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In nonminimally coupled theories where a scalar field ϕ is coupled to the Ricci scalar, neutron stars
(NSs) can have scalar charges through an interaction with matter mediated by gravity. On the other hand,
the same theories do not give rise to hairy black hole (BH) solutions. The observations of gravitational
waves (GWs) emitted from an inspiralling NS-BH binary system allows a possibility of constraining the NS
scalar charge. Moreover, the nonminimally coupled scalar-tensor theories generate a breathing scalar mode
besides two tensor polarizations. Using the GW200115 data of the coalescence of a BH-NS binary, we
place observational constraints on the NS scalar charge as well as the nonminimal coupling strength for a
subclass of massless Horndeski theories with a luminal GW propagation. Unlike past related works, we
exploit a waveform for a mixture of tensor and scalar polarizations. Taking the breathing mode into
account, the scalar charge is more tightly constrained in comparison to the analysis of the tensor GWs
alone. In nonminimally coupled theories including Brans-Dicke gravity and spontaneous scalarization
scenarios with/without a kinetic screening, we put new bounds on model parameters of each theory.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs)
emitted during the merger of a binary black hole (BH)
opened up a new window for probing the physics in
extreme gravity regimes [1]. The first discovery of GWs
has been followed by a wealth of compact binary events
including neutron star (NS) mergers [2]. In particular, the
NS-NS merger event GW170817 [3], along with an
electromagnetic counterpart [4], showed that the speed
of gravity is very close to that of light [5]. The same GW
event offered an interesting possibility of constraining the
matter equation of state (EOS) through the tidal deforma-
tion of NSs. Moreover, the coalescence of a BH-NS binary
was detected as the GW200115 event [6], which is also
useful to test the physics in strong gravity regimes further.
General relativity (GR) is a fundamental theory of gravity

consistent with solar system constraints [7] and Earth
laboratory tests with high degrees of precision [8,9]. With
gravitational waves from compact binary coalescences
observed by LIGO-Virgo-KAGRA (LVK) collaboration,
the tests of GR in the strong gravitational fields have also
been actively performed [10]. From the cosmological side,
there are the long-standing problems of dark matter and dark
energy in the framework of GR and standard model of
particle physics [11,12]. To resolve these problems, one
typically introduces additional degrees of freedom (DOFs)

like a scalar field or a vector field [13–18]. If these newDOFs
work as the sources for dark components in the Universe,
they may also play some roles for the physical phenomena in
the vicinity of BHs and NSs, which can be accessed by the
analysis of GWs from compact binary coalescences.
In GR with a minimally coupled scalar field, it is known

that static and spherically symmetric vacuum BHs do not
acquire an additional scalar hair [19,20]. This situation is
unchanged even with a scalar field ϕ nonminimally coupled
to a Ricci scalar R of the form FðϕÞR [21–24], where F is a
function of ϕ. In the case of NSs, the presence of matter
inside the star gives rise to a nonvanishing value of R
proportional to the matter trace T. Then, the scalar field and
matter interacts with each other through the gravity-
mediated nonminimal coupling FðϕÞR. In this case, the
scalar field can have nontrivial profiles in the vicinity of
NSs. The background geometry is also modified by the
coupling between the scalar field and gravity. Thus, the
nonminimal coupling leads to the existence of hairy NS
solutions carrying a scalar charge, while this is not the case
for BHs.
One of the representative nonminimally coupled theories

is the so-called Brans-Dicke (BD) theory [25] described by
the scalar coupling e−2Qϕ=MPlR with the Ricci scalar, where
MPl is the reduced Planck mass. The coupling constantQ is
related to the BD parameter ωBD according to the rela-
tion Q2 ¼ ½2ð3þ 2ωBDÞ�−1 [13,26,27]. The lowest-order
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four-dimensional effective action in string theory with a
dilaton field ϕ [28–30] corresponds to a specific case of BD
theories with ωBD ¼ −1, i.e., Q2 ¼ 1=2. In low-energy
effective string theory, there are also higher-order α0

corrections of the form μðϕÞX2 [31,32], where μ is a
function of ϕ and X ¼ −∂μϕ∂μϕ=2. This belongs to a class
of nonminimally coupled k-essence theories described by
the Lagrangian L ¼ Kðϕ; XÞ þ FðϕÞR [33–35]. We also
note that fðRÞ gravity [13,36] belongs to a subclass of
extended massive BD theories with the BD parameter
ωBD ¼ 0, i.e. Q2 ¼ 1=6 [37–39]. All of these generalized
BD theories allow the existence of hairy NS solutions.
BD theories also give rise to scalar hairs for weak

gravitational objects like the Sun or Earth. Since there is
the propagation of fifth forces in this case, the nonminimal
coupling constant is constrained to be jQj ≤ 2.5 × 10−3 for
massless BD theories [13,26,27,40]. To evade such tight
constraints on jQj, we need to resort to some screening
mechanisms like those based on a massive scalar field
[26,41] or a Galileon-type derivative self-interaction
[42–47]. On the other hand, for the nonminimal coupling
with even power-law functions ofϕ, there are in general two
branches of the scalar-field profile on the static and spheri-
cally symmetric stars with the radial coordinate r: (i) hairy
solutionwithϕ0ðrÞ ≠ 0, and (ii) GR solutionwithϕ0ðrÞ ¼ 0.
On weak gravitational backgrounds, the solution can stay
near theGRbranch (ii) to evade the fifth-force constraints. In
the vicinity of strong gravitational objects like NSs, the GR
branch (ii) can be unstable to trigger tachyonic instabilities
toward the hairy branch (i) [48,49]. This is a nonperturbative
phenomenon known as spontaneous scalarization. For the
nonminimal coupling FðϕÞ ¼ e−βϕ

2=ð2M2
PlÞ advocated by

Damour and Esposite-Farese (DEF) [48], spontaneous
scalarization of NSs occurs for a negative coupling constant
in the range β ≤ −4.35 [50–53] (see Refs. [54,55] for the
dependence of the upper limit of β on the NS EOSs). In such
cases the NSs can have large scalar charges, while the local
gravity constraints are trivially satisfied.
The binary system containing compact objects with

scalar hairs emits scalar radiation besides tensor radiation
during the merging process. From binary pulsar measure-
ments of the energy loss through the dipolar scalar
radiation, the coupling β in the DEF model for the
scalarized NS is constrained to be β ≥ −4.5 [55,56] (see
also Ref. [57] for latest constraints). Since the scalar
radiation emitted during the inspiral phase of binaries also
modifies the gravitational waveform, it is possible to derive
independent constraints on the scalar charge and model
parameters of theories. In this vein, the gravitational
waveforms in nonminimally coupled scalar-tensor theories
have been computed in Refs. [58–70] to probe the
deviation from GR through the GW observations (see also
Refs. [71–79]).
If we restrict scalar-tensor theories to those with second-

order field equations of motion and with the luminal GW

propagation, the Lagrangian is constrained to be of the form
L ¼ G2ðϕ; XÞ − G3ðϕ; XÞ□ϕþ G4ðϕÞR, where G2, G3

depend on ϕ; X and G4 is a function of ϕ alone [80–82].
This Lagrangian, which belongs to a subclass of Horndeski
theories [83], accommodates all the classes of nonminimally
coupled theories mentioned above. On the other hand, it is
known that there are no asymptotically-flat hairy BH sol-
utions even with such general theories [21–24,84–86]. Since
the observations of gravitational waveforms from inspiralling
compact binaries place constraints on the difference of scalar
charges between the two objects [60,68,70,87–89], the
NS-BH binary is a most ideal system for extracting the
information of the NS scalar charge in theories with the
vanishing BH scalar charge.
In Ref. [70], the inspiral gravitational waveforms in the

above subclass of Horndeski theories were computed under
a post-Newtonian (PN) expansion of the energy-momen-
tum tensors of two-point particle sources. For this purpose,
the nonlinearity arising from the Galileon-type self inter-
action in G3ðXÞ was neglected for the wave propagation
from the source to the observer. This amounts to imposing
the condition that the Vainshtein radius rV [90] is smaller
than the size rs of compact objects. Besides the two tensor
modes hþ and h×, there are also the breathing (hb) and
longitudinal (hL) polarizations arising from the scalar-field
perturbation coupled to gravity. The scalar radiation emit-
ted during the inspiral phase modifies the phases and
amplitudes of tensor GWs. In particular, the difference
of scalar charges appears at the −1PN order in the phases of
all polarizations. This allows us to put tight constraints on
the NS scalar charge from observations of the NS-BH
binary system. While the amplitudes of scalar GWs are
generally suppressed relative to those of tensor GWs [91],
they can provide additional observational bounds on the
model parameters of scalar-tensor theories.
In this paper, we will perform a test of alternative

theories of gravity with the observational data of the
NS-BH binary event GW200115 [6] to place constraints
on the hairy NSs realized by the subclass of Horndeski
theories mentioned above. We focus on massless theories
with the vanishing scalar-field mass (ms ¼ 0), in which
case there are three polarized waves (hþ, h×, hb). In
Ref. [70] the gravitational waveforms in the frequency
domain were computed only for the tensor modes hþ and
h×, so we will also derive a frequency-domain waveform of
the breathing mode hb in this paper. We perform a statistical
analysis using a complete waveform model in a subclass of
Horndeski theory that includes both tensor and scalar
modes, evaluate parameter correlations, and demonstrate
that information independent of the phase evolution of
tensor modes can be drawn from scalar GW amplitudes. A
similar analysis with the GW200115 data was carried out in
Ref. [92] for generalized BD theories, but it is based on the
waveform of tensor modes alone. We also note that forecast
constraints on the scalar charge with Advanced LIGO and
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Einstein Telescope were studied in Ref. [93] by resorting to
the tensor waveform. Since lack of waveform elements can
cause parameter bias and misinterpret constraints on the
theory, one needs to be careful when interpreting test of GR
results for phenomenological probes of some deviation
from GR with a specific theory. The presence of scalar
GWs is a key feature of nonminimally coupled scalar-
tensor theories, so it is important to implement such a new
polarized mode in the analysis. We will put bounds on the
scalar charge and the nonminimal coupling strength in a
more general class of theories studied in Ref. [92] and then
provide constraints on the allowed parameter space of each
theory.

II. GRAVITATIONAL WAVEFORMS IN
NONMINIMALLY COUPLED THEORIES

We first revisit the tensor gravitational waveforms for a
general class of scalar-tensor theories derived in Ref. [70].
Then, we obtain the scalar waveform in the frequency
domain by taking into account the effect of energy loss
through the tensor and scalar radiations. The most general
class of scalar-tensor theories with second-order field
equations of motion is known as Horndeski theories
[83]. If we further demand that the speed of tensor GWs
is exactly equivalent to that of light on an isotropic
cosmological background, the Horndeski’s action is
restricted to be of the form [80–82]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½G2ðϕ; XÞ − G3ðϕ; XÞ□ϕþ G4ðϕÞR�

þ Smðgμν;ΨmÞ; ð2:1Þ

where g is a determinant of the metric tensor gμν,G2 andG3

are functions of ϕ and X ¼ −gμν∂μϕ∂νϕ=2,G4 is a function
of ϕ alone, and Sm is the action of matter fields Ψm
minimally coupled to gravity.
As we mentioned in Introduction, the action (2.1) can

encompass a wide class of scalar-tensor theories listed
below.

(i) BD theories:

G2¼ð1−6Q2ÞFðϕÞX; G3¼0; G4¼
M2

Pl

2
FðϕÞ;
ð2:2Þ

with the nonminimal coupling

FðϕÞ ¼ e−2Qϕ=MPl ; ð2:3Þ

where MPl is the reduced Plack mass. This is
equivalent to the original BD theory [25] with the
correspondence Q2 ¼ ½2ð3þ 2ωBDÞ�−1, where ωBD
is a BD parameter [13,26,27]. GR corresponds to the
limit ωBD → ∞, i.e., Q → 0. The lowest-order

effective action in string theory with a dilaton
field ϕ [28–30] corresponds to the specific case
of BD theories with ωBD ¼ 0. In extended massive
BD theories, the scalar potential VðϕÞ is present as
the form −VðϕÞ in G2. The fðRÞ gravity is a special
case of extended massive BD theories with the BD
parameter ωBD ¼ 0 [37,38].

