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We consider antisymmetric metric-affine theories of gravity with a Lagrangian containing the most
general terms up to dimension four and search for theories that are ghost- and tachyon-free when expanded
around flat space. We find new examples that propagate only the graviton and one other massive degree of
freedom of spin zero, one, or two. These models require terms of the form ð∇TÞ2 in the Lagrangian, that
have been largely ignored in the literature.
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I. INTRODUCTION

Metric-affine theories of gravity (MAGs) are a vast class
of extensions of general relativity (GR). A more restricted
subclass are the theories with torsion but with metric-
compatible connection. We call these antisymmetric
MAGs, in contrast to symmetric MAGs that have no torsion
but metric-incompatible connection, or general MAGs that
have both torsion and nonmetricity. Within the subclass of
antisymmetric MAGs, by far the most studied ones are the
so-called Poincaré gauge theories (PGTs). These are usually
formulated in the tetrad formalism, since the tetrad is viewed
as a gauge field for translations, and torsion as its curvature.
The tetrad is then joined to the Lorentz gauge field to form a
gauge field for the Poincaré group. The natural Lagrangian
for such theories is a Yang-Mills-type Lagrangian for the
Poincaré group, which consists of terms quadratic in the
Lorentz curvature and in torsion. To this, one may add a
Palatini term (linear in the Lorentz curvature), so the
structure of the Lagrangian is, schematically

LPGT ¼ m2
PF þ aT2 þ cF2: ð1:1Þ

Irrespective of their geometrical interpretation, we shall call
PGT any antisymmetric MAG that has an action of the
form (1.1).
Since the Poincaré group (or for that matter already

the Lorentz group) is noncompact, one cannot expect the
kinetic term to be positive for all the components of the
field. In fact, such theories will generally have ghosts or
tachyons when expanded around Minkowski spacetime.
There are, however, particular subclasses of theories that

are free of these pathologies. One of the earliest examples
was given by Neville [1]. In the late 1970s, Sezgin and
Van Nieuwenhuizen classified all PGTs that are free of
ghosts and tachyons, and are free of accidental gauge
symmetries [2,3].1 Much later, many other cases that also
have accidental symmetries have been classified in [4] and
this work was extended to symmetric MAGs [5–8].
If we look at these theories as (classical limits of)

quantum field theories, the restriction to Lagrangians of
the form (1.1) is quite unnatural. In fact, in addition to the
terms of the form F2, there are terms of the form FDT,
ðDTÞ2, FT2, T2DT, and T4 that have the same dimension
four. We observe that, while the last three types of terms
only give cubic and quartic vertices when expanded around
Minkowski space, the first two affect the two-point
function and therefore are relevant to the issue of a good
propagation. One would expect the Lagrangians (1.1) not to
be closed under renormalization, and this has indeed been
shown recently [9]. Also from the point of view of effective
field theories, one expects all terms of dimension two and
four to be present in the low energy dynamics of the theory.
The issue of having a healthy propagation should therefore
be reexamined in the more general class of antisymmetric
MAGs with Lagrangians containing general dimension-two
and four terms

LC ¼ m2
PF þ aT2 þ cFFF2 þ cFTFDT þ cTTðDTÞ2

þ cFTTFTT þ cTTTTTDT þ cTTTTTTTT: ð1:2Þ

Some such cases have been discussed previously in [10]. In
the present paper we continue the search, in a somewhat
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1An accidental gauge symmetry is a gauge symmetry of the
linearized theory that is not a symmetry of the full theory. Such
symmetries are generally undesirable.
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different direction (the difference will be explained in more
detail in the beginning of Sec. III). We will not give an
exhaustive classification of all ghost- and tachyon-free
antisymmetric MAGs, but rather exhibit some simple exam-
ples, where simple means that they propagate only the usual
massless graviton and one other massive degree of freedom
with spin zero, one, or two. In this we follow the constructive
strategy outlined in [8]: instead of trying to solve the ghost-
and tachyon-freedom conditions in general, we postulate
from the beginning what degrees of freedom we want to
propagate beyond thegraviton, and constrain accordingly the
coefficients in the Lagrangian. This construction is made
possible by the use of the spin projector formalism, that we
quickly review in Sec. II C, and is further simplified by
recasting the theory in what we call its Einstein form [as
opposed to the Cartan form (1.2)]. The Einstein form of an
antisymmetricMAG is the reformulation where one changes
variables frommetric (or tetrad) and connection, tometric (or
tetrad) and contortion:

A ¼ Γþ K: ð1:3Þ
Here A is the independent dynamical connection, Γ is the
Levi-Civita connection constructed from the metric (or
tetrad), and K is the contortion tensor which is related to
the torsion by

Tαβγ ¼ Kαβγ − Kγβα; ð1:4Þ

or conversely

Kαβγ ¼
1

2
ðTαβγ þ Tβαγ − TαγβÞ: ð1:5Þ

If we call

Fρσ
μ
ν ¼ ∂ρAσ

μ
ν − ∂σAρ

μ
ν þ Aρ

μ
λAσ

λ
ν − Aσ

μ
λAρ

λ
ν; ð1:6Þ

the curvature of the independent connection A, and

Rρσ
μ
ν ¼ ∂ρΓσ

μ
ν − ∂σΓρ

μ
ν þ Γρ

μ
λΓσ

λ
ν − Γσ

μ
λΓρ

λ
ν; ð1:7Þ

the curvature of the Levi-Civita connection (the Riemann
tensor), then we have the relation

Fμν
α
β ¼ Rμν

α
β þ∇μKν

α
β −∇νKμ

α
β þ Kμ

α
vKν

γ
β

− Kν
α
γKμ

γ
β; ð1:8Þ

where∇ is the Levi-Civita covariant derivative. Using these
relations, the Lagrangian (1.2) can be rewritten entirely in
terms of the Riemann curvature, torsion and their covariant
derivatives as

LE ¼ m2
PRþ aT2 þ bRRR2 þ bRTR∇T þ bTTð∇TÞ2

þ bRTTRTT þ bTTTTT∇T þ bTTTTTTTT: ð1:9Þ

This is what we call the Einstein form of the theory: it looks
like a metric theory of gravity coupled to a peculiar three-
index matter field. As we shall see, the analysis of the
propagating degrees of freedom is much simpler when the
theory is presented in this form, rather than the Cartan
form (1.2).

