the leading dissipative order. We refer the
reader to [57] for further details, as well as for the extension
of such formalism to postadiabatic corrections.
We consider binaries in which the primary is a BH of

massM, with the latter being the only physical scale of the
background. Hence, since we assume that for α → 0
solutions of Eqs. (3) are continuously connected to GR
solutions, deviations from the latter must depend on3

ζ ¼ α

Mn ¼ qn
α

mn
p
; ð5Þ

where mp is the mass of the EMRI secondary.
Astrophysical constraints imply α=mn

p ∼Oð1Þ or smaller.
Indeed, the effect of the scalar charge on observable
quantities for a body of mass mp is typically of order of
α=mn

p; if this quantity for stellar-mass objects is much
larger than one, such effects would have been already
detected by past and current astrophysical observations (see
e.g. [61–64]).

2This approach was also generalized to study the spectrum of
quasinormal modes for massive BHs in shift-symmetric scalar
tensor theories [56].

3In our units both the metric and the scalar field are
dimensionless.
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Therefore, ζ ≲ qn ≪ 1 and we can exploit q, the natural
parameter used to describe EMRIs within the perturbative
self-force approach in GR, as a single bookkeeping
parameter for our physical setup. As shown in [57], by
expanding the field equations, the metric, and the scalar
field in powers of q,

gμν ¼ gð0Þμν þ qhð1Þμν þ…; φ ¼ φð0Þ þ qφð1Þ þ…; ð6Þ

we can define an SF scheme for the EMRI evolution. In this
paper we focus on the leading dissipative contribution,

which is fully determined by hð1Þμν and φð1Þ.
At the zero order in the mass ratio, the background

spacetime is described by the Kerr metric. The scalar field
φð0Þ, whose contribution arises from S0, is constant due to
no-hair theorems [65–69], and can be set to zero without
loss of generality.
At first order in q, metric and scalar field perturbations

are sourced by the presence of the secondary, which we
describe using the so-called skeletonized approach [70,71],
in which the matter action Sm is replaced by a point particle
action Sp. For a massive, scalar-charged, compact object:

Sp ¼ −
Z
γ
mðφÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν

dyμp
dλ

dyνp
dλ

r
dλ; ð7Þ

where γ is the worldline of the particle, with four velocity
dyp=dλ and proper time λ. Equation (7) depends on the
mass function mðφÞ, which sources the scalar charge of the
secondary, d [72,73]. The latter is determined by expanding
φ in a buffer region inside the world-tube containing the
stellar mass object,

φð1Þ ¼ mpd

r̃
þOðm2

p=r̃2Þ; ð8Þ

where fx̃μg is a reference frame centered on the secondary
and the distance r̃ from the worldline is such that
mp ≪ r̃ ≪ M. By replacing the solution (8) in the field
equation for the scalar fields, one finds the matching
conditions mp ¼ mð0Þ and d ¼ −4m0ð0Þ=mp.
Expanding Eqs. (3) at the linear order in q, supplied by

the action Sp, yields a set of decoupled equations for the
metric and the scalar field perturbation:

Gαβ½hð1Þαβ � ¼ 8πmp

Z
δð4Þðx − ypðλÞÞffiffiffiffiffiffi−gp dyαp

dλ
dyβp
dλ

dλ; ð9Þ

□φð1Þ ¼ −4πdmp

Z
δð4Þðx − ypðλÞÞffiffiffiffiffiffi−gp dλ: ð10Þ

The amplitude of φð1Þ is controlled by the value of the scalar
charge.

Equations (9) and (10) have been solved in papers I–III
for circular and eccentric equatorial orbits, in order to
compute the emitted energy and angular momentum fluxes.

B. Nonequatorial, circular geodesics
of Kerr spacetime

We focus on EMRIs moving on geodesics of the Kerr
spacetime, the latter being described, in Boyer-Lindquist
coordinates xμ ¼ ðt; r; θ;ϕÞ, by the following line element:

ds2¼−
�
1−

2Mr
Σ

�
dt2−

4Mrasin2θ
Σ

dtdϕþΣdθ2

þ Σ
Δ
dr2þ

�
r2þa2þ2Mra2

Σ
sin2θ

�
sin2θdϕ2; ð11Þ

where M and a are the BH mass and spin parameter, while
Δ ¼ r2 þ a2 − 2Mr and Σ ¼ r2 þ a2 cos2 θ.
The geodesic equations for ðt; r;ϕ; θÞ are given by

Σ
dt
dτ

¼ E

�ðr2 þ a2Þ2
Δ

− a2sin2θ

�

þ aL

�
1 −

r2 þ a2

Δ

�
; ð12Þ

Σ
dϕ
dτ

¼ L2

sin2θ
þ aE

�
r2 þ a2

Δ
− 1

�
−
a2L
Δ

; ð13Þ

�
Σ
dr
dτ

�
2

¼ RðrÞ

¼ −Δ½r2 þ ðL − aEÞ2 þQ�
þ ½Eðr2 þ a2Þ − La�2: ð14Þ

�
Σ
dθ
dτ

�
2

¼ Θ2ðθÞ

¼ Q − cos2θ

�
ð1 − E2Þa2 þ L2

sin2θ

�
; ð15Þ

where τ is the proper time, E and L are the energy and
angular momentum of the particle per unit mass at infinity,
respectively, and Q is the Carter constant. We focus on
bound orbits, for which 0 ≤ E < 1 and Q ≥ 0.
In the orbital motion, the polar angle oscillates between

