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The excitation of quadratic quasinormal modes is an important nonlinear phenomenon for a Kerr black
hole ringing at a specific linear mode. The amplitude of this second-order effect is proportional to the
square of the linear mode amplitude, with the ratio being linked to the nature of the Kerr black hole.
Focusing on the linear ðl ¼ m ¼ 2; n ¼ 0Þ mode, we compute the dependency of the ratio on the
dimensionless spin of the black hole, ranging up to 0.99, with the method applicable for more general mode
couplings. Our calculation makes use of the frequency-domain, second-order Teukolsky equation, which
involves two essential steps: (a) analytically reconstructing the metric through the Chrzanowski-Cohen-
Kegeles approach and (b) numerically solving the second-order Teukolsky equation using the shooting
method along a complex contour. We find that the spin dependence of the ratio shows a strong correlation
with the angular overlap between parent and child modes, providing qualitative insights into the origin of
the dependence. Depending on the nature of the angular overlap, the ratio decreases with spin in scenarios
such as the channel ðl ¼ m ¼ 2; n ¼ 0Þ × ðl ¼ m ¼ 2; n ¼ 0Þ → ðl ¼ m ¼ 4Þ or increases in situations
like ðl ¼ m ¼ 2; n ¼ 0Þ × ðl ¼ m ¼ 2; n ¼ 0Þ → ðl ¼ 5; m ¼ 4Þ. For both cases, the ratios do not vanish
in the extremal limit. Our studies may offer insights into the search for quadratic quasinormal modes from
numerical relativity and gravitational wave detections. As a byproduct, we find that the Weyl scalars can be
concisely expressed with the Hertz potential.
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I. INTRODUCTION

The final stage of a binary black hole (BH) coalescence
process is described by a deformed Kerr BH ringing down
and relaxing to its final state. Depending on the starting
time of the analysis, the ringdown process may be well
described by the BH perturbation theory, and the resultant
gravitational wave (GW) waveform is consistent with a
superposition of quasinormal modes (QNMs) [1–3].
Leveraging the fact that the QNM frequencies are uniquely
determined by the mass and spin of the remnant Kerr BH,
as motivated by the no-hair theorem [4], the idea of BH
spectroscopy [5–7] has been developed and implemented:
by comparing theoretical predictions of QNM frequencies
with observational data from the LIGO-Virgo-KAGRA
network [8–14,14–20], one can test general relativity
and constrain the parameters of modified gravity theories.
Moving deeper within the merger phase, it is natural to

expect nonlinear effects of general relativity should play
more important roles both in the dynamics of the spacetime
and in the observed data. In previous literature, various
kinds of nonlinear effects have been discussed to different

extents. Gleiser et al. [21] initiated the analysis with second-
order Regge-Wheeler-Zerilli formalism. The second-order
Teukolsky formalism was later developed by Campanelli
and Lousto [22]. Zlochower et al. [23] investigated mode
coupling in the scattering processes by BHs. Yang et al.
studied parametric coupling between modes to motivate a
transient instability of near-extremal Kerr BHs [24,25].
More recently the nonlinear excitation of modes in dynami-
cal BHs with varying mass and spin was analyzed in
Refs. [26,27]. In addition, quadratic QNMs have been
identified from numerical-relativity simulations both in
waveforms at future null infinity [28–30] and in multipole
moments of dynamical horizons [31]. Then a related
interesting question is: how do the quadratic QNMs reflect
the nature of Kerr BHs? To answer this question, it is
preferable to analyze quadratic QNMs for different BH
spins, and possibly compare them with predictions from
modified theories of gravity. This work targets the first part
of this task, i.e., the predictions within general relativity.
The dynamics of quadratic QNMs are captured by

second-order perturbation theory [21,22,32–37]. These
modes originate from the interaction between two linear
parent QNMs. Consequently, the complex frequencies of
the quadratic QNMs emerge as a linear combination of the
frequencies of the individual parent modes and their
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respective complex conjugates. Meanwhile, the quadratic
amplitudes are proportional to the product of the linear
amplitudes, with the ratio being called the “excitation
factor.” The factor is an intrinsic parameter of the Kerr
spacetime which characterizes the level of difficulty to
excite the corresponding quadratic modes. In the context
of Schwarzschild BHs, Nakano and Ioka [32,33] used
the Regge-Wheeler-Zerilli formalism to compute the factor
for the channel ðl ¼ 2; m ¼ 2; n ¼ 0Þ2 → ðl ¼ 4; m ¼ 4Þ,
where ðl; mÞ are angular indices and n stands for the
overtone index. The Wentzel–Kramers–Brillouin [38] and
uniform [39] approximations were also applied to provide
some analytical insights for the excitation factor of
Schwarzschild BHs. As for Kerr BHs, the Kerr/conformal
field theory correspondence [40] was used to estimate
the excitation factors in the near-extremal limit. In addi-
tion, two recent studies [41,42] analyzed the problem
with a purely numerical perspective: fitting the amplitudes
of child and parent modes obtained from scattering
experiments.
In this work, we provide a systematic description of the

quadratic QNMs by computing their excitation factors with
a semianalytical approach. We achieve this goal by solving
the frequency-domain, second-order Teukolsky equation.
Our methodology comprises two key steps: (a) analytically
reconstructing the metric through the method given by
Chrzanowski-Cohen-Kegeles (CCK) [43–45] and (b)
numerically solving the second-order Teukolsky equation
using the shooting method along a complex contour. We
implement this method for specific mode couplings and
compare the results with previous literature.
This paper is organized as follows. In Sec. II, we briefly

review the linear perturbation of Kerr BHs. Section III
focuses on the CCK method. We then use this method to
construct an analytical source for the second-order
Teukolsky equation in Sec. IV. Our numerical approach
to solving the Teukolsky equation in the complex-r domain
is introduced in Sec. V. It is then applied to address the
problem of quadratic QNMs in Sec. VI. Finally, we
summarize the results in Sec. VII.
Throughout this paper we fix the mass of Kerr BHs at

M ¼ 1; therefore, the symbol a is used to denote their
dimensionless spins. Our metric signature is ðþ;−;−;−Þ.
Complex conjugates are represented by overlines.

II. BLACK-HOLE PERTURBATIONS VIA
NEWMAN-PENROSE FORMALISM

In this section, we provide a brief overview of the linear
perturbation of Kerr BHs, with more detailed references
given in [46–48]. In particular, we review the derivative
operators and the Teukolsky equation used in later calcu-
lations. Using Boyer-Lindquist coordinates, the Kerr metric
is expressed as follows:

ds2 ¼ Δ
Σ
ðdt − asin2 θdϕÞ2 − sin2 θ

Σ
½ðr2 þ a2Þdϕ − adt�2

−
Σ
Δ
dr2 − Σdθ2; ð1Þ

where

Σ ¼ r2 þ a2cos2 θ; Δ ¼ r2 − 2rþ a2:

The spacetime is accompanied with an event horizon at
rþ ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
, and a Cauchy horizon at r− ¼ 1−ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2
p

. A Kerr BH has two principal null directions,
described by the Kinnersley tetrad

l ¼ 1

Δ
ðr2 þ a2;Δ; 0; aÞ;

n ¼ 1

2Σ
ðr2 þ a2;−Δ; 0; aÞ;

m ¼ 1ffiffiffi
2

p
Γ
ðia sin θ; 0; 1; i csc θÞ; ð2Þ

with Γ ¼ rþ ia cos θ.
The perturbation theory of Kerr is based on the Newman-

Penrose (NP) formalism, where spin coefficients and
Weyl scalars serve as fundamental quantities. Using the
Kinnersley tetrad, these quantities are given by

κð0Þ ¼ σð0Þ ¼ λð0Þ ¼ νð0Þ ¼ ϵð0Þ ¼ 0; ρð0Þ ¼−
1

Γ̄
;

βð0Þ ¼ cotθ

23=2Γ
; πð0Þ ¼ iasinθ

21=2Γ̄2
; τð0Þ ¼−

iasinθ

21=2Σ
;

μð0Þ ¼−
Δ
2ΣΓ̄

; γð0Þ ¼ μð0Þ þ r− 1

2Σ
; αð0Þ ¼ πð0Þ− β̄ð0Þ;

ð3Þ

and Ψð0Þ
4 ¼ Ψð0Þ

3 ¼ Ψð0Þ
1 ¼ Ψð0Þ

0 ¼ 0;Ψð0Þ
2 ¼ −Γ̄−3. The

overline operation ¯ð…Þ denotes the complex conjugation.