II. LAGRANGIANS

The first choice we have to make is what variables to use.
This can be further split into two subchoices: the choice
between metric, tetrad, or even more general frames, and
the choice between A or T as independent variables. The
first choice is a choice of gauge. Gravity is formulated in
the tangent bundle TM, whose transitions functions have
values in the group GLð4Þ, and can therefore be seen as a
gauge theory for the linear group. We are free to choose the
gauge so that GLð4Þ is completely broken—this corre-
sponds to using natural (coordinate) frames in TM and the
metric as a dynamical variable, the gauge in which GLð4Þ
is broken down to the Lorentz subgroup—this corresponds
to using orthonormal frames in TM and the tetrad as a
dynamical variable, or keeping the wholeGLð4Þ invariance
manifest—this corresponds to using arbitrary frames in TM
and both metric and frame as dynamical variables. Since in
PGTs one has a dynamical Lorentz connection, these
theories are often presented in the second of these gauges,
where Lorentz invariance is manifest. However, there is no
physical difference between the theory presented in differ-
ent gauges, so for the sake of reducing as much as possible
the number of variables, we shall work with natural frames
and the metric is treated as a dynamical variable. As for the
second choice, throughout this paper we will use the
Einstein form.
The general structure of the Lagrangians has been given

in Eqs. (1.2) and (1.9). We now have to list in detail all the
invariants they contain. Since we are only interested in the
propagators, it is enough to consider terms at most
quadratic in F and T (in the Cartan form) or R and T
(in the Einstein form). These are contained in the first lines
of (1.2) and (1.9). The terms in the second lines, when
expanded around flat space, only give cubic and quartic
interactions. We therefore only need bases of independent
invariants quadratic in the fields. Such bases have been
worked out in [8], and we report here the results for
convenience.

A. Dimension-two terms

In antisymmetric MAGs there are four dimension-two
terms. These give the propagator for the graviton and mass
terms for the connection A. In the Cartan form, the
dimension-two part of the Lagrangian is

Lð2Þ
C ¼ −

1

2

�
−m2

PF þ
X3
i¼1

aTTi MTT
i

�
; ð2:1Þ
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where F ¼ Fμν
μν is the unique scalar that can be con-

structed from the curvature and mP is the reduced Planck
mass. The unique scalar F will be referred to as the Palatini
term. The other scalars are2

MTT
1 ¼ TμρνTμρν; MTT

2 ¼ TμρνTμνρ;

MTT
3 ¼ trð12ÞTμtrð12ÞTμ; ð2:2Þ

where tr is the trace over the given indices, e.g.,
trð12ÞTb ¼ Ta

ab. Going from the Cartan to the Einstein
form, as discussed in the previous subsection, yields

Lð2Þ
E ¼ −

1

2

�
−m2

PRþ
X3
i¼1

mTT
i MTT

i

�
; ð2:3Þ

where T now has to be treated as an independent variable
and the coefficients mTT

i are related to the aTTi as in
(A1)–(A3).

B. Dimension-four terms

The dimension-four terms give higher-derivative propa-
gators for the graviton and normal propagators for the
connection A or the torsion. Listing such terms is more
complicated, because there are several of them and they are
related among themselves by integrations by parts and
various identities. It turns out that there are 14 independent
dimension-four invariants quadratic in F, T and their
derivatives (in the Cartan form) or R, T and their derivatives
(in the Einstein form). There is arbitrariness in the choice of
the basis for such invariants and the arbitrariness is greater
in the Cartan form, because F has fewer symmetries and
one can construct more invariants. We will only give two
such bases, that are selected for the following reasons. In
the Cartan form, for ease of comparison with the PGT
Lagrangians, we keep all six FF terms, four FDT terms
and four ðDTÞ2 terms. In the Einstein form we keep the
three RR terms (familiar from quadratic metric gravity), all
nine ð∇TÞ2 terms and two R∇T terms.
In the Cartan form of the theory, the quadratic

Lagrangian is

Lð4Þ
C ¼−

1

2

�X
i

cFFi LFF
i þ

X
i

cFTi LFT
i þ

X
i

cTTi LTT
i

�
; ð2:4Þ

where

LFF
1 ¼FμνρσFμνρσ; LFF

3 ¼FμνρσFρσμν; LFF
4 ¼FμνρσFμρνσ;

LFF
7 ¼Fð13ÞμνFð13Þ

μν ; LFF
8 ¼Fð13ÞμνFð13Þ

νμ ; LFF
16 ¼F2; ð2:5Þ

LFT
1 ¼FμνρσDμTνρσ; LFT

8 ¼Fð13ÞμνDμtrð12ÞTν;

LFT
9 ¼Fð13ÞμνDνtrð12ÞTμ; LFT

13 ¼Fð13ÞμνDivð1ÞTμν; ð2:6Þ

LTT
1 ¼DαTβγδDαTβγδ; LTT

2 ¼DαTβγδDαTβδγ;

LTT
3 ¼Dαtrð12ÞTβDαtrð12ÞTβ; LTT

5 ¼Divð1ÞTαβDivð1ÞTβα:

ð2:7Þ

Here D is the covariant derivative formed with the
independent connection, e.g.

DμVν ¼ ∂μVν þ Aμ
ν
λV

λ; ð2:8Þ

and Div denotes the divergence formed with D, e.g.,
Divð3ÞTαβ ¼ DγTαβγ etc. The nonconsecutive numbering
comes from compatibility with the general bases defined
in [8]. In the Einstein form of the theory, the quadratic
Lagrangian is

Lð4Þ
E ¼ −

1

2

�X
i

bRRi HRR
i þ

X
i

bRTi HRT
i þ

X
i

bTTi HTT
i

�
;

ð2:9Þ

where

HRR
1 ¼RμνρσRμνρσ; HRR

2 ¼RμνRμν; HRR
3 ¼R2; ð2:10Þ

HRT
3 ¼ Rβγdivð1ÞTβγ; HRT

5 ¼ Rtrdivð1ÞT; ð2:11Þ

HTT
1 ¼∇αTβγδ∇αTβγδ; HTT

2 ¼∇αTβγδ∇αTβδγ;

HTT
3 ¼∇αtrð12ÞTβ∇αtrð12ÞTβ;

HTT
4 ¼divð1ÞTαβdivð1ÞTαβ; HTT

5 ¼divð1ÞTαβdivð1ÞTβα;

HTT
6 ¼divð2ÞTαβdivð2ÞTαβ; HTT

7 ¼divð1ÞTαβdivð2ÞTαβ;

HTT
8 ¼divð2ÞTαβ∇αtrð12ÞTβ; HTT

9 ¼ðtrdivð1ÞTÞ2: ð2:12Þ

Here div is the divergence formed with ∇ as

∇μVν ¼ ∂μVν þ Γμ
ν
λV

λ: ð2:13Þ

The transformation relating the coefficients bi to the
coefficients ci is given in Appendix A.