θmin and θmax ¼ π − θmin; the value of θmin is given by
the equation Θ2ðθmin;maxÞ ¼ 0, which can be cast as
an algebraic quadratic equation by changing variable to
z ¼ cos2ðθÞ. Its solutions are z−; zþ, with z− ≤ zþ; note
that cos2 θmin ¼ cos2 θmax ¼ z−, while zþ > 1 [74].
It is useful to perform a further change of variable, by

introducing the angular variable χ, such that

z ¼ cos2 θ ¼ z− cos2 χ: ð16Þ
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A period of the variable θ, from θmin to θmax and back,
corresponds to a period ½0; 2π� of χ; indeed, χðθminÞ ¼ 0;
2π, χðθmaxÞ ¼ π.
We shall consider a circular geodesic, at a r ¼ r0

constant. Note that, as shown in [75], circular orbits in
Kerr spacetime remain circular during the inspiral. Indeed,
the time derivative of the eccentricity is vanishing for
circular orbits evolving in the adiabatic regime, and can be
neglected. This proof applies to a generic external force in
the Kerr background, thus it also holds when such force
includes the effects of a radiating scalar field.
The geodesic equations (12) and (13), in terms of the

variable χ, reduce to

dt
dχ

¼ γ þ a2EzðχÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðzþ − zðχÞÞp ; ð17Þ

dϕ
dχ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðzþ − zðχÞÞp

�
L

1 − zðχÞ þ δ

�
; ð18Þ

where

β ¼ a2ð1 − E2Þ; ð19Þ

γ ¼ E

�ðr20 þ a2Þ2
Δ0

− a2
�
þ aL

�
1 −

r20 þ a2

Δ0

�
; ð20Þ

δ ¼ aE

�
r20 þ a2

Δ0

− 1

�
−
a2L
Δ0

; ð21Þ

and Δ0 ¼ r20 þ a2 − 2Mr0. Equations (17) and (18) can be
integrated using elliptic functions (see Appendix A).
For circular equatorial trajectories, the orbital motion is

described by the natural fundamental frequency dϕ=dt. For
inclined orbits, the picture is more complex since dϕ=dt
depends on θ. In our setup we can define two fundamental
frequencies, Ωϕ and Ωθ as follows. We define the polar
period Tθ ¼ tð2πÞ ¼ 4tðπ=2Þ. This is the time interval in
which χ varies from 0 to 2π (and θ from θmin to θmax and
back to θmin). In terms of Tθ, we define the polar frequency
Ωθ ¼ 2π=Tθ, and ϕ̄ ¼ ϕðTθÞ ¼ 4ϕðπ=2Þ; note that for a
rotating BH, ϕ̄ ≠ 2π. Finally, we define the azimuthal
frequency Ωϕ ¼ ϕ̄=Tθ.
As shown by Eq. (18), f ¼ dϕ=dt depends on the polar

angle θ only, namely it is periodic in time with period Tθ.
Then, it can be decomposed as a Fourier series

fðθÞ¼
X∞
n¼−∞

fneinΩθt; fn¼
1

Tθ

Z
Tθ

0

dtfðθÞe−inΩθt: ð22Þ

By integration we obtain

ϕðtÞ ¼ Ωϕtþ
X

n∈Zf0g
aneinΩθt; ð23Þ

where an ¼ −ifn=ðnΩθÞ; n ≠ 0.

C. Adiabatic inspirals

1. Perturbation equations with source

Scalar, vector, and gravitational perturbations of the Kerr
metric are described by the Teukolsky equation [76]:

�ðr2 þ a2Þ2
Δ

− a2sin2θ

�
∂
2ψ

∂t2
þ 4Mar

Δ
∂
2ψ

∂ϕ∂t

þ
�
a2

Δ
−

1

sin2θ

�
∂
2ψ

∂ϕ2
−Δ−s ∂

∂r

�
Δsþ1

∂ψ

∂r

�

−
1

sin θ
∂

∂θ

�
sin θ

∂ψ

∂θ

�
− 2s

�
aðr−MÞ

Δ
þ i cos θ

sin2θ

�
∂ψ

∂ϕ

− 2s

�
Mðr2 − a2Þ

Δ
− r− ia cos θ

�
∂ψ

∂t
þ ðs2cot2θ − sÞψ

¼ 4πΣT; ð24Þ

where the field ψ identifies the type of perturbation, and
s ¼ 0; 1;−2 stands for scalar, vector, and tensor modes,
respectively. In our case we have

ψðs¼ 0Þ¼φ; ψðs¼−2Þ¼ ðr− iacosθÞ4ψ4; ð25Þ

where ψ4 is a Weyl scalar. The source term is given by

Tðt; r; θ;ϕÞ ¼ −
dmp

ṫ sin θ
δðr − rðtÞÞδðθ − θðtÞÞδðϕ − ϕðtÞÞ;

ð26Þ

where ṫ is dt=dτ given in Eq. (12). The Teukolsky equation
is separable (see [74] and references therein), in terms of an
orthonormal set of angular functions, the spin-weighted
spheroidal harmonics sS

ω
lmðθÞ [76,77]. By expanding the

field ψ and the source term as

ψðt; r; θ;ϕÞ ¼
X
lm

Z
sR

ω
lmðrÞsSωlmðθÞeimϕ−iωtdω; ð27Þ

4πΣT ¼
X
lm

Z
sT

ω
lmðrÞsSωlmðθÞeimϕ−iωtdω; ð28Þ

it reduces to a decoupled set of ordinary differential
equations.
Hereafter we focus on scalar perturbations only, i.e. we

fix4 s ¼ 0, referring the reader to [78] for tensor modes.

4For sake of simplicity we drop the subscript s from the radial
and the angular functions.
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The decoupled equations for the radial functions then
read:

d
dr

�
Δ

d
dr

Rω
lm

�
þ
�
κ2

Δ
− λlm

�
Rω
lm ¼ T ω

lm: ð29Þ

The spin-weighted spheroidal harmonics are the solutions
of the equation:

