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We investigate spherically symmetric axion stars with minimal coupling between a complex scalar
field and gravity in a tidal environment. Tidal perturbations are treated as linear, and we calculate the tidal
Love numbers for axion stars. The results show that the electric Love numbers of axion stars are positive,
while the magnetic Love numbers are negative on the stable branch. The electric tidal Love numbers are
much larger than the magnetic ones on the Newtonian stable branch, but only slightly larger on the
relativistic stable branch. The relativistic stable branch has much smaller tidal Love numbers than the
Newtonian stable branch, indicating weaker deformability of axion stars on the relativistic stable branch.
This is due to the fact that axion stars are more compact on the relativistic branch, and thus hardly distorted
by tidal forces.
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I. INTRODUCTION

In an external tidal environment, the uneven gravitational
fields and the relative motion between the bodies cause
tidal effects, which are fundamental in astrophysics as they
reveal the interactions and deformability of gravitational
objects. Tidal effects can alter the rotational speeds of
gravitational objects, giving rise to astrophysical phenom-
ena such as tidal tails and tidal locking [1,2].
Ocean tide in the Earth-Moon system is the most well-

known tidal phenomenon. It causes periodic rise and fall of
the ocean surface, creates tidal friction, and affects the
Earth’s rotation rate, resulting in a slower rotation rate. To
characterize Earth’s response to tidal forces, Love intro-
duced the concept of Love numbers in Newtonian gravity,
introducing two dimensionless parameters, denoted as h
and k [3]. The h describes the relative longitudinal
deformation, while k delineates the relative deformation
in the gravitational potential [4]. Later, the third dimension-
less parameter, l, was introduced by Shida to account for
the relative horizontal deformation of the Earth, which is
called Shida number sometimes [5]. Collectively, these
three dimensionless parameters are recognized as the Love
numbers.
The prospects of observing the tidal Love numbers of

spherically symmetric neutron stars have motivated the
study of the tidal Love numbers in general relativity [6–9].
Tidal deformation can affect the waveform of gravitational
waves, which is related to the internal structure of neutron
stars [7]. By measuring the tidal Love numbers through

gravitational wave observations, we can constrain the
equation of state that governs the interiors of neutron stars
[10,11]. In the relativistic theory, the key deformation
parameter is k, which is related to the ratio between the
multipole moments induced by deformations and the
multipole moment of the tidal field [8,9]. In terms of
parity, Love numbers are classified into even Love numbers
(electric type) and odd Love numbers (magnetic type). The
discovery of the I-Love-Q relations for slowly rotating
neutron stars has provided a novel avenue for inferring the
other two physical quantities through tidal Love numbers,
and can test general relativity in the strong-field regime
[12,13]. Furthermore, research efforts have extended to
investigate tidal deformations in rotating compact objects
[14–20]. Additionally, calculations of tidal Love numbers
have been explored within modified gravity [21,22].
Afterward, the study about tidal deformation of black

holes has yielded an intriguing result that for Schwarzschild
black holes both their electric and magnetic Love numbers
are found to be zero [8,9,23]. Subsequently, similar con-
clusions have been extended to slowly rotating black holes
[14,17,24,25]. In other words, under the influence of tidal
forces, there is no generation of induced multipole
moments, thereby leaving the multipolar structure of the
black hole unaltered. Although the gravitational field of a
black hole is extremely strong, due to its singularity and
lack of actual material structure, it cannot generate tidal
deformation, which is significantly different from other
self-gravitational objects. The tidal Love numbers within
the gravitational wave signal during the binary inspiral can
be used to test the properties of black holes and distinguish
them from other compact objects to some extent [26–28].*Corresponding author: yqwang@lzu.edu.cn
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Boson stars (BSs) as compact stars different from black
holes are solitonic formed by self-gravitating bosonic
fields. The theoretical framework for these configurations,
involving Einstein gravity coupled to a complex scalar
field, was constructed by Wheeler then Kaup and Ruffini
et al. found stable solutions for such systems [29–31]. In
astrophysics, BSs are considered as candidates for dark
matter [32–35]. The research indicates that the tidal Love
numbers of BSs are smaller than those of neutron stars
[26,36]. Moreover, there have been studies computing tidal
Love numbers for Proca stars, which are vector bosonic
stars, along with a rudimentary comparison with the results
for scalar BSs. Spherical bosonic binary stars with the same
compactness exhibit differences in the gravitational wave
signals between scalar and vector during the inspiral [37].
Furthermore, investigations into the tidal Love numbers
have extended to other exotic compact objects, including
gravastars [38,39] and quark stars [40,41].
Axion stars are compact objects formed by axion fields,