C. Linearization

We linearize the Einstein form of the theory around
Minkowski space3

gμν ¼ ημν; Tρ
μ
ν ¼ 0: ð2:14Þ

2We write trabTμ for the trace of torsion on the ath and bth
index. We write divaTμν for the divergence of torsion on the ath
index. 3We use the metric signature ημν ¼ diagð−1;þ1;þ1;þ1Þ.
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The metric is expanded as gμν ¼ ημν þ hμν. Since the VEV
of T is zero, we shall not use a different symbol for its
fluctuation and identify it with T. By Poincaré invariance,
the linearized Lagrangian takes the form

Sð2Þ ¼ 1

2

Z
d4q
ð2πÞ4 Φ

TOΦ; ð2:15Þ

where Φ ¼ ðT; hÞT and, after Fourier transforming, O is
constructed onlywith themetric ημν andwithmomentum qμ.
The fields T and h can be decomposed into irreducible

representations of the rotation group (we assume q2 ≠ 0,
andOð3Þ is the group that leaves qμ invariant). Table I gives
the list of such irreducible representations. For each
representation labeled by spin J, parity P, and possibly
an additional index i to distinguish multiple copies of the
same irrep, there is a projector PiiðJPÞ, and for each pair of
representations with the same spin and parity but different i
and j indices, there is an intertwiner PijðJPÞ. These
projectors and intertwiners are constructed with the longi-
tudinal and transverse projectors on vectors, defined by

Lμ
ν ¼ qμqν

q2
; Tμ

ν ¼ δνμ − Lμ
ν: ð2:16Þ

They were introduced for two-index tensors in [11–13] and
for antisymmetric three-index tensors by [2]. The generali-
zation to arbitrary three-index tensors has been given in
[5,14]. In the following we refer collectively to all the spin
projectors and intertwiners as “spin projectors”. It should be
noted that the spin projectors of [2,5] are suitable for tensors
that are antisymmetric in the last two indices. Since our
dynamical variable is torsion, and it is antisymmetric in the

first and third index, it is convenient to exchange the first and
second indices of the projectors. The spin projectors satisfy
the orthonormality

PijðJPÞPklðJ0P0 Þ ¼ δJJ0δPP0δjkPilðJPÞ; ð2:17Þ

and the completenessX
J

X
P

X
i

PiiðJPÞ ¼ I: ð2:18Þ

Using these spin projectors, the linearized action can be
rewritten in the form

Sð2Þ ¼ 1

2

Z
d4q
ð2πÞ4

X
JPij

ΦTð−qÞ · aijðJPÞPijðJPÞ ·ΦðqÞ;

ð2:19Þ

where we have suppressed the indices carried by the fields
and by the projectors for notational clarity. The aijðJPÞ are
matrices of kinetic coefficients, carrying all the information
about the propagation and mixing between different
degrees of freedom. Their explicit form for antisymmetric
MAGs is given in Appendix B. Invariance under diffeo-
morphisms lowers by one the rank of the coefficient
matrices að1−Þ and að0þÞ (this is because the transforma-
tion parameter ξμ can be decomposed as a three-scalar and a
three-vector). This is particularly clear in the Einstein form
of the theory, where diffeomorphism invariance implies

að1−Þi7¼ að1−Þ7i¼ 0; að0þÞi6¼ að0þÞ6i¼ 0: ð2:20Þ

One can fix the gauge redundancy by simply suppressing
these rows and columns. The remaining degrees of freedom
can be identified as the eigenvectors of the coefficient
matrices and the eigenvalues are the inverse propagators.
They are of the form

λ ¼ −bq2 −m2; ð2:21Þ

where b and m are functions of the coefficients in the
Lagrangian. The signs of b andm2 determine the properties
of each degree of freedom.
A degree of freedom for which b ¼ 0 does not propa-

gate. There are two ways in which this can happen. If
m2 ≠ 0 the equation of motion says that the degree of
freedom is zero. On the other hand, if m2 ¼ 0, we have a
gauge degree of freedom. Shifts of that degree of freedom
leave the action invariant. In this case the coefficient
matrices have one more null eigenvalue in addition to
the ones due to diffeomorphisms. As long as one is only
interested in the linear theory, there is no need to look
further. However, in view of the nonlinearity of MAG, one

TABLE I. SOð3Þ spin content of projection operators for
torsion (left) and graviton (right) (ta ¼ totally antisymmetric,
ha ¼ hook antisymmetric). The symbols L and T in the first
column refer to the longitudinal and transverse projectors defined
in (2.16). The subscripts distinguish different instances of the
same representation. The nonconsecutive numbering follows
from the conventions of [8].

ha ta

TTT 2−2 , 1
−
3 0−

TTLþ TLT þ LTT — 1þ3
3
2
LTT 1þ2 , —

TTLþ TLT − 1
2
LTT 2þ3 , 0

þ
3

—
TLLþ LTLþ LLT 1−6 —

s

TT 2þ4 , 0
þ
5

TL 1−7
LL 0þ6
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should ask whether the gauge invariance is a genuine
feature of the full action, or just a property of the linearized
action. In the latter case one speaks of an “accidental
symmetry.” Either way, when there are additional gauge
symmetries, one can fix them by removing additional rows
and columns. Once all the gauge degrees of freedom have
been removed, the remaining invertible submatrices are
called bijðJPÞ and the propagator of the theory, contracted
with external sources4 J ¼ ðτabc; σabÞT , is

Π ¼ −
1

2

Z
d4q
ð2πÞ4

X
JPij

JTð−qÞ · b−1ij ðJPÞPijðJPÞ · JðqÞ:

ð2:22Þ

Since signs are all-important in this discussion, it is
useful to keep in mind the case of a scalar field: in this case
the kinetic coefficient a is the same as the operator O and

a ¼ −q2 −m2; ð2:23Þ

must have m2 > 0 in order not to have a tachyon. The
corresponding saturated propagator, obtained by solving
the classical equation of motion for the source and inserting
back in the linearized action, is

Π ¼ 1

2

Z
d4q
ð2πÞ4 Jð−qÞ

1

q2 þm2
JðqÞ: ð2:24Þ

When the sources carry Lorentz indices, one has to pay
attention to the additional signs due to the way the indices
are contracted. For example, in

Π ¼ 1

2

Z
d4q
ð2πÞ4 J

αβγð−qÞ 1

q2 þm2
Pβαγ

μλνηλρημσηντJρστðqÞ;

ð2:25Þ

whenever one of the indices of the projector P is longi-
tudinal, the corresponding metric gives −1, because in the
rest frame where the four-momentum takes the form qμ ¼
ðm; 0; 0; 0Þ the longitudinal projector is equal to 1 only in
the time-time (0, 0) component, while the transverse
projector is equal to 1 only in the spatial ði; jÞ components.
Thus there is an overall minus sign whenever the projector
P contains an odd number of longitudinal projectors.