1

sin θ
d
dθ

�
sin θ

dSωlm
dθ

�
þ
�
a2ω2cos2θ −

m2

sin2θ

þ λlm − a2ω2 − 2amω

�
Sωlm ¼ 0: ð30Þ

Here λlm is the eigenvalue of the spin-weighted spheroidal
harmonic Sωlm and κðrÞ ¼ ðr2 þ a2Þω −ma. We look for
the solutions of Eq. (29) with outgoing (ingoing) wave
boundary conditions at infinity (horizon). We hence follow
the Green’s functions approach, by first solving the
associated homogeneous problem, and then integrating
the solutions over the source term.
In order to solve the homogeneous equation, it is first

convenient to redefine Rω
lm as

Yω
lmðrÞ ¼ ðr2 þ a2Þ1=2Rω

lmðrÞ; ð31Þ

such that Eq. (29) becomes

d2Yω
lm

dr⋆2
þ
�
κ2 − λlmΔ
ðr2 þ a2Þ2 −G2 −G;r⋆

�
Yω
lm ¼ Tω

Ylm; ð32Þ

where r⋆ is the tortoise coordinate dr⋆
dr ¼ r2þa2

Δ [76],
G ¼ rΔ=ðr2 þ a2Þ2 and Tω

Ylm are the coefficients of

TYðt; r; θ;ϕÞ ¼
ΔðrÞ

ðr2 þ a2Þ32 Tðt; r; θ;ϕÞ ð33Þ

expanded as in (28).
The homogeneous problem of Eq. (32) admits two

independent solutions, with those being either purely
outgoing at infinity (Yþ

lmω), or purely ingoing at the horizon
(Y−

lmω), given by

Yþ
lmωðr→∞Þ∼e∓iωr; Y−

lmωðr→ rHÞ∼e�ipωr� ; ð34Þ

where pω ¼ ω −ma=2MrH and rH ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
is

the radial coordinate at the event horizon. From Eq. (31) we
can also compute the asymptotic behavior of Rω

lm

R−
lmω ∼

�
e−ipωr� r → rH
Ainr−1e−iωr

� þ Aoutr−1eiωr
�

r → ∞
; ð35Þ

Rþ
lmω ∼

�
Bine−ipωr� þ Bouteipωr� r → rH
eiωr r → ∞

: ð36Þ

These functions are defined modulo an overall constant,
which is irrelevant since it cancels in the final expression
for nonhomogeneous solutions [78]. The full solution of
Eq. (29) is then given by

Rω
lm ¼ Z−

lmωðrÞR−
lmωðrÞ þ Zþ

lmωðrÞRþ
lmωðrÞ; ð37Þ

where

Zþ
lmωðrÞ ¼

1

W

Z
r

rH

ρ2 þ a2

ΔðρÞ dρY−
lmωðρÞTω

YlmðρÞ; ð38Þ

Z−
lmωðrÞ ¼

1

W

Z
∞

r

ρ2 þ a2

ΔðρÞ dρYþ
lmωðρÞTω

YlmðρÞ; ð39Þ

andW ¼ Y−
lmωY

þ
lmω;r − Y−

lmω;rY
þ
lmω is the Wronskian. The

stress-energy tensor components Tω
Ylm are given by

Tω
YlmðrÞ ¼ −2dmp

Z
dt
Δδ½r − rðtÞ�
ðr2 þ a2Þ32ṫ e

i½ωt−mϕðtÞ�S�lm½θðtÞ�

ð40Þ

where S�lm is the complex conjugate of Slm. For circular
orbits rðtÞ ¼ r0, and we can use Eq. (23) to write
exp½imϕðtÞ� as a series of harmonics in θ [78]. We define
the function

Hlm½r0; θðtÞ� ¼ Ilm½r0; θðtÞ�eimðΩϕt−ϕðtÞÞ

¼
X∞
k¼−∞

Hlmkðr0Þe−ikΩθt; ð41Þ

where

Ilm½r0; θðtÞ� ¼ −
4πdmpΔ0

ðr20 þ a2Þ32
S�lm½θðtÞ�

ṫ
; ð42Þ

and

Hlmkðr0Þ ¼
1

Tθ

Z
Tθ

0

dtHlmðr0; θðtÞÞeikΩθt: ð43Þ

To avoid singularities in the domain of integration, we
change variable t → χ. Then, Hlmk reads
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Hlmkðr0Þ ¼ −
4πdmpΔ0

Tθðr20 þ a2Þ32

×
Z

2π

0

dχ
γ þ a2EzðχÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðzþ − zðχÞÞp S�lm½θðχÞ�

ṫ

× exp½iωmktðχÞ − imϕðχÞ�; ð44Þ

with ωmk ¼ kΩθ þmΩϕ. Using the definitions introduced
above the source term can be recast in the following form:

Tω
YlmðrÞ ¼

X∞
k¼−∞

δðr − r0Þδðω − ωmkÞHlmkðr0Þ: ð45Þ

In the same way, it is convenient to decompose nonhomo-
geneous solutions Z�

lmω as

Z�
lmω ¼

X
k∈Z

Z�
lmkδðω − ωmkÞ: ð46Þ

Then, defining

Ilmkðr0Þ ¼
Z

2π

0

dχ
γ þ a2EzðχÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðzþ − zðχÞÞp S�lm½θðχÞ�

ṫ

× exp½iωmktðχÞ − imϕðχÞ�; ð47Þ

and

C�
lmk ¼

−4πmp

TθW
Y∓
lmωðr0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ a2

p Ilmkðr0Þ; ð48Þ

we get

Z�
lmkðrÞ ¼ dΘðx�ÞC�

lmk ð49Þ

where ω ¼ ωmk, ΘðxÞ is the Heaviside function, xþ ¼
r − r0 and x− ¼ −xþ ¼ r0 − r.

2. Scalar fluxes

The energy and angular momentum fluxes, at leading
order in the mass ratio, can be extracted from the asymp-
totic value of the scalar field stress-energy tensor, which is
computed in terms of the scalar field solution derived
above. Following [79], we introduce

Ė� ¼ dE�
dt

¼∓
Z

dΩΔTrt; ð50Þ

where the upper (lower) sign is referred to the emission at
the infinity (horizon). By replacing the scalar field solution
(27), (37), φ ¼ ψðs ¼ 0Þ, in Tscal

μν (see Sec. II A), and
exploiting the asymptotic behavior of the radial solution
and the properties of the spheroidal harmonics, we find

Ė� ¼ d2

16π

X∞
l¼0

Xl
m¼−l

X∞
k¼−∞

ωmkp�
mkjC�

lmkj2; ð51Þ

where pþ
mk ¼ ωmk, p−

mk ¼ pωmk
, with C�

lmk being defined in
Eq. (48) [90]. The energy and the angular momentum
fluxes for each mode ðl; m; kÞ are related by

L̇lmk ¼
m
ωmk

Ėlmk; ð52Þ

therefore L̇

L̇ ¼ dL
dt

¼ d2

16π

X∞
l¼0

Xl
m¼−l

X∞
k¼−∞

mp�
mkjC�

lmkj2: ð53Þ

As expected, both Ė and L̇ scale with the square of the
scalar charge.