A. Derivative operators

There are three primary derivative operators in the NP
formalism

Dð0Þ ¼ lμ∇μ ¼ ∂r þ
r2 þ a2

Δ
∂t þ

a
Δ
∂ϕ;

Δð0Þ ¼ nμ∇μ ¼ −
Δ
2Σ

�
∂r −

r2 þ a2

Δ
∂t −

a
Δ
∂ϕ

�
;

δð0Þ ¼ mμ∇μ ¼
1ffiffiffi
2

p
Γ
ð∂θ þ i csc θ∂ϕ þ ia sin θ∂tÞ:

Note that the derivative operator Δð0Þ is not to be confused
with the scalar function Δ. To facilitate our upcoming
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derivation, it is advantageous to follow Chandrasekhar [48]
(see Chap. 8) and define operators

Dn ¼ ∂r þ
ðr2 þ a2Þ

Δ
∂t þ

a
Δ
∂ϕ þ 2n

r − 1

Δ
;

D†
n ¼ ∂r −

ðr2 þ a2Þ
Δ

∂t −
a
Δ
∂ϕ þ 2n

r − 1

Δ
;

L†
n ¼ ∂θ þ i csc θ∂ϕ þ ia sin θ∂t þ n cot θ;

Ln ¼ ∂θ − i csc θ∂ϕ − ia sin θ∂t þ n cot θ: ð4Þ

Here n is typically an integer. We can see that D and D† do
not have θ dependence, whereas L and L† do not have r
dependence. These operators are related to δð0Þ, Δð0Þ, and
Dð0Þ via

δð0Þ þ 2nβð0Þ ¼ 1ffiffiffi
2

p
Γ
L†
n; δ̄ð0Þ þ 2nβ̄ð0Þ ¼ 1ffiffiffi

2
p

Γ̄
Ln;

Δð0Þ − 2nðγ − μÞð0Þ ¼Δð0Þ − 2nðγ̄ − μ̄Þð0Þ ¼ −
Δ
2Σ

D†
n;

Dð0Þ ¼D0: ð5Þ

While acting on eimϕ−iωt, they reduce to

Dn ¼ ∂r −
iK
Δ

þ 2n
r − 1

Δ
; D†

n ¼ ∂r þ
iK
Δ

þ 2n
r − 1

Δ
;

L†
n ¼ ∂θ − Pþ n cot θ;

with

K ¼ ðr2 þ a2Þω− am; P ¼ −aω sinθþm cscθ: ð6Þ

Note that here we adopt Teukolsky’s convention for K [49],
which differs from Chandrasekhar’s by a minus sign.
In our following calculations, we frequently encounter

two combinations of operators

δð0Þ − pβð0Þ − qᾱð0Þ þmπ̄ð0Þ þ nτð0Þ;

Δð0Þ − pγð0Þ − qγ̄ð0Þ þmμ̄ð0Þ þ nμð0Þ;

with p, q, m, n being integers. They can be converted to

1ffiffiffi
2

p
Γ

�
L†
ðq−pÞ=2 −

�
m − q
Γ

þ n
Γ̄

�
ia sin θ

�
; ð7aÞ

−
Δ
2Σ

�
D†

ðpþqÞ=2 þ
ðm − qÞ

Γ
þ ðn − pÞ

Γ̄

�
; ð7bÞ

respectively. In fact, the subscripts ðp − qÞ=2 and ðpþ
qÞ=2 are called spin and boost weight in the Geroch-Held-
Penrose (GHP) formalism [50]. Normally, these operators
are applied sequentially. The factors Δ;Γ;Σ; sin θ can be
pulled out via the following commutation relations [48]:

ΔDnþ1 ¼ DnΔ; ΔD†
nþ1 ¼ D†

nΔ;

½D†
m;Γn� ¼ nΓn−1; ½D†

m; Γ̄n� ¼ nΓ̄n−1;

sin θLnþ1 ¼ Ln sin θ; sin θL†
nþ1 ¼ L†

n sin θ;

½L†
m;Γn� ¼ −inaΓn−1 sin θ; ½L†

m; Γ̄n� ¼ inaΓ̄n−1 sin θ:

ð8Þ

Notably, the commutation does not change the structure

�
L†
… −

�
…

Γ
þ…

Γ̄

�
ia sin θ

�
;

�
D†

… þ
�
…

Γ
þ…

Γ̄

��
:

Therefore, they can be used as (the only) two building
blocks for θ and r derivatives in the procedure of metric
reconstruction. This is a major advantage of Dn, Ln and
their daggers over δð0Þ, Δð0Þ, and Dð0Þ.
For completeness, we also provide the expressions of

GHP operators [50]:

þ ¼ Dð0Þ − pϵð0Þ − qϵ̄ð0Þ;

þ0 ¼ Δð0Þ − pγð0Þ − qγ̄ð0Þ;

ðGHP ¼ δð0Þ − pβð0Þ − qᾱð0Þ;

ð0GHP ¼ δ̄ð0Þ − pαð0Þ − qβ̄ð0Þ; ð9Þ

in terms of Chandrasekhar’s:

þ ¼ D0;

þ0 ¼ −
Δ
2Σ

�
D†

ðpþqÞ=2 −
q
Γ
−
p
Γ̄

�
;

ðGHP ¼
1ffiffiffi
2

p
Γ

�
L†
ðq−pÞ=2 þ

iqa sin θ
Γ

�
;

ð0GHP ¼
1ffiffiffi
2

p
Γ̄

�
Lðp−qÞ=2 −

ipa sin θ
Γ̄

�
: ð10Þ

Here the prime operation corresponds to the exchange of
the spinor basis [50].
Finally, for Schwarzschild BHs, L†

s and Ls become the ð
operators for spin-weighted spherical harmonics

−L†
−s ¼ ð ¼ −ð∂θ −m csc θ − s cot θÞ;

−Ls ¼ ð̄ ¼ −ð∂θ þm csc θ þ s cot θÞ: ð11Þ

B. Teukolsky equation

To the linear order, the perturbations of Ψ0;4 are
described by the Teukolsky equation [49,51]

T
h
sψ

ð1Þ
i
¼ 0; ð12Þ
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where 2ψ
ð1Þ ¼ Ψð1Þ

0 and −2ψ
ð1Þ ¼ Γ̄4Ψð1Þ

4 , meanwhile we assume there are no matter sources. The Teukolsky operator
T reads

T ¼
�ðr2 þ a2Þ2

Δ
− a2sin2 θ

�
∂
2

∂t2
þ 4ar

Δ
∂
2

∂t∂ϕ
þ
�
a2

Δ
−

1

sin2 θ

�
∂
2

∂ϕ2
− Δ−s ∂

∂r

�
Δsþ1

∂

∂r

�
−

1

sin θ
∂

∂θ

�
sin θ

∂

∂θ

�

− 2s

�
aðr − 1Þ

Δ
þ i cos θ

sin2 θ

�
∂

∂ϕ
− 2s

�
r2 − a2

Δ
− r − ia cos θ

�
∂

∂t
þ ðs2cot2 θ − sÞ: ð13Þ

Decomposing sψ
ð1Þ into time and angular harmonics

sψ
ð1Þ ¼ sR

ð1Þ
lmωðrÞsSlmωðθÞeiðmϕ−ωtÞ; ð14Þ

the radial function sR
ð1Þ
lmωðrÞ satisfies [48]

