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In this work we analyze the possibility of sudden cosmological singularities, also known as type-II
singularities, in the background of a Friedmann-Lemaitre-Robertson-Walker geometry in an extension of
general relativity known as Aether scalar-tensor theories (AeST). Similarly to several scalar-tensor theories,
we observe that sudden singularities may occur in certain AeST models at the level of the second-order time
derivative of the scale factor. These singularities can either be induced by AeST’s scalar field itself in the
absence of a fluid matter component, or by a divergence of the pressure component of the fluid. In the latter
case, one observes that the second-order time derivative of the scalar field Q is also divergent at the instant
the sudden singularity happens. We show that the sudden singularities can be prevented by an appropriate
choice of the action and initial conditions, for which a divergence in the scalar field compensates the
divergence in the pressure component of the matter fluid, thus preserving the regularity of the scale factor
and all its time derivatives. For the models featuring a sudden singularity in the second-order time
derivative of the scale factor, an analysis of the cosmographic parameters, namely the Hubble and the
deceleration parameters, indicates that cosmological models featuring sudden singularities are allowed by
the current cosmological measurements. Furthermore, an analysis of the jerk parameter favors cosmo-
logical models that attain a sudden singularity at a faster rate, up to a time of at most #, ~ 1.2¢,, where ¢, is

the current age of the Universe, and with negative values for the cosmological snap parameter.
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I. INTRODUCTION

The evidence for dark matter is extensive, ranging from
the scales of galaxies [1] to the largest cosmological scales
[2], where it is a vital ingredient of the standard cosmo-
logical model. However, evidence for dark matter remains
confined to the effect that the gravitational field it sources
has on the dynamics of known matter. As such, it remains a
possibility that the dark matter effect is due in some part to
an interaction between known matter and the gravitational
field/spacetime that is not accounted by the theory of
general relativity.

In 1983 it was discovered by Milgrom [3,4] that the then
evidence for dark matter in spiral galaxies could alter-
natively be attributed to either a nonrelativistic modification
to the gravitational field equation (a nonlinear modification
to Poisson’s equation) or a nonlinear relation between the
forces acting on a body and its acceleration. The latter
possibility (modified inertia) presents a number of chal-
lenges to foundational issues such as the construction of an
action principle recovering the modified equations of
motion [5—7] and it remains an open question as to whether
the idea can be developed to enable predictions to be made
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on cosmological or regions of strong gravity where post-
Newtonian effects become important.

The former possibility (modified gravity)—seen as
a modification to the Newtonian gravitational field
equations—Ilends itself more readily to embedding into fully
relativistic extensions to general relativity. A number of such
models have been proposed [4,8—18]. In this paper we focus
on one particular recent model: the Aether scalar-tensor
(AeST) model [19]. This model has the benefit of being able
to account well for cosmological data such as the anisotro-
pies in the cosmic microwave background (CMB) radiation
and distribution of structure on large scales even in the
absence of a dark matter component to the Universe.
Research into its theoretical and observational consequences
is ongoing [20-28].

Extensions to general relativity, such as AeST, generally
introduce new degrees of freedom into the gravitational field.
Though these degrees of freedom may give rise to an effect
similar to that of dark matter in certain regimes, the effect
may differ from dark matter in others and so there is scope to
distinguish modified gravity and dark matter scenarios
experimentally. Modified theories of gravity may also
possess pathologies that are not present in dark matter
models, thus rendering them potentially nonviable [29-32].

In the case of the AeST model, the exact form of the
model is not fixed by an underlying theoretical framework
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and so different versions of the model can lead to different
phenomenology. An example of this was found in [33]
where it was shown that a variant of the model certain
resembled dark matter (both in the cosmological back-
ground and at the level of cosmological perturbations) up to
the present day but would invariable lead to a cosmological
big rip singularity in the future.

In this paper we explore the possibility of sudden
singularities arising in the AeST model. A sudden singu-
larity happens in cosmological spacetimes whenever
at a certain moment in time, time derivatives of order
higher than one of metric components diverge. Following
Barrow’s pioneering work on the subject [34-38], sudden
singularities were shown to arise also in cosmological
models with inhomogeneous equations of state [39,40] and
anisotropic pressures [41], different types of dark energy
models [42-44], and in the context of modified theories of
gravity [45-49]. Cosmological tests were performed to
assess the viability and impose constraints on models with
sudden singularities [50-52], and their impact on bound
systems [53], and it was also shown that quantum effects
might delay the sudden singularity [54]. For more infor-
mation regarding the field of future cosmological singu-
larities we refer the reader to the following extensive review
and references therein [55].

This manuscript is organized as follows. In Sec. II we
introduce the AeST theory of gravity and obtain the
corresponding equations of motion and matter distribution
in a cosmological framework. In Sec. III we introduce the
concept of sudden singularities, analyze the mechanisms
via which they can be induced, and prove that it can be
prevented in certain particular cases. In Sec. IV we
introduce an explicit cosmological model featuring a
sudden singularity and analyze its consequences in terms
of the validity of the energy conditions and constraints
arising from an analysis of the cosmographic parameters,
and in Sec. V we trace our conclusions.

II. THEORY AND FRAMEWORK

A. Action and field equations

The AeST theory can be described by an action S of the
form,

5:/\/—_92£I<2d4x+5m[g], (1)

where g is the determinant of the metric g, written in terms
of a coordinate system x*, k> = 827G /c* where G is equal
to Newton’s gravitational constant up to small corrections
[19] and c is the speed of light, S,,[g] is the matter action,
and L is the Lagrangian density for the theory, which is
given by

K
L=R- TBFWF"” +2(2 - Kp) 'V,

- (2-Kp)Y = F(¥, Q) - AguA'A" + 1), (2)
where A¥, ¢ and A are the independent fields of the theory,

K is a dimensionless constant, R is the Ricci scalar of the
metric g,,, and the following quantities were defined:

F,, =20,A,, (3)

JH = AV A¥, (4)

Y = (¢ + A*AY), 0,9, (5)
0 = A*d, ¢, (6)

where d, and V, denote partial and covariant derivatives,
respectively. In this work, we use the following convention
for index symmetrization and antisymmetrization:

X

) (X;w + XIJ/I)’

N = N =

X[/,w] (X/w - Xv/,t)' (7)