3. Adiabatic variation of orbital parameters

The scalar emission affects the EMRI dynamics, making
the system coalescing faster due to the extra leakage of
energy. The total energy and angular momentum fluxes are
then given by

Ċ ¼ Ċgrav þ Ċscal; ð54Þ

where C ¼ fE;Lg. Since, as discussed in Sec. II B, we
consider orbits with vanishing eccentricity (which is
possible since circular geodesics remain circular during
the inspiral [75]), they can be described in terms of two
orbital parameters. We choose the fixed radial coordinate
r ¼ r0 and the angular variable x [80], which determines
the inclination of the orbit:

x ¼ cos θinc; ð55Þ

where θinc ¼ π=2 − sgnðLÞθmin. The angle θinc is measured
with respect to the equatorial plane, while θmin is measured
with respect to the BH spin axis: sin2 θmin ¼ x2. We also
remark that θinc is acute (obtuse) for prograde (retrograde)
orbits. Since the geodesics are circular,

dRðrÞ
dt

¼ dR0ðrÞ
dt

¼ 0; ð56Þ

where 0 indicates derivative with respect to r. The condition
dR0=dt ¼ 0 is sufficient to determine ṙ. We get

ṙ¼ð2aLr−4r3E−4a2ErÞĖþ2aErL̇þðr−MÞK̇
6Mr−6r2ð1−E2Þ−a2−Kþ2a2E2−2ELa

; ð57Þ

where K ¼ Qþ ðL − aEÞ2. The variation of K can be
computed starting from RðrÞ ¼ 0, which leads to
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K ¼ 1

Δ
½Eðr2 þ a2Þ − La�2 − r2: ð58Þ

Using the geodesic equation, it can be shown that the
derivative ofK with respect to r vanishes for circular orbits,
and then

K̇ ¼ 2ðr2 þ a2ÞE − aL
Δ

½ðr2 þ a2ÞĖ − aL̇�: ð59Þ

At each orbit, the value of the extremal polar angle θmin is
given by the equation Θ2ðθminÞ ¼ 0. Changing variable to
θmin → x we have that during the inspiral the following
equation holds:

0 ¼ Θ2ðxÞ ¼ K −
�
L
x

�
2

þ 2aEL − a2E2x2 − a2x2; ð60Þ

which can be written in the form

L
x
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 2aEL − a2ð1 − x2Þ − a2E2x2

q
; ð61Þ

where there is no ambiguity in the sign since x has always
the same sign as L. Differentiating with respect to t, and
solving for ẋ we get5

ẋ ¼ −
xK̇ þ 2axðL − aEx2ÞĖþ 2ðaEx −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 2aEL − a2ð1 − x2Þ − a2E2x2

p
ÞL̇

2½K þ 2aEL − a2 þ 2x2a2ð1 − E2Þ� : ð62Þ

D. Gravitational waveform

With the formalism developed in Sec. II C, it is possible
to determine the fully relativistic gravitational waveform
of the EMRI, solution of Einstein’s equation (9) [81].
However, this approach is computationally expensive, and
its implementation in current pipelines for LISA data
analysis is a numerical challenge even in GR [82].
We adopt therefore a simpler model, which suffices the

purpose of assessing the impact of the scalar field on the
EMRI waveform: the so-called numerical kludge waveform
[83], which is based on the quadrupole approximation. In
this setup the GW strain is given by

hij ¼
2

dL

d2I
dt2

; Iij ¼ mpziðtÞzzðtÞ; ð63Þ

where ziðtÞ is the worldline of the secondary in Cartesian
spatial coordinates and dL the luminosity distance. By
integrating Eqs. (12) and (13), (17) and (57), with the
energy and angular momentum fluxes computed in Sec. II
C [Eq. (54)], we find the evolution of the orbital elements of
the secondary in Boyer-Lindquist coordinates rðtÞ, χðtÞ,
and ϕðtÞ. In the transverse-traceless gauge, the physical
propagating degrees of freedom along radial direction from
a source at an azimuthal angle ϑ and a polar angle Φ are
given by hþ ¼ 1

2
ðhϑϑ − hΦΦÞ and h× ¼ hϑΦ, where hþ and

h× are the “plus” and “cross” waveform polarizations and

hϑϑ ¼ cos2 ϑ½hxx cos2Φþ hxy sin 2Φþ hyy sin2Φ�
þ hzz sin2 ϑ sin 2ϑ½hxz cosΦþ hyz sinΦ�; ð64Þ

hΦϑ ¼ cosϑ
2

½2hxy cos 2Φ − hxx sin 2Φþ hyy sin 2Φ�
þ sin ϑ½hxz sinΦ − hyz cosΦ�; ð65Þ

hΦΦ ¼ hxx sin2Φ − hxy sin 2Φþ hyy cos2Φ: ð66Þ

Hereafter, we assume binaries with ϑ ¼ π=3 and Φ ¼ 0.

E. Numerical implementation

Numerical calculations of gravitational and scalar fluxes
are performed using dedicated Mathematica packages. We
compute geodesic quantities and homogeneous solutions to
Teukolsky equations using the Black Hole Perturbation
Toolkit (BHPT) [84], while we have developed an inde-
pendent code for integrations over the source terms.
In the next section we show results for a prototype EMRI

with a primary BH having a spin parameter a ¼ 0.95M.
Energy and angular momentum fluxes are computed on a
rectangular grid ðy; xÞ populated by 41 × 11 points evenly
distributed, where y∈ ½0; 1� is defined as

yðr; xÞ ¼ uðr; xÞ − uðrmax; xÞ
uðrmin; xÞ − uðrmax; xÞ

; ð67Þ

uðr; xÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 0.9 rISSOðxÞ

p ; ð68Þ

and rISSO is the innermost spherical stable orbit (ISSO),
which depends on x. We choose rmin ¼ rISSO þ δr and
rmax ¼ rmin þ 10M, where we added the factor δr ¼ 0.2 to
avoid singularities, and we remind the reader that the
variable x∈ ½−1; 1� (55) is positive (negative) for prograde
(retrograde) orbits.