ðΔD1D
†
2 þ 6iωrÞþ2R

ð1Þ
lmω ¼ þ2λ

ð1Þ
lmωþ2R

ð1Þ
lmω; ð15aÞ

ðΔD†
−1D0 − 6iωrÞ−2Rð1Þ

lmω ¼ −2λ
ð1Þ
lmω−2R

ð1Þ
lmω; ð15bÞ

with �2λ
ð1Þ
lmω being the angular eigenvalues. By imposing the

boundary conditions of a QNM, i.e., ingoing at the horizon
rþ and outgoing at infinity, an analytic representation for

sR
ð1Þ
lmωðrÞ can be constructed via Leaver’s method [52]

sR
ð1Þ
lmω ¼ eiωrðr − rþÞ−s−iσþðr − r−Þ−1−sþ2iωþiσþ

×
X∞
n¼0

an

�
r − rþ
r − r−

�
n
; ð16Þ

with σþ ¼ ðωrþ − am=2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
. The coefficients an

are determined by three-term recurrence relations

α0a1 þ β0a0 ¼ 0; αnanþ1 þ βnan þ γnan−1 ¼ 0; ð17Þ

where αn, βn, and γn are given in Appendix A. For our later
convenience, we define

XLðrÞ ¼ eiωrðr − rþÞ−iσþðr − r−Þ2iωþiσþ

¼ eiωðr�−4rþu=aÞþimu; ð18Þ

with

dr�
dr

¼ r2 þ a2

Δ
;

du
dr

¼ a
Δ
; ð19Þ

namely,

r� ¼ rþ rþffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p ln

�
r − rþ
rþ

�
−

r−ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p ln

�
r − r−
r−

�
;

u ¼ a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p ln
r − rþ
r − r−

:

The radial derivative of XL is given by

X0
LðrÞ ¼

iXLðrÞ
Δ

½amþ ωða2 þ r2 − 4rþÞ�: ð20Þ

III. RECONSTRUCTION

After specifying the Weyl scalar Ψð1Þ
4 for a QNM to the

linear order, a crucial step toward second-order perturba-
tions involves identifying a set of NP variables and a

metric that is consistent with Ψð1Þ
4 . This process is gen-

erally referred to as metric reconstruction. The method
was pioneered by Chrzanowski [43] and Cohen and
Kegeles [44,45] for source-free scenarios. In the presence
of arbitrary matter sources, the method was extended
recently by Green et al. [53]. The CCK method centers
around constructing a Hertz potential Ψ as a solution to the
Teukolsky equation. Subsequently, from Ψ, a perturbed
metric and its corresponding spin coefficients can be
derived, satisfying the linearized Einstein equations on
top of a Kerr background. Wald’s elegant argument [54]
attests to the viability of this methodology. However, a
limitation of this approach lies in the challenge of directly
inverting the differential equation to obtain the Hertz

potential, given a particular Ψð1Þ
4 . A work around involves

bypassing the use of the Hertz potential and performing

reconstruction directly from Ψð1Þ
4 [34,35]. This alternative

method requires solving a set of differential equations.
In our specific scenario, namely, the second-order effect

of a QNM, the limitations associated with CCK are
effectively eliminated. First, without the presence of matter
sources, the complexity introduced by the stress tensor [53]
becomes irrelevant and the Hertz potential provides a
comprehensive description for the perturbed metric (modulo
gauge freedom and “zero modes”). Second, as demonstrated
below in Sec. III A, the Hertz potential can be uniquely

determined by Ψð1Þ
4 and the boundary condition of a QNM.

Additionally, a notable advantage of CCK is its exclusive
dependence on the differentiation of the Hertz potential, in
contrast to the need for solving a set of partial derivative
differential equations [34,35]. This feature not only provides
us with more analytical insights but also practical conven-
ience in the numerical implementation. In fact, wewill show
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in Sec. III B that the perturbed Weyl scalars, Ψð1Þ
3 and Ψð1Þ

2 ,
can be succinctly expressed in terms of the Hertz potential.
The CCK procedure is accompanied by two gauge

choices [43]: the ingoing and outgoing radiation gauges.
In particular, the outgoing radiation gauge (ORG) is
asymptotically flat [22], and its solution is directly related
to physical observables, such as energy radiation and the
excitation factor of second-order QNMs at future null
infinity. Therefore, it is reasonable to adopt ORG to
compute the gauge invariant excitation factor at infinity,

even though the second-order perturbation Ψð2Þ
4 generally

depends on the choice of gauge and tetrad [22].
Given the considerations above, we will adopt CCK

and ORG for our subsequent calculations. Below, we
first determine the Hertz potential for a linear QNM in
Sec. III A. Subsequently, in Sec. III B, we present the
representation of the metric and Newman-Penrose varia-
bles in connection with the determined Hertz potential.

A. Determining the Hertz potential

In ORG, the Hertz potential ΨORG is related to Ψð1Þ
4

via [55–57]

Ψð1Þ
4 ¼ 1

32

Δ4

Γ̄4
D†

2D
†
2D

†
2D

†
2Ψ̄ORG; ð21Þ

where the bar stands for the complex conjugate. Since it is
a linear differential equation of order four, Ψ̄ORG consists
of a homogeneous part and a particular solution. First,
the homogeneous part solves D†4

2 Ψ̄hom ¼ 0, which is
equivalent to

D†4
0 Δ2Ψ̄hom ¼ 0: ð22Þ

Here we have used the commutation relation ΔD†
nþ1 ¼

D†
nΔ in Eq. (8). Following [58], a general solution reads

Δ2Ψ̄hom¼
Z

dωe−iωðtþr�Þ
X
m

X3
i¼0

eimðϕþuÞBimωðθÞri; ð23Þ

where BimωðθÞ’s are arbitrary functions of θ and u is
defined in Eq. (19). We can see that there are only ingoing
modes depending on tþ r�. Since the Hertz potential is

related to the Weyl scalar Ψð1Þ
0 through only time and

angular derivatives [55,57]

Ψð1Þ
0 ¼ 1

8

�
L†
−1L

†
0L

†
1L

†
2Ψ̄ORG þ 12∂tΨORG

�
: ð24Þ

The homogenous part Ψ̄hom corresponds to a GW emerg-
ing from past null infinity, which should vanish in our
pure-QNM context.

On the other hand, an efficient approach to determine the
particular solution is to solve the s ¼ 2 source-free
Teukolsky equation, which the Hertz potential ΨORG
should satisfy in ORG [43], with the same QNM boundary

conditions1 forΨð1Þ
4 . Leveraging the Teukolsky-Starobinsky

relation [59,60], we ensure that the solution consistently
complies with Eq. (21). As a result, the Hertz potential

associated with Ψð1Þ
4 can be written as [5]

ΨORG ¼
X
lmn

BðaÞ
lmωþ2RlmωðrÞþ2SlmωðθÞeimϕe−iωlmnt

þBðbÞ
lmωþ2R̄lmωðrÞþ2S̄lmωðπ− θÞe−imϕeiω̄lmnt; ð25Þ

where BðaÞ
lmω’s and BðbÞ

lmω’s are constants, while n stands for
the radial overtone index. In the following discussions, we

restrict ourselves to a single mode in Ψð1Þ
4 , namely,

Ψð1Þ
4 ∼ eimϕe−iωlmnðt−r�Þ−2SlmωðθÞ; r → ∞; ð26Þ

which implies

Ψ̄ORG ¼ þ2RlmωðrÞþ2Slmωðπ − θÞeimϕe−iωlmnt

¼ ð−1Þmþl
þ2RlmωðrÞ−2SlmωðθÞeimϕe−iωlmnt; ð27Þ

where we have used the property of spin-weighted sphe-
roidal harmonics [61]

sSlmωðπ − θÞ ¼ ð−1Þmþl
−sSlmωðθÞ: ð28Þ

As discussed in Sec. II B, Leaver’s representation for

þ2Rlmω is given by

þ2Rlmω ¼ XLðrÞðr − r−Þ−1Δ−2
X∞
n¼0

an

�
r − rþ
r − r−

�
n
: ð29Þ

At infinity, its asymptotic behavior reads

þ2Rlmω ¼ XLðrÞðr − r−Þ−1Δ−2
�X∞

n¼0

an

�

×

�
1þ aHertz

r
þO

�
1

r2

��
; ð30Þ

with

aHertz ¼
i

2ωlmn
þ2λ

ð1Þ
lmω − 4þ 2iam− r− − 4irþωlmn: ð31Þ

1Kerr BHs have the same QNM frequencies for s ¼ �2
perturbations.
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B. Determining the metric
and Newman-Penrose variables

After obtaining the Hertz potentialΨORG, we then follow
CCK to compute the metric and NP variables. In particular,
we will cast them into forms that are convenient for
numerical calculations.