III. NEW GHOST- AND TACHYON-FREE MAGS

In our search of ghost- and tachyon-free MAGs we will
use the Einstein form of the theory. It has the great
advantage that the graviton is carried entirely by the
two-index tensor hμν and therefore its propagator has the

form that is familiar from metric theories of gravity. In fact
in this form, MAG appears as ordinary metric gravity
coupled to a three-index field (torsion) that could be viewed
as “matter.” If we include in the Lagrangian all terms of
dimension up to four, the gravitational sector includes the
termsHRR

1;2;3 of quadratic gravity. This theory is well known
to have its own ghost/tachyon problem. While the final
verdict on that issue in the quantum context is still not
out [15–20], an interesting alternative solution at the
classical level has been proposed recently in [10], that is
very close in spirit to the present work. It was shown in that
paper that letting some torsional degrees of freedom
propagate, it is possible to avoid ghosts and tachyons even
in the presence of the quadratic invariants HRR

1;2;3.
In the present paper we follow an alternative route and set

their coefficients bRR1;2;3 ¼ 0, thus reducing the theory to
Einstein gravity coupled to torsion, and avoiding at least one
possible source of trouble. We observe that all the examples
of ghost- and tachyon-free PGTs in [2] are of this type. In
principlewe could allow bRR3 ≠ 0, since it does not affect the
propagation of the spin-two graviton in flat space. This
would give rise to the propagation of another scalar carried
by hμν, but this has been studied extensively in the literature
and since we are mainly interested in new particles coming
from torsion, we shall not discuss this case here. Thus, in all
cases listed below, the graviton is hμν and its propagator is
the standard one from general relativity.
We now look for examples of MAGs propagating only

the graviton and one other massive degree of freedom. In
order to simplify the search we will impose additional
kinematical constraints on torsion, and assume that it is
either totally antisymmetric or hook antisymmetric (i.e., its
totally antisymmetric part vanishes). These are invariant
subspaces under the action of the group GLð4Þ. The
corresponding degrees of freedom can be read from
Table I. We shall return later to the general antisymme-
tric MAG.
We will construct our examples of simple MAGs by

imposing that all the degrees of freedom except for the
desired ones do not propagate. In order to avoid having to
investigate whether a particular gauge symmetry is acci-
dental or not, we will assume that all the nonpropagating
degrees of freedom have nonvanishing masses.

A. Totally antisymmetric case

The totally antisymmetric part of torsion consists of the
states 1þ3 and 0−. In the Lagrangian we impose total
antisymmetry of torsion as a kinematical constraint. In
this case MTT

2 ¼ −MTT
1 , MTT

3 ¼ HTT
3 ¼ HTT

8 ¼ HTT
9 ¼ 0,

HTT
2 becomes proportional to HTT

1 , and HTT
5 , HTT

6 , HTT
7

become proportional to HTT
4 , and HRT

3 ¼ HRT
5 ¼ 0. Thus

we can set

mTT
2 ¼ 0; bTT2 ¼ bTT5 ¼ bTT6 ¼ bTT7 ¼ 0; ð3:1Þ

4Here τabc is the hypermomentum tensor and σab denotes the
energy-momentum tensor.
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without loss of generality, and keep onlyMTT
1 ,HTT

1 ,HTT
4 as

independent invariants. The only parts of the coefficient
matrices to be considered are

bð2þÞ≡ að2þÞ44 ¼ −
1

4
m2

Pq
2; ð3:2Þ

bð1þÞ≡ að1þÞ33 ¼ −
�
bTT1 þ 1

3
bTT4

�
q2 −mTT

1 ; ð3:3Þ

bð1−Þ≡ að1−Þ77 ¼ 0; ð3:4Þ

bð0þÞ≡ að0þÞf5;5g ¼
1

2
m2

Pq
2; ð3:5Þ

bð0−Þ≡ að0−Þ ¼ −bTT1 q2 −mTT
1 : ð3:6Þ

The matrices pertaining to 2þ, 1− and 0þ are exactly as in
pure GR, and the remaining two are the potentially propa-
gating new degrees of freedom. Since there is only one state
for each spin/parity, the analysis is particularly simple.
If we want only 1þ to propagate, we have to set to zero

the coefficient of q2 in bð0−Þ, which implies bTT1 ¼ 0. This
leaves us with

bð1þÞ ¼ −
1

3
ðbTT4 q2 þ 3mTT

1 Þ: ð3:7Þ

Now we have to recall that the spin projector Pð1þÞ is of
the form TTL, so that the single longitudinal projector
gives rise to an additional minus sign. Thus the conditions
for the 1þ state to have a healthy propagation are

bTT4 < 0; mTT
1 < 0: ð3:8Þ

On the other hand, if we want only 0− to propagate, we
have to impose bTT4 ¼ −3bTT1 . In this case, given that the
spin projector Pð0−Þ is of the form TTT, the conditions for
a healthy propagation of 0− are immediately obvious from
the form of bð0−Þ:

bTT1 > 0; mTT
1 > 0: ð3:9Þ

Finally, if we allow both degrees of freedom to propagate, it
is clear that there is no choice of parameters that will
prevent one of them from being a ghost or tachyon.

1. A check: Axial vector torsion

There is a simple alternative way to understand these
conditions, that consists of identifying the 1þ3 and 0−

degrees of freedom as the transverse and longitudinal
components of an axial vector vμ, dual to the torsion
tensor [21]:

Tαβγ ¼ ηαβγδvδ; ð3:10Þ

where ηαβγδ is the totally antisymmetric tensor. In such a
case the Lagrangian can be rewritten as

LE ¼ ð3bTT1 þ bTT4 Þ∇μvν∇μvν − bTT4 ∇μvν∇νvμ

þ 3mTT
1 vμvμ: ð3:11Þ

Putting

bTT1 ¼ 0; bTT4 ¼ −
1

2
; mTT

1 ¼ −
1

6
m2; ð3:12Þ

the Lagrangian (3.11) becomes the Proca Lagrangian that
correctly describes a massive spin one state, whereas for
mTT

1 ¼ 0 it becomes the Maxwell Lagrangian that correctly
describes a massless spin-one state. This confirms the signs
of (3.8). Note that in the massless case we have bð0−Þ ¼ 0,
which is a symptom of the Abelian gauge invariance of the
theory. This is a genuine gauge symmetry of the full action,
not an accidental one.
On the other hand, in order to have only the 0−

propagating, we kill the first term in Eq. (3.11) by setting
bTT4 ¼ −3bTT1 and integrate by parts twice, so that the
Lagrangian becomes

LE ¼ 3ðbTT1 ð∇μvμÞ2 þmTT
1 vμvμÞ: ð3:13Þ

If we decompose v in its transverse and longitudinal parts

vμ ¼ vTμ þ∇μψ ; ð3:14Þ

the transverse part is seen not to propagate, whereas for the
longitudinal one we remain with

LE ¼ 3ψ□ðbTT1 □ −mTT
1 Þψ : ð3:15Þ

Defining scalars ψ1 and ψ2 through

ψ1 ¼
1

mTT
1

ðbTT1 □ −mTT
1 Þψ ;ψ2 ¼

1

mTT
1

bTT1 □ψ ; ð3:16Þ

the Lagrangian can be rewritten as

LE ¼−3mTT
1 ψ1□ψ1þ3

mTT
1

bTT1
ψ2ðbTT1 □−mTT

1 Þψ2; ð3:17Þ

that indicates the presence of two propagating scalars.
However, the massless scalar is a pure gauge degree of
freedom, because the Lagrangian (3.15) is invariant under
the shift ψ → ψ þ ξ with □ξ ¼ 0 and only ψ1 is affected
by the shift. Thus there is only one massive scalar, and (3.9)
are the correct conditions for it not to be a ghost or tachyon.
See Ref. [22] for a recent discussion of the appearance
of (3.13) in higher derivative gravity.
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2. Cartan form

Finally we can recast these theories in their Cartan form.
When torsion is totally antisymmetric and when we are
interested only in the free part of the Lagrangian, one
can choose the basis of dimension-four operators to
consist only of curvature squared terms. For example,
the operators