Furthermore, it is useful to define the tensor ¢*, = ¢, +
A*A, which projects out the part of a vector field V#
orthogonal to A#. The field equations obtained from
varying Eq. (1) with respect to the fields ¢, ¢, A,, and
A are, respectively,

Gy~ KyF, F o+ (2=Kp)(20 Y, —A,A, O
+ 2[A(ﬂV,,)Aa —AWVMA,,)]VOC(,{))
_fQA(Mvv)¢_<2_KB +FY)|:VH¢VI/¢+2QA(#VI/)¢]

1
—lA”A,,—EgWEZKZTW, (8)

v, [(Z—KB)J" —(2-Kp +.7:y)q””v,/([)—%}'QA”} =0,
©)
K5V P 4 (2= Kp)[(VA,) V" = V, (A V¥

- [(2—1(3 +;fy)Q+;fQ} Vi —aAr =0, (10)

GuAAY +1 =0, (11)

where we have defined Fy = dF/0Y and F, = 0F /00,
and T, is the stress energy tensor of matter.
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B. Geometry and matter distribution

In this work we are interested in studying the appearance
of sudden singularities in a cosmological context. For this
purpose, we assume that the Universe is well-described by
a homogeneous and isotropic spacetime. These spacetimes
are described by the Friedmann-Lemaitre-Robertson-
Walker (FLRW) line element, which in the usual spherical
coordinates (z,r,@, ¢) takes the form

ds* = —dt* + a*(t) <1 —

d 2
rkr2 + r2dsz2>, (12)

where a(t) is the scale factor of the universe, k is
the sectional curvature of the universe which takes the
values {0, 1, —1} for flat, spherical, and hyperbolic geom-
etries, respectively, and dQ = d6? + sin’0d¢? is the sur-
face element on the two-sphere. In the following, to
preserve the homogeneity and isotropy of the spacetime,
all quantities are assumed to depend solely on the time
coordinate.

Inserting the metric in Eq. (12) into the equation of
motion for A given in Eq. (11), one verifies that the
appropriate solution for the vector field A* is

AF =5 (13)

Following this result, and given that ¢ = ¢ () to preserve
the homogeneity and isotropy of the solution, one
obtains

Y =0, (14)

Q= (15)

where a dot - denotes a derivative with respect to t.
Furthermore it is useful to define the following function:

F(Q) = -3 7(0.0). (16)

We consider that the matter distribution of the Universe
is well-described by an isotropic relativistic perfect fluid,
for which the stress-energy tensor T, takes the diagonal
form,

%, = diag(~p. p, p. p). (17)

where p = p(t) is the energy density and p = p(¢) is the
isotropic pressure of the fluid. The equation for the
conservation of energy can be obtained in the usual way
by taking a covariant derivative of T, as V, T* = 0, where
V,, denotes the covariant derivative.

Taking Eqgs. (12) and (17) into the field equations given
in Eq. (8) and the equation of motion for Q given in Eq. (9),
as well as solving for the field 1 using the contraction of

Eq. (10) along A*' one obtains the following system of
cosmological equations:

k  8xp 1
2 o _
e = Lo 2(F-0Fg) (19
. , k
2H +3H? + — = —8zp — F, (19)
a

where we have defined the Hubble parameter H = a/a and
we have adopted a geometrized unit system such that
G =c=1. On the other hand, the equation for the
conservation of energy takes the form,

p+3H(p+ p) =0. (1)

Finally we note that the contributions of the field Q to
Egs. (18) and (19) can be rewritten in a more convenient
form via the introduction of the following definitions for an
energy density p, and pressure p, as

1
PQ:—g(F—QFQ), (22)
1
Po = Pt (23)

Under these definitions, Eq. (20) takes the form (21) i.e., in
FLRW symmetry, the Q field can be recast as a per-
fect fluid.

It is important to observe that Eqgs. (18)—(21) form a
system of four equations out of which only three are
linearly independent. This feature can be proved by taking a
derivative of Eq. (18) with respect to ¢, followed by the use
of Egs. (21), (20), (19), and (18) to eliminate the quantities
p, O, p, and p, respectively. This procedure results in an
identity, thus proving that the four equations are not linearly
independent. One can thus use this fact to discard one of the
four equations from the system without loss of generality.
Due to its more complicated structure, we chose to discard
Eq. (19) from the system and work solely with the
remaining three equations.

III. SUDDEN SINGULARITIES

A sudden singularity, also known as a type-1I future
singularity [42], is defined as an event in the cosmological
evolution at which the scale factor a, the Hubble parameter
H (and consequently the first-order time derivative of the
scale factor @), and the energy density p, are all finite but the
pressure p is allowed to diverge, thus inducing a divergence

Tt may be checked that the components of Eq. (10) that are
orthogonal to A* are trivially satisfied in FLRW symmetry.
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in higher-order time derivatives of the scale factor [34].
The derivative order at which such a divergence occurs
varies among different modified theories of gravity,
happening e.g., in second-order time derivatives for
Brans-Dicke gravity [46], third-order time derivatives
for f(R,T) gravity [49], or fourth-order time derivatives
for hybrid metric-Palatini gravity [48]. Let us consider
the possibility of sudden singularities arising in the
system of Egs. (18), (20), and (21). In what follows,
we assume that the finite time sudden singularity occurs
at some instant ¢t = t,.

A. Sudden singularities induced by the scalar field

Let us start by analyzing the possibility of sudden
singularities arising from the contribution of the scalar
field Q only, in the absence of the matter fluid component,
ie., we assume p = p =0. Under this assumption,
Eq. (21) is identically satisfied, whereas using the defi-
nitions introduced in Egs. (22) and (23), Egs. (18) and
(19) reduce to

k 1 87
HHE:—?(F—QFQ)E?;)Q, (24)
. , Kk
2H + H* + — = —F = —8xpy, (25)
a
po +3H(pg + po) = 0. (26)

Under the assumptions outlined previously, one verifies
that in order for Eq. (24) to be satisfied throughout the
entire time evolution, given that a and H remain finite
for all times, this implies that p, must also remain finite,
in agreement with the definition of a sudden singularity
that keeps the energy density finite. Following the
definition of p, given in Eq. (24) in terms of the function
F(Q), one verifies that F — QF, must remain finite
through the entire time evolution. On the other hand,
given that A is allowed to diverge, the validity of Eq. (25)
for the entire time evolution implies that p, must also be
allowed to diverge, in order to compensate for a possible
divergence in H. Following the definition of Po given in
Eq. (25) in terms of the function F(Q), one verifies that a
divergence in p, corresponds to a divergence of the
function F(Q).