1. Metric

In ORG, the nonvanishing metric components are
hm̄ m̄; hlm̄, hll, and their complex conjugates. They are
related to the Hertz potential through [43]

hll ¼ ρ̄−4ðδ− 3ᾱ− βþ 5π̄Þðδ− 4ᾱþ π̄ÞΨ̄ORGþ c:c:; ð32aÞ

hm̄ m̄ ¼ ρ̄−4ðΔþ 5μ̄ − 3γ̄ þ γÞðΔþ μ̄ − 4γ̄ÞΨ̄ORG; ð32bÞ

hlm̄ ¼ 1

2
ρ̄−4ðδ − 3ᾱþ β þ 5π̄ þ τÞðΔþ μ̄ − 4γ̄Þ

þ 1

2
ρ̄−4ðΔþ 5μ̄ − μ − 3γ̄ − γÞðδ − 4ᾱþ π̄ÞΨ̄ORG:

ð32cÞ

Here c. c. stands for the complex conjugate. With the help
of Eq. (5), they become

hll ¼
Γ2

2

�
L†
1 þ

2ia sin θ
Γ

�
L†
2Ψ̄ORG þ c:c:; ð33aÞ

hm̄ m̄ ¼ Δ2
Γ2

4Γ̄2

�
D†

2 −
2

Γ

�
D†

2Ψ̄ORG; ð33bÞ

hlm̄ ¼ −
ΔΓ2

2
ffiffiffi
2

p
Γ̄

�
a2 sin 2θ

Σ
D†

2 þ
�
D†

2 −
2r
Σ

�
L†
2

�
Ψ̄ORG:

ð33cÞ

For a Schwarzschild BH, the expressions are reduced to

hll ¼
r2

2
ððΨ̄ORG þ c:c:;

hm̄ m̄ ¼ Δ2

4

�
D†

2 −
2

r

�
D†

2Ψ̄ORG;

hlm̄ ¼ rΔ
2
ffiffiffi
2

p
�
D†

2 −
2

r

�
ðΨ̄ORG; ð34Þ

where we have used Eq. (11).

2. Directional derivatives and spin coefficients

In ORG, the first-order directional derivatives are given
by [22]

Dð1Þ ¼ −
1

2
hllΔð0Þ; ð35aÞ

Δð1Þ ¼ 0; ð35bÞ

δð1Þ ¼ −hlmΔð0Þ þ 1

2
hmmδ̄

ð0Þ: ð35cÞ

From Eq. (32) we can see that δð1Þ is contributed exclu-
sively by ΨORG and not by its complex conjugate.
Similarly, the spin coefficients βð1Þ, ᾱð1Þ, τð1Þ, and π̄ð1Þ
are given by [22]

βð1Þ ¼ −
1

4
ðΔþ 2γ þ μþ 2μ̄Þð0Þhlm

þ 1

4
ðδ̄þ 2β̄ − π − τ̄Þð0Þhmm;

ᾱð1Þ ¼ −
1

4
ðδ̄ − 2αþ π þ τ̄Þð0Þhmm

−
1

4
ðΔþ 4γ̄ − 2γ þ μ − 2μ̄Þð0Þhlm;

τð1Þ ¼ 1

2
ðΔ − 2γ þ μÞð0Þhlm −

1

2
πð0Þhmm;

π̄ð1Þ ¼ −
1

2
ðΔ − 2γ þ μÞð0Þhlm −

1

2
τ̄ð0Þhmm: ð36Þ

They do not depend on Ψ̄ORG either. Here we emphasize
that the expressions above have been simplified in ORG.
See, e.g., [34] for the full expressions.
Meanwhile, three spin coefficients vanish identically in

ORG [22]

νð1Þ ¼ γð1Þ ¼ μð1Þ ¼ 0: ð37Þ

The expressions of other spin coefficients are not inform-
ative, therefore we include them in Appendix B.

3. Ψ2

Ψ2 is intricately linked to the Hertz potential, e.g., see
the ingoing-radiation-gauge counterpart in Eq. (97) of
Ref. [56]. Nevertheless, we find that its expression can
be significantly simplified to

16Γ̄4

Δ2
Ψð1Þ

2 ¼ Γ̄2

�
D†

2 −
2

Γ̄

�
2

L†
1L

†
2Ψ̄ORG

− 4ia sin θΓ̄
�
D†

2 −
2

Γ̄

��
D†

2 −
1

Γ̄

�
L†
2Ψ̄ORG

− 6a2sin2 θ

�
D†

2 −
2

Γ̄

�
D†

2Ψ̄ORG: ð38Þ

In particular, for Schwarzschild BHs, we have

16r2

Δ2
Ψð1Þ

2 ¼
�
D†

2 −
2

r

�
2

ððΨ̄ORG: ð39Þ

Details of the derivation can be found in Appendix C.
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4. Ψ3

To obtain Ψ3, we start from the Ricci identity [48]

Ψ3 ¼ ðδ̄þ β̄ − τ̄Þγ − ðΔ − γ̄ þ μ̄Þαþ ðρþ ϵÞν − ðτ þ βÞλ:
ð40Þ

Linearizing it leads to

Ψð1Þ
3 ¼ ðδ̄þ β̄ − τ̄Þð1Þγð0Þ − ðΔ − γ̄ þ μ̄Þð0Þαð1Þ

− ðτ þ βÞð0Þλð1Þ; ð41Þ

since μð1Þ ¼ γð1Þ ¼ νð1Þ ¼ Δð1Þ ¼ νð0Þ ¼ λð0Þ ¼ 0. We can

then express Ψð1Þ
3 in terms of the Hertz potential by using

the results given in Secs. III B 1 and III B 2. This yields a
tedious expression, e.g., see the ingoing-radiation-gauge
counterpart in Eq. (98) of Ref. [56]. However, by virtue of
Chandrasekhar’s operators,D†

n andL†
n, and the commutator

in Eq. (C13a), we find the expression can be simplified
straightforwardly into

16
ffiffiffi
2

p
Γ̄3

Δ3
Ψð1Þ

3 ¼ −
�
L†
2 −

3ia sin θ
Γ̄

��
D†

2 −
1

Γ̄

�
3

Ψ̄ORG

þ 6ia sin θ
Γ̄2

�
D†

2 −
2

Γ̄

�
2

Ψ̄ORG: ð42Þ

For Schwarzschild BHs, it reduces to

16
ffiffiffi
2

p
r3

Δ3
Ψð1Þ

3 ¼
�
D†

2 −
1

r

�
3

ðΨ̄ORG: ð43Þ

5. Ψ4

Finally, to compute Ψ4, we adopt the Ricci identity [48]

Ψ4 ¼ ðδ̄þ 3αþ β̄þ π− τ̄Þν− ðΔþ μþ μ̄þ 3γ− γ̄Þλ: ð44Þ

By using νð0Þ ¼ λð0Þ ¼ νð1Þ ¼ 0 and μð0Þ − γð0Þ ¼
μ̄ð0Þ − γ̄ð0Þ, the expression becomes

Ψð1Þ
4 ¼ −ðΔþ 2μþ 2γÞð0Þλð1Þ: ð45Þ

We then insert the expression of λð1Þ in Eq. (B1) to
reproduce the known result in the literature [55–57]

Ψð1Þ
4 ¼ 1

32

Δ4

Γ̄4
D†

2D
†
2D

†
2D

†
2Ψ̄ORG: ð46Þ

This serves as a consistency check for our previous steps to
determine the Hertz potential, metric, and spin coefficients.
After applying Leaver’s representation for Ψ̄ORG in Eq. (29),

we obtain the asymptotic expression of the ðl; mÞ harmonic

of Ψð1Þ
4 at infinity

h
rΨð1Þ

4

ið∞Þ
l;m

¼ ω4
lmn

2
e−iωlmnðt−r�Þ

X∞
n¼0

an: ð47Þ

IV. THE SECOND-ORDER TEUKOLSKY
EQUATION

It is known that the second-order perturbation Ψð2Þ
4 still

follows the Teukolsky equation [22]