(ii) Theories of spontaneous scalarization of NSs with a
higher-order kinetic term:

G2 ¼
�
1 −

3M2
PlF

2
;ϕ

2F2

�
FðϕÞX þ μðϕÞX2;

G4 ¼
M2

Pl

2
FðϕÞ; ð2:4Þ

where F is an even power-law function of ϕ. The
typical example of the nonminimal coupling is of the
form [48]

FðϕÞ ¼ e−βϕ
2=ð2M2

PlÞ: ð2:5Þ

The higher-order kinetic Lagrangian μðϕÞX2, where
μ is a function of ϕ, belongs to the k-essence
Lagrangian. This term allows the possibility of
suppressing the NS scalar charge in comparison
to the original spontaneous scalarization scenario
[70]. We also note that, for the string dilaton with the
nonminimal coupling (2.3), the similar higher-order
kinetic term arises as an α0 correction [31,32]. In
such a case, we just need to add the contribution
μðϕÞX2 to the Lagrangian of BD theories.

(iii) Cubic Galileons with nonminimal couplings:

G2 ¼
�
1 −

3M2
PlF

2
;ϕ

2F2

�
FðϕÞX; G3 ¼ α3X;

G4 ¼
M2

Pl

2
FðϕÞ; ð2:6Þ

where α3 is a constant, and FðϕÞ can be chosen as
Eq. (2.3) or (2.5). In the vicinity of matter sources,
the cubic Galileon Lagrangian α3X□ϕ can screen
fifth forces mediated by the nonminimal coupling.
This is due to the dominance of scalar-field non-
linearities within a Vainshtein radius rV . If rV is
much larger than the size of local objects rs, then the
linear expansion of scalar GWs propagating on
the Minkowski background loses its validity for
the distance rs < r < rV . To avoid the dominance of
non-linearities outside the matter source, we require
that rV ≲ rs. Then the screening of fifth forces
occurs inside the object, which suppresses the scalar
charge. Since this situation is analogous to the
kinetic screening induced by the term μðϕÞX2 in
Eq. (2.4), we will not place observational constraints

GRAVITATIONAL-WAVE CONSTRAINTS ON SCALAR-TENSOR … PHYS. REV. D 109, 104072 (2024)

104072-3



on theories given by the functions (2.6). We note that
scalar gravitational radiation from binary pulsars in
cubic Galileon theories was studied in Ref. [94] and
was constrained in Ref. [95].

In the above theories there are hairy NS solutions with
scalar hairs, while the BHs do not have hairy solutions
[21–24,84–86].1 Thus the GWs emitted from the NS-BH
binary system can provide constraints on the NS scalar
charge and the nonminimal coupling strength. We would
like to translate them to the bounds on model parameters in
each theory.
By the end of this section, we will revisit the gravita-

tional waveforms from inspiralling compact binaries
already discussed elsewhere in scalar-tensor theories
[60,68,70,87–89]. The derivation of them is mostly based
on the Ref. [70], but, in this paper, we will newly obtain the
frequency-domain gravitational waveform of a breathing
scalar mode in Sec. II C. In Sec. II D, we also take into
account the cosmological propagation of GWs from the
source to the observer. While a similar study was performed
in Ref. [93], we will provide the complete frequency-
domain gravitational waveforms emitted from the NS-BH
binary including the breathing polarization.
We deal with the NS-BH binary system as a collection of

two pointlike particles (with the label I ¼ A for NS and
I ¼ B for BH). The matter action for such a system is given
by [58]

Sm ¼ −
X
I¼A;B

Z
mIðϕÞdτI; ð2:7Þ

where mIðϕÞ’s are the ϕ-dependent ADM masses of
compact objects, and τI is the proper time along a world
line xμI of the particle I. The matter energy-momentum
tensor Tμν follows from the variation of Sm with respect to
gμν, as δSm ¼ ð1=2Þ R d4x

ffiffiffiffiffiffi−gp
Tμνδgμν. In terms of the

matter trace T ¼ gμνTμν, the action (2.7) can be expressed
as Sm ¼ R

d4x
ffiffiffiffiffiffi−gp

TðϕÞ. More explicitly, the trace T is
related to the ϕ-dependent masses of sources, as [58,70]

TðϕÞ ¼ −
1ffiffiffiffiffiffi−gp

X
I¼A;B

mIðϕÞ
1

u0I
δð3Þðx − xIðtÞÞ; ð2:8Þ

where u0I is the time component of four velocity of the
particle I, and δð3Þðx − xIðtÞÞ is the three dimensional

delta function with the spatial particle position xIðtÞ at
time t.

A. Solutions to tensor and scalar waves

In the following, we study the propagation of GWs from
the binary to an observer in the subclass of Horndeski
theories given by the action (2.1). We consider metric
perturbations hμν on a Minkowski background with the
metric tensor ημν ¼ diagð−1; 1; 1; 1Þ, such that

gμν ¼ ημν þ hμν: ð2:9Þ

The scalar field ϕ is expanded around today’s constant
asymptotic value ϕ0, as

ϕ ¼ ϕ0 þ φ; ð2:10Þ

where φ corresponds to a perturbed quantity. The back-
ground scalar ϕ0 is determined by the cosmological
evolution from the past to today, which will be discussed
in Sec. II D.
For the later convenience, we introduce the following

combination

θμν ≡ hμν −
1

2
hημν − ξ0

φ

MPl
ημν; ð2:11Þ

where h is the trace of hμν, and ξ0 is defined by

ξ0 ≡MPlG4;ϕ

G4

����
ϕ¼ϕ0

; ð2:12Þ

with the notation G4;ϕ ¼ dG4=dϕ. Choosing the Lorentz-
gauge condition ∂

νθμν ¼ 0, the perturbation θμν obeys

□Mθμν ¼ −
Tð1Þ
μν

G4ðϕÞ
þOðθ2;φ2; θφ; Tð2Þ

μν ; � � �Þ; ð2:13Þ

where □M ≡ ημν∂μ∂ν, Tð1Þ
μν , and Tð2Þ

μν are the first- and
second-order perturbations of Tμν respectively, and θ is
the trace of θμν. The equation of motion for the scalar-field
perturbation is given by

ð□M −m2
sÞφ ¼ −

1

ζ0

�
1 −

1

2
θ − ξ0

φ

MPl
−
ζ1
ζ0

φ

��
T;ϕ −

G4;ϕ

2G4

T

�
þOðφ2; ∂μφ∂μφ; ð□MφÞ2; ∂μ∂νφ∂μ∂νφ; θφ; θμν∂μ∂νφÞ; ð2:14Þ

1If we consider full Horndeski theories, the scalar field coupled to a Gauss-Bonnet term gives rise to asymptotically-flat hairy BH
solutions [96–99].
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where

ζ0 ≡G2;X þ 3G2
4;ϕ

G4

����
ϕ¼ϕ0

;

ζ1 ≡G2;ϕX þ 6G4;ϕG4;ϕϕ

G4

−
3G3

4;ϕ

ðG4Þ2
����
ϕ¼ϕ0

;

m2
s ≡ −

G2;ϕϕðϕ0Þ
ζ0

: ð2:15Þ

The quantity ms corresponds to the scalar-field mass. In
theories given by the Horndeski functions (2.2), (2.4), and
(2.6), we haveG2;ϕϕ ¼ 0 by using the property Xjϕ¼ϕ0

¼ 0.
Then, we have

ms ¼ 0: ð2:16Þ

In the following, we will focus on massless theories
satisfying the condition (2.16). In this case, the scalar
GWs arising from the field perturbation φ have only the
breathing polarization, without the longitudinal propaga-
tion.
Since the right-hand sides of Eqs. (2.13) and (2.14)

contain the ϕ-dependent quantities G4ðϕÞ and mIðϕÞ, we
expand them around ϕ ¼ ϕ0 as

G4ðϕÞ ¼ G4ðϕ0Þ
�
1þ ξ0

φ

MPl
þOðφ2Þ

�
;

mIðϕÞ ¼ mIðϕ0Þ
�
1þ αI

φ

MPl
þOðφ2Þ

�
; ð2:17Þ

where

αI ≡MPlmI;ϕ

mI

����
ϕ¼ϕ0

: ð2:18Þ

In the Jordan-frame action (2.1), the scalar field ϕ is
directly coupled to the Ricci scalar R. Performing a
conformal transformation ĝμν ¼ ½2G4ðϕÞ=M2

Pl�gμν of the
metric, we obtain the action where the gravitational sector
is described by the Einstein-Hilbert term M2

PlR̂=2, where a
hat represents quantities in the transformed Einstein frame.
In the Einstein frame, the scalar field is coupled to matter
fields through the metric tensor gμν ¼ ½2G4ðϕÞ=M2

Pl�−1ĝμν.
If we consider a star on a spherically symmetric back-
ground, the scalar field can acquire a charge qs through the
interaction with matter mediated by the nonminimal cou-
pling. Provided that the kinetic term X̂ is the dominant
contribution to the scalar-field Lagrangian in the Einstein
frame at large radial distance r̂, the field has the following
asymptotic behavior

ϕðr̂Þ ¼ ϕ0 −
qs
r̂
; ð2:19Þ

whose radial derivative ϕ0ðr̂Þ ¼ qs=r̂2 is analogous to the
electric field in electrodynamics. For the star ADM mass
m̂IðϕÞ in the Einstein frame, the scalar charge qs has a
relation with the ϕ derivative of m̂IðϕÞ as 4πqs ¼ m̂I;ϕ

[100]. In the Einstein frame, we introduce a dimensional
quantity analogous to Eq. (2.18) as

α̂I ≡MPlm̂I;ϕ

m̂I

����
ϕ¼ϕ0

¼ 4πMPl

m̂I
qs: ð2:20Þ

This means that α̂I characterises the strength of the scalar
charge qs. Since the star ADMmassmI in the Jordan frame
is related to m̂I as mI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2G4ðϕÞ=M2

Pl

p
m̂I , we have the

following relation

α̂I ¼ αI −
1

2
ξ0: ð2:21Þ

The dimensionless quantity α̂I is more fundamental than αI
due to the direct relation with the scalar charge, so we will
express the gravitational waveforms by using α̂I . We note
that all the calculations given below will be performed in
the Jordan frame, except for replacing αI with α̂I þ ξ0=2.
For the binary system, we consider a relative circular orbit

rotating around a fixed center of mass. Then, the Newtonian
equation along the radial direction is expressed as

μ
v2

r
¼ G̃mAmB

r2
; ð2:22Þ

where v and r are the relative speed and displacement of two
sources, respectively, and [68,70]

μ≡mAmB

m
; m≡mA þmB; ð2:23Þ

G̃≡ 1

16πG4ðϕ0Þ
�
1þ 4G4ðϕ0Þ

ζ0M2
Pl

α̂Aα̂B

�
: ð2:24Þ

Note that μ is the reduced mass. Provided that the two
compact objects A and B have the nonvanishing scalar
charges α̂A and α̂B, respectively, the effective gravitational
coupling G̃ is modified by the product α̂Aα̂B. For the
NS-BH system in which the BH does not have a scalar hair,
we have α̂B ¼ 0 and hence G̃ ¼ 1=½16πG4ðϕ0Þ�. From
Eq. (2.22), we obtain the following relation

v ¼ ðG̃mωÞ1=3; ð2:25Þ

where ω ¼ v=r is the angular frequency.
At distance D from the binary source, the leading-order

solution to the tensor wave Eq. (2.13) is given by

θij ¼ G̃μm
4πG4ðϕ0ÞrD

ðv̂iv̂j − r̂ir̂jÞ; ð2:26Þ
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where v̂i and r̂i are the unit vectors along the relative
velocity v and displacement r of the circular orbit
(with r ¼ jrj).
For the scalar-field perturbation φ, we derive the solution

to Eq. (2.14) up to the quadrupole order in the PN expansion.
We take a vector field from the source to the observer as
D ¼ Dn, where n is a unit vector. Dropping the time-
independent monopole contributions to φ, the scalar-field
perturbation measured by the observer is given by [68,70]

φ ¼ −
μ

4πζ0MPlD

�
ðα̂A − α̂BÞv · n −

1

2
Γðv · nÞ2

þ Γ
2

G̃m
r3

ðr · nÞ2
�
jt−D; ð2:27Þ

where

Γ≡ −2
mBα̂A þmAα̂B

m
: ð2:28Þ

Since we are now considering the massless theories with
ms ¼ 0, there is no contribution to φ arising from the
longitudinal polarization. If both of the scalar charges α̂A
and α̂B are zero, then we haveφ ¼ 0 in Eq. (2.27). As long as
either α̂A or α̂B is nonvanishing, the scalar-field perturbation
does not vanish together with the tensor modes (2.26).