which consider a self-interaction complex scalar field
minimally coupled to gravity, and are also considered
one of the candidates for dark matter [42–45]. In response
to the strong CP problem in quantum chromodynamics
(QCD), the Peccei-Quinn mechanism was proposed, intro-
ducing the axion as a novel particle [46–49], considered as
weakly interacting ultralight bosons beyond Standard
Model [50]. Axionlike particles as particles beyond the
Standard Model play a pivotal role in string theory models
[51,52]. Spherically symmetric axion star solutions and
stability analysis were studied in [53] which found new
stability branches emerging at high density. Recent studies
have explored rotating axion stars [54] and the multifield
involving rotating axion stars mixed with boson fields [55].
Our work primarily focuses on the tidal deformability of
spherically symmetric axion stars. Through numerical
calculations, we have investigated the quadrupole and
octupole tidal Love numbers of axion stars under various
parameters fa.
The paper is organized as follows. In Sec. II, we briefly

review the model of axion stars, considering complex scalar
field minimally coupled to Einstein’s gravity. In Sec. III, we
present the perturbation equations for axion stars, divided
into odd and even perturbations. In Sec. IV, we show the
numerical results of quadrupole and octupole tidal Love
numbers for axion stars under different decay constants.
Finally, Sec. V is our conclusion and discussion. We adopt
the signature ð−;þ;þ;þÞ for the metric and natural
units ℏ ¼ c ¼ G ¼ 1.

II. SPHERICALLY SYMMETRIC
AXION STARS

A. Model

Under the Einstein-Klein-Gordon theory, we consider
the complex scalar field minimally couples with gravity,
and the action is [56]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

− gαβ∂αΨ�
∂βΨ − VðjΨj2Þ

�
; ð1Þ

where R represents the Ricci scalar, Ψ denotes the axion
field,Ψ� is the complex conjugate ofΨ, g is the determinant
of the metric tensor gαβ, and VðjΨj2Þ is the scalar potential.
From Eq. (1), we derive the corresponding equations of
motion. Taking the variation with respect to the metric gαβ
yields the Einstein field equation,

Rαβ −
1

2
gαβR ¼ 8πTαβ: ð2Þ

Here, the energy-momentum tensor Tαβ for the axion field
is given by

Tαβ ¼ ∂αΨ�
∂βΨþ ∂βΨ�

∂αΨ − gαβðgμν∂μΨ�
∂νΨþ VÞ: ð3Þ

Variation with respect to the axion field Ψ yields the Klein-
Gordon equation

□Ψ ¼ ∂V
∂jΨj2Ψ: ð4Þ

According to Noether’s theorem, the action of a field
remains invariant under U(1) transformations, where
Ψ → Ψeiα, with α being a constant. This implies the
existence of a conserved current

jα ¼ −iðΨ�
∂
αΨ −Ψ∂αΨ�Þ; ð5Þ

which satisfies ∇αjα ¼ 0. The integral of the timelike
component of the four-current on a spacelike hypersurface
Ω yields a conserved quantity, the Noether charge

Q ¼
Z
Ω
jt: ð6Þ

We consider a spherically symmetric static background,
within the following metric ansatz

ds2 ¼ −eηðrÞdt2 þ eξðrÞdr2 þ r2ðdθ2 þ sin2θdφ2Þ: ð7Þ

The metric is static, and the functions ηðrÞ and ξðrÞ depend
only on the radial coordinate r. Using the ansatz of scalar
field

Ψð0Þ ¼ ψ0ðrÞe−iωt; ð8Þ

where ψ0 is a real scalar and ω represents the angular
frequency of the scalar field. The axion potential is [53,57]

Vðψ0Þ ¼
2μ2f2a
B

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Bsin2

�
ψ0

2fa

�s �
: ð9Þ
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Here, B is a constant related to the ratio of the up quark
mass mu to the down quark mass md, with mu=md ≈ 0.48,
giving B ≈ 0.22, μ and fa are two free parameters. In this
potential, the second term corresponds to the QCD axion
effective potentials [57], and the addition of a constant term
ensures Vð0Þ ¼ 0, to construct asymptotically flat axion
stars. Expanding the potential around ψ0 ¼ 0,

Vðψ0Þ ¼ μ2ψ2
0 −

�
3B − 1

12

�
μ2

f2a
ψ4
0 þ � � � : ð10Þ

It can be observed that μ represents the mass of the axion,
while fa denotes the decay constant of the axion field.
When fa ≫ ψ0, only the free scalar potential remains, and
the axion stars model reduces to the miniboson stars
[30,31]. Taking the axion potential into Eqs. (2) and (4),
we obtain a set of ordinary differential equations,

η0ðrÞ¼−1þeξðrÞ

r
þ8e−ηðrÞþξðrÞπrω2ψ0ðrÞ2þ8πrψ 0

0ðrÞ2

þ
16eξðrÞf2aπrμ2

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2Bþ2Bcos

�
ψ0ðrÞ
fa

�s �

B
;

ð11Þ

ξ0ðrÞ¼ 1−eξðrÞ

r
þ8e−ηðrÞþξðrÞπrω2ψ0ðrÞ2þ8πrψ 0

0ðrÞ2

−
16eξðrÞf2aπrμ2

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2Bþ2Bcos

�
ψ0ðrÞ
fa

�s �

B
;