LFF
1 ; LFF

3 ; LFF
4 ; LFF

7 ; LFF
16 ; ð3:18Þ

form such a basis. Using this basis, the Lagrangian that
correctly propagates a single 1þ state in addition to the
graviton is

LC ¼ 1

2
m2

PF −
1

2

�
mTT

1 −
1

4
m2

P

�
TμνρTμνρ

−
1

6
bTT4 ðFμνρσFμνρσ − 2FμνρσFρσμν þ 2FμνρσFμρνσÞ

þOððF; TÞ3Þ; ð3:19Þ

while the Lagrangian that correctly propagates a single 0−

state in addition to the graviton is5

LC ¼ 1

2
m2

PF −
1

2

�
mTT

1 −
1

4
m2

P

�
TμνρTμνρ

−
1

3
bTT1 ðFμνρσFμνρσ þ FμνρσFρσμν − 4FμνρσFμρνσÞ

þOððF; TÞ3Þ: ð3:20Þ

In view of the presence of Yang-Mills-like terms, the
simplicity of these theories is not at all obvious.

B. Hook antisymmetric case

Having exhausted the discussion of totally antisymmet-
ric MAGs, we turn to the hook antisymmetric case. In this
case we have to impose

Tabc ¼ Tacb þ Tbac: ð3:21Þ

This identifies some operators in the Lagrangian with
others as

MTT
2 ¼ 1

2
MTT

1 ; HTT
2 ¼ 1

2
HTT

1 ;

HTT
5 ¼ HTT

4 −HTT
7 ; HTT

6 ¼ 2HTT
7 : ð3:22Þ

As a consequence, we can set

mTT
2 ¼ bTT2 ¼ bTT5 ¼ bTT6 ¼ 0; ð3:23Þ

without loss of generality and the Lagrangian simplifies to

LE ¼ −
1

2
mTT

1 MTT
1 −

1

2
mTT

3 MTT
3 −

1

2
bTT1 HTT

1 −
1

2
bTT3 HTT

3

−
1

2
bTT4 HTT

4 −
1

2
bTT7 HTT

7 −
1

2
bTT8 HTT

8 −
1

2
bTT9 HTT

9

−
1

2
bRT3 HRT

3 −
1

2
bRT5 HRT

3 : ð3:24Þ

We choose the nondegenerate b-matrices as

bð2þÞ ¼ að2þÞf3;4g;f3;4g; bð1−Þ ¼ að1−Þf3;6g;f3;6g;
bð0þÞ ¼ að0þÞf3;5g;f3;5g: ð3:25Þ

Then, the nondegenerate coefficient matrix for each spin/
parity is given by

bð2þÞ ¼
 
−mTT

1 − 1
2
ð2bTT1 þ bTT4 Þq2 i bRT

3

4
ffiffi
2

p q3

−i bRT
3

4
ffiffi
2

p q3 − m2
P
4
q2

!
; ð3:26Þ

bð2−Þ ¼ −mTT
1 − bTT1 q2; ð3:27Þ

bð1þÞ ¼ −mTT
1 −

1

6
ð6bTT1 þ bTT4 þ 2bTT7 Þq2; ð3:28Þ

bð1−Þ ¼
 

−mTT
1 −mTT

3 − ðbTT1 þ bTT3 Þq2 − 1

2
ffiffi
2

p ½2mTT
3 þ ð2bTT3 þ bTT8 Þq2�

− 1

2
ffiffi
2

p ½2mTT
3 þ ð2bTT3 þ bTT8 Þq2� − 1

2
ð2mTT

1 þmTT
3 Þ − 1

2
ð2bTT1 þ bTT3 þ bTT4 þ bTT7 þ bTT8 Þq2

!
; ð3:29Þ

bð0þÞ ¼
 
− 1

2
ð2mTT

1 þ 3mTT
3 Þ − 1

2
ð2bTT1 þ 3bTT3 þ bTT4 þ 3bTT9 Þq2 i

bRT
3
þ6bRT

5

4
ffiffi
2

p q3

−i b
RT
3
þ6bRT

5

4
ffiffi
2

p q3 m2
P
2
q2

!
: ð3:30Þ

5This combination of curvatures already appeared in [23].
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As in the totally-antisymmetric case, we consider a single-
state propagation on top of the graviton. The determinants of
the coefficient matrices for 2þ (3.26) and 0þ (3.30) contain
terms of order q6 coming from their off-diagonal parts. This
indicates that the mixing of torsion and graviton fluctuation
would lead to the propagation of an additional degree of
freedom. For our purposes we can therefore simplify the
analysis by setting bRT3 ¼ bRT5 ¼ 0. In this way the graviton
is completely decoupled from torsion at quadratic level.

1. Propagating graviton and massive 2+

To prevent the propagation of 2− we set bTT1 ¼ 0, and to
prevent the propagation of 1þ we set bTT7 ¼ −bTT4 =2. In
order for the torsional 2þ state to be a propagating massive
degree of freedom, we must then have mTT

1 ≠ 0 and
bTT4 ≠ 0, which we assume in the following. Then, we
must remove the terms of order q4 and q2 from the
determinant of bð1−Þ and the term of order q2 in the
(1,1)-entry of bð0þÞ. These conditions admit the solution

mTT
3 ¼ −

mTT
1

ðbTT4 Þ2 ½ðb
TT
4 Þ2 þ 2bTT4 bTT8 þ 3ðbTT8 Þ2�;

bTT3 ¼ ðbTT8 Þ2
2bTT4

; bTT9 ¼ −
2ðbTT4 Þ2 þ 3ðbTT8 Þ2

6bTT4
: ð3:31Þ

With this parametrization the coefficient matrix is reduced to

bð2þÞ ¼ −
1

2
ðbTT4 q2 þ 2mTT

1 Þ: ð3:32Þ

Now recalling that the spin projectorPð2þÞ33 is of typeTTL,
the propagator has an additionalminus sign, so that the ghost-
and tachyon-free conditions are

bTT4 < 0; mTT
1 < 0: ð3:33Þ

As a check, we can now insert (3.31) and the other
conditions on the coefficients in the saturated propagator
(2.22) and use the explicit form of the spin projectors. In
principle the resulting expression could contain terms up to
q−8 (with two powers coming from the kinetic coefficients
and six from the spin projectors) but all terms with 8, 6 and
4 inverse powers of q duly cancel, and we remain with

Π ¼ Πgrav þ Πmassive þ ðrestÞ; ð3:34Þ
where

Πgrav¼
2

m2
P

Z
d4q
ð2πÞ4 σ

μνð−qÞ

×
1

q2

�
Psð2þÞμνρλ−

1

2
Psð0þ;ssÞμνρλ

�
σρλðqÞ

¼ 2

m2
P

Z
d4q
ð2πÞ4 σ

μνð−qÞ 1
q2

�
ημρηνσ −

1

2
ημνηρσ

�
σρσðqÞ;

ð3:35Þ

is the standard saturated graviton propagator,

Πmassive¼
1

2

Z
d4q
ð2πÞ4 J

μνð−qÞ 1

q2þm2
Pð2þ;m2ÞμνρσJρσðqÞ;

ð3:36Þ

is the standard saturated propagator of a massive spin-two
particle and the rest is an expression that does not contain
any pole in q. In (3.36), the mass of the canonically
normalized field is m2 ¼ 2mTT

1 =bTT4 , the source for the
massive spin-two is related to the source of torsion by

Jμν ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

−mTT
1

s
∇ρτ

ρμν; ð3:37Þ

and

Pð2þ;m2Þμνρσ ¼ Tðm2ÞðμðρTðm2ÞνÞσÞ −
1

3
Tðm2ÞμνTðm2Þρσ;

ð3:38Þ

with

Tμνðm2Þ ¼ ημν þ
qμqν
m2

; ð3:39Þ

is the usual transverse-traceless projector, put on shell.