The analysis of the previous paragraph implies that the
function F(Q) is potentially divergent at some instant z,,
while the combination F'— QF, must remain finite. For
these two conditions to be compatible, the function F(Q)
must behave as F ~ QF, when the time approaches the
divergence time ¢, i.e., F ~ Q, which in turn implies that
the scalar field Q diverges at the divergence time. Thus,
close to the sudden singularity, the most general form of the
function F(Q) that satisfies these requirements is given by

F(Q):cQ+Zﬂziﬁ (27)

where ¢ and a, are constant coefficients and ¢ = a_;.
Replacing the function F(Q) given in Eq. (27) into
Eq. (25), taking the limit r — ¢, and discarding the non-
dominant terms, one obtains the following asymptotic
relation between the quantities ¢ and Q:

a 1
_E_ECQ’ (28)

which is valid only near t = t,.

Summarizing, for a model described by any function
F(Q) that admits a series expansion of the form given in
Eq. (27), sudden singularities induced by a divergence in
the scalar field Q could exist at the level of the second-order
time derivative of the scale factor, i.e., d, while the energy
density of the field py remains finite.

Let us now show that allowing for the matter energy
density and pressure to be nonvanishing in the universe,
there exist forms of F(Q) that resemble dark matter in the
cosmological background over a wide span of scale factors
and up to the present day, but that evolve to produce a
sudden singularity induced by Q in the future. As an
example, consider the following function:

F(Q) = —e™*2 —yQ, (29)

where a, ff and y are constant free parameters. The equation
of motion in Eq. (20) can be directly integrated to yield
Fo= —c/a3, which can be solved for the form of the
function introduced in Eq. (29) to yield,

a— log[}/(aa?—_ﬁ‘ﬁ)]

5 , (30)
where a, = (c/y)'/3. It follows that,
1 rlal - @ )loglglil + 10}
L 2p SN
1 [~lla=1)a*y] +aPylogl 4L —
Po : (32)

Y a*p

For positive values of (¢, y, ), 0 - —o0 as a — a;. In this
limit pp — 0 and py — +oo, signaling a sudden singu-
larity. For a < (c/y)'/3, pg ~log(a)a= as shown in Fig. 1
which illustrates an example of the model in Eq. (29) where
the equation of state for much of cosmic history satisfies
lwg| < 1 before diverging to wy — oo causing a sudden
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FIG. 1. Evolution of the modulus equation of state w, =

Po/po for an instance of the model in Eq. (29) as a function
of s = Log,ya. For spans of s going from before recombination to
the present day, |wy| < 1 and it is consistent with bounds on the
dark matter equation of state in generalized dark matter models
[56]. Transition from a small negative value of wy in the early
Universe to a diverging positive value at a = a, marks the onset
of the sudden singularity (marked by a vertical blue line).

singularity at a = a,. Note that the adiabatic sound speed

. 2 ﬂ .
of perturbations c;,; = %0 also diverges to +oo as a — a;.

It is noteworthy to mention that the reliability of the
function introduced in Eq. (29) extends beyond the vacuum
cases and allows one to find cosmological solutions
consistent with the current observations. If one follows
e.g., a dynamical system analysis under the framework
described in Ref. [33] in the presence of two relativistic
fluids corresponding to baryonic matter and radiation, one
obtains the corresponding evolution of the density param-
eters of the different matter components for this model is
given in Fig. 2. One observes that the cosmological
evolution presents periods of radiation and matter domi-
nation in the past, and is currently undergoing a transition
into a cosmological constant dominated epoch. However,
unlike it happens for the ACDM model, and even though
the cosmological model presented is consistent with the
state-of-the-art cosmological measurements by the Planck
satellite, this cosmological evolution eventually attains a
sudden singularity.

Finally, we briefly note that the analysis of Eq. (27) can
be generalized to the case where, over a dynamically-
reached range of Q for which F(Q) ~ Q", then it follows
that its equation of state is wy ~ 1/(n — 1), as illustrated
in Fig. 3. As mentioned, the model given in Eq. (29) can
produce a type-II future cosmological singularity, whereas
models with 0 <n <1 can produce a type-1/‘big rip’
future cosmological singularity [42]; an example of this
was considered in [33] where it was shown that the
functional form F = kOQS/ 2\/QO — Q—for constants kg
and Qy,—can lead to a type-I singularity despite resem-
bling cold dark matter to a high degree of accuracy up to
the present day.

1.0 ———er—— , —
0.8f Do
L |- as K !
0.6f | ' ]
c : -y y '
0.4f |~ % . ' 1
: -, \_‘ 'l
0.2 ! 1
[ Lok .
00 ,A--u": . R TINCS O\
-6 -4 -2 0

FIG. 2. The relative contribution of individual species, namely
the radiation, baryonic matter, scalar field, and cosmological
constant density parameters €2,, £2,,, 2, and Q,, respectively, to
the overall cosmological density as a function of s = Log;(a)
for the model whose equation of state is shown in Fig. 1. The
relative abundances satisfy the constraints on the background
evolution of the Universe [33]. At the present moment (s = 0),
the Universe has begun entering a period where the expansion is
dominated by the cosmological constant. However, unlike the
ACDM model, the illustrated model experiences a sudden
singularity in the near cosmic future (the moment of which is
denoted by a solid blue line).

B. Sudden singularities induced by the fluid
components

Consider now an alternative scenario for which the scalar
field components are assumed to remain finite, i.e., we
assume that the scalar field Q does not contribute to the
sudden singularity, while an additional fluid component is
present. The aim of this section is to verify if sudden
singularities can still arise in the theory even in the presence
of a regular scalar field Q. The equations that describe this
scenario are thus Egs. (18), (20), and (21).