5We have numerically checked that Eq. (62) is equivalent to
the expression derived with an independent approach in [80] (see
Eqs. B3 and B4 within).
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Both gravitational and scalar fluxes are given as sums
over the multipolar indices l, m, and k, as shown in
Eq. (51). Summation on k can be simplified by exploiting
the symmetry properties of the solution

Zl−m−k ¼ ð−1ÞlþkZ�
lmk; ð69Þ

and using the fact that modes with lþmþk¼2nþ1;n∈N
are vanishing (see Appendix B). We truncate the (infinite)
sum on l and k by adopting the accuracy criteria introduced
in [78]: (i) we stop the series in k when the energy fluxes
satisfy the condition

Ėlmk ≤ ϵk × Ėleading term
lm ; ϵk ≪ 1 ð70Þ

for nk times in a row; (ii) we truncate the series in l when

Ėl ¼
X
mk

Ėlmk ≤ ϵl× Ėleading term
lm ; ϵk ≪ ϵl ≪ 1 ð71Þ

for nl times in a row.We fix ϵl ¼ 10−3 and ϵk ¼ ϵl=10 such
that the relative error on the energy and angular momentum
fluxes is ≲10−3. Moreover, we choose6 lmax ¼ kmax ¼ 20.
With the values of the fluxes at each point of the grid, we

can compute the change in the orbital elements through
Eqs. (57) and (62). The right-hand side of such equations
can be cast in order to isolate the GR and the scalar field
contributions, which are numerically interpolated through
Mathematica. The final set of coupled equations,

drðtÞ
dt

¼ ṙgrav½rðtÞ; xðtÞ� þ d2ṙscal½rðtÞ; xðtÞ�; ð72Þ

dxðtÞ
dt

¼ ẋgrav½rðtÞ; xðtÞ� þ d2ẋscal½rðtÞ; xðtÞ�; ð73Þ

is then integrated with a suitable choice of the initial
conditions. The solutions allow one to compute χðtÞ and
ϕðtÞ, and the GW polarizations (64)–(66) in the time
domain, where

hxx ¼ r2ðsin2 χ þ x2 cos2 χÞ cos2 ϕ;
hyy ¼ r2ðsin2 χ þ x2 cos2 χÞ sin2 ϕ;
hzz ¼ r2ð1 − x2Þ cos2 χ;

hxy ¼
1

2
ðsin2 χ þ x2 cos2 χÞr2 sin 2ϕ;

hxz ¼ r2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
cos χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 χ þ x2 cos2 χ

q
cosϕ;

hyz ¼ r2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
cos χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 χ þ x2 cos2 χ

q
sinϕ:

As a final step we perform a discrete fourier transform of
hþ;× to map the signal in the frequency space (see paper II).
We have tested our code reproducing results available in

literature in GR [78], finding an agreement on the GW
fluxes up to machine precision. Moreover, to test the
interpolation for rðtÞ and xðtÞ we have considered a smaller
grid in the ðy; xÞ plane with 126 total points. We find an
average relative difference with respect to values interpo-
lated from the larger grid of ∼10−4. Such value increases up
to ∼10−2 for orbital radii close to the plunge.

III. RESULTS

For a preliminary assessment of the effect of the orbital
inclination on the detectability of the scalar charge, we
consider the quadrupolar dephasingΔϕ¼2×½ϕdðtÞ−ϕ0ðtÞ�,
whereϕ0 ¼ ϕd¼0, and the two phases are computed with the
same initial conditions. In Fig. 1we showΔϕ as a function of
the observing time, for d ¼ 0.01. Binaries evolve from an
orbital separation r0 ¼ 10M until the plunge, with different
values of the initial inclination angle. We remark that for the
configuration considered in this article, the inclination angle
always changes of≲1% in the integration time, as suggested
in [78]; therefore, θinc is with good approximation the
inclination angle during the inspiral. In Fig. 1 we also show
(horizontal line) the threshold valueΔϕ ¼ 0.1, above which
two signals observed by LISA with a signal-to-noise ratio
(SNR) of 30 are expected to be distinguishable [85]. We can
see that after one year of observation, the dephasing increases
above the distinguishability threshold for all values of θinc
except for θinc ¼ π. This analysis confirms the results

FIG. 1. Quadrupolar dephasing as a function of the observing
time for different values of the initial inclination of the orbit. We
fix the scalar charge to d ¼ 0.01. The horizontal line corresponds
to the threshold value for detectability, Δϕ ¼ 0.1, for an EMRI
observed by LISA with SNR ¼ 30 [85].

6These upper bounds are never reached with the choice
ϵl ¼ 10−3.
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obtained in papers I and II and [86] for equatorial circular and
eccentric orbits.
Figure 1 also shows that, for a given time, Δϕ increases

for larger inclination angles, and it is maximum for
retrograde configurations, i.e. θinc ∈ ½π=2; π�. Note that
the total dephasing, evaluated at the time of plunge, is
instead larger for less inclined orbits. This is due to the
specific setup of our analysis, which assumes the same
initial separation for all systems. Indeed, EMRIs with
θinc ≠ 0 reach the plunge faster as the separatrix shrinks,
resulting in an overall smaller number of accumulated
cycles.
To obtain a more quantitative assessment of the detect-

ability of scalar charge for inclined orbits, we investigate
the faithfulnessF between twowaveforms in the frequency
domain h̃1ðfÞ and h̃2ðfÞ

F ½h1; h2� ¼ max
t;ϕ

hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p ; ð74Þ

where Eq. (74) is maximized over time and phase shifts
[87]. The inner product hajbi is given by

hajbi ¼ 4ℜ
Z

fmax

fmin

ãðfÞb̃�ðfÞ
SnðfÞ

df; ð75Þ

and the SnðfÞ is the LISA noise power spectrum density,
also including the confusion noise produced by galactic
white dwarf binaries [88]. We set fmin ¼ 10−4 Hz, while
fmax corresponds to the orbital frequency at rmin. As a rule

of thumb, two signals with SNR ¼ 30 are distinguishable if
F ≲ 0.994 [89] .
To assess the convergence of our results, we have

computed F for given θinc and d increasing the working
precision (see Table I). On average we find maximum
deviations of the order of 5%, which we consider as
systematic error of our calculations. Figure 2 shows the
faithfulness between the hþ polarization computed in GR
and in presence of a nonvanishing scalar charge d, for one
year of observation time until the plunge, and different
initial inclination angles θinc. Note that in this case the

TABLE I. Faithfulness values for different numerical working
precision. The number of digits refers to the initial working
precision to integrate the equations of motion as described in
Sec. II D.