T
h
Ψð2Þ

4

i
¼ Sð2Þ4 ; ð48Þ

where the source term Sð2Þ4 is given by

Sð2Þ4 ¼ −
�
dð0Þ4 ðDþ 4ϵ− ρÞð1Þ − dð0Þ3 ðδþ 4β− τÞð1Þ

�
Ψð1Þ

4

þ
�
dð0Þ4 ðδ̄þ 2αþ 4πÞð1Þ − dð0Þ3 ðΔþ 2γþ 4μÞð1Þ

�
Ψð1Þ

3

− 3

�
dð0Þ4 λð1Þ − dð0Þ3 νð1Þ

�
Ψð1Þ

2

− 3Ψð0Þ
2

�
ðd4 − 3μÞð1Þλð1Þ − ðd3 − 3πÞð1Þνð1Þ

�
; ð49Þ

and the two operators d3;4 read

d3 ¼ δ̄þ 3αþ β̄ þ 4π − τ̄; ð50aÞ

d4 ¼ Δþ 4μþ μ̄þ 3γ − γ̄: ð50bÞ

From Sec. III B 2, we notice that νð1Þ ¼ μð1Þ ¼ γð1Þ ¼
Δð1Þ ¼ 0 in ORG, which yields dð1Þ4 ¼ 0. As a result, the
source reduces to

Sð2Þ4 ¼ −
�
dð0Þ4 ðDþ 4ϵ − ρÞð1Þ − dð0Þ3 ðδþ 4β − τÞð1Þ

�
Ψð1Þ

4

þ dð0Þ4

�
ðδ̄þ 2αþ 4πÞð1ÞΨð1Þ

3 − 3λð1ÞΨð1Þ
2

�
:

Since all the reconstructed quantities depend linearly on
ΨORG and its complex conjugate Ψ̄ORG, they lead to three
types of quadratic effects:

Ψ2
ORG ∼ e2iω̄lmnt; ΨORGΨ̄ORG ∼ eiðω̄lmn−ωlmnÞt; ð51Þ

and

Ψ̄2
ORG ∼ e−2iωlmnt: ð52Þ
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Our subsequent calculations focus exclusively on the excitation of the mode ∼e−2iωlmnt in Eq. (52). Therefore, terms that
depend on ΨORG do not contribute to the final second-order Teukolsky equation. Accordingly, in the expressions below, we
will simply drop terms of ΨORG. Whenever this is done we will indicate that such terms have been dropped by using the

symbol ≈ instead of ¼ : For instance, in Sec. III B 2, we notice that δð1Þ is fully contributed by ΨORG, the term δð1ÞΨð1Þ
4 in

Sð2Þ4 is irrelevant to the excitation of ∼e−2iωlmnt, namely δð1ÞΨð1Þ
4 ≈ 0. Similarly, we have βð1Þ ≈ τð1Þ ≈ 0. With this

observation, the source Sð2Þ4 further reduces to

Sð2Þ4 ≈ dð0Þ4

h
−ðDþ 4ϵ − ρÞð1ÞΨð1Þ

4 þ ðδ̄þ 2αþ 4πÞð1ÞΨð1Þ
3 −3λð1ÞΨð1Þ

2

i
: ð53Þ

At this stage, we can express Sð2Þ4 in terms of the Hertz potential by inserting the reconstructed variables in Sec. III, and
obtain

2Γ̄4ΣSð2Þ4 ×
16

Δ6
≈ e−2iωlmntþ2imϕ

�
A1

h
L†
2SðθÞ

i
2 þ A2

h
SðθÞL†

1L
†
2SðθÞ

i
þ A3

h
3ia sin θSL†

2SðθÞ
i
þ A4½a sin θSðθÞ�2

�
; ð54Þ

with

A1 ¼ −
45R2Γ
2Γ̄7

þ 3ð15Γ − Γ̄ÞRD†
2R

Γ̄6
þ
3ðΓ̄ − 15ΓÞ

	
D†

2R


2

2Γ̄5
þ ð3Γ̄ − 42ΓÞRD†2

2 R
2Γ̄5

þ 6RΓD†3
2 R

Γ̄4
þ 3ð7Γ − Γ̄ÞD†

2RD
†2
2 R

Γ̄4

þ
3ð2Γ̄ − 13ΓÞ

	
D†2

2 R


2

8Γ̄3
þ ðΓ̄ − 12ΓÞD†

2RD
†3
2 R

2Γ̄3
−
ð7Γþ 4rÞRD†4

2 R
8Γ̄3

þ ð11Γ − Γ̄ÞD†2
2 RD†3

2 R
4Γ̄2

þ ð4Γþ rÞD†
2RD

†4
2 R

4Γ̄2

þ rRD†5
2 R

4Γ̄2
−
3Γ
	
D†3

2 R


2

8Γ̄
−
ΓD†2

2 RD†4
2 R

2Γ̄
−
ΓD†

2RD
†5
2 R

8Γ̄
; ð55Þ

A2 ¼ −
3RD†

2R
Γ̄5

þ 3rRD†2
2 R

Γ̄5
þ
3
	
D†

2R


2

Γ̄4
þ
3r
	
D†2

2 R


2

2Γ̄3
−
3ð2rþ Γ̄ÞD†

2RD
†2
2 R

2Γ̄4
−
3RΓD†3

2 R
2Γ̄4

þ ðrþ ΓÞD†
2RD

†3
2 R

Γ̄3

þ ð3Γ − Γ̄ÞRD†4
2 R

4Γ̄3
−
ð2rþ 3ΓÞD†2

2 RD†3
2 R

4Γ̄2
þ ðΓ̄ − 6ΓÞD†

2RD
†4
2 R

8Γ̄2
þ ðΓ̄ − 2ΓÞRD†5

2 R
8Γ̄2

þ
Γ
	
D†3

2 R


2

4Γ̄
þ 7ΓD†2

2 RD†4
2 R

16Γ̄

þ ΓD†
2RD

†5
2 R

4Γ̄
þ RΓD†6

2 R
16Γ̄

; ð56Þ

A3 ¼
5ð2Γ̄ − 3ΓÞRD†

2R
Γ̄7

þ
ð15Γ − 11Γ̄Þ

	
D†

2R


2

Γ̄6
þ 5ð2Γ − Γ̄ÞRD†2

2 R
Γ̄6

þ ð23Γ̄ − 34ΓÞD†
2RD

†2
2 R

2Γ̄5
þ ðΓ̄ − 6ΓÞRD†3

2 R
2Γ̄5

þ
3ð3Γ − 2Γ̄Þ

	
D†2

2 R


2

2Γ̄4
þ ð15Γ − 8Γ̄ÞD†

2RD
†3
2 R

3Γ̄4
þ ð2rþ ΓÞRD†4

2 R
6Γ̄4

þ ð16Γ̄ − 29ΓÞD†2
2 RD†3

2 R
12Γ̄3

þ ð4Γ̄ − 21ΓÞD†
2RD

†4
2 R

24Γ̄3
−
ð3Γ̄þ 2rÞRD†5

2 R
24Γ̄3

þ
ð3Γ − 4Γ̄Þ

	
D†3

2 R


2

12Γ̄2
þ ð8Γ − Γ̄ÞD†2

2 RD†4
2 R

24Γ̄2
þ rD†

2RD
†5
2 R

6Γ̄2
þ RD†6

2 R
24Γ̄

;

ð57Þ

A4 ¼
ð45Γ− 60Γ̄Þ

	
D†

2R


2

2Γ̄7
þ ð42Γ̄− 30ΓÞD†

2RD
†2
2 R

Γ̄6
þ
9ð2Γ− 3Γ̄Þ

	
D†2

2 R


2

2Γ̄5
þ 9ð2Γ− 3Γ̄ÞD†

2RD
†3
2 R

2Γ̄5

þ 3ð5Γ̄− 3ΓÞD†2
2 RD†3

2 R
2Γ̄4

þ ð5Γ̄− 3ΓÞD†
2RD

†4
2 R

2Γ̄4
þ
3ðΓ− 2Γ̄Þ

	
D†3

2 R


2

8Γ̄3
þ ðΓ− 2Γ̄ÞD†2

2 RD†4
2 R

2Γ̄3
þ ðΓ− 2Γ̄ÞD†

2RD
†5
2 R

8Γ̄3
:

ð58Þ
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Here R refers to the radial function of the Hertz potential

þ2Rlmω in Eq. (29), and SðθÞ stands for −2SlmωðθÞ in
Eq. (27).