B. Time-domain solutions

We are now interested in the time-domain solutions to
GWs emitted from the binary system with a relative circular
motion. In the Cartesian coordinate system ðx1; x2; x3Þ
whose origin O is fixed at the center of mass, we consider
an observer present in the ðx2; x3Þ plane. The unit vector n
from O to the observer is inclined from the x3 axis with an
angle ι. The binary circular motion is confined on the
ðx1; x2Þ plane, with a relative vector r from O. The angle
between r and the x1 axis is given by Φ, with the velocity
v ¼ ṙ orthogonal to r. In this configuration, one can
express n, r, and v as

n ¼ ð0; sin ι; cos ιÞ; r ¼ ðr cosΦ; r sinΦ; 0Þ;
v ¼ ð−v sinΦ; v cosΦ; 0Þ; ð2:29Þ

For the tensor wave defined by Eq. (2.11), we choose the
traceless-transverse (TT) gauge conditions θ ¼ 0 and
∂
jθij ¼ 0. We consider the GWs propagating along the
x3 direction, in which case nx1 ¼ nx2 ¼ 0 and nx3 ¼ 1. For
a massless scalar field, the GW field can be expressed as the
3 × 3 matrix components as [101–103]

hij ¼

0
B@

hþ þ hb h× 0

h× −hþ þ hb 0

0 0 0

1
CA; ð2:30Þ

where

hþ ¼ θTT11 ¼ −θTT22 ; h× ¼ θTT12 ¼ θTT21 ;

hb ¼ −ξ0
φ

MPl
; ð2:31Þ

with θTT11 , θ
TT
22 , θ

TT
12 being the TT components of θij. We have

two tensor polarizations hþ and h× besides the breathing
mode hb. Since we are now considering the massless
theories with ms ¼ 0, the longitudinal mode hL does not
appear as the (33) component in hij.
In Ref. [70], the authors derived the three components

hþ, h×, and hb in the time domain with a constant angular
frequency ω. At the observer position x ¼ Dn, they are
given, respectively, by

hþ ¼ −ð1þ δ0Þ2=3
4ðG�MÞ5=3ω2=3

D
1þ cos2 ι

2
cosð2ΦÞ;

ð2:32Þ

h× ¼ −ð1þ δ0Þ2=3
4ðG�MÞ5=3ω2=3

D
cos ι sinð2ΦÞ; ð2:33Þ

hb ¼
μξ0

4πζ0M2
PlD

�
ðα̂A − α̂BÞðG̃mωÞ1=3 sin ι cosΦ

−
1

2
ΓðG̃mωÞ2=3sin2ι cosð2ΦÞ

�
; ð2:34Þ

where Φ ¼ ωðt −DÞ, and

δ0 ≡ 4κ0α̂Aα̂B; κ0 ≡G4ðϕ0Þ
ζ0M2

Pl

;

G� ≡ 1

16πG4ðϕ0Þ
; M≡ μ3=5m2=5: ð2:35Þ

The breathing polarized mode (2.34) depends on the
quantities α̂A − α̂B and Γ defined by Eq. (2.28). If the
two compact objects do not have any scalar charges, then
hb vanishes. In other words, the detection of the breathing
mode is a smoking gun for the presence of a scalar field
nonminimally coupled to gravity.
In theories given by the action (2.1), it is known that

static and spherically symmetric BHs do not have scalar
hairs. We will focus on the NS-BH binary system where the
BH has a vanishing scalar charge. In this case, we have

α̂B ¼ 0; δ0 ¼ 0; G̃ ¼ G�;

Γ ¼ −
4η

1� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p α̂A; ð2:36Þ

where the plus and minus signs in Γ correspond to the cases
mA > mB and mA < mB, respectively. In the following, we
will exploit the relations in Eq. (2.36).
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C. Frequency-domain solutions
with gravitational radiation

In Sec. II B we assumed that ω is constant, but, in reality,
the orbital frequency increases through gravitational radi-
ation. The stress-energy tensor associated with gravita-
tional radiation is given by [104,105]

tμν ¼
�
1

2
G4ðϕ0Þ∂μθTTαβ ∂νθαβTT þ ζ0∂μφ∂νφ

	
: ð2:37Þ

In scalar-tensor theories, the scalar radiation arising from
the perturbation φ contributes to tμν besides the tensor
radiation associated with θμν. Due to the conservation of tμν

inside a volume V, the derivative of gravitational energy
EGW ¼ R

V d
3xt00 with respect to time t yields

ĖGW ¼ −
Z
V
d3x∂it0i

¼ −
Z

dΩD2½G4ðϕ0Þhḣ2þ þ ḣ2×i − ζ0h∂0φ∂Dφi�;

ð2:38Þ

whereΩ is the solid angle element. The binary system has a
mechanical energy

E ¼ 1

2
μv2 − G�

μm
r

¼ −
1

2
μðG�mωÞ2=3: ð2:39Þ

Since Ė ¼ ĖGW, the orbital frequency ω increases in time.
We substitute Eqs. (2.27), (2.32), and (2.33) into Eq. (2.38)
and use the relation Ė ¼ ĖGW to find ω̇. This calculation
was already performed in Ref. [70]. At leading order in the
PN approximation, we have

ω̇ ≃
96

5
ðG�MÞ5=3ω11=3

�
1þ 5κ0α̂

2
A

24ðG�mωÞ2=3 þ
κ0
6
Γ2

�
:

ð2:40Þ

To confront the gravitational waveforms with observa-
tions, we perform Fourier transformations of hþ, h×, and hb
with a frequency f, such that2

h̃λðfÞ ¼
Z

dthλðtÞe−i·2πft; ð2:41Þ

where λ ¼ þ;×; b. Under a stationary phase approxima-
tion, the frequency-domain solutions to h̃þ and h̃× were
already derived in Ref. [70]. Taking into account the
quadrupole terms besides the dipole terms, the tensor
gravitational waveforms are given, respectively, by

h̃þðfÞ ¼ −
ffiffiffiffiffiffi
5π

24

r
ðG�MÞ5=6

D
ðπfÞ−7=6

×

�
1 −

5η2=5κ0α̂
2
A

48ðG�MπfÞ2=3 −
κ0Γ2

12

�
1þ cos2ι

2
e−iΨþ ;

ð2:42Þ

h̃×ðfÞ ¼ −
ffiffiffiffiffiffi
5π

24

r
ðG�MÞ5=6

D
ðπfÞ−7=6

×
�
1 −

5η2=5κ0α̂
2
A

48ðG�MπfÞ2=3 −
κ0Γ2

12

�
ðcos ιÞe−iΨ× ;

ð2:43Þ

where

Ψþ ¼ Ψ× þ π

2

¼ 2πft∞ − 2Φc −
π

4
þ 3

128
ðG�MπfÞ−5=3

×

�
1 −

5η2=5κ0α̂
2
A

42ðG�MπfÞ2=3 −
κ0Γ2

6

�
; ð2:44Þ

η ¼ μ

m
¼

�
M
m

�
5=3

: ð2:45Þ

Here, Φc is the value of Φ at which ω increases to a
sufficiently large value (at t ¼ t∞). In the phase (2.44), we
shifted the origin of time to absorb the distanceD, such that
t∞ þD → t∞. We also note that terms higher than the order
α̂2A are neglected for obtaining the results (2.42)–(2.44).
The breathing scalar mode (2.34), which was derived for

constant ω, consists of two parts:

hb1 ¼
μξ0α̂A

4πζ0M2
PlD

ðG�mωÞ1=3 sin ι cosΦ; ð2:46Þ

hb2 ¼ −
μξ0Γ

8πζ0M2
PlD

ðG�mωÞ2=3 sin2 ι cosð2ΦÞ: ð2:47Þ

Performing the Fourier transformation for hb1, it follows
that

h̃b1ðfÞ ¼
μξ0α̂A

8πζ0M2
PlD

ðG�mÞ1=3e−i·2πfD sin ι
Z

dtωðtÞ1=3

× ½eiðΦðtÞ−2πftÞ þ e−iðΦðtÞþ2πftÞ�: ð2:48Þ

The first term in the square bracket of Eq. (2.48) has a
stationary phase point characterized by

ωðt�Þ ¼ Φ̇ðt�Þ ¼ 2πf: ð2:49Þ

We expand ΦðtÞ around t ¼ t�, as ΦðtÞ¼Φðt�Þ þ
2πfðt−t�Þþω̇ðt�Þðt−t�Þ2=2þOðt−t�Þ3. Since the second

2Unlike Ref. [70], we choose the minus sign for the phase to
match it with the notation used later in Sec. III.
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term in the square bracket of Eq. (2.48) is fast oscillating,
we drop its contribution to h̃b1ðfÞ. On using the propertyR
dtωðtÞ1=3eiω̇ðt�Þðt−t�Þ2=2 ≃ ωðt�Þ1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=ω̇ðt�Þ

p
eiπ=4, we

obtain

h̃b1ðfÞ ¼
μξ0α̂A

8πζ0M2
PlD

ðG�mÞ1=3ðsin ιÞωðt�Þ1=3
ffiffiffiffiffiffiffiffiffiffiffi
2π

ω̇ðt�Þ

s
e−iΨb ;

ð2:50Þ

where

Ψb ¼ 2πft∞ −Φc −
π

4
þ
Z

2πf

∞
dω

2πf − ω

ω̇
: ð2:51Þ

We substitute Eq. (2.40) into Eqs. (2.50) and (2.51) and
perform the integration with respect to ω. Neglecting the
terms of order α̂3A in the amplitude of h̃b1ðfÞ, it follows
that

h̃b1ðfÞ¼
ffiffiffiffiffi
5

96

r
μξ0α̂A

16πζ0M2
PlD

ðG�mÞ1=3
ðG�MÞ5=6

sin ι

πf3=2
e−iΨb ; ð2:52Þ

where

Ψb ¼ 2πft∞ −Φc −
π

4
þ 3

256ð2G�MπfÞ5=3

×

�
1 −

5η2=5κ0α̂
2
A

42ð2G�MπfÞ2=3 −
κ0Γ2

6

�
: ð2:53Þ

Similarly, the Fourier-transformed mode of hb2 can be
derived as

h̃b2ðfÞ ¼ −
ffiffiffiffiffi
5

96

r
μξ0Γ

16πζ0M2
PlD

ðG�mÞ2=3
ðG�MÞ5=6

sin2 ι

π2=3f7=6
e−iΨþ ;

ð2:54Þ

whereΨþ is given by Eq. (2.44). The breathing mode h̃bðfÞ
in the frequency domain is the sum of Eqs. (2.52) and
(2.54). We will consider the asymptotic field value satisfy-
ingG4ðϕ0Þ ≃M2

Pl=2, in which caseM
2
Pl ≃ 1=ð8πG�Þ. Then,

we obtain

h̃bðfÞ ¼ h̃b1ðfÞ þ h̃b2ðfÞ

≃
ffiffiffiffiffiffi
5π

24

r
ðG�MÞ5=6

D
ðπfÞ−7=6 ξ0

4ζ0

×

�
η1=5α̂A

ðG�MπfÞ1=3 ðsin ιÞe
−iΨb − Γðsin2ιÞe−iΨþ

�
:

ð2:55Þ

This is a new result of the frequency-domain breathing
mode, which was not derived in Ref. [70].