[\
T

—_ e -

FIG. 3. The equation of state of the Q field over for models
where F(Q) ~ Q" over some range of Q which is assumed to be
dynamically reachable in the sense that it is part of a solution
Q(a) which follows from solving Eq. (9).
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Following the same procedure as in the previous sub-
section, one verifies that in order for Eq. (18) to be satisfied
throughout the entire time evolution, since a, H, and p
remain finite, then the quantity F — QF , must also remain
finite. This regularity can be achieved in two different
ways; either the two terms F and QF 0 remain finite
throughout the entire time evolution, or they both diverge
at the same rate in such a way that both divergences cancel
mutually. The latter option was analyzed in the previous
section and it leads to a sudden singularity induced by the
scalar field Q for certain forms of the function F(Q). Thus,
in this section, and following the assumption that the scalar
field Q is regular, we opt for the first condition, i.e., both
the terms F' and QF, are assumed to remain finite. This
assumption also implies that every partial derivative of the
function F for any order should remain regular throughout
the entire time evolution. We thus infer that the regularity of
Eq. (18) imposes a regularity of F' and, consequently, Q.

Having concluded that F and its partial derivatives are
regular, along with the scalar field Q itself, one verifies that
in order for Eq. (20) to be satisfied throughout the entire
time evolution it is necessary that O remains finite, as
otherwise there would be no other divergent term in this
equation to preserve its regularity. One thus concludes that
Q and its first time derivative Q must be regular throughout
the entire time evolution.

Regarding the matter components, if we allow the
system to achieve a sudden singularity, the energy density
p remains finite but the pressure p is allowed to diverge.
The only way for Eq. (21) to be satisfied throughout the
entire time evolution in such a situation is to allow p to
diverge at the same instant as p. In the limit # — 7, the
nondivergent terms are subdominant in comparison to the
divergent ones, and thus one deduces the asymptotic
relation

an approximation valid only close to t = ¢,.

Let us now infer how the divergence in p and p affects
the higher-order time derivatives of the scale factor. This
can be done in two ways: either one takes a time-derivative
of Eq. (18), or one analyzes directly Eq. (19). These two
methods are equivalent, as we have already demonstrated
that these two equations are not linearly independent. Since
we have previously decided to discard Eq. (19) from the
system due to this dependence, we shall take the derivative
of Eq. (18) for this analysis instead. This derivative takes
the form,

i drp 1 .
-4+ H =" ~—Q0F . 34
St 3 ~¢20F00 (34)

According to the analysis above, the quantities a, H, Q, 0,
and Fg, are necessarily finite. Thus, the only way for

Eq. (34) to be satisfied throughout the entire time evolution
is to allow 4 to diverge, in order to counterbalance the
divergence in p. Taking the limit r — ¢, and discarding
the subdominant terms, one thus obtains the asymptotic
relation,

aH 4znp

a 3 (35)
which is again only valid near ¢t = #,. We thus conclude that
the sudden singularity arises at the second-order time
derivative of the scale factor .

Finally, it is necessary to verify how the sudden
singularity affects the higher-order time derivatives of
the scalar field Q. To do so, we take a time derivative of
Eq. (20) from which we obtain

a 1. 1.

Similarly to the previous analysis, since a, H, Q, Q, and the
partial derivatives of F' must remain finite, the only way for
Eq. (36) to be satisfied throughout the entire time evolution
is to allow for Q to diverge, to compensate for the
divergence in d. Taking the limit ¢ — #; and dropping
the subdominant terms, one obtains the asymptotic relation

i 1.
CF, ~-OF 7
L Fo=39Fg0. (37)

again only valid close to ¢ = #,. The sudden singularity thus
also manifest itself in the scalar field Q through its second-
order time derivative O, even though the scalar field Q itself
is regular.

The analysis above demonstrates that sudden singular-
ities can arise in this theory even under the assumption that
the scalar field Q is regular. These sudden singularities are
induced by a divergence in the fluid pressure and they
manifest themselves at the level of the second-order time
derivatives of the scale factor @ and the scalar field Q.
Equations (33), (35), and (37) can be rewritten in a more
convenient way as to clarify how the divergence in p
induces a divergence in p, d, and Q depending on the
choice of the function F(Q) that describes the theory, as
follows:

P
—~—dxp, 38
; zp (38)

. 12zpF

O=-"7""0 (40)

00

We note that the analysis conducted in this section, and
particularly the behavior obtained in Eq. (40), is valid only
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in the absence of potentially pathological sets of initial
conditions. Indeed, for some particular forms of the
function F(Q), it is possible to fine-tune the initial
conditions for Q in such a way that Eq. (40) ceases to
be valid, e.g., cases in which Fy, diverges. These par-
ticular cases might induce and/or cancel divergences in O
that do not directly affect the behavior of the scale factor
and are not related to a divergence of the pressure p. These
divergences thus correspond to mathematical limitations
of certain choices of the function F(Q) that are unrelated to
the sudden singularity itself and, consequently, are of no
interest in the scope of this manuscript. Thus, in order to
guarantee that the analysis above is valid independently of
the choice of initial conditions, an additional assumption is
necessary, i.e., that 'y, remains finite throughout the entire
time evolution.

C. Prevention of sudden singularities

The analysis of the previous two sections indicates that
the sudden singularities in AeST theories of gravity can be
induced by two different mechanisms: either they are
induced by a divergence of the scalar field Q, which can
happen even in the absence of a fluid component; or they
can be induced by the divergence of the pressure compo-
nent of the fluid, even if the scalar field component is kept
regular. It is thus relevant to analyze the hypothesis that
these two divergence mechanisms might compensate each
other, resulting in a prevention of the sudden singularity
and leading to a regular solution for the scale factor up to
any order of time derivatives.