2. Propagating graviton and massive 2−

It has already been discussed in [8] how to choose the
coefficients of a completely general MAG in such a way
that only the graviton and a massive 2− propagate. Here we
show how to arrive at such a model in the restricted context
of a hook antisymmetric MAG.
The conditions that remove all unwanted propagation are

solved by

mTT
3 ¼ −24ðbTT1 Þ2 þ 16bTT1 bTT8 − 3ðbTT8 Þ2

4bTT1
mTT

1 ;

bTT3 ¼ −8ðbTT1 Þ2 þ 4bTT1 bTT8 − ðbTT8 Þ2
4bTT1

;

bTT4 ¼ bTT7 ¼ −2bTT1 ; bTT9 ¼ −bTT3 : ð3:40Þ

With these parameters, the coefficient matrix for the 2−

state becomes simply

bð2−Þ ¼ −bTT1 q2 −mTT
1 ; ð3:41Þ

and, since the projector Pð2−Þ is of type TTT, the ghost-
and tachyon-free conditions are

mTT
1 > 0; bTT1 > 0: ð3:42Þ
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This agrees with the result of [8]. Proceeding as in the
previous section we can recast the saturated propagator in
the form (3.34), where now

Πmassive ¼
1

2

Z
d4q
ð2πÞ4 J

μλνð−qÞ 1

q2 þm2

× Pð2−; m2ÞλμντρσJρτσðqÞ; ð3:43Þ

where m2 ¼ mTT
1 =bTT1 and Pð2−; m2Þ is the 2− projector

put on shell,6 and

Jμνρ ¼ 1ffiffiffiffiffiffiffiffi
bTT1

p τμνρ: ð3:44Þ

3. Propagating graviton and massive 1+

In order for the 2þ and 2− components not to propagate
we must have bTT1 ¼ bTT4 ¼ 0, and then for 1þ to propagate
we must have bTT7 ≠ 0. The remaining conditions coming
from the 1− and 0þ sectors imply for the other parameters:

mTT
3 ¼ −

mTT
1

4ðbTT7 Þ2 ½4ðb
TT
7 Þ2 þ 4bTT7 bTT8 þ 3ðbTT8 Þ2�;

bTT3 ¼ −bTT9 ¼ ðbTT8 Þ2
4bTT7

: ð3:45Þ

Then the kinetic coefficient is

bð1þÞ ¼ 1

3
ð−bTT7 q2 − 3mTT

1 Þ: ð3:46Þ

Taking into account that Pð1þÞ contains a single longi-
tudinal projector, the ghost- and tachyon-free conditions are

mTT
1 < 0; bTT7 < 0: ð3:47Þ

The saturated propagator is again of the form (3.34), where
now

Πmassive¼
1

2

Z
d4q
ð2πÞ4 J

μνð−qÞ 1

q2þm2
Pð1þ;m2ÞμνρσJρσðqÞ;

ð3:48Þ

where the mass of the canonically normalized field ism2 ¼
3mTT

1 =bTT7 and its source (an antisymmetric two-tensor) is
related to the torsion source by

Jμν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

−3mTT
1

s
∇ρðτρ½μν� þ τμρνÞ; ð3:49Þ

and the projector is

Pð1þ; m2Þμνρσ ¼ T ½μ½ρðm2ÞTν�
σ�ðm2Þ

¼ δ½ρ½μδσ�ν� þ 2
δ½ρ½μqν�qσ�

m2
: ð3:50Þ

4. Propagating graviton and massive 1−

In order to stop the propagation of 2þ, 2−, 1þ, and 0−, the
coefficients must satisfy the first four of the following
conditions:

bTT1 ¼ bTT4 ¼ bTT7 ¼ 0; bTT9 ¼−bTT3 ;bTT8 ¼ 0: ð3:51Þ

In order to have only one propagating 1−, we must set to
zero the coefficient of q4 in det½bð1−Þ�, and this implies the
last condition. There are two 1− representations in the
three-index tensor and their coefficient matrix is now

bð1−Þ

¼
�−mTT

1 −mTT
3 −bTT3 q2 − 1ffiffi

2
p ðmTT

3 þbTT3 q2Þ
− 1ffiffi

2
p ðmTT

3 þbTT3 q2Þ 1
2
ð−2mTT

1 −mTT
3 −bTT3 q2Þ

�
;

ð3:52Þ

This matrix has eigenvectors: ð−1= ffiffiffi
2

p
; 1ÞT with eigenvalue

−mTT
1 , and ð ffiffiffi

2
p

; 1ÞT with eigenvalue

1

2
ð−3bTT3 q2 − 2mTT

1 − 3mTT
3 Þ: ð3:53Þ

It is the latter combination of states that propagates. Since the
projectors Pð1−Þ33 and Pð1−Þ66 have zero and two longi-
tudinal indices, respectively, there are no additional signs and
the conditions for ghost- and tachyon-freedom are

bTT3 > 0; 2mTT
1 þ 3mTT

3 > 0: ð3:54Þ

The saturated propagator for the massive state is

Πmassive¼
1

2

Z
d4q
ð2πÞ4J

μð−qÞ 1

q2þm2
Tðm2ÞμνJνðqÞ; ð3:55Þ

where the mass of the canonically normalized field is m2 ¼
ð2mTT

1 þ 3mTT
3 Þ=3bTT3 and its source (a vector) is related to

the torsion source by

Jμ ¼ 2

3
ffiffiffiffiffiffiffiffi
bTT3

p τμρρ: ð3:56Þ
6Its explicit expression is given in Appendix D. 6 of [8].
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5. Propagating graviton and massive 0+