ð12Þ

ψ 00
0ðrÞ ¼ −e−ηðrÞþξðrω2ψ0ðrÞ −

2ψ 0
0ðrÞ
r

−
1

2
η0ðrÞψ 0

0ðrÞ þ
1

2
ξ0ðrÞψ 0

0ðrÞ

þ
eξðrÞfaμ2 sin

�
ψ0ðrÞ
fa

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Bþ 2B cos

�
ψ0ðrÞ
fa

�s : ð13Þ

B. Numerical solution

By providing appropriate boundary conditions, we can
numerically solve Eqs. (11)–(13). At the origin,

ξð0Þ ¼ 0; ηð0Þ0 ¼ 0; ψ 0
0ð0Þ ¼ 0: ð14Þ

Boundary conditions at infinity

lim
r→∞

ηðrÞ ¼ 0; lim
r→∞

ψ0ðrÞ ¼ 0: ð15Þ

In spherically symmetric static spacetime, when r → ∞ the
ADM mass of the axion stars M ¼ mðr → ∞Þ can be
determined using the formula

mðrÞ ¼ r
2

�
1 −

1

eξðrÞ

�
: ð16Þ

As axion stars do not have a rigid surface like neutron
stars because the field function is distributed throughout
space and decays exponentially, we define the effective
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FIG. 1. Domain of existence of the axion star solutions for different decay constant fa in an ADM mass/compactness vs frequency.
Left panel: ADM mass M vs scalar field frequency ω diagram, where M is in units of M2

p=μ and ω in units of μ. The solution for
miniboson stars is represented by the yellow dotted line. Right panel: compactness c of axion stars as a function of scalar field frequency
ω. Using solid lines of the same color represents the same value of fa.
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radius R of an axion star as the radius that contains
99% of the total mass [58], i.e., mðRÞ ¼ 0.99M, and we
define the compactness parameter of the axion stars
as c ¼ M=R.
In numerical calculations, we perform a radial coordinate

transformation,

x ¼ r
1þ r

; ð17Þ

where the radial coordinate r∈ ½0;∞Þ and the new radial
coordinate x∈ ½0; 1Þ. Numerical solutions are obtained
through the finite element method. The number of grid
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FIG. 2. Domain of existence of the axion stars for both the ADM mass and Noether charge with fa ¼
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ADM mass.
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points is 1000 in the integration region 0 ≤ x < 1. To
ensure the accuracy of the computational results, we require
that the relative error is less than 10−5.
The domain of existence of the axion star solutions for

different decay constant fa in an ADM mass/compactness
vs frequency diagram is shown in Fig. 1. Now, and for the
remainder of this paper, we focus on axion stars with decay
constant fa ¼ f1; 0.035; 0.025; 0.02; 0.017; 0.015g. The
left panel in Fig. 1 illustrates the distribution of the
ADM mass as a function of frequency. The solid lines
of various colors represent solutions for different fa, while
the yellow dotted line corresponds to the solution for
miniboson stars. The ADM mass M is related to the
numerically computed mass MðnumÞ ¼ μM=M2

p, where

Mp ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=G

p
is the Planck mass, and the unit of ADM

mass is M2
p=μ. As fa increases, the curve of ADM mass

variation with frequency becomes closer to that of mini-
boson stars, suggesting that axion stars decay into mini-
boson stars when fa tends to infinity. As mentioned in
Eq. (10), when fa tends to infinity, the self-interaction
terms vanish and only the free scalar potential remains; the
potential function at this point becomes that of miniboson
stars. For larger fa, the variation of the ADM mass with
frequency exhibits a spiral trend. As fa decreases, this
spiral curve transforms into a shape like a duck bill. When
fa is relatively small, the ADM mass has two local
maximums, suggesting the potential existence of two stable
branches for axion stars. The right panel of Fig. 1 shows the
compactness of axion stars varies along the frequency for
different fa. The axion stars become more compact as the
frequency decreases for larger fa. However, when fa is
small, the compactness initially increases with decreasing
frequency, then starts decreasing before eventually increas-
ing again.
In order to characterize the region of the stable branch of

the axion stars under these six chosen parameters fa, we
show the domain of existence in Fig. 2, displaying both the