To analyze this hypothesis, we combine the results of the
previous two subsections. We assume that both the scalar
field and the fluid components are present, which implies
that this scenario is described by the set of Egs. (18), (20),
and (21), the second of which can be rewritten in terms of
analogous fluid components as given in Eq. (26). One thus
obtains the following set of equations,

k 8z
H2+;:?<P+PQ>7 (41)
po+3H(pg + pg) = 0. (42)
p+3H(p+p) =0. (43)

Following the procedure of Sec. III A, in order to preserve
the regularity of Eq. (41) under the assumption that H, k,
and p remain finite throughout the entire time evolution,
one concludes that p, must also remain finite, which again
implies that the function F(Q) must be written in the
specific form given in Eq. (27). On the other hand, allowing
the pressure components p and p, to diverge while H, p
and p remain finite, Eqs. (42) and (43) imply that p, and p
must diverge at the same instant as p and p, respectively.
For the purpose of the analysis that follows, we assume that

the divergence instant of both p and py, is the same, i.e., 7,
which can always be done by a choice of appropriate initial
conditions. In the limit ¢ — 7,, and discarding the sub-
dominant terms, these equations reduce to the two follow-
ing asymptotic relations,

po=—3Hpy, (44)

valid close to ¢t = t,. Finally, taking a time derivative of
Eq. (41), taking the limit ¢ — #,, using the asymptotic
relations just obtained for p, and p, and discarding the
subdominant terms, one obtains the asymptotic relation
between the second-order derivative of the scale factor and
the pressure components as

Z: —4a(p + py). (46)

This result implies that, since p and p, are divergent, in
general a sudden singularity at the level of the second-order
time derivative of the scale factor is induced. Nevertheless,
in the particular case that the pressure components p and
Po behave asymptotically as p ~ —p, in the limit 7 — 7,
one observes that the two divergences compensate each
other, preventing the sudden singularity. Note that it is not
necessary that the two quantities p and p,, feature the same
time-dependent behavior, which would be a strongly con-
strained scenario, but only that their divergence rates at the
singularity time have the same magnitude and opposite
signs. Equation (46) can be rewritten in terms of the
function F(Q) through p. Inserting the explicit form of
F(Q) given in Eq. (27) into the result above and requiring
that d is finite, i.e., that the sudden singularity is prevented,
one obtains a relationship between p and Q at the
singularity time

8rp ~ —cQ. (47)

We emphasize that it is not necessary that p and Q behave
according to the relation above for the entire time evolution,
but only close to the divergence time ¢ — f,.

The analysis above, where we have considered the first-
order time derivative of Eq. (41), allows one to infer what
must be the behavior of the functions p and p, such that
the sudden singularity is prevented at the level of the
second-order time derivative of the scale factor, but such an
analysis is not sufficient to guarantee that the sudden
singularity is prevented for any order of the time derivatives
of the scale factor. To extend this result to higher-order time
derivatives of the scale factor, it is necessary to analyze
higher-order time derivatives of Eq. (41), for which such
derivatives of the scale factor appear. Following the same
procedure as before, one verifies that the higher-order time
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derivatives of the scale-factor are related to the time
derivatives of p and p, as

(n+2)
—— = —an(p + p)). (48)

a

where the subscripts X denote the nth-order time
derivative of the function X(7). Up to n = 1, one verifies
that in order to prevent a sudden singularity from appearing
at the level of the a2 derivative of the scale factor, the
behavior of the derivatives p™) and p(Q”) for a function
F(Q) given by Eq. (27) is consistent with Eq. (47), i.e., it
can be obtained directly by taking a time derivative of the
latter equation. For example, to prevent a sudden singu-
larity in @, it is necessary that 8zp ~—cQ in the limit
t — t,. However, the same is not true for n > 1, as the

(n)

derivatives p,)’ for n > 1 depend not only in Q) but also

in Q<”‘i), for every i €1, -, n — 1. For example, for n = 2,
one has 8zp ~ —Fp 0% - Fo 0. Thus, such a result is only
consistent with Eq. (47) if the terms proportional to Q=)
are subdominant in comparison with the term proportional
to Q). Given that Q is divergent in the limit ¢ — 7, and
assuming that the field is smooth throughout the entire time
evolution, it is an acceptable assumption that every nth-
order time derivative of the field Q") diverges at a larger
rate than the derivatives Q(""'). Thus, the latter terms are
subdominant in the limit # — ¢, and consequently Eq. (48)
is consistent with Eq. (47) at any time derivative order n,
which implies that the sudden singularity is prevented at
every time derivative order of the scale factor. In Appendix
we consider an explicit example of the prevention of a
sudden singularity.

The prevention of the sudden singularity analyzed in this
section, alongside with the fact that the contributions of the
scalar field Q can be conveniently rewritten in the form of a
perfect fluid [see Eqgs. (22) and (23)], one can merge the
matter components into an effective fluid described by
Peit = P +po and per = p + pp, and satisfying a con-
servation equation of the form peg + 3H (pesr + Per) = O,
in such a way that both the field equations and the
conservation equation for the effective fluid remain regular
throughout the entire time evolution, thus effectively
leading to a system of cosmological equations in which
sudden singularities are completely absent.

IV. SUDDEN SINGULARITIES IN COSMOLOGY

In this section, we analyze the physical consequences of
having a sudden singularity in a cosmological model,
namely we analyze the energy conditions of the model
throughout its time evolution and we analyze the con-
straints the current cosmological observational data
imposes on such models. The analysis of this section is
mostly model independent, with the exception of the

subsection where the energy conditions are analyzed.
For the analysis of the energy conditions, we consider
the sudden singularities previously analyzed in Sec. III B,
for which the scalar field Q remains regular and the sudden
singularities are induced by the pressure component of the
fluid. The remaining analysis of the constraints from the
cosmographic parameters is valid for any model for which a
sudden singularity appears at the level of the second-order
time derivative of the scale factor, independently of the
mechanism via which it is induced.

A. Model with a sudden singularity

The system of Egs. (18), (20), and (21) is an under-
determined system of three independent equations for
the five unknowns a, p, p, Q, and F(Q). This implies that
one can impose two extra constraints to determine the
system. One of these constraints is naturally an explicit
choice of the function F(Q) as to restrict our analysis
solely to adequate models. As for the second constraint,
we can directly impose an explicit form for the scale factor
that features a sudden-singularity behavior. Following
Barrow [34], let us impose an ansatz for the scale factor
of the form

a(t) = (a, - 1)(2)7+ - (1 —ZS>5, (49)

where a; is the normalized value of the scale factor at the
instant the sudden singularity occurs ¢t = t,, and y and §
are constant exponents. Note that Eq. (49) was chosen in
such a way as to guarantee that a(0) = 0, i.e., the big bang
occurs at a time ¢t = 0. The nth-order time derivatives of
the scale factor in Eq. (49) take the general form,

@0 =G@-(H) "5 L=

s i=0

+ (1) (1 - ;) e ]:[1 (6-1i). (50)

s i=0

The two terms in Eq. (50) are responsible for keeping the
regularity of a and its derivatives at both the big bang
t = 0 and at the sudden singularity ¢t = ¢,. Indeed, if y > n,
one verifies that all time derivatives of a up to order n are
regular at ¢ = 0. On the other hand, the sudden singularity
appears at t = t, for the nth-order time derivative of a
whenever n > 6. Note however that y and 6 should not be
whole numbers to avoid the problematic situations y = n
and 6 = n, for which the derivatives of the scale factor are
not well-defined. Since we have proven that in AeST
theories the sudden singularity, when present, manifests
itself at the level of the second-order time derivative of a,
we require thus that the exponents y and § must satisfy the
relation 1 <6 <2 <.
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a(n) (t)

0.0 0.5 1.0 1.5 2.0

FIG. 4. Scale factor a(r) and its first and second order time
derivatives ¢ and d as a function of time ¢ for the ansatz given in
Eq. (49) fora;, =3, t, =2,y =2.5,and 6 = 1.5.