It is evident that Sð2Þ4 cannot be decomposed into a
structure of ðangularÞ × ðradialÞ. Nevertheless, in Eq. (54),
we can still classify the terms based on four primary
angular dependencies:h

L†
2SðθÞ

i
2
; ½SðθÞL†

1L
†
2SðθÞ�;

½a sin θSðθÞL†
2SðθÞ�; ½a sin θSðθÞ�2:

The angular dependence of their coefficients A1..4 is solely
determined by the scalar function Γ ¼ rþ ia cos θ and its
complex conjugate Γ̄. In particular, we have

A1..4 ∼
Γj

Γ̄k ; ð59Þ

with j ¼ 0; 1 and k ¼ 1..7.

Since Sð2Þ4 is nonseparable, a linear QNM can induce
quadratic effects in various spin-weighted spheroidal har-
monics. To investigate a specific excitation channel, such as

ðlL; mL; nLÞ × ðlL; mL; nLÞ → ðlQ;mQÞ; ð60Þ

angular projection of the second-order Teukolsky equation
is necessary. In the rest of this section, we will accomplish
this goal via two steps. First in Sec. IVA, we follow
Teukolsky [49] to decompose the Teukolsky operator on
the left-hand side into angular and radial parts. Next in
Sec. IV B, we use the property of spin-weighted spheroidal
harmonics to perform the projection. Finally, in Secs. IV C
and IV D, we explore the features of the angular projection
for Schwarzschild and Kerr BHs, respectively. For con-
ciseness, we will use the notation ωL to stand for the
complex frequency of the linear mode ωlmn.

A. Separation of the Teukolsky operator

We follow Teukolsky [49] and rescale both sides of the
equation by a factor of 2Γ̄4Σ. This converts the variable to
ψ ð2Þ ¼ Γ̄4Ψð2Þ

4 . Then we can write

ψ ð2Þ ¼ e−2iωLte2imLϕ
X
l

Rð2Þ
l ðrÞSð2Þl ðθÞ: ð61Þ

Notice that the time dependence has been set to e−2iωLt, to
match that of the source term Ψ̄2

ORG ∼ e−2iωLt. The azimu-
thal quantum number has also been chosen to be twice the
linear one mL. In other words, Eq. (61) represents a
particular solution to the second-order perturbation equa-
tion. The homogenous part traces the evolution of linear
QNMs, which is not pertinent to our studies. Plugging
Eq. (61) into Eq. (48) yields

e−2iωLtþ2imLϕ
X
l

�
Sð2Þl ðθÞðΔD†ð2Þ

−1 Dð2Þ
0 − 12iωLrÞRð2Þ

l ðrÞ

þ Rð2Þ
l ðrÞðLð2Þ

−1L
†ð2Þ
2 þ 12aωL cos θÞSð2Þl ðθÞ

�

¼ −2Γ̄4ΣSð2Þ4 : ð62Þ

We note that the operatorsDð2Þ’s and Lð2Þ’s (including their
daggers) correspond to the second-order mode with the

frequency 2ωL. The angular basis Sð2Þl can be chosen to
satisfy

ðLð2Þ
−1L

†ð2Þ
2 þ 12aωL cos θÞSð2Þl ¼ −λð2Þl Sð2Þl ; ð63Þ

where λð2Þl is the corresponding eigenvalue. Then Eq. (62)
reduces to

e−2iωLtþ2imϕ
X
l

Sð2Þl ðθÞðΔD†ð2Þ
−1 Dð2Þ

0 − 12iωLr − λð2Þl ÞRð2Þ
l ðrÞ

¼ −2Γ̄4ΣSð2Þ4 : ð64Þ

B. Angular projection

For a certain ω and m, the spin-weighted spheroidal
harmonics associated with different l’s are orthogonal. To
see this, we consider two different spin-weighted spheroi-
dal harmonics S1 and S2, satisfying

ðL−1L
†
2 þ 12aωL cos θÞS1 ¼ λ1S1; ð65aÞ

ðL−1L
†
2 þ 12aωL cos θÞS2 ¼ λ2S2; ð65bÞ

with λ1 ≠ λ2. The equations above yield

S2L−1L
†
2S1 − S1L−1L

†
2S2 ¼ ðλ1 − λ2ÞS1S2: ð66Þ

Integrating both sides with the measure sin θ leads to

ðλ1 − λ2Þ
Z

π

0

S1S2 sin θdθ

¼
Z

π

0

�
S2L−1L

†
2S1 − S1L−1L

†
2S2

�
sin θdθ: ð67Þ

The value of the right-hand side vanishes due to a property
of the angular operator L (see Lemma 4 in Chap. 8 of [48])

Z
π

0

gðLnfÞ sin θdθ ¼ −
Z

π

0

fðL†
1−ngÞ sin θdθ: ð68Þ

Therefore, we have
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Z
π

0

S1S2 sin θdθ ¼ 0; ð69Þ

since λ1 ≠ λ2.
Consequently, to consider the excitation channel in

Eq. (60), we can project both sides of Eq. (64) to the
angular basis of the child mode SlQðθÞ via:

ðΔD†ð2Þ
−1 Dð2Þ

0 − 12iωLr − λð2ÞlQ
ÞRð2Þ

lQ
ðrÞ

¼ −e−imQϕþ2iωLt

R
π
0 2Γ̄4ΣSð2Þ4 × SlQðθÞ sin θdθR

π
0 S2lQðθÞ sin θdθ

≡QðrÞ; ð70Þ

where we have defined the right-hand-side source to be
QðrÞ, which depends only on r. In Appendix E, we provide
an explicit expression of QðrÞ for Schwarzschild BHs with
lL ¼ 2 and lQ ¼ 4. By virtue of Leaver’s representation in
Eq. (29), QðrÞ has an asymptotic expansion as follows:

QðrÞ ¼ 4r2ω6
LX

2
LðrÞ

 X∞
n¼0

an

!
2�
1þO

�
1

r

��

×
D
SlLL

†
1L

†
2SlL −

	
L†
2SlL



2
����SlQE; ð71Þ

where the angular inner product hfjSlQi is defined to be

R
π
0 f × SlQ sin θdθR

π
0 S2lQ sin θdθ

: ð72Þ

We can seeQðrÞ ∼Oðr2Þ, an order lower than the left-hand
side of Eq. (70), which is Oðr3Þ. With this at hand, we can
solve Eq. (70) order by order in the large-r limit, which
yields

Rð2Þ
lQ

∝ ðr − rþÞX2
LΔ
�
1þ aQ

r
þO

�
1

r2

��
; ð73Þ

with

aQ ¼ 2þ 4iamL þ rþ þ i
λð2ÞlQ

2ωQ
− 8irþωL: ð74Þ

The undetermined coefficient in Eq. (73) corresponds to the
amplitude of the quadratic QNM, which is the target of
this work.