Let us finally focus on the 0þ state. By taking

bTT1 ¼ bTT3 ¼ bTT4 ¼ bTT7 ¼ bTT8 ¼ 0; ð3:57Þ

all modes except for 0þ become nondynamical. Then, its
kinetic coefficient is

að0þÞ33 ¼ −
1

2
ð3bTT9 q2 þ 2mTT

1 þ 3mTT
3 Þ: ð3:58Þ

The projector Pð0þÞ33 has one longitudinal index, so there
is an additional minus sign. Thus the conditions for ghost-
and tachyon-freedom are

bTT9 < 0; 2mTT
1 þ 3mTT

3 < 0: ð3:59Þ

The saturated propagator of the massive scalar is

Πmassive ¼
1

2

Z
d4q
ð2πÞ4 Jð−qÞ

1

q2 þm2
JðqÞ; ð3:60Þ

where m2 ¼ ð2mTT
1 þ 3mTT

3 Þ=3bTT9 and the source is

J ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3ð2mTT

1 þ 3mTT
3 Þp ∇μτλ

λμ: ð3:61Þ

6. A check: Vector torsion

Let us consider the special case of vector torsion:

Tμνρ ¼ vμgνρ − vρgμν: ð3:62Þ

Note that in this case the totally antisymmetric part is zero,
so vector torsion is automatically hook antisymmetric. If
we impose this condition as a kinematical constraint, and
also enforce the restrictions (3.23) on the coefficients, the
Lagrangian becomes

LE ¼ −
9

2
bTT3 ∇μvν∇μvν −

9

2
bTT9 ð∇μvμÞ2

−
3

2
ð2mTT

1 þ 3mTT
3 Þvμvμ: ð3:63Þ

We can then distinguish the two subcases when v is
transverse or longitudinal.
Imposing ∇μvμ ¼ 0, v has spin/parity 1− corresponding

to the transverse mode. Then, imposing the conditions
(3.51) so that only 1− propagates, the linearized Lagrangian
becomes

LE ¼ vμημν
�
−
9

2
bTT3 q2 −

3

2
ð2mTT

1 þ 3mTT
3 Þ
�
vν: ð3:64Þ

So this confirms the ghost- and tachyon-free conditions
(3.54). Imposing that vμ ¼ ∇μψ , with ψ a 0þ field (a true

scalar) and imposing the conditions on the coefficients for
the propagation of 0þ only, the linearized Lagrangian
becomes

LE ¼ −
9

2
bTT9 ψ□2ψ þ 9

2
ð2mTT

1 þ 3mTT
3 Þψ□ψ : ð3:65Þ

This has the same form as (3.15) and, treating it in the same
way, we find that the only propagating degree of freedom
has linearized Lagrangian

LE ¼ 3

2

2mTT
1 þ 3mTT

3

bTT9
ψ2ð3bTT9 q2 þ 2mTT

1 þ 3mTT
3 Þψ2:

ð3:66Þ

This confirms the conditions (3.59).

7. General antisymmetric MAGs

In order to simplify the discussion, in the preceding
sections we have assumed that torsion is either totally
antisymmetric or hook antisymmetric. These kinematical
restrictions have the effect of reducing the number of
independent terms in the Lagrangian, so the identification
of viable models with the desired properties becomes
algebraically simpler. One may ask whether simple
MAGs with a single healthy propagating degree of free-
dom, in addition to the graviton, exist also in the context of
general antisymmetric MAGs. A priori the answer is not
obvious, because we are now working in a larger space of
theories (where in principle more solutions could exist) but
we also have more equations, because there are more
degrees of freedom whose propagation we want to inhibit.
It turns out that the first effect prevails, and there are several
more solutions than in the kinematically restricted cases.
These solutions have different b- and m-coefficients and
correspondingly different masses. The reader can derive
these models by imposing conditions on the general kinetic
coefficients given in Appendix B, and following the general
procedure outlined in the previous sections. We will not try
to systematically list all these cases.

IV. DISCUSSION

There are only a handful of PGTs without ghosts and
tachyons and without accidental symmetries [2]. We have
seen that when we allow general dimension-four terms in
the Lagrangian, the number of solutions increases consid-
erably. In this paper we have only considered “simple”
MAGs, in the sense that only one degree of freedom
propagates in addition to the graviton, and we found that
there are solutions for every possible choice of the addi-
tional degree of freedom. The cases we have considered are
such that all the nonpropagating degrees of freedom have
mass terms and therefore must vanish on shell. One could
also consider cases when these masses go to zero, but then
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one would have to make sure that the gauge invariances
arising in this way extend to the nonlinear theory. One can
generalize our construction to cases with two, three, or
possibly more healthy propagating degrees of freedom, and
a full classification seems daunting. Rather than trying to
do that, in our next step we will extend the analysis of this
paper to symmetric MAGs, i.e., theories without torsion but
with nonmetric connection [24].
One interesting phenomenon that can present itself is that

the good propagation of one degree of freedom implies
some pathology for another. The simplest example of this is
the theory of a vector field. Normally we choose the
Lagrangian of a vector field to be of Proca form, because
we require that only spin one propagates, but suppose we
want also spin zero to propagate. We can achieve this by
adding to the Lagrangian a term of the form ∇μAμ. But it is
well known that such a theory has pathologies. In fact we
saw in Sec. III A 1 that the mass has necessarily a wrong
sign either for 1− or for 0þ. One can trace this problem to
the fact the 1− is transverse and 0þ is longitudinal. We have
seen that the phenomenon occurs also for vector torsion and
for axial vector torsion, for a similar reason. In fact, we
can say that in general such problems will arise when a
given parameter affects the propagation of degrees of
freedom with different numbers of longitudinal and trans-
verse indices.
We have presented our examples of simple MAGs in the

Einstein form, i.e., treating torsion as an independent field
and writing the Lagrangian in terms of the Riemannian
curvature and covariant derivative. In this form MAG looks
like a metric theory of gravity coupled to a peculiar form of
matter. The alternative Cartan form of MAG, where the
Lagrangian is written in terms of the curvature and
covariant derivative constructed from the independent
connection, offers an equivalent description that may be
preferable from some points of view. While the models we
have presented look somewhat trivial in the Einstein form,
in the sense that they are “just” GR coupled to some scalar,
vector or tensor matter, this “simplicity” of the models is
much less obvious in the Cartan form, where Yang-Mills-
like terms are present in addition to the Palatini one. In view
of possible applications of MAG to the dark matter (or dark
energy) problems it is amusing to observe that the equiv-
alence between the two formulations of MAG suggests that
the dichotomy between modifying gravity and adding dark
matter may be more a semantic issue than a real physi-
cal one.
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APPENDIX A: COEFFICIENTS MAPPING

We give here the general transformation between the
Lagrangian coefficients in the Cartan basis and in the
Einstein basis.