θinc d Number of digits F

0.47π 0.3 30 0.268
35 0.265
45 0.274
50 0.270

0.63π 0.1 30 0.328
50 0.293
60 0.316
65 0.325

0.75π 0.05 30 0.388
50 0.423
60 0.428

0.25π 0.01 45 0.65
50 0.82
55 0.80
60 0.97
65 0.96

FIG. 2. Faithfulness between the plus polarization of the GW
signal computed in GR and in presence of a nonvanishing scalar
charge d, as a function of the scalar charge, for different values of
the initial inclination angle. Full markers refer to prograde orbits,
while empty markers refer to retrograde orbits. We assume one
year of observation before the plunge. The horizontal line
identifies the threshold below which the two signals are distin-
guished by LISA for an EMRI observed with SNR ¼ 30 [89].

FIG. 3. Same as Fig. 2 but as function of the initial inclination,
for different values of the scalar charge. The vertical line at
θinc ¼ π distinguishes retrograde orbits (on the right) from
prograde ones (on the left).
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initial orbital separation of the binary is not the same in the
different models: it is a function of d and θinc. The results
shown in Fig. 2 confirm the dephasing analysis. They also
show that for d≳ 0.05 the faithfulness sharply drops from
one, for all configurations considered, and saturates around
F ∼ 0.4. While inclined configurations yield smaller values
of F , this trend changes for retrograde orbits with
θinc > 0.74π, since these systems plunge faster allowing
for a shorter frequency integration.
Finally, in Fig. 3 we show the faithfulness as a function

of θinc, for d ¼ 0.03 and d ¼ 0.1. This analysis shows that
the faithfulness is significantly smaller for prograde orbits
than for retrograde ones. For orbits of the same kind (either
prograde or retrograde), the faithfulness has a mild
dependence on the inclination angle. This behavior holds
for different values of the charge.

IV. CONCLUSIONS

EMRIs are among the primary targets of the future space
interferometer LISA. Their long inspiral evolution allows
one to estimate the source parameters with exquisite
precision, rendering such binaries golden tools for precise
tests of gravity in the strong field regime. Modelling
EMRIs beyond GR is still in its early stages, although a
new framework to describe such binaries within self-force
and in theories of gravity with extra scalar fields, has
recently been developed [57]. This approach is theory-
agnostic at the adiabatic order in the mass ratio, with
changes in the binary evolution uniquely determined by the
scalar charge of the EMRI secondary, d. The approach
builds upon a series of recent works, which determined the
adiabatic evolution of EMRI on equatorial circular and
eccentric orbits for massless fields [27,58,86,90], and for
equatorial circular inspirals and massive scalars [60]. In this
paper we have extended the description of EMRIs with
massless scalar fields to inclined circular orbits around Kerr
black holes, for both prograde and retrograde trajectories.
We have computed the gravitational and scalar fluxes,
which drive the EMRI adiabatic evolution, and assessed the
relevance of the orbital inclination on the detectability of d.
We have computed the dephasing induced by the

presence of the scalar charge for different inspirals up to
the plunge. This analysis suggests that LISA could be able
to detect charges as small as d ¼ 0.01.
We have then performed a more rigorous analysis, based

on the faithfulness computed between gravitational wave-
forms in GR and with a nonvanishing scalar charge. We
find that scalar charges with d ≳ 0.05 could lead to
distinguishable signals after one year of observation in
the LISA band, consistently with the results of papers I–III.
We also find that the faithfulness is significantly smaller for
prograde orbits than for retrograde ones. By focusing on
orbits which are either prograde or retrograde, we find that
the faithfulness mildly decreases (increases) for larger
values of the initial inclination angle for prograde

(retrograde) orbits. This suggests that inclined prograde
orbits could leave a larger imprint of the charge on the
emitted waveform.
Both the dephasing and the faithfulness provide only

preliminary indications on the actual impact of GR cor-
rections on the EMRI waveform, as they do not take into
account correlations among the source parameters. A fully
Bayesian analysis based on Monte Carlo Markov chain
simulations with fast EMRI waveforms [82,91] is currently
in preparation. We are also planning to extend our formal-
ism to generic configurations, i.e. treating EMRIs on
eccentric, inclined orbits. Indeed, our results show that
circular inclined orbits can provide better constraints of the
scalar charge than circular equatorial orbits. Similarly, as
shown in [29], eccentric equatorial orbits can provide better
constraints than circular equatorial orbits. Based on these
results, we expect generic orbits to break degeneracies
among the waveform parameters and improve the capabil-
ities of LISA to detect a scalar field and infer its properties.
This will complete the description of EMRIs with scalar

fields at the adiabatic order. Efforts to include postadiabatic
corrections [46], including spin and dipole contributions
from the secondary [34] are underway and will require a
longer path.
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APPENDIX A: NONEQUATORIAL GEODESICS
IN TERMS OF ELLIPTIC FUNCTIONS

Equations (17) and (18) can be integrated using elliptic
functions. Their general solution is

tðχÞ ¼ γffiffiffiffiffiffiffiffi
βzþ

p
�
K̃ − F

�
π

2
− χ; z̃

��

þ a2E
ffiffiffiffiffi
zþ
β

r �
E
�
π

2
− χ; z̃

�
− Ẽ

þ K̃ − F
�
π

2
− χ;

z−
zþ

��
; ðA1Þ

ϕðχÞ ¼ Lffiffiffiffiffiffiffiffi
βzþ

p
�
Π̃ − Π

�
π

2
− χ; z−;

z−
zþ

��

þ δffiffiffiffiffiffiffiffi
βzþ

p ½K̃ − F
�
π

2
− χ;

z−
zþ

��
: ðA2Þ
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whereK is the complete elliptic integral of the first kind,F ,
E, Π are the incomplete elliptic integrals of first, second,
and third kind, respectively, z̃ ¼ z−=zþ, K̃ ¼ Kðz̃Þ, Ẽ ¼
Eðπ=2; z̃Þ, Π̃ ¼ Πðπ=2; z−; z̃Þ [92]. Although elliptic func-
tions are usually defined in the domain ½0; π=2�, they can be
straightforwardly extended to 0 ≤ χ ≤ 2π.