ADM mass and the Noether charge vs the scalar field
frequency. The red solid line represents the Noether charge,
while the black solid line represents the ADM mass. We
will study the tidal Love numbers under stable configura-
tions. For miniboson stars, the stable branch is determined
from the maximum frequency, where the ADM mass M
tends to zero, to the maximum ADM mass M [59,60].
However, the domain of stable solutions for axion stars
differs from miniboson stars. Considering a self-interaction
potential of the scalar field, stability analysis of catastrophe
theory has found two stable branches of boson stars [61].
These two branches correspond to compact stars of lower
and higher density, respectively. Axion stars with fa ¼
0.02 were numerically evolved in the study by Herdeiro
et al. [62], confirming the existence of two stable branches.
According to their result, when ADM mass decreases with
frequency and Qμ2 > Mμ, the region is considered stable.
For cases withQμ2 < Mμ, the solutions with energy excess
are unstable. The left panels of Fig. 2 represent cases with
one stable branch, highlighted in yellow. The right panels
of Fig. 2 represent cases with two stable branches. The
stable region at higher frequencies corresponds to the
Newtonian stable branch, highlighted in yellow, while
the stable region at lower frequencies corresponds to the
relativistic stable branch, highlighted in green. Figure 2
reveals that for larger fa, only one stable branch exists; for
smaller fa values, will exhibit two stable branches. Unlike
miniboson stars, axion stars have more compact and stable
configurations that depend on different decay constant fa.
Axion stars have two stable branches when fa ≤ fca, where
fca ¼ 0.024 represents the critical parameter for the emer-
gence of the relativistic branch.
The distribution of the scalar field ψ0 as a function of

radial coordinate x is shown in Fig. 3. The left panel
illustrates the field function distribution on the Newtonian
stable branch at ω=μ ¼ 0.964, while the right panel dis-
plays the field function distribution on the relativistic stable
branch at ω=μ ¼ 0.583. Despite the distribution of the field
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FIG. 3. The distribution of the field function ψ0 as a function of x at ω=μ ¼ 0.964 (left panel) and ω=μ ¼ 0.583 (right panel) for
different fa.
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becomes very dilute when close to infinity, it does not
completely vanish.

III. TIDAL PERTURBATION

To calculate the tidal Love numbers, we adopt the
method in [8,26]. We consider linear perturbations for
axion stars immersed in a tidal field, focusing on first-order
linear perturbations. In a spherically symmetric back-
ground, the perturbed metric can be expressed as

gαβ ¼ gð0Þαβ þ hαβ; ð18Þ

where gð0Þαβ is given by Eq. (7). The scalar field under
perturbation is

Ψ ¼ Ψð0Þ þ δΨ; ð19Þ

with Ψð0Þ defined in Eq. (8). The perturbation part of the
scalar field is

δΨðt; r; θ;φÞ ¼
X
l;m

e−iωtψ1ðrÞYlmðθ;φÞ: ð20Þ

The metric perturbations hαβ can fall into even-parity hðeÞαβ

and odd-parity hðoÞαβ ,

hαβ ¼ hðeÞαβ þ hðoÞαβ : ð21Þ

In the Regge-Wheeler gauge, hðeÞαβ and hðoÞαβ can be expressed
as [63]

hðeÞαβ ¼

0
BBBBB@

eηðrÞHlm
0 ðrÞ 0 0 0

0 eξðrÞHlm
2 ðrÞ 0 0

0 0 r2KlmðrÞ 0

0 0 0 r2sin2θKlmðrÞ

1
CCCCCA
Ylmðθ;φÞ; ð22Þ

hðoÞαβ ¼

0
BBBBB@

0 0 hlm0 ðrÞFlm
θ hlm0 ðrÞFlm

φ

0 0 hlm1 ðrÞFlm
θ hlm1 ðrÞFlm

φ

hlm0 ðrÞFlm
θ hlm1 ðrÞFlm

θ 0 0

hlm0 ðrÞFlm
φ hlm1 ðrÞFlm

φ 0 0

1
CCCCCA
; ð23Þ

where Flm
θ ¼ − 1

sin θ
∂Ylmðθ;φÞ

∂φ and Flm
φ ¼ sin θ ∂Ylmðθ;φÞ

∂θ . Here,
Ylm represents spherical harmonics, and for simplicity, we
consider m ¼ 0 in our subsequent calculations. The Ein-
stein field equations and Klein-Gordon equation under
linear perturbations are given by

δGα
β ¼ 8πδTα

β; ð24Þ

δ

�
∇α∇αΨ −

∂V
∂jΨj2Ψ

�
¼ 0: ð25Þ

For nonrotating axion stars, neglecting odd-even perturba-
tion mixing, we can classify tidal deformations into electric
and magnetic. Electric tidal deformations have even parity,
while magnetic tidal deformations have odd parity. The
induced multipole moments are related to the deformation
and mass distribution of axion stars, and the tidal Love
numbers can be determined through the relationship
between multipole moments and induced multipole mo-
ments. Considering linear perturbations, the induced multi-
pole moments generated inside axion stars due to tidal

deformations are related to the external tidal field’s multi-
pole moments. The relationship between l order tidal
multipole moments is [64]

Ml ¼ λlẼl;

Sl ¼ σlB̃l; ð26Þ
where λl and σl are the tidal-polarizability coefficients. Ml
and Sl represent the mass and spin multipole moments
generated, respectively, and Ẽl and B̃l represent the electric
and magnetic multipole moments of the external tidal field.
To further calculate the tidal Love numbers, we first need

to obtain the multipole moments of the tidal field and the
induced multipole moments caused by the tidal field. These
two types of multipole moments can be extracted through
an asymptotic behavior of the metric. We adopt the
multipole moment extraction method proposed by Kip S.
Thorne [65]. In this method, an asymptotically Cartesian
mass-centered coordinate system is chosen, and the ðt; tÞ
component and ðt;φÞ component of the metric can be
expressed as
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gtt ¼ −1þ 2M
r