In Fig. 4 we plot the scale factor a(¢) in Eq. (49) as well
as its first and second-order time derivatives @ and ¢ for an
example model featuring a sudden singularity in d, where
we have chosen a, = 3, t, =2, y = 2.5, and 6 = 1.5. For
this model, we verify that all time derivatives of a up to
second-order are regular at the origin and throughout the
whole time evolution, and that only ¢ diverges to ¢ — —oo
at t — t,. Also note that ¢ is negative for small 7, which
implies that there exists a period of decelerated expansion
before the accelerated period. Closer to the sudden singu-
larity, d again changes its sign, inducing a decelerated
expansion, just before diverging at the singularity time
t = t,. In the particular case of sudden singularities induced
by a divergence in the pressure component of the fluid (see
Sec. I B), from Egs. (38) and (39) one verifies that a
divergence ¢ — —oo implies that p diverges to +oco while p
diverges to —oo. On the other hand, the sign of the
divergence in Q depends on the model chosen for F(Q),
and it follows the sign of the factor Fp/Fyp at t — t;.

B. Energy conditions

The physical relevance of these models can be addressed
via the validity of the energy conditions, a set of conditions
the matter fields must satisfy in order to guarantee that
certain expected physical properties of matter are verified.
For an isotropic perfect fluid, the divergence p — +oo
while keeping p finite guarantees the validity of the null
energy condition (NEC) p + p > 0 and the strong energy
condition (SEC) p+3p > 0 at the singularity time z,,
while the dominant energy condition p > |p| is violated. As
for the weak energy condition (WEC), described by both
the NEC plus the restriction p > 0, must be analyzed
separately.

To obtain the solutions for p and p and analyze the
energy conditions, it is necessary to select a particular form
of the function F(Q). Integrating the equation of motion for
the field O given in Eq. (20), one obtains a relation between
Fy and a given by

C
for some constant of integration C. Upon specifying an
explicit form for F(Q), the equation above can be solved
directly with respect to Q, and afterwards the results can be
inserted into Egs. (18) and (19) to obtain the solutions for p
and p as functions of time. These solutions are lengthy, and
thus we chose not to write them explicitly. Instead, since we
already know that p — +o00 at the divergence time, it
suffices to compute p(z,) to verify if the WEC is satisfied at
the divergence time.

Let us consider an example of how to apply the
reasoning outlined above using a form of the function
F(Q) which is known to approximate a family of functions
that at later cosmological time provide an alternative to dark
matter whilst not in isolation causing a sudden singularity,
and analyze the WEC. Consider the following model

F(Q) = ko(Q — Q0)*. (52)

where kq and Q, are constant free parameters of the model.
Upon making this choice, the solution for the scalar field O
can be obtained directly by integrating Eq. (51) to give

C
Q:QO+W' (53)

Following that, the solutions for p as a function of ¢ can be
obtained by solving Egs. (18), under the ansatz for the scale
factor given in Eq. (49). Taking then the limit r — ¢, the
density p takes the form

87‘[p(ls) 273 ~ 6 + 202 (as - 1)2- (54)

Thus, the WEC is satisfied at the divergence time ¢, for
any combination of parameters that keeps the right-hand
side of Eq. (54) positive. In such a case, the NEC, the WEC
and the SEC are all satisfied at the divergence time.

C. Constraints from the cosmological parameters

The observations of the cosmological parameters e.g.,
from the Planck satellite [2], can be used to impose
constraints on the two free parameters of Eq. (49), namely
the scale factor a; at the sudden singularity, and the time 7, at
which the divergence occurs. In particular, we are interested
in two cosmological parameters, namely the Hubble param-
eter and the deceleration parameter, which can be written in
terms of time derivatives of the scale factor as

aa

a
) 49=—""7%- (55)

H="
a a

For the scale-factor model given in Eq. (49), the cosmo-
logical parameters H and ¢ take the forms,
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FIG. 5. Critical value y. as a function of the exponent 6.
yla, —1)(t —t,) (L) — (1 —1)°
H(t) = ( )( )ftxy 1 ( ts? 517 (56)
(= 1)l(a, = D@ +1-(1- )
” (@, =DH+1-(1-1)p
q(t) = s s
[r(a, = 1)(r = 1) () = 61(1 = H)°P

_5(5— 1);2(1 —i)é]. (57)

These parameters H and ¢ have been measured
experimentally and their current observed values at the
present time are H (1)) = Hy~67.66 kms™ Mpc™! ~2.19 x
107571 and ¢(ty) = g ~ —0.53, where the present time
to, also referred to as the age of the Universe, is
to~13.79 Gy ~4.35 x 10" s. Inserting the measured
values of the cosmological parameters H, gy, and 7,
into Egs. (56) and (57) allows one to write a system of
two equations H(t =1y) = Hy and ¢(t =t,) = q, for
the four unknowns ay, t,, 6, and y. Since the exponents
y and O must satisfy the inequalities 1 <6 <2 <y to
guarantee the appearance of the sudden singularity at the
right order of the time derivatives of the scale factor, see
Sec. IV A, a possible way to solve this system is to choose
the values of y and 6 a priori and solve the two equations
for a, and t, if any solutions exist for that combination of
y and ¢. This method allows one to predict the divergence
time ¢, for these models, as well as the size of the scale
factor a; at the divergence time, while keeping the
cosmological parameters consistent with their observa-
tional values.