D. Inspiral GWs from NS-BH binaries
and cosmological propagation

So far, we have assumed that the GWs propagate on the
Minkowski background. If the GW source is far away from
the observer, the effect of cosmic expansion on the
gravitational waveform should be taken into account. Let
us then consider the spatially-flat cosmological background
given by the line element

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð2:56Þ

where aðtÞ is a time-dependent scale factor. The redshift of
the binary source is defined by z ¼ aðt0Þ=aðtsÞ − 1, where
t0 and ts are the moments measured by the clocks at
observer and source positions respectively. The GW fre-
quency measured by the observer, f̃, is different from the
one measured in the source frame, f, as

f̃ ¼ ð1þ zÞ−1f: ð2:57Þ

On the cosmological background, the time variation of ϕ in
the nonminimal coupling FðϕÞ gives rise to a modified
propagation of GWs. We define the luminosity distance
dLðzÞ ¼ ð1þ zÞ R z

0 H
−1ðz̃Þdz̃, where H ¼ ȧ=a is the

Hubble expansion rate. The effective distance dGWðzÞ
traveled by GWs is related to dLðzÞ, as [82,106–109]

dGWðzÞ ¼ dLðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G4ðϕ0Þ
G4ðϕsÞ

s
; ð2:58Þ

where ϕs is the background scalar field when GWs are
emitted from the source.
The Lunar Laser Ranging experiment put constraints on

the time variation of today’s gravitational coupling G� ¼
1=ð16πG4Þ as Ġ�=G� ¼ ð7.1� 7.6Þ × 10−14 yr−1 [110],
which was derived by assuming the evolution of G� linear
in time. This gives a tight bound jĠ4=ðH0G4Þjϕ¼ϕ0

≲ 10−3

for general nonminimal couplings G4ðϕÞ, where H0 is
today’s Hubble expansion rate [109]. Hence the time
variation of ϕ over the cosmological timescale H−1

0 is
suppressed at low redshifts (z≲ 1). Then the ratio
G4ðϕ0Þ=G4ðϕsÞ in Eq. (2.58) can be approximated as 1,
so that dGWðzÞ is close to dLðzÞ for nonminimally coupled
theories.
For the tensor waveforms, the analysis of Ref. [93] on the

cosmological background shows that we just need to
replace several quantities in Eqs. (2.42)–(2.44) with
D→dGW, f→ f̃¼ð1þzÞ−1f, t∞ → tc ¼ ð1þ zÞt∞, and
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M → M̃, where M̃ is a chirp mass in the detector frame
defined by [103]

M̃ ¼ ð1þ zÞM: ð2:59Þ

The same replacements can be also applied to the breathing
scalar mode (2.55).
Let us consider nonminimally coupled theories given

by the Horndeski functions (2.2), (2.4), and (2.6). In
this case, we have κ0 ¼ ½F=ð2F þ 4μðϕÞXÞ�ϕ¼ϕ0

and ζ0 ¼
½F þ 2μðϕÞX�jϕ¼ϕ0

. We use an approximation that the
background field value ϕ0 is constant in time and space,
so that Xjϕ¼ϕ0

≃ 0. We also approximate Fðϕ0Þ ≃ 1 to
recover the Einstein-Hilbert term M2

PlR=2 at large distan-
ces. Then, we have

κ0 ≃
1

2
; ζ0 ≃ 1: ð2:60Þ

The differences from κ0 ¼ 1=2 and ζ0 ¼ 1 work only as
higher-order corrections to the scalar charge appearing in
the phases and amplitudes of tensor and scalar GWs. Using
the approximation dGWðzÞ ≃ dLðzÞ, the resulting tensor and
scalar gravitational waveforms are given by

h̃þðf̃Þ ¼ −h̃tðf̃Þð1þ cos2 ιÞe−iΨþ ; ð2:61Þ

h̃×ðf̃Þ ¼ −h̃tðf̃Þð2 cos ιÞe−iΨ× ; ð2:62Þ

h̃bðf̃Þ ¼ h̃s1ðf̃Þð2 sin ιÞe−iΨb

þ h̃s2ðf̃Þð2 sin2 ιÞe−iΨþ ; ð2:63Þ

where

h̃tðf̃Þ ¼ AGRðf̃Þ
�
1 −

5η2=5α̂2A
96ðG�M̃πf̃Þ2=3 −

Γ2

24

�
; ð2:64Þ

h̃s1ðf̃Þ ¼
ξ0α̂A
4

η1=5

ðG�M̃πf̃Þ1=3AGRðf̃Þ; ð2:65Þ

h̃s2ðf̃Þ ¼ −
ξ0Γ
4

AGRðf̃Þ; ð2:66Þ

Ψþ ¼ Ψ× þ π

2

¼ 2πf̃tc − 2Φc −
π

4

þ 3

128
ðG�M̃πf̃Þ−5=3

�
1 −

5η2=5α̂2A
84ðG�M̃πf̃Þ2=3 −

Γ2

12

�
;

ð2:67Þ

Ψb ¼ 2πf̃tc −Φc −
π

4
þ 3

256ð2G�M̃πf̃Þ5=3

×

�
1 −

5η2=5α̂2A
84ð2G�M̃πf̃Þ2=3 −

Γ2

12

�
; ð2:68Þ

with

AGRðf̃Þ ¼
ffiffiffiffiffiffi
5π

96

r
ðG�M̃Þ5=6
dLðzÞ

ðπf̃Þ−7=6: ð2:69Þ

From Eqs. (2.64) and (2.65), the relative amplitude between
the first scalar and tensor modes can be estimated as
h̃s1ðf̃Þ=h̃tðf̃Þ ≈ ξ0α̂Aðc=vÞ, where v ≈ ðG�M̃πf̃Þ1=3 is the
relative circular velocity of the binary and we restored the
speed of light c. The other scalar-to-tensor ratio is of order
h̃s2ðf̃Þ=h̃tðf̃Þ ¼ −ξ0Γ=4 ≈ ξ0α̂A. Provided that ξ0 ≠ 0 and
α̂A ≠ 0, the breathing mode is nonvanishing relative to
tensor polarizations.
In the waveforms (2.61)–(2.63) with (2.64)–(2.68), there

are two additional parameters α̂A and ξ0 in comparison to
those in GR. From the observations of the phases Ψþ and
Ψ× of tensor waves h̃þðf̃Þ and h̃×ðf̃Þ, we expect that one
can put constraints on the parameter α̂A. The amplitude of
the breathing scalar mode h̃bðf̃Þ also allows a possibility of
placing bounds on the product ξ0α̂A. Thus, the observations
of GWs emitted from the NS-BH inspiral binaries can
provide constraints on both α̂A and ξ0 simultaneously.

III. PARAMETRIZED FRAMEWORK
FOR SCALAR-TENSOR GWs

For the data analysis of scalar and tensor inspiral GWs
from compact binary coalescences, we generalize the
parametrized waveform model used in Ref. [111]. In
the following, we denote the chirp mass M̃ as M and
the observed GW frequency f̃ as f for simplicity. We
introduce a coupling parameter γ between scalar modes and
test masses of the detectors into the modified GW energy
flux as

ĖGW ¼ −
d2L

16πG�

Z
dΩ½hḣ2þ þ ḣ2×i þ γhḣ2bi�; ð3:1Þ

where the angle bracket h� � �i stands for an averaging
procedure over the orbital evolution. In our theories, on
using the relations hb ¼ −ξ0φ=MPl and h∂0φ∂Dφi ¼ −hφ̇2i
and comparing Eq. (2.38) with (3.1), the parameter γ is
given by

γ ¼ 1

κ0ξ
2
0

≃
2

ξ20
; ð3:2Þ

where we used κ0 ≃ 1=2 in the second approximate
equality.
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For the time domain strain of each polarization with the
modification of the gravitational constant GN → G�, which
is degenerated with the change of intrinsic mass, we can
assume the lth harmonic of the orbital phase multiplied by

the amplitude parameter AðlÞ
p and the inclination angle

dependence gðlÞp ðιÞ [112] as

hðlÞp ðtÞ ¼ 1

2
AðlÞ
p gðlÞp ðιÞ 4G�M

dL
ð2πG�MF Þ2=3e−ilΦ; ð3:3Þ

where p∈ fþ;×; bg is a set of polarization indices running
over plus (þ), cross (×), and breathing (b) modes. Here, F
is the orbital frequency and Φ is the orbital phase. We
consider only quadrupole radiation for the tensor polar-
izaiton. The non-zero amplitudes for the tensor modes

are Að2Þ
þ ¼ Að2Þ

× ¼ 1 by definition. On the other hand, we
consider two types of radiation for the scalar modes: dipole
l ¼ 1 and quadrupole l ¼ 2.
Applying the stationary phase approximation

[103,113,114] to Eq. (3.3) and utilizing Eq. (3.1), we
can derive the frequency-domain GW signal in the form

h̃IðfÞ ¼ h̃TðfÞ þ h̃ð1Þb ðfÞ þ h̃ð2Þb ðfÞ; ð3:4Þ

where h̃TðfÞ, h̃ð1Þb ðfÞ and h̃ð2Þb ðfÞ represent the quadrupole
tensor, dipole scalar, and quadrupole sclalar polarization
contributions, respectively

h̃TðfÞ ¼ −½Fþ
I ð1þ cos2 ιÞ − 2iF×

I cos ι�½1þ δAð2Þ�

×

ffiffiffiffiffiffi
5π

96

r
ðG�MÞ2

dL
ðuð2Þ� Þ−7=2e−iΨð2Þ

GRe−iδΨ
ð2Þ
; ð3:5Þ

h̃ð1Þb ðfÞ ¼
ffiffiffiffiffiffi
5π

48

r
Að1Þ
b Fb

I ð2 sin ιÞη1=5
ðG�MÞ2

dL
ðuð1Þ� Þ−9=2

× e−iΨ
ð1Þ
GRe−iδΨ

ð1Þ
; ð3:6Þ

h̃ð2Þb ðfÞ ¼
ffiffiffiffiffiffi
5π

96

r
Að2Þ
b Fb

I ð2 sin2 ιÞ
ðG�MÞ2

dL
ðuð2Þ� Þ−7=2

× e−iΨ
ð2Þ
GRe−iδΨ

ð2Þ
: ð3:7Þ

Under the stationary phase approximation, the reduced lth
harmonic frequency is defined by

uðlÞ� ≡
�
2πG�Mf

l

�
1=3

; ð3:8Þ

where f ¼ lF is the GW frequency. The modification of
the gravitational constant G�=GN can be absorbed into the
chirp mass like redshift. The functions FA

I ðA ¼ þ;×; bÞ are
the antenna pattern functions of the Ith detector depend-
ing on the sky direction and the polarization angle,
and representing the angular detector response to each

polarization [115,116]. ΨðlÞ
GR is the frequency evolution for

the lth harmonic in GR. Up to the second order with

respect to AðlÞ
b , the amplitude and phase corrections due to

the backreaction of scalar radiation are given by

δAðlÞ ¼ δAðlÞ
d þ δAðlÞ

q

¼ −
5

48
ðÃð1Þ

b Þ2η2=5ðuðlÞ� Þ−2 − 1

3
ðÃð2Þ

b Þ2; ð3:9Þ

δΨðlÞ ¼ δΨðlÞ
d þ δΨðlÞ

q

¼ −
5l
3584

ðÃð1Þ
b Þ2η2=5ðuðlÞ� Þ−7

−
l
128

ðÃð2Þ
b Þ2ðuðlÞ� Þ−5; ð3:10Þ

where

ÃðlÞ
b ¼ ffiffiffi

γ
p

AðlÞ
b : ð3:11Þ

In comparison to GR, the above waveform contains four
additional parameters: two scalar GW amplitude parame-
ters Að1Þ

b and Að2Þ
b , and two phase evolution parameters Ãð1Þ

b

and Ãð2Þ
b . In the original work [111], it is assumed that the

stress-energy tensor is the same form as in GR, that is,

γ ¼ 1 and then ÃðlÞ
b is identical to AðlÞ

b . In our scalar-tensor
theories, the quantity γ in Eq. (3.11) is given by γ ¼ 2=ξ20,
where ξ0 ¼ MPlF;ϕ=F. For the nonminimal couplings F ¼
e−2Qϕ=MPl and F ¼ e−βϕ

2=ð2M2
PlÞ, we have ξ0 ¼ −2Q and

ξ0 ¼ −βϕ=MPl, respectively. Thus, the phase evolution

parameters ÃðlÞ
b ¼

ffiffiffiffiffiffiffiffiffi
2=ξ20

p
AðlÞ
b keep not only information

on the amplitudes but also that on the nonminimal
couplings. The above waveform model matches the
generalized parametrized post-Einsteinian framework
[76,89,117] limited to the scalar-tensor polarizations.
The analysis based on this waveform model provides a
very general framework to search for GW polarizations
from compact binary coalescences in massless scalar-tensor
theories.
Now, we compare our theoretical waveforms given in

Eqs. (2.61)–(2.68) with Eqs. (3.5)–(3.7). Then, we obtain
the following correspondences:

Að1Þ
b ¼ 1

2
ξ0α̂A; Að2Þ

b ¼−
1

4
Γξ0¼

2η

1−
ffiffiffiffiffiffiffiffiffiffiffiffi
1−4η

p Að1Þ
b ; ð3:12Þ

Ãð1Þ
b ¼ 1ffiffiffi

2
p α̂A; Ãð2Þ

b ¼−
ffiffiffi
2

p

4
Γ¼ 2η

1−
ffiffiffiffiffiffiffiffiffiffiffiffi
1−4η

p Ãð1Þ
b ; ð3:13Þ

where we assumed that mA < mB. Thus, it is enough to

consider only two additional deviation parameters Að1Þ
b and

TAKEDA, TSUJIKAWA, and NISHIZAWA PHYS. REV. D 109, 104072 (2024)

104072-10



Ãð1Þ
b , which depend on the two physical quantities α̂A

and ξ0.