þ
X
l≥2

�
2

rlþ1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
MlYl0 þ ðl0 < lpoleÞ

�
−

2

lðl − 1Þ r
l½ẼlYl0 þ ðl0 < lpoleÞ�

�
;

gtφ ¼ 2J
r
sin2θ þ

X
l≥2

�
2

rl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Sl
l
Fl0
φ þ ðl0 < lpoleÞ

�
þ 2rlþ1

3lðl − 1Þ ½B̃lFl0
φ þ ðl0 < lpoleÞ�

�
: ð27Þ

Tidal Love numbers are related to the asymptotic
behavior of the metric. From the tidal deformability
coefficients λl and σl, we define dimensionless electric
tidal Love numbers as kEl and magnetic tidal Love numbers
as kBl [26],

kEl ≡ −
1

2

lðl − 1Þ
M2lþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Ml

Ẽl
;

kBl ≡ −
3

2

lðl − 1Þ
ðlþ 1ÞM2lþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Sl
B̃l

: ð28Þ

Here, M represents the mass of the axion stars, and we use
M2lþ1 to make the tidal Love numbers dimensionless.

A. Electrical perturbation

We first consider the electric tidal perturbations pro-
duced by the external tidal field. By inserting the scalar
field perturbation [Eq. (20)] and the even metric perturba-
tion [Eq. (22)] into the linearized Einstein equation from
Eq. (24), combining the ðθ; θÞ and ðφ;φÞ components of
the linearized Einstein equation, we obtainH2ðrÞ ¼ H0ðrÞ.
Using the ðr; θÞ component, we can express K0ðrÞ as a
function of H0ðrÞ and ψ1ðrÞ:

K0ðrÞ ¼ H0
0ðrÞ þH0ðrÞη0ðrÞ − 32πψ1ðrÞψ 0

0ðrÞ: ð29Þ

Here, ψ0ðrÞ is obtained from the background solution. By
using K0ðrÞ and H2ðrÞ ¼ H0ðrÞ, we can derive a linear
equation forH0ðrÞ by subtracting the ðt; tÞ component from
the ðr; rÞ component of the linearized Einstein equation,

a1H0 þ a2H0
0 þH00

0 ¼ a3ψ1: ð30Þ

Here, a1, a2, and a3 depend on the background solution and
are given by

a1 ¼−32πω2ψ 02
0 −

ðl2þlÞeξ
r2

þ 4η0

r
þ 2ξ0

r
−
η02

2
−
η0ξ0

2
þ η00;

a2 ¼
2

r
þ η0 − ξ0

2
;

a3 ¼ 32π

�
−e−ηþξω2ψ0þψ 0

0

�
2

r
−
η0 þ ξ0

2

�
þψ 00

0

�
: ð31Þ

Obtaining the equation for ψ1ðrÞ from the Klein-Gordon
equation under perturbation,

b1ψ1 þ b2ψ 0
1 þ ψ 00

1 ¼ b3H0: ð32Þ

Here, b1, b2, and b3 depend on the background solution and
are given by

b1 ¼ −
ðl2 þ lÞeξ

r2
þ e−ηþξω2 −

eξμ2 cos
�
ψ0

fa

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Bþ 2B cos

�
ψ0

fa

�r −
Beξμ2sin2

�
ψ0

fa

�
�
1 − 2Bþ 2B cos

�
ψ0

fa

��3=2 − 32πψ 02
0 ;

b2 ¼
2

r
þ η0

2
−
ξ0

2
;

b3 ¼ −e−ηþξω2ψ0 þ
2ψ 0

0

r
−
ðη0 þ ξ0Þψ 0

0

2
þ ψ 00

0: ð33Þ

By imposing appropriate boundary conditions, we can
solve the system of equations in Eqs. (30) and (32). To
improve the numerical behavior of the perturbation equa-
tions near the boundaries and enhance the reliability and
accuracy of the calculations, we applied transformations to
H0 and ψ1:

H̃0ðrÞ≡H0r−l; ψ̃1ðrÞ≡ ψ1r−ðlþ1Þ: ð34Þ

At the origin r ¼ 0, the boundary conditions are given by

H̃0ð0Þ ¼ H̃ðlÞ
0 ; H̃0

0ð0Þ ¼ 0;

ψ̃1ð0Þ ¼ ψ̃ ðlþ1Þ
1 ; ψ̃ 0

1ð0Þ ¼ 0: ð35Þ

Since the system is linear, we can choose a specific value

for H̃ðlÞ
0 , such as H̃ðlÞ

0 ¼ 1. Using the shooting method for
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numerical solution [66,67], in order to determine the value

of ψ̃ ðlþ1Þ
1 , we require limr→∞ψ̃1ðrÞ → 0. Once an reason-

able initial value ψ̃ ðlþ1Þ
1 is found, we can use it to obtain

nearby solutions. By iterating through this process, one can
efficiently get more solutions.
When distances are much larger than the effective radius