aTT1 ¼ 1

4
ðm2

P þ 4mTT
1 Þ ðA1Þ

aTT2 ¼ 1

2
ðm2

P þ 2mTT
2 Þ ðA2Þ

aTT3 ¼ −m2
P þmTT

3 ðA3Þ

cFF1 ¼ 2bRR1 þ bRR2 þ 2bRR3 −
1

4
bRT3 − bRT5 −

1

2
bTT4 − bTT6

−
1

2
bTT8 þ 1

2
bTT9 ðA4Þ

cFF3 ¼ −bRR1 −
3

2
bRR2 − 4bRR3 þ 1

2
bRT3 þ 2bRT5 þ 2bTT6

þ bTT7 þ bTT8 − bTT9 ðA5Þ

cFF4 ¼ 1

2
ð2bRR2 þ 8bRR3 − bRT3 − 4bRT5 þ 2bTT4 − 4bTT6

− 4bTT7 − 2bTT8 þ 2bTT9 Þ ðA6Þ

cFF7 ¼ 1

2
ð−2bRR2 − 8bRR3 þ bRT3 þ 4bRT5 þ 8bTT6 þ 2bTT7

þ 2bTT8 − 2bTT9 Þ ðA7Þ

cFF8 ¼ 1

2
ð4bRR2 þ 8bRR3 − bRT3 − 4bRT5 − 8bTT6 − 2bTT7

− 2bTT8 þ 2bTT9 Þ ðA8Þ

cFF16 ¼ bRR3 ðA9Þ

cFT1 ¼ 1

2
ð−16bRR1 − 8bRR2 − 16bRR3 þ 3bRT3 þ 8bRT5

þ 8bTT6 þ 2bTT7 þ 4bTT8 − 4bTT9 Þ ðA10Þ

cFT8 ¼ 1

2
ðbRT3 þ 8bTT6 þ 2bTT7 þ 2bTT8 Þ ðA11Þ

cFT9 ¼ 2bRR2 þ 8bRR3 −
1

2
bRT3 − 2bRT5 − 4bTT6

− bTT7 − bTT8 ðA12Þ

cFT13 ¼ 1

2
ð4bRR2 þ 16bRR3 − bRT3 − 8bRT5 − 8bTT6

− 2bTT7 − 4bTT8 þ 4bTT9 Þ ðA13Þ

cTT1 ¼ 1

4
ð4bRR1 þ bRR2 − bRT3 þ 4bTT1 þ 2bTT4 Þ ðA14Þ
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cTT2 ¼ 1

2
ð−4bRR1 − 3bRR2 − 8bRR3 þ bRT3 þ 4bRT5 þ 2bTT2

þ 4bTT6 þ 2bTT7 þ 2bTT8 − 2bTT9 Þ ðA15Þ

cTT3 ¼ bRR2 þ 4bRR3 − 2bRT5 þ bTT3 þ bTT9 ðA16Þ

cTT5 ¼ 4bRR1 þ 2bRR2 þ 4bRR3 − bRT3 − 2bRT5 þ bTT5
− 2bTT6 − bTT7 − bTT8 þ bTT9 ðA17Þ

APPENDIX B: MATRIX COEFFICIENTS

We list here the coefficient matrices appearing in the
decomposition of the Lagrangian (2.9) of the Einstein form
of the theory.

að2þÞ33 ¼ −
1

2
ð2bTT1 þ bTT2 þ bTT4 þ bTT5 Þq2

−
1

2
ð2mTT

1 þmTT
2 Þ ðB1Þ

að2þÞ34 ¼ i
bRT3
4
ffiffiffi
2

p q3 ðB2Þ

að2þÞ44 ¼ −
1

4
ð4bRR1 þ bRR2 Þq4 −m2

P

4
q2 ðB3Þ

að2−Þ22 ¼ −
1

2
ð2bTT1 þ bTT2 Þq2 − 1

2
ð2mTT

1 þmTT
2 Þ ðB4Þ

að1þÞ22¼−
1

6
ð6bTT1 þ3bTT2 þbTT4 −bTT5 þ4bTT6 þ2bTT7 Þq2

−
1

2
ð2mTT

1 þmTT
2 Þ ðB5Þ

að1þÞ23 ¼ −
1

6
ffiffiffi
2

p ð2bTT4 − 2bTT5 − 4bTT6 þ bTT7 Þq2 ðB6Þ

að1þÞ33 ¼ −
1

3
ð3bTT1 − 3bTT2 þ bTT4 − bTT5 þ bTT6 − bTT7 Þq2

− ðmTT
1 −mTT

2 Þ ðB7Þ

að1−Þ33 ¼ −
1

2
ð2bTT1 þ bTT2 þ 2bTT3 Þq2

−
1

2
ð2mTT

1 þmTT
2 þ 2mTT

3 Þ ðB8Þ

að1−Þ36 ¼ −
1

2
ffiffiffi
2

p ð2bTT3 þ bTT8 Þq2 − 1ffiffiffi
2

p mTT
3 ðB9Þ

að1−Þ37 ¼ 0 ðB10Þ

að1−Þ66 ¼ −
1

2
ð2bTT1 þ bTT2 þ bTT3 þ bTT4 þ 2bTT6 þ bTT7

þ bTT8 Þq2 − 1

2
ð2mTT

1 þmTT
2 þmTT

3 Þ ðB11Þ

að1−Þ67 ¼ 0 ðB12Þ

að1−Þ77 ¼ 0 ðB13Þ

að0þÞ33 ¼−
1

2
ð2bTT1 þbTT2 þ 3bTT3 þbTT4 þbTT5 þ 3bTT9 Þq2

−
1

2
ð2mTT

1 þmTT
2 þ 3mTT

3 Þ ðB14Þ

að0þÞ35 ¼ i
1

4
ffiffiffi
2

p ðbRT3 þ 6bRT5 Þq3 ðB15Þ

að0þÞ36 ¼ 0 ðB16Þ

að0þÞ55 ¼ −ðbRR1 þ bRR2 þ 3bRR3 Þq4 þm2
P

2
q2 ðB17Þ

að0þÞ56 ¼ 0 ðB18Þ

að0þÞ66 ¼ 0 ðB19Þ

að0−Þ ¼ −ðbTT1 − bTT2 Þq2 − ðmTT
1 −mTT

2 Þ ðB20Þ
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tachyon free Poincaré gauge theories: A systematic ap-
proach, Phys. Rev. D 99, 064001 (2019).

[5] R. Percacci and E. Sezgin, New class of ghost- and tachyon-
free metric affine gravities, Phys. Rev. D 101, 084040 (2020).

[6] C. Marzo, Ghost and tachyon free propagation up to spin-3
in Lorentz invariant field theories, Phys. Rev. D 105,
065017 (2022).

MIKURA, NASO, and PERCACCI PHYS. REV. D 109, 104071 (2024)

104071-12

https://doi.org/10.1103/PhysRevD.21.867
https://doi.org/10.1103/PhysRevD.21.3269
https://doi.org/10.1103/PhysRevD.21.3269
https://doi.org/10.1103/PhysRevD.24.1677
https://doi.org/10.1103/PhysRevD.24.1677
https://doi.org/10.1103/PhysRevD.99.064001
https://doi.org/10.1103/PhysRevD.101.084040
https://doi.org/10.1103/PhysRevD.105.065017
https://doi.org/10.1103/PhysRevD.105.065017


[7] C. Marzo, Radiatively stable ghost and tachyon freedom
in metric affine gravity, Phys. Rev. D 106, 024045 (2022).

[8] A. Baldazzi, O. Melichev, and R. Percacci, Metric-affine
gravity as an effective field theory, Ann. Phys. (Amsterdam)
438, 168757 (2022).

[9] O. Melichev and R. Percacci, On the renormalization
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