APPENDIX B: CONDITION FOR
NONVANISHING k MODES

In this appendix we show that, as anticipated in Sec. II E,
modes of the solution of the Teukolsky equation with odd
lþmþ k ¼ 2nþ 1 identically vanish. To this aim, we
shall show that the integral in Eq. (47),

Ilmkðr0Þ ¼
Z

2π

0

dχ
γ þ a2EzðχÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðzþ − zðχÞÞp S�lm½θðχÞ�

ṫ

× eiðkΩθþmΩϕÞtðχÞ−imϕðχÞ; ðB1Þ

vanishes when lþmþ k is odd; this leads to the vanishing
of the corresponding function Zlmk (49).
Let us consider the symmetry properties of the integrand

of (B1) under reflection with respect to the equatorial plane
θ ¼ χ ¼ π=2, i.e. for the transformation θ → π − θ, which
corresponds to χ → π − χ [see Eq. (16)]. Since z ¼ cos2 θ,
γþa2EzðχÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðzþ−zðχÞÞ

p is invariant for this transformation. The proper-

ties of the spheroidal harmonics [77] for even spin s (we are
considering the cases s ¼ 0, 2) imply that

S�lm½π − θ� ¼ ð−1ÞlþmS�lm½θ�: ðB2Þ

Finally, since the particle employs half-period Tθ to reach
the opposite position with respect to the equatorial plane,
we find

tðπ − χÞ − tðχÞ ¼ 1

2
Tθ ¼

π

Ωθ
;

ϕðπ − χÞ − ϕðχÞ ¼ 1

2
ϕ̄ ¼ π

Ωϕ

Ωθ
; ðB3Þ

thus

ðkΩθ þmΩϕÞtðπ − χÞ −mϕðπ − χÞ
− ðkΩθ þmΩϕÞtðχÞ þmϕðχÞ

¼ ðkΩθ þmΩϕÞ
π

Ωθ
−mπ

Ωϕ

Ωθ
¼ kπ: ðB4Þ

Therefore, for θ → π − θ

eiðkΩθþmΩϕÞt−imϕ → ð−1ÞkeiðkΩθþmΩϕÞt−imϕ: ðB5Þ

Putting all together, we get that for θ → π − θ, the integrand
in Eq. (B1) is multiplied by a factor ð−1Þlþmþk. Therefore,
if lþmþ k is odd, the integrand is antisymmetric with
respect to equatorial reflection in its integration domain,
and the integral (B1) is then vanishing.
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[73] F.-L. Julié, J. Cosmol. Astropart. Phys. 01 (2018) 026.
[74] S. Chandrasekhar, The Mathematical Theory of Black

Holes, reprinted ed., Oxford Classic Texts in the Physical
Sciences (Clarendon Press, Oxford, 2009).

[75] D. Kennefick and A. Ori, Phys. Rev. D 53, 4319 (1996).
[76] S. A. Teukolsky, Astrophys. J. 185, 635 (1973).
[77] J. N. Goldberg, A. J. MacFarlane, E. T. Newman, F.

Rohrlich, and E. C. G. Sudarshan, J. Math. Phys. (N.Y.)
8, 2155 (1967).

[78] S. A. Hughes, Phys. Rev. D 61, 084004 (2000).
[79] N.Warburton andL.Barack, Phys. Rev.D 81, 084039 (2010).
[80] S. A. Hughes, N. Warburton, G. Khanna, A. J. K. Chua, and

M. L. Katz, Phys. Rev. D 103, 104014 (2021).
[81] S.Drasco and S. A.Hughes, Phys. Rev.D 73, 024027 (2006).
[82] M. L. Katz, A. J. K. Chua, L. Speri, N. Warburton, and S. A.

Hughes, Phys. Rev. D 104, 064047 (2021).
[83] S. Babak, H. Fang, J. R. Gair, K. Glampedakis, and S. A.

Hughes, Phys. Rev. D 75, 024005 (2007); 77, 04990(E)
(2008).

[84] Black Hole Perturbation Toolkit, http://bhptoolkit.org/.
[85] B. Bonga, H. Yang, and S. A. Hughes, Phys. Rev. Lett. 123,

101103 (2019).
[86] S. Barsanti, N. Franchini, L. Gualtieri, A. Maselli, and T. P.

Sotiriou, Phys. Rev. D 106, 044029 (2022).
[87] L. Lindblom, B. J. Owen, and D. A. Brown, Phys. Rev. D

78, 124020 (2008).

MATTEO DELLA ROCCA et al. PHYS. REV. D 109, 104079 (2024)