R, Eq. (30) reduces to

H00
0 þ

�
2

r
þ η0 − ξ0

2

�
H0

0 þ
�
−
ðl2 þ lÞeξ

r2
þ 4η0

r
þ 2ξ0

r
−
η02

2
−
η0ξ0

2
þ η00

�
H0 ¼ 0: ð36Þ

Using eηðrÞ ¼ 1–2M=r ¼ e−ξðrÞ, we obtain

H00
0 þ

2ðr −MÞ
rðr − 2MÞH

0
0 þ

rðl2 þ lÞð2M − rÞ − 4M2

r2ðr − 2MÞ2 H0 ¼ 0:

ð37Þ

We introduce the independent variable f ¼ r=M − 1, and
Eq. (37) has a general solution,

H0 ¼ EpP2
lðr=M − 1Þ þ EqQ2

lðr=M − 1Þ; ð38Þ

where P2
l and Q2

l represent the associated Legendre
function. Ep and Eq are two integration constants, which
can be determined by comparing the behavior of H0 with
that of the metric as r → ∞. As r → ∞, the asymptotic
forms are

P2
l ¼ apðl;MÞ

�
r
M

�
l
þOðrl−1Þ;

Q2
l ¼ aqðl;MÞ

�
M
r

�
lþ1

þOðr−ðlþ2ÞÞ: ð39Þ

Using Eq. (28), we can express the electrical tidal Love
numbers as

kEl ¼ 1

2

1

M2lþ1

Eqaqðl;MÞ
Epapðl;MÞ : ð40Þ

When calculating the tidal Love numbers at the extraction
radius Rext which is far away from the center of axion stars,
we define a new function,

y ¼ Rext
H0

0ðRextÞ
H0ðRextÞ

: ð41Þ

For l ¼ 2; 3, the electric tidal Love numbers are given by

kE2 ¼ 8

5
ð1 − 2CÞ2½2Cðy − 1Þ − yþ 2�

×

	
2Cð4ðyþ 1ÞC4 þ ð6y − 4ÞC3 þ ð26 − 22yÞC2 þ 3ð5y − 8ÞC − 3yþ 6Þ

−3ð1 − 2CÞ2ð2Cðy − 1Þ − yþ 2Þ log
�

1

1 − 2C

�

−1
;

kE3 ¼ 8

7
ð1 − 2CÞ2½2ðy − 1ÞC2 − 3ðy − 2ÞC þ y − 3�

×

	
2C½4ðyþ 1ÞC5 þ 2ð9y − 2ÞC4 − 20ð7y − 9ÞC3 þ 5ð37y − 72ÞC2 − 45ð2y − 5ÞC þ 15ðy − 3Þ �

−15ð1 − 2CÞ2ð2ðy − 1ÞC2 − 3ðy − 2ÞC þ y − 3Þ log
�

1

1 − 2C

�

−1
; ð42Þ

where C ¼ M=Rext. k2 and k3 are quadrupolar and octu-
polar electric tidal Love numbers, respectively.

B. Magnetic perturbation

Next, we consider the magnetic tidal perturbations in the
tidal environment. The earliest magnetic Love numbers for
neutron starswere computed byBinnington and Poisson (BP)
and Damour and Nagar (DN) using different methods,
resulting in sign differences in the obtained results [8,9].

BP’s method [9] assumed the fluid is strictly static, requiring
complete absence of internal motion, and derived all pertur-
bation equations using static fluid analysis, yielding positive
magnetic Love numbers. DN [8] did not rederive the pertur-
bation equations but instead computed the Regge-Wheeler
equation and then took the static limitω → 0, underwhich the
fluid is irrotational [68,69], allowing for internal motion
driven by gravitomagnetic interaction with the tidal environ-
ment, resulting in negativemagnetic Love numbers.We adopt
the method used by DN [8] to compute the magnetic Love
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numbers, utilizing Schwarzschild coordinates and theRegge-
Wheeler gauge.
Applying the same steps as used for computing the

electric tidal Love numbers, we first utilize Eqs. (20) and
(23) within Eq. (24). This yields ψ0 ¼ 0 from the ðr; θÞ
component and provides the equation for h0 from the ðt;φÞ
component,

c1h0ðrÞ þ c2h00ðrÞ þ h000ðrÞ ¼ 0; ð43Þ
where c1 and c2 are defined as

c1 ¼
−eξðl2 þ l − 2Þ þ rðη0 þ ξ0Þ − 2

r2
;

c2 ¼ −
ξ0 þ η0

2
: ð44Þ

We perform a transformation on h0 to remove its explicit
dependence on r,

h̃0ðrÞ≡ h0rlþ1: ð45Þ

Under this transformation, the boundary conditions at the
origin r ¼ 0 become

h̃0ð0Þ ¼ h̃ðlþ1Þ
0 ; h̃00ð0Þ ¼ 0: ð46Þ

When distances are much larger than the effective radius R,
and using eηðrÞ ¼ 1–2M=r ¼ e−ξðrÞ, Eq. (43) simplifies to