IV. OBSERVATIONAL CONSTRAINTS
FROM GW200115

As described in Sec. III, not only the non-tensorial
polarization modes are observables that exhibit a signature
of GR violation, but also the constraints on them can bring
us independent information on the possibility of extension
of GR apart from the modification of the tensor phase
evolution. In addition, the lack of non-tensorial polar-
izations in GWanalysis may cause parameter bias and over/
underestimate the constraints on the specific theoretical
parameters. It is worth mentioning that techniques like null
streams, as performed in [10,118,119], provide model-
independent methods for detecting signs of non-tensorial
polarization. These methods, while not yielding direct
parameter constraints, contribute to the weaker but
model-agnostic search for beyond-GR polarizations.
In this section, we analyze the GW signal of the compact

binary merger event listed in LIGO-Virgo-KAGRA catalog
under the scalar-tensor polarization waveform model (3.4)
to provide constraints on the maximal observables that can
be extracted from full GW polarizations. In Sec. II, we
demonstrate that one can obtain constraints on the multiple
theoretical parameters from a single GW observation. In
particular, we put constraints on both of the scalar charge of
compact stars and the coupling of the scalar polarization
with matter.

A. Data analysis

We focus on the NS-BH merger where only the NS has a
scalar charge in the framework of luminal Horndeski
theories. Separation of polarization modes by the current
GW detector network requires at least as same operating
detectors as the polarization modes [112]. We can safely
select GW200115 for analysis because it is a only plausible
binary NS-BH coalescence event observed by three detec-
tor network so far [6]. The primary mass is within the mass
range of known black holes and the secondary mass is
within that of known neutron stars. We use the strain data of
GW200115 from the Gravitational Wave Open Science
Center [120,121], which is down sampled to 2048 Hz to
reduce computational cost. The signal duration considered
for parameter estimation is 64 sec, with a postmerger
duration of 2 sec.
We analyze the signal of GW200115 in the scalar-tensor

polarization framework where the GW signal is described
by Eq. (3.4). There are two additional parameters Að1Þ

b and

Ãð1Þ
b in addition to standard 11 source parameters: the

primary and secondary masses in the detector frame, mA
and mB, the dimensionless spins for aligned spin binaries,
χA and χB, the luminosity distance to the compact binary
system dL, the inclination angle ι, the right ascension and

declination of the compact binary system, α and δ,
polarization angle ψ , the coalescence time tc, and the
phase at the reference frequency ϕref. We do not include a
tidal effect on the secondary because the tidal effects are
rarely effective [6]. Hence, we fix the tidal deformability
parameters ΛA and ΛB to zero. In the analysis, we use the
flat Λ cold dark matter cosmological model whose param-
eters are given by the results of Planck13 [122]. Note that
using the Planck18 data practically give the same results as
those presented below. Hence, a set of the parameters θ is
given by

θ≡fmA;mB;χA;χB;dL; ι;α;δ;ψ ; tc;ϕref ;A
ð1Þ
b ; Ãð1Þ

b g: ð4:1Þ

Our analysis relies on the Bayesian inference. Given a
hypothetical model M described by a set of parameters θ
and a set of detector signals d, the posterior probability
distribution pðθjd;MÞ is computed through the Bayes’
theorem as [103,123]

pðθjd;MÞ ¼ pðθjMÞpðdjθ;MÞ
pðdjMÞ ; ð4:2Þ

where pðθjMÞ is the prior probability distribution, and
pðdjθ;MÞ is the likelihood. Under the assumptions that the
detector noise is stationary and Gaussian, we use the
standard Gaussian likelihood,

pðdjθ;MÞ ∝ exp

�
−
1

2

X
I

hhIðθÞ − dIjhIðθÞ − dIi
�
; ð4:3Þ

where I is the detector label. The angle bracket hji
represents the noise-weighted inner product defined by

hajbi≡ 4Re
Z

fmax

fmin

a�ðfÞbðfÞ
SI;nðfÞ

df; ð4:4Þ

where SI;nðfÞ is the noise power spectral density of the Ith
detector. Here, the lower cutoff frequency fmin is set to
20 Hz for LIGO Hanford and Vigro detectors, but 25 Hz for
LIGO Livingston detector due to the scattering noise
around 20 Hz [6]. On the other hand, the upper cutoff
frequency fmax is set to the inner most stable circular orbit
frequency for nonspinning objects in GR,3 fISCO ¼
ð63=2πmÞ−1 ≃ 604 Hz, to restrict our analysis in the binary
inspiral stage. Instead of estimating the noise power
spectral density from strain data by the Welch method,
we use the event specific power spectral density available in

3The upper cutoff frequency fISCO is also modified in the
scalar-tensor theory and can be different from the GR value used
in our data analysis. However, as fISCO in our case is determined
mostly by the nonscalarized BHmassmB and the modification on
mA can change fISCO only by several percents at most, we neglect
the effect here.

GRAVITATIONAL-WAVE CONSTRAINTS ON SCALAR-TENSOR … PHYS. REV. D 109, 104072 (2024)

104072-11



LVK posterior sample releases [92]. For the Bayesian
inference, we utilize the Bilby software [124] and the
DYNESTY sampler [125]. The sampler settings are chosen
by referring to [126]. Specifically, we set the number of live
points (nlive) to 2048 and adopted an acceptance-walk
strategy with 200 walks. The action number (nact) was set
to 10. For all analysis in this paper, we confirmed that the
results do not change significantly with increased number
of live points.
As an inspiral template in GR, we adopt IMRPhenomD_

NRTidal [127] implemented in the LIGO Algorithm
Library LALSuite [128] in which the inspiral GW phase
of the lth harmonic is given by

ΨðlÞðfÞ ¼ 2πftc − lϕref −
π

4
þΨðlÞ

PN seriesðfÞ

−ΨðlÞ
PN seriesðfrefÞ; ð4:5Þ

with the post-Newtonian expansion series

ΨðlÞ
PN seriesðfÞ ¼

3l
256

ðuðlÞ� Þ−5
X7
i¼0

ϕiðuðlÞ� Þi; ð4:6Þ

where ϕi is the PN coefficients compiled in [129]. The
reference frequency is set to be 20 Hz in this work. We note
that the IMRPhenomD_NRTidal modeling is based on an
inspiral-merger-ringdown waveform, whose late-inspiral
phase evolutionhas been calibratedby the numerical-relativity
waveform.Also note thatIMRPhenomD_NRTidal consists
of only the leading-order quadrupolar mode.
For the priors, we use the same priors used in LVK

analysis of GW200115 for the standard binary parameters
[6]. As for the spin of the NS, we use a low spin prior
from the NS property. In order to make it possible to reveal
the ability of the GWobservations to put constraints on the
scalar-tensor theories, and interpret the results even in the
other theories predicting scalar polarization, we apply
uniform priors in the range ½−1; 1� for Að1Þ

b and Ãð1Þ
b without

invoking the constraints from the solar system experiments
and the binary pulsar observations.

B. Results

1. Scalar-tensor theories

We performed the Bayesian analysis for GW200115
signal with the scalar-tensor polarization waveform model
Eq. (3.4) following the prescription described in Sec. IVA.
Figure 1 shows the posterior probability distribution of

the phase parameters such as chirp mass in the detector
frame M, symmetric mass ratio η, effective spin χeff , and

the additional deviation parameters Að1Þ
b and Ãð1Þ

b under the
scalar-tensor model in blue. In corner plots, we draw 50%
and 90% credible intervals in the 2-dimensional plots
and 90% credible intervals in the 1-dimensional plots.

For comparison, we also show the posterior distribution
estimated from the GR analysis by LVK collaboration [6] in

orange. The additional phase parameter Ãð1Þ
b is strongly

correlated with the chirp mass M, while we did not find

any strong correlation of Ãð1Þ
b with the other phase

parameters clearly. As shown in Fig. 1, we also find that

there are no strong correlation between Að1Þ
b and the phase

parameters. This is reasonable because Að1Þ
b is the parameter

characterizing the scalar GW amplitudes. As a result, we
obtain the bound with 90% credible level,

Ãð1Þ
b ¼ −0.001þ0.030

−0.028 : ð4:7Þ

The correlation between Ãð1Þ
b and M would come

from the phase dependence in the tensor phase evolution

like ðuðlÞ� Þ−5½1 − ð5=84Þη2=5Ãð1Þ2
b ðuðlÞ� Þ−2�, in which the

first term comes from the GR contribution at 0PN in
Eq. (4.6) and the second term originates from the first term
corresponding to the scalar dipole radiation in Eq. (3.10), to
compensate each other such that the overall phase is kept
to the constant. Due to the correlation, the posterior
distribution of the chirp mass is biased to smaller value
compared to that under GR. Figure 2 shows the distribu-
tions for mass parameters. Reflecting the bias in the
estimation of the chirp mass, the estimation of the compo-
nent masses are slightly affected with respect to the GR
case, but the value still infers that the smaller compact star
is a NS, which is constrained as

1.15M⊙ < mA < 1.67M⊙; ð4:8Þ

with 90% credible level.
Figure 3 shows the posterior probability distribution of

the amplitude parameters such as chirp mass in the detector
frame M, luminosity distance dL, inclination angle ι, and

the additional scalar parameters Að1Þ
b and Ãð1Þ

b in blue. In
corner plots, we draw 50% and 90% credible intervals in
the 2-dimensional plots and 90% credible intervals in the
1-dimensional plots again. For comparison, we also show
the posterior distribution estimated from the GR analysis by
LVK collaboration [6] in orange. We do not find correla-

tions between the phase parameter Ãð1Þ
b , and the luminosity

distance dL or the inclination angle ι. However, there is

little correlation of the scalar GW amplitude Að1Þ
b with the

other amplitude parameters. Note that the inclusion of the
scalar polarization seems to improve the inclination deter-
mination. We will discuss this point in detail at the end of
this section by comparing the results based on different
analytical settings. With the current detector sensitivity, it
was found that some scalar GW amplitude samples hit
the edge of the prior. However, since the 90%CL is inside the
prior, we found the first constraint on the additional param-
eter purely characterizing scalar polarization amplitude
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Að1Þ
b ¼ −0.41þ0.84

−0.54 ; ð4:9Þ

with 90% credible interval.
On using the correspondence (3.13) with the constraint

on Ãð1Þ
b Eq. (4.7), the amplitude of α̂A is constrained to be

jα̂Aj ≤ 0.041; ð4:10Þ

at 90% credible level. This gives the upper limit on the
amount of the NS scalar charge in the mass range Eq. (4.8).
The vanishing scalar charge (α̂A ¼ 0) is consistent with
the GW200115 data. On the other hand, on using the

FIG. 1. The posterior probability distributions of the phase parameters and the scalar radiation parameters, the chirp mass in the
detector frameM, the luminosity distance dL, the inclination angle ι, and the additional parameters due to scalar radiation Ãð1Þ

b and Að1Þ
b ,

are shown in blue for GW200115 with 50% and 90% credible intervals in the 2-dimensional plots and 90% credible interval in the 1-
dimensional plots. For comparison, the results under GR by LVK collaboration [6] are also shown in orange. The estimated mean values

is Ãð1Þ
b ¼ −0.001þ0.030

−0.028 with 90% credible level.
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correspondence (3.12) on Að1Þ
b Eq. (4.9), the product ξ0α̂A is

constrained to be

−1.88 < ξ0α̂A < 0.86: ð4:11Þ

Compared to α̂A, we only have a weak bound on the other
parameter ξ0. This is associated to the fact that the
amplitude of the breathing polarization is poorly

constrained with the GW200115 data. Figure 4 shows
the posterior distributions on two theoretical model param-
eters, the scalar charge α̂A and the nonminimal coupling

strength converted from the samples of Ãð1Þ
b and Að1Þ

b
through the relations (3.12). We put constraints on these
scalar radiation parameters simultaneously only from the
observation of the single compact binary coalescence event.
The estimated values are

FIG. 2. The posterior probability distributions of the mass parameters, the chirp mass in the detector frame M, the symmetric mass
ratio η, and the component masses in the source framemsource

A andmsource
B , are shown in blue for GW200115 with 50% and 90% credible

intervals in the 2-dimensional plots and 90% credible interval in the 1-dimensional plots. For comparison, the results under GR by LVK
collaboration [6] are also shown in orange.
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α̂A ¼ −0.001þ0.042
−0.040 ; ð4:12Þ

ξ0 ¼ 3.10þ265
−279 ; ð4:13Þ

with 90% credible intervals.