C. Schwarzschild black holes

For Schwarzschild BHs, the angular dependence of the

source Sð2Þ4 in Eq. (54) can be simplified significantly. In
particular, by the virtue of

L†
2SðθÞ ¼ −ð−2YlLmL

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlL þ 2ÞðlL − 1Þ

p
−1YlLmL

;

L†
1L

†
2SðθÞ ¼ ðð−2YlLmL

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlL þ 2ÞðlL þ 1ÞlLðlL − 1Þ

p
0YlLmL

; ð75Þ

we obtain

2Γ̄4ΣSð2Þ4 ×
16

Δ6
¼ ðlL þ 2ÞðlL − 1Þ−1Y2

lLmL
A1ðrÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlL þ 2ÞðlL þ 1ÞlLðlL − 1Þ

p
−2YlLmL

× 0YlLmL
A2ðrÞ: ð76Þ

Since Γ ¼ Γ̄ ¼ r, A1 and A2 are now independent of θ.
We can see there are only two types of angular depend-

ences: −1Y2
lLmL

, contributed by [Eq. (53)]

ðδ̄þ 2αþ 4πÞð1ÞΨð1Þ
3 ;

and −2YlLmL
× 0YlLmL

, by

−ðDþ 4ϵ − ρÞð1ÞΨð1Þ
4 − 3λð1ÞΨð1Þ

2 :

With this at hand, the angular projection in Eq. (70) can be
done analytically:

Z
−2YlLmL

× 0YlLmL
× −2ȲlQmQ

dΩ

¼
Z

ð−1ÞmQ−2YlLmL
× 0YlLmL

× 2YlQ;−mQ
dΩ

¼ ð−1ÞmQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lL þ 1Þ2ð2lQ þ 1Þ

4π

s

×

 
lL lL lQ
mL mL −mQ

!�
lL lL lQ
2 0 −2

�
; ð77Þ

and

Z
−1YlLmL

2 × −2ȲlQmQ
dΩ

¼
Z

ð−1ÞmQ−1YlLmL

2 × 2YlQ;−mQ
dΩ

¼ ð−1ÞmQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lL þ 1Þ2ð2lQ þ 1Þ

4π

s

×

 
lL lL lQ
mL mL −mQ

!�
lL lL lQ
1 1 −2

�
; ð78Þ

where we have used the 3 − j symbol. The corresponding
selection rule reads
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2mL ¼ mQ; lQ ≤ 2lL: ð79Þ
For lL ¼ mL ¼ 2 and lQ ¼ mQ ¼ 4, Eq. (77)¼ 5

2
ffiffiffiffiffiffi
42π

p ,

Eq. (78)¼ 5

3
ffiffiffiffi
7π

p .

As discussed in Appendix B of [36], in addition to

−1Y2
lLmL

and −2YlLmL
× 0YlLmL

, the other two spin-weighted
spherical harmonic multiplications: −3YlLmL

× 1YlLmL
and

−4YlLmL
× 2YlLmL

, also have nontrivial angular overlaps
with the child mode −2YlQmQ

; this can be seen from

Z
s1YlLmL

× s2YlLmL
× −2ȲlQmQ

dΩ

∼
�
lL lL lQ
s1 s2 −2

�
; ð80Þ

which requires s1 þ s2 ¼ −2. However, since the spin
weights of all the NP variables range from −2 to þ2,
there are no available scalars to be coupled with spin 1 (e.g.

Ψð1Þ
1 ) and 2 (e.g. Ψð1Þ

0 ) fields at the second order. Therefore,
these two angular components do not contribute to the
equation. In fact, Ψ1 and Ψ0 never formally enter into any
order of perturbation equations [22].

D. Kerr black holes

For Kerr BHs, the angular projection is complicated by
the coefficients A1..4 in Eq. (54), which gain θ dependence
via Γ and Γ̄. To construct an intuition into its spin
dependence, here we simply consider the projection for
the four angular bases

FIG. 1. The spin dependence of angular inner products between the spin-weighted spheroidal harmonic for the quadratic mode SlQmQ

and four angular bases ðL†
2SlLmL

Þ2 (blue), SlLmL
L†
1L

†
2SlLmL

(orange), −a sin θSlLmL
L†
2SlLmL

(green), and ða sin θSlLmL
Þ2 (red). Here we

consider lL ¼ mL ¼ 2, and ðlQ ¼ 5; mQ ¼ 4Þ (top row) and lQ ¼ mQ ¼ 4 (bottom row). The right (left) column corresponds to the
amplitude (phase) of the inner products. The spin ranges from 0 to 0.99. (a) The excitation channel: ð2; 2; 0Þ × ð2; 2; 0Þ → ð5; 4Þ and (b)
excitation channel: ð2; 2; 0Þ × ð2; 2; 0Þ → ð4; 4Þ.
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�
ðL†

2SlLmL
Þ2
����SlQmQ


;

�
SlLmL

L†
1L

†
2SlLmL

����SlQmQ


;�

a sin θSlLmL
L†
2SlLmL

����SlQmQ


;�

ða sin θSlLmL
Þ2
����SlQmQ


; ð81Þ

where the angular inner product h…j…i is defined in
Eq. (72). As we will show below in Sec. VI B, the nature of
the four integrals can offer a qualitative understanding of
how the excitability of a quadratic QNM depends on spins.
Generally speaking, the coupling ðlL; mL; nLÞ ×

ðlL; mL; nLÞ → ðlQ;mQÞ can be classified into two scenar-
ios: when lQ > 2lL and when lQ ≤ 2lL. The former violates
the selection rule in Eq. (79) for Schwarzschild BHs,
resulting in the absence of any quadratic excitation.
However, with an increase in the spins of BHs, the selection
rule is broken, leading to an amplification of the effect.
For instance, Fig. 1(a) shows the spin dependency of
the integrals for ðlL ¼ mL ¼ 2; nL ¼ 0Þ2 → ðlQ ¼ 5;
mQ ¼ 4Þ. In this calculation, we adopt the Black Hole
Perturbation Toolkit [62] for the evaluation of spin-
weighted spheroidal harmonics and employ Gauss-
Legendre quadrature for integration. The results reveal
that the amplitudes of the angular integrals vanish when
a ¼ 0 and demonstrate a nearly monotonic increase with
spin. The term of ða sin θSlLmL

L†
2SlLmL

Þ offers the strongest
angular contribution.
By contrast, the second scenario lQ ≤ 2lL satisfies the

selection rule. When a ¼ 0, the first two integrals in
Eq. (81) reduce to the 3 − j symbols.2 Figure 1(b) displays
the results for ðlL ¼ mL ¼ 2; nL ¼ 0Þ2 → ðlQ ¼ mQ ¼ 4Þ.
We can see the dominant components ðL†

2SlLmL
Þ2 and

ðSlLmL
L†
1L

†
2SlLmL

Þ decrease with spin.

V. DEALING WITH DIVERGENCE
AT BOUNDARIES: THE COMPLEX PLANE

APPROACH

For both linear and nonlinear QNM analysis, necessary
regularization procedures are often required to deal with
the “blowing-up” wave functions at spatial infinity and
BH horizon.3 For example, Detweiler [63] introduced
counterterms to eliminate singular terms for QNM excita-
tion computations, while Leaver [64] proposed integrating
along contours in the complex-r domain for similar prob-
lems. Later, the complex-contour technique was used to
introduce a mode “inner product” or “bilinear form”, which
formed the basis for the investigation of linear and nonlinear

waves in Kerr/Kerr-Newman spacetimes [24,65,66], as
well as exploring the spectral stability of near-extremal
spacetimes [67]. Recently, a new bilinear form was moti-
vated by the “conserved current” associated with the
Teukolsky operator [68], and it was employed to derive
QNM orthogonality.
In this work, we adopt this complex-plane technique to

solve the second-order equation in Eq. (70). Below, we
first provide some basic information about the method in
Sec. VA. Next in Sec. V B, we review the idea of the
bilinear form defined based on the complex-plane tech-
nique. In particular, we explain how it facilitates the
studies of eigenvalue perturbation (Sec. V B 1) and QNM
orthogonality (Sec. V B 2). We will show that the two
bilinear forms used in Refs. [24,65,66,68] yield the same
QNM orthogonality conclusion. At last, in Sec. V C, we
explain how to implement the complex contour for
computing second-order QNMs as the main purpose of
this work.