4M − lðlþ 1Þ
r2ðr − 2MÞ h00ðrÞ þ h000ðrÞ ¼ 0: ð47Þ

The solution to this differential equation is

h0 ¼ Bf
r2

4M2 2F1

�
1 − l; 2þ l; 4;

r
2M

�

þ BgG2 0
2 2

�
r
2M

���� 1 − l; 2þ l

−1; 2

����
�
: ð48Þ

Here, Bf and Bg are integration constants, 2F1 represents
the hypergeometric function, andG2 0

2 2 represents the Meijer
function. As r → ∞, the asymptotic behavior is

h0 ¼ Bfbfðl;MÞ
�
r
M

�
lþ1

þOðr−l−1Þ

þ Bgbgðl;MÞ
�
M
r

�
l
þOðrlÞ: ð49Þ

Using Eq. (28), we can express the magnetic tidal Love
numbers as

kBl ¼ −
1

2

l
lþ 1

1

M2lþ1

Bgbgðl;MÞ
Bfbfðl;MÞ : ð50Þ

By combining this with the asymptotic behavior of the
metric’s ðt;φÞ component, we can derive the expressions
for kB2 (quadrupolar) and kB3 (octupolar) magnetic tidal
Love numbers when l ¼ 2; 3 as follows:

kB2 ¼ 8

5

2Cðy − 2Þ − yþ 3

2C½2C3ðyþ 1Þ þ 2C2yþ 3Cðy − 1Þ − 3yþ 9� þ 3½2Cðy − 2Þ − yþ 3� logð1 − 2CÞ ;

kB3 ¼ 8

7
ð8C2ðy − 2Þ − 10Cðy − 3Þ þ 3ðy − 4ÞÞð15½8C2ðy − 2Þ − 10Cðy − 3Þ þ 3ðy − 4Þ� logð1 − 2CÞ

þ2C½4C4ðyþ 1Þ þ 10C3yþ 30C2ðy − 1Þ − 15Cð7y − 18Þ þ 45ðy − 4Þ�Þ−1; ð51Þ

where y ¼ Rexth00ðRextÞ=h0ðRextÞ and C ¼ M=Rext.

IV. TIDAL LOVE NUMBERS OF AXION STARS

In this section, we will study the tidal Love numbers of
spherically symmetric axion stars by computing y and C at
extraction radius Rext. It is noted that in Sec. II the first three
parameters, characterized by larger values of fa, exhibit
only one stable branch known as the Newtonian stable
branch. Conversely, for the latter three cases with smaller
fa, the system displays the presence of two stable branches.
The branch from the maximum frequency to the first local
maximum mass corresponds to the Newtonian stable

branch, while the relativistic stable branch corresponds
to the other stable branch.
First, we analyze tidal Love numbers on the Newtonian

stable branch. We calculate both the quadrupolar Love
numbers (l ¼ 2) and the octupolar Love numbers (l ¼ 3).
In Fig. 4, the left panels show the electric tidal Love
numbers kEl , while the right panels exhibit the magnetic
tidal Love numbers kBl as functions of the axion stars mass
M for different parameter fa. The top panels correspond to
the quadrupole case (l ¼ 2), whereas the bottom panels
represent the octupole case (l ¼ 3).
On the Newtonian stable branch for l ¼ 2, we observe

that the electric tidal Love numbers kE−N2 decrease with
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increasing mass under the same parameter fa. As the mass
increases, the axion stars become very compact, and
compactness reaches maximum at M=Mmax ¼ 1, where
kE−N2 reaches its minimum. On the other hand, the absolute
value of the magnetic tidal Love numbers kB−N2 decreases
with increasing mass. The variation in the parameter fa
does not alter the general trend of the tidal Love numbers
with mass.
For a constant mass ratioM=Mmax, the self-interaction of

the axion potential becomes stronger and quadrupole tidal
Love numbers become larger as the parameter fa
decreases, suggesting increased tidal deformability as fa
decreases. The electric tidal Love numbers are positive on
this branch suggesting a positive feedback from the addi-
tional potential induced by the external gravitational field,
promoting deformation. The negative magnetic tidal Love
numbers show that the external tidal field produces a
deformation in the gravitational potential that works against
these deformations. At a consistent mass ratio, the magni-
tude of the magnetic tidal Love numbers is observed to be
smaller than that of the electric tidal Love numbers. We also
perform calculations for the case of l ¼ 3 and obtain
results similar to those for l ¼ 2.