2. Comparison with different waveform components

In order to assess the contribution of the amplitude and
phase parts of each polarization mode to the posterior
samples, we analyze GW200115 with two different settings

FIG. 3. The posterior probability distributions of the amplitude parameters and the scalar polarization parameters: the chirp mass in the

detector frameM, the luminosity distance dL, the inclination angle ι, and the additional parameters due to scalar radiation Ãð1Þ
b and Að1Þ

b ,
for GW200115 with 50% and 90% credible intervals in the 2D plots and 90% credible interval in the 1D plots. For comparison, the
results under GR by LVK collaboration [6] are also shown in orange. We found little correlations with the amplitude parameters, the

luminosity distance dL and the inclination angle ι, and the scalar-mode amplitude parameter Ãð1Þ
b . The estimated mean value is

Að1Þ
b ¼ −0.41þ0.84

−0.54 with 90% credible level. The constraint on the scalar GW amplitude Að1Þ
b can be converted into the constraint on the

scalar-to-tensor amplitude ratio defined by Eq. (4.22): Rð1Þ
ST ≤ 0.57.
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of the waveform model: (i) tensor modes with scalar
corrections and (ii) tensor modes plus scalar dipole mode.
a. Tensor modes with scalar phase corrections First, we

perform the Bayesian analysis based on the waveform
model including only the tensor modes h̃þ;× with the
amplitude and phase corrections due to scalar radiation. In
this model, we do not consider the appearance of scalar
polarization modes, Eqs. (3.6) and (3.7). Hence, the
waveform model is given by

h̃IðfÞ ¼ h̃TðfÞ; ð4:14Þ

where the GW polarizations are

h̃TðfÞ ¼ −½Fþ
I ð1þ cos2 ιÞ − 2iF×

I cos ι�

×

ffiffiffiffiffiffi
5π

96

r
ðG�MÞ2

dL
ðuð2Þ� Þ−7=2e−iΨð2Þ

GRe−iδΨ
ð2Þ
; ð4:15Þ

with the phase corrections

δΨðlÞ ¼ −
5l
3584

ðÃð1Þ
b Þ2η2=5ðuðlÞ� Þ−7

−
l
128

ðÃð2Þ
b Þ2ðuðlÞ� Þ−5: ð4:16Þ

This reduced waveform model imitates the parametrized
tests for the inspiral GWs performed by LVK collaboration
[10]. The difference between this reduced analysis and the
parametrized tests by the LVK collaboration is essentially
the prior setting for the phase deviation parameter. In our

model, we adopt a uniform prior for Ãð1Þ
b , but they use a

uniform prior on φ−2, which is corresponding to ∼ðÃð1Þ
b Þ2.

Hence, we can evaluate the contribution of the existence of
scalar polarization itself to the parameter estimation by
comparing this analysis with the results of the scalar-tensor
model. Figure 5 shows the comparison of the posterior
samples for the phase parameters between the scalar-tensor
model (blue) and the model of tensor modes with scalar
corrections (orange).
By implementing scalar modes, the phase parameters

appear to be estimated differently. The estimated mean
value is jÃð1Þ

b j ≤ 0.034 with 90% credible level, which can
be converted into jα̂Aj ≤ 0.049 through Eq. (3.13). Thus,
we expect that the inclusion of the scalar polarization
modes would break the parameter degeneracy. Figure 6
shows the comparison of the posterior samples for the
amplitude parameters between the scalar-tensor model
(blue) and the model of tensor modes with scalar correc-
tions (orange). We note that the posterior distribution for
the inclination angle ι changes by including the scalar
modes and the gradual peak around ι ∼ 2.5 rad has dis-
appeared. We can also find the similar two peaks in the
GR analysis as shown in orange in Fig. 3. The inclination-
angle dependence of the GW radiation differs among
the polarization modes [116]. The overall inclination-
angle dependence of the tensor modes is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cos2 ιÞ2 þ 4 cos2 ι

p
, which has similar values at the

positions of the two peaks ι ∼ 0.5 rad and ι ∼ 2.5 rad.
However, since the dipole scalar mode is proportional to
sin ι, the sign of the amplitude flips between the two peaks.
Thus, the inclination dependence of the dipole scalar mode
in the waveform model would be helpful to break the partial
degeneracy in the inclination angle. It would result in the
better constraints on the other parameters.
b. Tensor modes plus scalar dipole mode Second, we

perform the Bayesian analysis based on the waveform
model including the tensor modes h̃þ;×, dipole scalar mode
h̃b1, and the amplitude and phase corrections due to the
dipole scalar radiation. Hence, the waveform model is
given by

h̃IðfÞ ¼ h̃TðfÞ þ h̃ð1Þb ðfÞ; ð4:17Þ

where the GW polarizations are

h̃TðfÞ ¼ −½Fþ
I ð1þ cos2 ιÞ − 2iF×

I cos ι�½1þ δAð2Þ�

×

ffiffiffiffiffiffi
5π

96

r
ðG�MÞ2

dL
ðuð2Þ� Þ−7=2e−iΨð2Þ

GRe−iδΨ
ð2Þ
; ð4:18Þ

FIG. 4. The posterior probability distributions of the additional
phase correction Ãð1Þ

b and the scalar GW amplitudes Að1Þ
b for

GW200115 with 50% and 90% credible intervals in the
2-dimensional plots and 90%credible interval in the 1-dimensional

plots. The constraints on Ãð1Þ
b ¼−0.001þ0.030

−0.028 andA
ð1Þ
b ¼−0.41þ0.84

−0.54
when considering quadrupole scalar radiation canbe converted into
the bounds on the Horndeski parameters: α̂A ¼ −0.001þ0.042

−0.040 and
ξ0 ¼ 3.10þ265

−279 with 90% credible intervals. The sparse samples of
α̂A ∼ 0 in the 2D plot is due to the fact that ξ0 is so large for the

samples around Ãð1Þ
b ∼ 0, where some samples are sparsely

distributed outside the depicted region of the figure.
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h̃ð1Þb ðfÞ ¼
ffiffiffiffiffiffi
5π

48

r
Að1Þ
b Fb

I ð2 sin ιÞη1=5
ðG�MÞ2

dL
ðuð1Þ� Þ−9=2

× e−iΨ
ð1Þ
GRe−iδΨ

ð1Þ
; ð4:19Þ

with the phase corrections

δAðlÞ ¼ −
5

48
ðÃð1Þ

b Þ2η2=5ðuðlÞ� Þ−2; ð4:20Þ

δΨðlÞ ¼ −
5l
3584

ðÃð1Þ
b Þ2η2=5ðuðlÞ� Þ−7: ð4:21Þ

In this model, we omit the quadrupole scalar radiation
because we expect that the dipole radiation becomes

FIG. 5. This is a similar figure to Fig. 1 but compared to the analysis using the model of tensor modes with scalar phase corrections.
The estimated mean values is jÃð1Þ

b j ≤ 0.034 with 90% credible level in comparison with jÃð1Þ
b j ≤ 0.029 for the scalar-tensor model.
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dominant at the early inspiral stage. Hence, we can evaluate
the contribution of the scalar quadrupole mode to the
parameter estimation by comparing the result of this
analysis with that using the scalar-tensor model.
Figure 7 shows the comparison of the posterior samples
for the phase parameters and Fig. 8 shows the comparison
of the posterior samples for the amplitude parameters
between the scalar-tensor model (blue) and the model of
tensor modes plus scalar dipole mode (orange). The
posterior distributions for both are almost identical. This
indicates that the results of the current analysis in scalar-
tensor are mostly determined by the corrections due to
scalar dipole radiation.

3. Scalar-to-tensor amplitude ratio

We define scalar-to-tensor amplitude ratios as the ratios
of scalar-mode amplitude to tensor-mode amplitude, that is,
from Eqs. (3.5)–(3.7),

Rð1Þ
ST ≡

���� Að1Þ
b η1=5 sin ιffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ cos2ιÞ2 þ 4cos2ι
p ðG�MπfÞ−1=3

����; ð4:22Þ

for the scalar dipole mode and

FIG. 6. This is a similar figure to Fig. 3 but compared to the analysis using the model of tensor modes with scalar phase corrections.
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Rð2Þ
ST≡

���� Að2Þ
b 2sin2ιffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ cos2ιÞ2 þ 4cos2ι
p ����; ð4:23Þ

for the scalar quadrupole mode. This ratio is an observa-
tional indicator to represent how deep the scalar mode is
explored by the GW observation compared to the tensor
modes. As shown in Sec. IV B, since the contribution of the
dipole scalar mode is dominant and the dipole mode
amplitude and the quadrupole mode are characterized by

the same parameter Að1Þ
b , we evaluate the dipole scalar-to-

tensor amplitude ratio here. On substituting the estimated

mean values and the 90% credible intervals for the

parameters M, ι, Að1Þ
b and the typical GW frequency

f ∼ 100 Hz, we find the constraints on the ratio as

Rð1Þ
ST ≲ 0.57; ð4:24Þ

for GW200115. This scalar-to-tensor amplitude ratio is
relatively large compared to the ratios for GW170814 and
GW170817 reported in [111]. As the values of j sin ιj and
j cos ιj are similar to those of the previous events, the reason is
because the authors assumed that the coupling γ inEq. (3.1) is
unity, and then the scalar-mode amplitude is determined by

FIG. 7. This is a similar figure to Fig. 1 but compared to the analysis using the model of tensor modes plus scalar dipole mode.
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the phase evolution of the tensor modes. On the other hand,
the constraint (4.24) is purely determined by the ability of the
GW detector network to probe into the scalar mode.
Therefore, this constraint on the scalar-to-tensor amplitude
ratio means that the current GW detector network is able to
probe into the scalar mode at a level that is at most slightly
better than the amplitude of the tensor modes.