Unlike in the cases of models with sudden singularities
arising at the third or fourth order time derivatives of the
scale factor [48,49], not all possible combinations of y and
0 for which the ansatz in Eq. (49) develop a sudden
singularity at the second-order time derivative of the scale
factor allow for choices of a; and ¢, that produce models
consistent with the cosmological observations. Solving
Eq. (56) with respect to a,, replacing the result into

t0) — qo

q(t

FIG. 6. Combination ¢(fy) — g as a function of the divergence
time ¢, for § = 1.5 and for different values of y. The critical value
of y for this combination of parameters is y,. ~ 4.74789.

Eq. (57), and setting a value for 8, the resultant equation
can feature zero, one, or two possible solutions for f
depending on the value of y. Indeed, one verifies that there
exists a critical value of y, say y.(5), such that if y <y, no
value of ¢, is consistent with the cosmological parameters,
if y =y. a single value of 7, is consistent with the
cosmological parameters, and if y > y,. there are up to
two values of ¢, that produce models consistent with the
cosmological parameters. The value of y,. as a function of §
is given in Fig. 5, where one can observe that y. decreases
monotonically with an increase in 6. To clarify this
situation, in Fig. 6 we plot ¢(t = 1)) — ¢, as a function
of t, for 6§=1.5 and different values of y, where
Ye ~4.74789. The zeros of the function ¢(¢ = ty) — g
correspond to the values of 7, that produce models con-
sistent with the observed cosmological parameters.

To illustrate the behavior of the value of 7, as a function
of y and ¢ in the parameter space for which solutions
consistent with the cosmological observations exist, we
have chosen a set of six different values of §, namely
6=1{1.01;1.2;1.4;1.6;1.8;1.99}. For Each of these val-
ues, we have computed the critical value y.. and plotted the
quantity g(t = 1) — q, as a function of (¢, — 1)/, for four
different values of y, namely y = ny,, with n €{1,2,3,4}.
The results are depicted in Fig. 7. One verifies that for
7 2 7. the system presents two possible solutions for f

consistent with the cosmological observations, say tgl) and

t§2> with tﬁl) < t§2) , these two solutions degenerating into a

single one aty =y, i.e., tﬁl) = t§2). As one increases ¥, t§l>

decreases and t§2) increases, and eventually tﬁ” =1, for a
large enough y. If one further increases y, a single solution
for ¢, consistent with the observed cosmological parameters
exists, and it is given by t§2)

Although the solutions tgl) and tg produce cosmologi-
cal models consistent with the current observations for #,
Hy, and g, the two models obtained can be distinguished
by recurring to higher-order cosmological parameters,
namely the cosmological jerk j and snap s parameters,

2)
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defined in terms of the higher-order derivatives of the scale
factor as

(58)

The cosmological parameters j and s have not been
measured experimentally, although some studies indicate
that the current observational status favours a small value of
the jerk parameter, or order ~1 [57-62]. For the combi-

nations of 6 and y for which the two solutions tﬁl) and z§2>
exist, we have observed that the measurements for the
present cosmological jerk parameter j(¢ = o) = j, quickly
achieve values several orders of magnitude above unity, in
conflict with the studies mentioned above. Thus, we chose
to discard the solutions tgl)

solely the solution tE?)

from the analysis and consider
. In Fig. 8, we plot the normalized

» ' , , : , :
— y=10y, R
1.8F|-- v=11yc ....... ]

- v=12ye | e E
JL6F o v=13ve | ]
Laf” et ]
2 —
12 13 14 15 16 17 18
B

(ts = t0) / to

0.05 0.10 050 1 5

(ts = 1) / o

050 1 5 0.01

Combination ¢(#,) — g, as a function of the normalized divergence time (¢, — o)/t for different values of & and .

divergence time z§2> and the corresponding normalized

divergence scale factor a, as functions of y for different
values of y = y.. We observe that an increase in y results in
an increase in both 7, and a,, and also that a, increases
monotonically with § in the range considered, while ¢
presents a global maximum at some value of §, for a
constant y.

Let us now consider the present cosmological parameters
Jo and sq. In Fig. 9 we plot the present values of the jerk
parameter j, and the snap parameter s(t=1ty) = s,
obtained by considering the solutions for 7, and a
consistent with the cosmological observations, and for
the same range of the parameters 6 and y. One observes
that j, is always positive and it increases with an increase in
y and a decrease in . On the other hand, the snap parameter
So remains negative for y ~ y. independently of the value of
o, but it turns positive for larger values of y. When positive,
the snap parameter decreases with an increase in o.

2.2 . . . . .

2.0
1.8

<16
14F
12

1.0 * * * * -
1.2 1.3 1.4 1.5 1.6 1.7 1.8

FIG. 8. Normalized divergence time t§2> (left panel) and the corresponding normalized divergence scale factor a, (right panel) as

functions of § for different values of y = y..
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FIG. 9. Present jerk parameter j, (left panel) and snap parameter s, (right panel) as functions of § for different values of y = y,.

An interesting result of this analysis is that the jerk
parameter j, quickly scales to large values compared to
unity with small variations of y, and for values of delta
close to the lower bound & ~ 1. This implies that cosmo-
logical models with a value of § close to the upper bound
0~?2 and a value of y close to y,. are favored by this
analysis, which in turn constrains the expected values of the
snap parameter s, to be negative and of the order of ~ — 10.
In the future, once the values of j, and s, have been
measured, those measurements can be used to impose
constrains on the values of y and 9, potentially leading to a
narrowing of the models consistent with the cosmological
observations, or even completely excluding the possibility
of a future sudden singularity under the framework
considered.

We note that the analysis conducted in this section,
although motivated by the fact that the AeST theories can
feature sudden singularities at the level of the second-order
time derivative of the scale factor d, is completely theory
independent, as no assumptions concerning the explicit
form of the theory were considered. This means that the
analysis holds for any theory of gravity that also presents
sudden singularities at the level of d, as long as Eq. (49) is a
solution of the field equations, which includes e.g., certain
particular forms of scalar-tensor and f(R) theories of
gravity.

V. CONCLUSIONS

In this work we have explored the possibility of
cosmological models featuring sudden future singularities
arising in AeST theories of gravity. These singularities are
characterized by a divergence of the time derivatives of the
scale factor at a certain order higher than one, while the
scale factor itself and its first-order time derivatives remain
finite. Similarly to what happens with f(R) gravity and
some forms of scalar-tensor theories of gravity e.g., Brans-
Dicke gravity, we have shown that sudden singularities in
AeST theories may arise at the level of the second-order
time derivative of the scale factor, and that they are induced
either by a divergence of derivatives of the scalar field of
the model, or by a divergence in the pressure component of
a relativistic fluid.