Next, we investigate the situation on the relativistic
stable branch of axion stars. Tidal Love numbers for axion
stars on the relativistic stable branch are presented in Fig. 5.
The trends of tidal Love numbers with respect to mass on
the relativistic stable branch are similar to those observed
on the Newtonian stable branch. The electric tidal Love
numbers kE−R2 and the absolute value of the magnetic tidal
Love numbers kB−R2 decrease as the mass increases. On this
branch, the electric tidal Love numbers are positive, and the
magnetic tidal Love numbers are negative. However, unlike
the Newtonian stable branch, on the relativistic stable
branch, for the same mass ratio, electric kE−R2 and magnetic
kB−R2 Love numbers have nearly equal magnitudes, espe-
cially asM=Mmax → 1, where they are almost identical. For
a given parameter fa and the same mass ratio, the electric
tidal Love numbers are always greater than magnetic tidal
Love numbers. Furthermore, the Love numbers on the
relativistic stable branch are markedly smaller than those on
the Newtonian stable branch, indicating significantly
weaker tidal deformability of axion stars on the relativistic
stable branch compared to the Newtonian stable branch. At
M=Mmax ¼ 1, kE−R2 and kB−R2 tend to approach zero. This
may be attributed to the more compact configurations of
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FIG. 4. Tidal Love numbers for axion stars on the Newtonian stable branch, including the electric type (left) and magnetic type (right).
The top panels represent the quadrupolar tidal Love numbers (l ¼ 2), while the bottom panels depict the octupolar tidal
Love numbers (l ¼ 3).
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axion stars on the relativistic stable branch, resulting hardly
distorted compared to those on the Newtonian stable
branch.

V. CONCLUSIONS

In this paper, we briefly reviewed the domain of
existence of the spherically symmetric axion stars solu-
tions, considering the self-interaction complex scalar field
minimally coupled to Einstein’s gravity. As the value of fa
increases, the self-interaction become weaker and the mass-
frequency curve of axion stars approaches more closely to
that of miniboson stars, implying that axion stars decay into
miniboson stars as fa approaches infinity. As fa decreases
the self-interaction strengthens and the mass-frequency
relation changes from a spiral shape to a “duck-bill” curve.
For miniboson stars, there is only one stable branch, while
axion stars at fa ≤ 0.024 exhibit a new stable branch that
becomes more compact. The Newtonian stable branch
extends from the maximum frequency to the first local
maximum mass, while the relativistic stable branch extends
from the second Qμ2 ¼ Mμ to the second mass local
maximum. An unstable branch connects the Newtonian

and relativistic stable branches, with axion stars having
greater compactness under the relativistic stable branch.
Subsequently, we investigated deformability and the

corresponding tidal Love numbers which fall into electric
type (even parity) and magnetic type (odd parity). We have
numerically solved the ordinary differential equations using
the finite element method. Expressions for the Love
numbers of axion stars were derived through perturbations
to the Einstein equations when considering the radius far
away from the center of axion stars. Following this, six
distinct decay constants fa were chosen, and computations
were conducted for the quadrupole tidal Love numbers
(l ¼ 2) as well as the octupole tidal Love numbers (l ¼ 3).
The results reveal that on the stable branch, whether
Newtonian or relativistic, the electric tidal Love numbers
are positive while the magnetic tidal Love numbers are
negative. These indicate that even parity perturbations lead
to the deformation of gravitational potential that enhances
the deformation. However, the gravitational potential
deformations were caused by odd parity perturbations
against these deformations. The electric tidal Love numbers
are larger than the magnetic tidal Love numbers. With an
increase in mass, there is a corresponding decrease in the
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FIG. 5. Tidal Love numbers for axion stars on the relativistic stable branch, including the electric type (left) and magnetic type (right).
The top panels represent the quadrupolar tidal Love numbers (l ¼ 2), while the bottom panels depict the octupolar tidal
Love numbers (l ¼ 3).
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tidal Love numbers. Those results are similar with boson
stars and Proca stars [26,37]. However, on the Newtonian
stable branch, the electric tidal Love numbers are signifi-
cantly larger than the magnetic ones, whereas on the
relativistic branch, the electric tidal Love numbers only
slightly exceed the magnetic ones. Furthermore, the tidal
Love numbers on the relativistic stable branch are much
smaller than those on the Newtonian stable branch, and as
M=Mmax → 1 on the relativistic branch, the tidal Love
numbers tend to approach zero. This intriguing result
suggests that at the maximum mass on the relativistic
branch, the tidal Love numbers reach their minimum
values. Because of the more compact configurations of
axion stars immersed in external tidal fields, smaller mass
and spin multipole moments are produced, thereby result-
ing in weakened tidal deformability.
Rotating axion boson stars as the spinning generalizations

of static axion boson stars have been constructed in [54].

Extending our study to investigate the tidal Love numbers of
rotating axion boson stars and multifield axion boson stars
would be interesting. Additionally, recent studies indicate
that the excited boson stars can stabilize when considering
self-interactions [70,71]. Therefore, investigating the tidal
deformability of ground states and excited states in such self-
interacting spherically symmetric configurations is highly
meaningful.
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