V. THEORETICAL INTERPRETATION
OF GW200115 CONSTRAINTS

Let us interpret the observational bounds (4.12) and
(4.13) as the constraints on model parameters of theories
encompassed by the action (2.1). We will consider two

theories: (A) BD theories with the functions (2.2), and
(B) theories of spontaneous scalarization of NSs with the
functions (2.4).
For this purpose, we first revisit how α̂A is approximately

related to the nonminimal coupling and the NS EOS. On a
static and spherically symmetric background, the large-
distance solution far outside the NS is given by
Eq. (2.19), where qs is related to α̂A according to
Eq. (2.20). In the Jordan frame, the radial distance r and
the NS ADM mass mA can be expressed as r ¼ r̂=

ffiffiffiffiffiffiffiffiffiffi
FðϕÞp

and mA ¼ m̂A

ffiffiffiffiffiffiffiffiffiffi
FðϕÞp

, respectively, where FðϕÞ is the non-
minimal coupling. Then, the scalar-field solution at large
distances is given by

FIG. 8. This is a similar figure to Fig. 3 but compared to the analysis using the model of tensor modes plus scalar dipole mode.
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ϕðrÞ ¼ ϕ0 −
mAα̂A

4πMPlFðϕ0Þ
1

r
: ð5:1Þ

The scalar-field solution expanded around r ¼ 0 up to the
order of r2 is [70]

ϕðrÞ ¼ ϕc −
ξcρc

12FðϕcÞMPl
ð1 − 3wcÞr2; ð5:2Þ

where ϕc and ρc are the field value and the matter density at
r ¼ 0, respectively, andwc ¼ Pc=ρc is the EOS parameter at
r ¼ 0 with the central pressure Pc, and

ξc ≡MPlF;ϕ

F

����
ϕ¼ϕc

: ð5:3Þ

The solution (5.2) loses its validity around the NS surface
(r ¼ rs), but we may extrapolate this solution up to r ¼ rs.
Extrapolating also the large-distance solution (5.1) down to
r ¼ rs and matching its radial derivative with that of
Eq. (5.2), we obtain the relation

α̂A ≃ −
ξc
2
ð1 − 3wcÞ; ð5:4Þ

where we used the approximations FðϕcÞ ≃ Fðϕ0Þ and
mI ≃ 4πρcr3s=3. The formula (5.4) is a crude estimation, as
it does not incorporate the property of solutions in the
intermediate regime. Moreover, there may be some non-
perturbative effects on the solutions inside the NS. However,
the estimation (5.4) is useful to understand what determines
the scalar charge physically. Not only the nonminimal
coupling strength ξc but also the NS EOS wc affects the
amplitude of α̂I. As we approach r ¼ rs from r ¼ 0, the
matter EOS parameterw ¼ P=ρ (with pressureP and density
ρ) decreases toward 0. This means that, for wc < 1=3, the
formula (5.4) can underestimate the amplitude of α̂I .
Moreover, the μðϕÞX2 term in G2 does not affect the
expansion (5.2) up to the order of r2 by reflecting the fact
that the leading-order field derivative around r ¼ 0 is the term
linear in X (i.e., ϕ0ðrÞ ∝ r). However, as r approaches rs, we
cannot neglect the higher-order term μðϕÞX2 relative to X.
This effect modifies the solution to the scalar field especially
around r ¼ rs. When μðϕÞ is negative, there is a kinetic
screening ofϕ0ðrÞ, which leads to the suppression of jα̂Aj [70].

A. BD theories

In BD theories, the nonminimal coupling is given by
FðϕÞ ¼ e−2Qϕ=MPl . In this case, the quantities ξ0 and ξc
reduce to

ξ0 ¼ ξc ¼ −2Q; ð5:5Þ
which do not depend on ϕ. The bound (4.13) translates to

−134 ≤ Q ≤ 138; ð5:6Þ

which is weak due to the poorly constrained value of the
nonminimal coupling strength ξ0.
On using the approximate relation (5.4), we have

α̂A ≃Qð1 − 3wcÞ: ð5:7Þ

Applying the bound (4.12) to this approximate relation, the
coupling constant Q is constrained to be

jQj≲ 0.04
1 − 3wc

: ð5:8Þ

If we take the EOS parameter wc ¼ 0.2 as a typical value,
the bound (5.8) crudely translates to jQj≲ 0.1.
Since we do not know the precise NS EOS of the

GW200115 event, there is an uncertainty of the upper
limit on jQj. By specifying a particular EOS, α̂A can be
numerically computed without resorting to the approximate
formula (5.7). We use an analytic representation of the SLy
EOS given in Ref. [130]. We numerically calculate α̂A by
changing the values of Q and the central matter density ρc.
In Fig. 9, we plot α̂A versus the NS massmA (normalized by
M⊙) for four positive values of Q. Since mA tends to
increase for larger wc in the range wc < 1=3, the approxi-
mate relation (5.7) implies that α̂A should decrease as a
function of mA. Indeed, this behavior of α̂A versus mA can
be confirmed in Fig. 9. We note that, for wc exceeding 1=3,
the approximate formula (5.7) loses its validity. Even in

FIG. 9. The scalar charge α̂A versus theNSmassmA (normalized
by the solar mass M⊙) for the SLy EOS in BD theories with four
different couplings Q. We also show the upper limit α̂A ¼ 0.041
constrained from the GW200115 data as a bold black line. The NS
mass range at 90% credible level shown with the dashed vertical
lines is 1.15M⊙ < mA < 1.67M⊙. Since the theoretical curves
need to be in the ranges α̂A ≤ 0.041 and 1.15M⊙ ≤ mA ≤ 1.67M⊙,
the coupling Q is bounded as Q ≤ 0.055.
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such cases, the numerical values of α̂A are typically positive
for Q > 0.
In Fig. 9, we show the GW200115 bound α̂A ≤ 0.041

besides the region of mA constrained from the data, i.e.,
1.15M⊙ ≤ mA ≤ 1.67M⊙. Requiring that the theoretical
curves are within the region constrained from the GW
200115 data, we obtain the bound

jQj ≤ 0.055; or ωBD ≥ 81 for SLy EOS; ð5:9Þ

This is tighter than the crude estimation jQj≲ 0.1
explained above. If we choose the NS EOSs other than
the SLy, the upper limits on jQj are generally different from
the bound (5.9). Nevertheless, we expect that jQj does not
exceed the order 0.1 as estimated from (5.8). In the analysis
of tensor modes alone without the breathing scalar polari-
zation, which is similar to the analysis performed in
Refs. [10,92], we find that the constraint on the scalar
charge becomes looser, i.e., jα̂Aj ≤ 0.049. In this case, the
bound on the BD parameter is consistent with the limit
ωBD ≳ 40 derived in Ref. [92]. The breaking of the partial
parameter degeneracy by adding the scalar mode would
contribute to the tighter bound. We recall that, even for
α̂A < 0, the observational upper limit of jα̂Aj in Eq. (4.12) is
similar to that for α̂A > 0. Hence, forQ < 0, we also obtain
the bound on jQj similar to (5.9). Although they are weaker
than the limit jQj ≤ 2.5 × 10−3 [13,26,27,40] constrained
from the solar-system tests by one order of magnitude, it is
expected that future high-precision GW observations can
put tighter bounds on jQj.

B. Theories of spontaneous scalarization of NSs

In theories of NS spontaneous scalarization with the
nonminimal coupling FðϕÞ ¼ e−βϕ

2=ð2M2
PlÞ, the nonminimal

coupling strength far outside the NS is given by

ξ0 ¼ −
βϕ0

MPl
: ð5:10Þ

Then, the bound (4.13) translates to

−268MPl ≤ βϕ0 ≤ 276MPl: ð5:11Þ

In current theories, the parametrized post-Newtonian (PPN)
parameter γPPN is given by γPPN − 1 ¼ −2ξ20=ð2þ ξ20Þ
[49,100]. Then, the solar-system constraint γPPN − 1 ¼
ð2.1� 2.3Þ × 10−5 [7] translates to jβϕ0j≤1.4×10−3MPl.
The current limit (5.11) arising from the amplitude of scalar
GWs is much weaker than the solar-system bound.

1. DEF model

Let us first consider the original DEF model with
μðϕÞ ¼ 0 in the coupling functions (2.4). In this case,

we can crudely estimate the scalar charge by using
Eq. (5.4) as

α̂A ≃
βϕc

2MPl
ð1 − 3wcÞ; ð5:12Þ

which depends on the field value ϕc and the NS EOS wc
around r ¼ 0. Spontaneous scalarization of NSs occurs for
β ≤ −4.35 due to the tachyonic instability of the ϕ ¼ 0 GR
branch.4 This critical value of β is insensitive to the choices
of NS EOSs [50–53]. When spontaneous scalarization
occurs, the field value ϕc can be as large as Oð0.1MPlÞ.
Then, the estimation (5.12) shows that jα̂Aj should reach the
order 0.1. Since the amplitude of α̂A depends on the
coupling constant β, it is possible to put constraints on β
by using the observational bound (4.12). The scalar charge
α̂A also carries the information of NS EOSs, but, for given
β, the maximum values of jα̂Aj weakly depend on the
choices of NS EOSs [50–53,92] (see also Ref. [54] for
dynamical scalarization of NSs during the final stage of the
inspiral).
For the SLy EOS, we numerically compute α̂A by

choosing several different values of β. For given β and
ρc, we will iteratively find a boundary value of ϕc leading
to a scalarized solution with the asymptotic field value ϕ0

close to 0 (to be consistent with the solar-system bound
mentioned above). Different choices of ρc lead to different
NS masses and scalar charges. Spontaneous scalarization of
NSs occurs for intermediate central densities ρc, in which
regime α̂A is nonvanishing.
In Fig. 10, we show −α̂A versus mA=M⊙ for four

different values of β with the choice of the SLy EOS.
Since β < 0 for the occurrence of scalarization, α̂A is
negative if ϕc > 0. For β ¼ −5.26, spontaneous scalariza-
tion occurs for the mass range 1.16M⊙ ≤ mA ≤ 2.01M⊙. In
the rest of the mass region, the scalar charge is vanishing
(α̂A ¼ 0). For β < −5.26, the theoretical curve is outside
the observationally allowed region (0 ≤ −α̂A ≤ 0.041) for
any NS mass constrained from the GW200115 event
(1.15M⊙ ≤ mA ≤ 1.67M⊙). Then, we obtain the bound

β ≥ −5.26; ð5:13Þ

for the SLy EOS. As β increases, the mass region in which
scalarization takes places gets narrower, with smaller
maximum values of jα̂Aj. For −5.26 ≤ β ≤ −4.37, there
are the mass ranges excluded by the observational limit
jα̂Aj ≤ 0.041, together with the existence of allowed mass
parameters within the mass range of the GW200115 event.
As β increases toward −4.37, the observationally excluded

4For the matter EOS wc > 1=3, it is also possible to real-
ize spontaneous scalarization even with positive couplings β
[131–133]. In the original DEF model, however, scalarized NS
solutions can be unstable as compared to the GR branch for
β ≫ 1. We will not consider such a positive value of β.
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mass region tends to be narrower. In particular, the model
with β ≥ −4.37 is consistent with the bound on α̂A for all
the constrained mass ranges. This is much stronger than the
constraint (5.13), but we have to caution that there are still
allowed mass regions even for −5.26 ≤ β ≤ −4.37. In this
sense, we will take the conservative limit (5.13) as the
bound on β constrained from the GW200115 data.
Clearly, the observational uncertainty of the NS mass

gives the limitation for putting tight bounds on β. Let us
take the central value of mA constrained from the data, i.e.,
mc ¼ 1.37M⊙. If we demand the condition jα̂Aj ≤ 0.041 in
this case, the coupling needs to be in the range

β ≥ −4.73; for mA ¼ 1.37M⊙: ð5:14Þ

This shows that, if the NS mass is constrained to be in a
narrower range, it is possible to place tighter bounds on β
than (5.13). Since this can happen in future observations,
the accumulation of many NS-BH merger events will
clarify whether the original spontaneous scalarization
scenario is excluded or not. Combined with the condition
for the occurrence of spontaneous scalarization, the cou-
pling β is now constrained to be −5.26 ≤ β ≤ −4.35.
Hence the allowed range of β is already narrow even with
a single GW event. We note that, in the analysis of
Ref. [79], the authors extended the range of β to β >
−4.35 in which spontaneous scalarization does not occur.

In this regime, the solution stays in the GR branch ϕðrÞ ¼ 0
and hence α̂A ¼ 0. In this sense, the constraint on β in the
scalarization scenario is meaningful only for β ≤ −4.35.

2. DEF model with kinetic screening

Let us next proceed to the case in which there is a term
μ2X2 in the function G2 of Eq. (2.4), i.e., μðϕÞ ¼ μ2 ¼
constant. For μ2 < 0, it was shown in Ref. [70] that the
higher-order derivative term can lead to a kinetic screening of
the scalar field inside the NS. As we see in Fig. 11, the scalar
charge jα̂Aj tends to be smaller for decreasing values of μ2.
The NS mass range in which spontaneous scalarization
occurs is insensitive to the coupling constant μ2. In other
words, the maximum values of jα̂Aj get smaller for decreas-
ing μ2, but the mass range with jα̂Aj > 0.01 is hardly
modified. This properly is different from the spontaneous
scalarization scenario with μ2 ¼ 0, in which case the mass
regionwith jα̂Aj > 0.01 shrinks for increasingβ (seeFig. 10).
As an example, let us consider the case where β ¼ −5.