The analysis of the modified field equations, along with
the equation of motion for the scalar field Q, close to the
instant at which the sudden singularity arises shows that the
pressure divergence induces also a divergence in the first-
order time derivative of the energy density and the second-
order time derivative of the scalar field Q. Furthermore, we
have shown that the divergence in d, as well as the
divergence in p, occur at negative values, i.e., d » —o0
and p — —oo, while p — +o0. The positivity of p at the
divergence time guarantees that the NEC and the SEC are
always satisfied at the divergence time #,, whereas the DEC
is always violated. The WEC may or may not be satisfied
depending on the form of the function F(Q). Nevertheless,
it seems to be always possible to fine-tune the parameters of
the theory in such a way that the WEC is satisfied.

Even in the absence of a fluid component, we have
shown that the scalar field Q itself may induce a sudden
singularity at the level of the second-order time derivative
of the scale factor. Furthermore, we have shown that there
exist specific functional forms for F(Q) which provide a
viable alternative to dark matter at the level of the
cosmological background and can produce a realistic
expansion history in the presence of other matter despite
leading to a sudden singularity in the cosmological future.

An important consequence of the ability of Q to produce
sudden singularities in the absence of matter is that, in the
presence of a fluid component, if the pressure associated to
the scalar field diverges at the same rate as the pressure
component of the fluid but with an opposite sign, these two
divergences can compensate each other, thus preserving the
regularity of ¢ and preventing the sudden singularity. This
relationship between the two pressure components is only
necessary as one approaches the divergence time, while no
restrictions on the behavior of these functions are necessary
far from that instant. Furthermore, such a cancellation of
divergences may only occur if the function F(Q) behaves
asymptotically as F'~ FQ, close to the divergence time.

Using the current measurements of the cosmological
parameters, namely the Hubble parameter H, the decel-
eration parameter ¢, and the age of the Universe 7,, we
constrained the parameters of the cosmological models
featuring sudden singularities and obtained predictions for
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the instant ¢, at which the sudden singularity occurs and the
corresponding value of the normalized scale factor a;.
Furthermore, this analysis allowed for the prediction of the
current values of higher-order cosmographic parameters,
namely the jerk j, and the snap s, parameters. In order to
keep jo ~ 1, consistently with several other studies (see
Sec. IV C), one expects the cosmological snap parameter to
be of order ~ — 10, while the divergence time and diver-
gence scale factors are expected to be of the order 7, ~ 1.21,
and a; ~ 1.4a,. We note that this analysis is theory
independent, and thus it is also applicable to any other
theory of gravity for which sudden singularities may arise
at the order of d, e.g., the ones mentioned above.

In the future, with the gathering of more precise cosmo-
graphic data, we expect the values of the present jerk and
snap parameters to be more accurately measured. Such
measurements would allow one to further constrain the
parameter space of the cosmological models featuring
sudden singularities, potentially leading to a more precise
prediction of the divergence time and divergence scale
factor, or eventually leading to the complete exclusion of
this scenario under the framework considered.

Finally we comment on what these results mean for the
viability of the AeST model as an alternative to dark matter.
The theory inevitably possesses noncanonical kinetic terms
for the scalar field ¢ but, at the moment, there are no
foundational principles for the exact form that these terms
take. It should be noted that noncanonical kinetic terms for
scalar fields can arise in fundamental physics [63,64]. The
utility of exploring cosmological solutions is that they can
provide an efficient mechanism for uncovering which
kinetic terms can lead to pathological behavior. It has
now been shown that models exist that can be entirely
consistent with cosmological data up to the present moment
but that would lead to a sudden singularity or big rip
singularity in the cosmic future. That such events must take
place in our cosmological future places constraints on the
theory. It remains an open question as to whether their
potential existence at any cosmic time signifies a deeper
problem.
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APPENDIX: PREVENTION OF SUDDEN
SINGULARITIES

In this section we provide an explicit example of a
function F(Q) which, in isolation, would cause a sudden
singularity but, in the presence of another fluid which
cancels out the diverging terms in the stress-energy tensor,
does not result in a sudden singularity. Furthermore, it can
be evolved in time past the point where divergences in the
pressure of the individual components occurs. Consider the
following function:

F(Q) = -2V e 2 —yQ.

From the integrated scalar field equation of motion we then
have that

(A1)

C 1
;+y+§ﬂ\/e—a+ﬂ =0.

(A2)

Taking example values (C =1,y =f=—-1,a=0) we
obtain have the solution

ou{(s-)]

If we take @ = 1 to occur at a moment when the universe is
dominated by the cosmological constant (as is expected to
happen in our own Universe in the future), then we have

H~\/AJ3 and so dg/da = dp/dt/(da/dr) ~ \/§Q/a.
Defining a rescaled scalar field ¢ = ¢/A/3, we plot ¢(a)
in Fig. 10.

The results above indicate that there is a solution
corresponding to a continuous ¢(a). Care should be taken
in its interpretation; it is obtained by taking the positive
square root of e~ for a < 1 and the negative square root of
e2 for a > 1, and matching the solutions at a = 1.

Recall that the pressure associated with the degree of
freedom F is py = F/8x and so this contribution to the

(A3)

0.5r
0.0r
-0.5¢
0.8 0.9 1.0 1.1 1.2

a

FIG. 10. The evolution of Q and ¢ as a function of a for a case
of the model (Al).
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stress energy tensor diverges as a — 1. If another degree of
freedom f is present that acts as a perfect fluid in the
manner that the model based on the field Q does, then it can
be tuned to evolve so as to have a pressure p that cancels
the diverging term from p, but that can nonetheless be
evolved ‘through’ the singular point a = 1 via its equations
of motion. This scenario is undoubtedly highly fine-tuned

and it is not clear whether the model (Al) possesses
pathologies when considered in other situations; however
the example serves as an illustration that degrees of
freedom that in isolation would produce a sudden singu-
larity can, in the presence of other degrees of freedom, lead
to avoidance of the sudden singularity and evolution of the
Universe to later times.
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