104079-12

https://doi.org/10.1103/PhysRevD.85.102003
https://doi.org/10.1103/PhysRevD.85.102003
https://doi.org/10.1103/PhysRevD.83.104048
https://doi.org/10.1103/PhysRevD.83.104048
https://doi.org/10.1103/PhysRevD.86.044010
https://doi.org/10.1103/PhysRevD.86.044010
https://doi.org/10.1038/s41550-019-0712-4
https://doi.org/10.1103/PhysRevD.102.103022
https://doi.org/10.1103/PhysRevD.102.103022
https://doi.org/10.1103/PhysRevLett.125.141101
https://doi.org/10.1038/s41550-021-01589-5
https://doi.org/10.1103/PhysRevD.106.044029
https://doi.org/10.1103/PhysRevLett.131.051401
https://doi.org/10.1103/PhysRevLett.131.051401
https://doi.org/10.1103/PhysRevD.107.044053
https://doi.org/10.1103/PhysRevD.107.044053
https://doi.org/10.1088/1475-7516/2023/06/020
https://doi.org/10.1088/1475-7516/2023/06/020
https://doi.org/10.1103/PhysRevD.107.023005
https://doi.org/10.1103/PhysRevD.109.044052
https://doi.org/10.1103/PhysRevD.109.044052
https://doi.org/10.1103/PhysRevD.105.044036
https://doi.org/10.1103/PhysRevD.105.044036
https://arXiv.org/abs/2312.06767
https://doi.org/10.1103/PhysRevD.108.084019
https://doi.org/10.1103/PhysRevLett.124.021101
https://doi.org/10.1103/PhysRevLett.124.021101
https://doi.org/10.1103/PhysRevLett.127.151102
https://doi.org/10.1103/PhysRevLett.130.241402
https://doi.org/10.1088/1361-6382/ab7075
https://doi.org/10.1088/1361-6382/ab7075
https://doi.org/10.1103/PhysRevLett.128.151101
https://doi.org/10.1103/PhysRevLett.128.151101
https://doi.org/10.1103/PhysRevD.103.124016
https://doi.org/10.1103/PhysRevD.103.124016
https://doi.org/10.1088/1361-6382/ac37a5
https://doi.org/10.1088/1361-6382/ac37a5
https://doi.org/10.1103/PhysRevD.106.044056
https://doi.org/10.1103/PhysRevD.106.044056
https://doi.org/10.1103/PhysRevD.108.064002
https://doi.org/10.1103/PhysRevD.108.064002
https://doi.org/10.1103/PhysRevD.104.084011
https://doi.org/10.1103/PhysRevD.104.084011
https://doi.org/10.1103/PhysRevD.102.024041
https://doi.org/10.1103/PhysRevD.102.024041
https://doi.org/10.1103/PhysRevD.105.084031
https://doi.org/10.1103/PhysRevD.105.084031
https://doi.org/10.1103/PhysRevD.105.124040
https://doi.org/10.1103/PhysRevD.105.124040
https://doi.org/10.1103/PhysRevD.109.044021
https://arXiv.org/abs/2305.08919
https://doi.org/10.1103/PhysRevX.13.021029
https://doi.org/10.1103/PhysRevX.13.021029
https://arXiv.org/abs/2311.07706
https://doi.org/10.1088/0264-9381/23/12/013
https://doi.org/10.1088/0264-9381/23/12/013
https://arXiv.org/abs/2311.17666
https://doi.org/10.1103/PhysRevD.109.064022
https://doi.org/10.1103/PhysRevD.109.064022
https://doi.org/10.1038/s41550-021-01589-5
https://doi.org/10.1103/PhysRevD.91.024045
https://doi.org/10.1103/PhysRevLett.131.051401
https://doi.org/10.1103/PhysRevLett.131.051401
https://doi.org/10.1103/PhysRevLett.123.191101
https://doi.org/10.1103/PhysRevLett.123.191101
https://doi.org/10.1103/PhysRevLett.126.181101
https://doi.org/10.1103/PhysRevD.104.124052
https://doi.org/10.1103/PhysRevD.105.064001
https://doi.org/10.1103/PhysRevD.105.064001
https://doi.org/10.1103/PhysRevD.106.069901
https://doi.org/10.1007/BF01646635
https://doi.org/10.1103/PhysRevD.51.R6608
https://doi.org/10.1007/BF01877518
https://doi.org/10.1103/PhysRevLett.108.081103
https://doi.org/10.1103/PhysRevLett.108.081103
https://doi.org/10.1103/PhysRevLett.110.241104
https://doi.org/10.1086/181744
https://doi.org/10.1088/0264-9381/9/9/015
https://doi.org/10.1088/0264-9381/9/9/015
https://doi.org/10.1103/PhysRevD.97.024047
https://doi.org/10.1088/1475-7516/2018/01/026
https://doi.org/10.1103/PhysRevD.53.4319
https://doi.org/10.1086/152444
https://doi.org/10.1063/1.1705135
https://doi.org/10.1063/1.1705135
https://doi.org/10.1103/PhysRevD.61.084004
https://doi.org/10.1103/PhysRevD.81.084039
https://doi.org/10.1103/PhysRevD.103.104014
https://doi.org/10.1103/PhysRevD.73.024027
https://doi.org/10.1103/PhysRevD.104.064047
https://doi.org/10.1103/PhysRevD.75.024005
https://doi.org/10.1103/PhysRevD.77.04990
https://doi.org/10.1103/PhysRevD.77.04990
http://bhptoolkit.org/
http://bhptoolkit.org/
https://doi.org/10.1103/PhysRevLett.123.101103
https://doi.org/10.1103/PhysRevLett.123.101103
https://doi.org/10.1103/PhysRevD.106.044029
https://doi.org/10.1103/PhysRevD.78.124020
https://doi.org/10.1103/PhysRevD.78.124020


[88] T. Robson, N. J. Cornish, and C. Liu, Classical Quantum
Gravity 36, 105011 (2019).

[89] K. Chatziioannou, A. Klein, N. Yunes, and N. Cornish,
Phys. Rev. D 95, 104004 (2017).

[90] S. Barsanti, Scalar fields around Kerr black holes in extreme
mass ratio inspirals, Master’s thesis, La Sapienza, University
of Rome, 2019.

[91] A. J. K. Chua, M. L. Katz, N. Warburton, and S. A. Hughes,
Phys. Rev. Lett. 126, 051102 (2021).

[92] M. Abramowitz and I. A. Stegun, Handbook of Mathemati-
cal Functions with Formulas, Graphs, and Mathematical
Tables, Ninth Dover Printing, Tenth GPO printing ed.
(Dover, New York, 1964).

EXTREME MASS-RATIO INSPIRALS AS PROBES OF SCALAR … PHYS. REV. D 109, 104079 (2024)

104079-13

https://doi.org/10.1088/1361-6382/ab1101
https://doi.org/10.1088/1361-6382/ab1101
https://doi.org/10.1103/PhysRevD.95.104004
https://doi.org/10.1103/PhysRevLett.126.051102