Then, the condition (5.13) is satisfied in the original
scalarization scenario, but there are the NS mass ranges
in which the inequality jα̂Aj ≤ 0.041 is violated. Indeed, for
the medium mass mA ¼ 1.37M⊙, this bound on α̂A is not
satisfied, see Eq. (5.14). In Fig. 11, we plot −α̂A versus mA

for μ̄2 ¼ 0;−1;−15 by fixing β ¼ −5, where μ̄2 ≡
μ2M2

Pl=r
2
0 and r0 ¼ 89.664 km. The theoretical curves

are within the observationally constrained region of α̂A
and mA if

FIG. 10. We plot −α̂A versus the NS mass mA (normalized by
the solar mass M⊙) for the SLy EOS in original DEF theories of
spontaneous scalarization. We choose four different coupling
constants: β ¼ −5.26;−5;−4.73;−4.37. The upper limit −α̂A ¼
0.041 constrained from the GW200115 data is plotted as a bold
black line. The NS mass range at 90% credible level shown with
the dashed vertical lines is 1.15M⊙ ≤ mA ≤ 1.67M⊙. The ob-
servationally allowed region corresponds to a rectangle charac-
terized by 0 ≤ −α̂A ≤ 0.041 and 1.15M⊙ ≤ mA ≤ 1.67M⊙.

FIG. 11. −α̂A versus mA=M⊙ for the SLy EOS in theories of
spontaneous scalarization with β ¼ −5 in the presence of the
higher-order derivative term μ2X2. Each line corresponds to
μ̄2 ¼ 0;−1;−15 from top to bottom, where μ̄2 ¼ μ2M2

Pl=r
2
0 with

r0 ¼ 89.664 km. We also show the observational limits of −α̂A
and mA. For μ̄2 ≤ −15, the theoretical lines are within the region
constrained from the data.
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μ̄2 ≤ −15; for β ¼ −5: ð5:15Þ

Thus, even for β ¼ −5, the kinetic screening induced by the
higher-order derivative term μ2X2 leads to the compatibility
with the GW200115 data for all the constrained mass
ranges. Thus, for μ2 < 0, the allowed parameter region
of β is not restricted to be small unlike the DEF model
with μ2 ¼ 0.

VI. CONCLUSIONS

Table I shows the summary of constraints on the
parameters achieved by our analysis of the NS-BH merger
event GW200115 in the scalar-tensor framework.
From the NS-BH merger event GW200115, we have

placed observational constraints on the NS scalar charge
and the nonminimal coupling strength. For this purpose, we
chose a subclass of Horndeski theories given by the action
(2.1), in which case the speed of gravity is luminal. In such
theories the BHs are not endowed with scalar hairs, but it is
possible for the NSs to have hairy solutions through a
scalar-matter interaction induced by the nonminimal cou-
plingG4ðϕÞR. The representative examples are BD theories
and theories of spontaneous scalarization given by the
Horndeski functions (2.2) and (2.4), respectively.
In theories given by the action (2.1), the inspiral

gravitational waveforms emitted from compact binaries
were computed in Ref. [70]. In Sec. II, we reviewed the
derivation of time-domain GW solutions by assuming that
the scalar field is massless. In this case, there are two tensor
polarizations hþ and h× besides a breathing mode hb
arising from the scalar-field perturbation. Focusing on a
NS-BH binary system in which the BH has a vanishing
scalar charge, we derived the inspiral waveforms of
frequency-domain GWs propagating on the cosmological
background. They are given by Eqs. (2.61)–(2.63) with the
amplitudes (2.64)–(2.66) and phases (2.67) and (2.68).

In particular, the breathing mode in the frequency domain is
newly obtained in this paper.
In Sec. III, we provided a parametrized scalar-tensor

inspiral waveform model starting with a modified energy
flux. Our parametrized waveforms include not only the
corrections for the tensor modes stemming from scalar
radiation but also the scalar polarization modes itself.
Originally, the model includes four additional parameters.
The two parameters Að1Þ

b and Að2Þ
b represent the amplitudes

of dipole and quadrupole scalar polarizations, and the two

parameters Ãð1Þ
b and Ãð2Þ

b characterize the waveform cor-
rections due to the dipole and quadrupole scalar radiation.
Since the parametrized waveform model encompasses the
theoretical waveforms derived in the underlying scalar-
tensor theory, we also provided the correspondence
between the parametrized waveforms and the theoretical
waveforms. According to the correspondence, the two

parameters Að1Þ
b and Ãð1Þ

b can be expressed in terms of
the NS scalar charge α̂A and the nonminimal coupling

strength ξ0, as Að1Þ
b ¼ ξ0α̂A=2 and Ãð1Þ

b ¼ α̂A=
ffiffiffi
2

p
. The

remaining two parameters Að2Þ
b and Ãð2Þ

b are given by

multiplying Að1Þ
b and Ãð1Þ

b by a factor depending on the
mass ratio. Thus, we have two additional free parameters

Að1Þ
b and Ãð1Þ

b , which can be constrained from the GW
observations, in the subclass of Horndeski theories.
In Sec. IV, we placed observational bounds on the two

model parameters α̂A and ξ0 through the constraints on A
ð1Þ
b

and Ãð1Þ
b achieved by the analysis of the GW200115 signal.

The crucial difference from past works is that we have
implemented the breathing scalar mode besides the two
tensor polarizations. The inclination angle dependence of
the scalar mode may break the partial degeneracy in the
estimation of the inclination angle and improve the pre-
cision of the determination of the other parameters. The

TABLE I. Summary of constraints on parameters. The credible interval is 90%.

Parameter Constraint Notes

Analytical parameters
Phase correction parameter: Eq. (3.10) Ãð1Þ

b ¼ −0.001þ0.030
−0.028

Scalar-mode amplitude parameter: Eq. (3.6) Að1Þ
b ¼ −0.41þ0.84

−0.54
Scalar-to-tensor amplitude ratio: Eq. (4.22) Rð1Þ

ST ≲ 0.57

Phenomenological parameters
Scalar charge in Einstein frame: Eq. (2.20) α̂A ¼ −0.001þ0.042

−0.040 See Eq. (3.13) for the relation Ãð1Þ
b ¼ 1ffiffi

2
p α̂A

Nonminimal coupling parameter: Eq. (2.12) ξ0 ¼ 3.10þ265
−279 See Eq. (3.12) for the relation Að1Þ

b ¼ 1
2
ξ0α̂A.

Theoretical parameters
Q (in BD theories) −134 ≤ Q ≤ 138 Derived from constraint on ξ0 alone.
Q (in BD theories) jQj ≤ 0.055 Derived from constraint on α̂A for SLy EoS.
βϕ0 (in spontaneous scalarization) −268MPl ≤ βϕ0 ≤ 276MPl cf. jβϕ0j ≤ 1.4 × 10−3MPl (solar system experiment)
β (in DEF model of spontaneous scalarization) β ≥ −5.26 For SLy EoS.
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quantity α̂A appears in the phases of tensor waves at −1PN
order. This property allows us to put the tight bound
α̂A ¼ −0.001þ0.042

−0.040 from the GW200115 data, so that the
amplitude of the scalar charge is bounded as jα̂Aj≲ 0.04.
The amplitude of scalar GWs relative to tensor waves
can put an upper limit on the product ξ0α̂A. Reflecting
the weak observational sensitivity of scalar waves in
current measurements, we obtained the loose bound
−1.88 < ξ0α̂A < 0.86. Combining this with the limit on
α̂A, the nonminimal coupling strength is also weakly
constrained to be ξ0 ¼ 3.10þ265

−279 . We note that the NS mass
is constrained to be in the range 1.15M⊙ < mA < 1.67M⊙
from the GW200115 data.
In Sec. V, we translated the theoretical bounds on α̂A and

ξ0 into the constraints on model parameters in theories with
the Horndeski functions (2.2) and (2.4). In BD theories, the
parameter ξ0 is simply equivalent to the coupling constant
−2Q, so that the observational constraint on ξ0 alone gives
a weak limit −134 ≤ Q ≤ 138. On the other hand, the other
parameter α̂A depends on both Q and the NS EOS.
Extrapolating the solutions around r ¼ 0 and large dis-
tances at the NS surface, we obtained the crude formula
α̂A ≃Qð1 − 3wcÞ. On using the upper limit jα̂Aj≲ 0.04 and
taking a typical value wc ¼ 0.2, jα̂Aj is smaller than the
order 0.1. We numerically computed the values of jα̂Aj for
the SLy EOS without using the above approximation and
derived the observational bound jQj ≤ 0.055, or equiva-
lently, ωBD ≥ 81.
In the DEF model of spontaneous scalarization, jα̂Aj can

be as large as the order 0.1 depending on the coupling
constant β. Provided that β ≥ −5.26, there are the observa-
tionally constrained NS mass ranges in which the condition
jα̂Aj ≤ 0.041 is satisfied. Taking the central value of mA
constrained from the data (mA ¼ 1.37M⊙), the bound on α̂A
translates to β ≥ −4.73. Due to the uncertainty of the NS
mass, we take the most conservative bound β ≥ −5.26 as a
firm constraint extracted from the GW200115 data. Since
the spontaneous scalarization occurs for β ≤ −4.35, our
newly derived bound already restricts the viable parameter
space of β to a narrow region. If we take into account the
higher-order kinetic term μ2X2 with μ2 < 0, the kinetic
screening mechanism works to reduce jα̂Aj without chang-
ing the scalarized NS mass region much. Taking the non-
minimal coupling constant β ¼ −5, the scalarization model
with μ2M2

Pl=r
2
0 ≤ −15 is compatible with the GW200115

bound for all the constrained NS mass ranges.
We have thus shown that the NS-BH merger event

GW200115 allows us to probe the property of hairy NS
solutions. In particular, the observational constraint on the
scalar charge jα̂Aj≲ 0.04 gives new bounds on the non-
minimal coupling constants of BD theories and sponta-
neous scalarization scenarios with/without the kinetic

screening. Furthermore, our analysis of the parametrized
waveforms with scalar modes indicates that the presence of
polarization modes beyond GR must be taken into account
when attempting to interpret the results of parametrized
tests with a specific theory of gravity. Otherwise, obser-
vational constraints on alternative theories of gravity may
be biased. If the future GW observations were to reach the
upper limit of jα̂Aj below the order 0.01 with tighter
constraints on mA, it will be potentially possible to rule
out the DEF model. Moreover, the increased sensitivity for
measuring the amplitude of scalar GWs relative to tensor
GWs will allow us to put tighter constraints on the
nonminimal coupling strength ξ0 [91].
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Jiménez Forteza, and A. Bohé, Phys. Rev. D 93, 044007
(2016).

[130] P. Haensel and A. Y. Potekhin, Astron. Astrophys. 428,
191 (2004).

[131] C. Palenzuela and S. L. Liebling, Phys. Rev. D 93, 044009
(2016).

[132] R. F. P. Mendes and N. Ortiz, Phys. Rev. D 93, 124035
(2016).

[133] D. D. Doneva, F. M. Ramazanoğlu, H. O. Silva, T. P.
Sotiriou, and S. S. Yazadjiev, Rev. Mod. Phys. 96, 015004
(2024).

TAKEDA, TSUJIKAWA, and NISHIZAWA PHYS. REV. D 109, 104072 (2024)

104072-28

https://doi.org/10.7935/GT1W-FZ16
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1051/0004-6361:20041722
https://doi.org/10.1051/0004-6361:20041722
https://doi.org/10.1103/PhysRevD.93.044009
https://doi.org/10.1103/PhysRevD.93.044009
https://doi.org/10.1103/PhysRevD.93.124035
https://doi.org/10.1103/PhysRevD.93.124035
https://doi.org/10.1103/RevModPhys.96.015004
https://doi.org/10.1103/RevModPhys.96.015004