A. Branch cut and contour

The frequency-domain Teukolsky equation is usually
solved on the real-r axis. However, it is also instructive to
extend both the equation and its solutions in the complex-r
domain, in which case the analytical properties of the
solution, e.g., singularities and branch cuts, become
important. For example, the scalar function XLðrÞ in
Leaver’s solution [Eqs. (16) and (18)] has two singularities
at r� and the branch cuts ending at them. In Fig. 2, the
zigzag red line illustrates a convenient choice for the
branch cut. The corresponding logarithmic expressions are
given by

lim
r→right

ln r ¼ ln jrj þ iπ
2
; lim

r→left
ln r ¼ ln jrj− 3iπ

2
: ð82Þ

They capture the behavior of the logarithm as r approaches
the right and left sides of the cut, respectively.
Alongside the branch cut, we introduce a contour C in

Fig. 2. On both ends of this contour, the QNM boundary
condition ∼eiωlmnr� exhibits exponential decay due to the
positive real part of ωlmn. In addition, as the path remains a
finite distance from the horizon, it avoids the blowing-up
feature at rþ. Consequently, the wave function of a QNM
exhibits regular behavior throughout C and can be safely
treated with numerical methods.

B. Bilinear form

Consider two generic wave functions χðr; θÞ; ηðr; θÞ and
the frequency-domain Teukolsky operator T ðω; m; r; θÞ
[see Eq. (13), with ∂=∂t and ∂=∂ϕ replaced by −iω and
im, respectively.]. A bilinear form hji can be defined on the
contour C such that hχjT ηi ¼ hT χjηi [24,65,66]:

2They differ by a factor of 2π since the integration in Eq. (72)
does not include the azimuthal part.

3Another approach is to solve the wave on a hyperboloidal
slicing, as implemented in [35].
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hχjηi ¼
Z
C
ðr − rþÞsðr − r−Þsdr

Z
sin θdθχðr; θÞηðr; θÞ

¼ hηjχi; ð83Þ

where s is the spin of the field. If χ, η satisfy the QNM
boundary conditions then the contribution from both ends
of C may be exponentially suppressed similar to the QNMs.

1. Eigenvalue perturbation

The bilinear form can be used to study the eigenvalue
perturbation problem. Let us consider a QNM wave
function satisfying T ðω0Þψ0 ¼ 0 with a certain eigenfre-
quency ω0. If the wave equation is modified, e.g., due to the
presence of additional fields [65] and/or modification of the
underlying gravity theory [69–71], the wave operator can
often be written as T þ ϵΔT with ϵ being a bookkeeping
index, and the corresponding new eigenmode satisfies

½T ðω0 þ ϵω1Þ þ ϵΔT ðω0 þ ϵω1Þ�ðψ0 þ ϵψ1Þ ¼ 0; ð84Þ

where both the eigenfrequency and mode wave function are
expanded up to theOðϵÞ order. Up to the same order in ϵ the
above equation may be rewritten as

T ðω0Þψ1 þ ω1∂ωT ψ0 þ ΔT ðω0Þψ0 ¼ 0: ð85Þ

With the bilinear form introduced in Eq. (83) we can
realize that

hψ0jT ðω0Þψ1i ¼ hT ðω0Þψ0jψ1i ¼ 0 ð86Þ

so that Eq. (85) can be used to solve for ω1 without
knowing the expression of ψ1:

ω1 ¼ −
hψ0jΔT ψ0i
hψ0j∂ωT ψ0i

; ð87Þ

which is similar to the perturbation theory for nondegen-
erate stationary states in quantum mechanics. See also [72]
for a relevant discussion on BH boson clouds.

2. Quasinormal mode orthogonality

The “self-jointness” of the bilinear form hχjT ηi ¼
hT χjηi provides an alternative rationale for the orthogon-
ality of QNMs, supplementing the methods provided
in [68]. Let us now consider two QNMs satisfying
T ðωaÞψa ¼ 0; T ðωbÞψb ¼ 0, respectively, assuming azi-
muthal numbers ma and mb. As a result, we expect that

hψbjT ðωaÞψai ¼ 0; hψajT ðωbÞψbi ¼ 0: ð88Þ

According to the properties of the bilinear form, the above
equations imply that

hψajðT ðωaÞ − T ðωbÞÞψbi ¼ 0: ð89Þ

This equation can be interpreted as an orthogonal relation
between the two mode wave functions ψa, ψb with the
weight function T ðωaÞ − T ðωbÞ given by (choosing
ma ¼ mb ¼ m)

T ðωaÞ− T ðωbÞ ¼ ðωa −ωbÞ
�
−ðωa þωbÞ

×

�ðr2 þ a2Þ2
Δ

− a2sin2 θ

�
þ 4mar

Δ

þ 2is

�
−r− iacosθþ r2 − a2

Δ

��
; ð90Þ

which is the same as Eq. (46) in [68] by setting s ¼ −2 and
renormalizing the constant factor that contains ωa − ωb.

4

C. Second-order mode excitation

We now adopt the complex-contour technique to solve
the second-order Teukolsky equation in Eq. (70). Using the
contour C in Fig. 2, it is convenient to decompose r into its

FIG. 2. The contour (labeled by C, in blue) and branch cut (in
red) used in this work. The contour goes around the rþ singularity
and the corresponding branch cut. There is a second branch cut
connecting r− which is not shown in this figure. Three blue
arrows indicate the stable integration direction while solving for
QNM wave functions: Two solutions are shot separately from “a”
and “b,” and they are matched at the bottom left corner labeled by
“matching point.” In our numerical implementation, we fix the
real part of the left and right vertical paths to ðr− þ rþÞ=2 ¼ 1
and 3, respectively. The imaginary part of the bottom path is fixed
to −5.

4There are typos in their Eq. (55).
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real and imaginary parts, r ¼ xþ iy. This decomposition
allows us to transform Eq. (70) into forms that are more
amenable for numerical implementation on each segment
of the contour. More specifically, along the vertical paths
(labeled by “L” and “R”), the equation reads

d2Rð2Þ
lQ

dy2
¼−

QðrÞ
Δ

þ2i
ðr−1Þ
Δ

dRð2Þ
lQ

dy

þ
Rð2Þ
lQ

Δ

�
K2

Qþ4iKQðr−1Þ
Δ

−16iωLr−λð2ÞlQ

�
; ð91Þ

whereas on the horizontal path (labeled by “B”), we have

d2Rð2Þ
lQ

dx2
¼QðrÞ

Δ
þ2

ðr−1Þ
Δ

dRð2Þ
lQ

dx

−
Rð2Þ
lQ

Δ

�
K2

Qþ4iKQðr−1Þ
Δ

−16iωLr−λð2ÞlQ

�
: ð92Þ

The solution and its derivatives need to be continuous at
corners, which yields continuity conditions:

Rð2Þ
lQ

����
horizontal

¼ Rð2Þ
lQ

����
vertical

; ð93aÞ

d
dx

Rð2Þ
lQ

����
horizontal

¼ −i
d
dy

Rð2Þ
lQ

����
vertical

: ð93bÞ

To impose boundary conditions at “a” and “b” in Fig. 2,

we can use the asymptotic expansion of Rð2Þ
lQ

in Eq. (73). It

leads to

Rð2Þ
lQ

¼ E

�
1þ aQ

r

�
ðr − rþÞΔXQ; ð94aÞ

d
dy

Rð2Þ
lQ

¼ iE

�
1þ aQ

r

�
d
dr

ðr − rþÞΔXQ; ð94bÞ

where XQ ¼ X2
L and XL is defined in Eq. (18). The factor

ð1þ aQ=rÞ shows that the conditions above are accurate up
to Oðr−1Þ.
The unknown constant number E corresponds to the

amplitude of the quadratic QNM with frequency 2ωL. To
see this, we adopt the relation

Γ̄4Ψð2Þ
4 ¼ e−2iωLtRð2Þ

lQ
ðrÞSð2ÞlQ

ðθÞe2imLϕ:

After plugging Eq. (94a) into the above expression, the

asymptotic behavior of the second perturbation Ψð2Þ
4 is

given by

h
rΨð2Þ

4

ið∞Þ
lQ;mQ¼2mL

¼ Ee−2iωLðt−r�Þ: ð95Þ

Meanwhile, the amplitude of the linear perturbation Ψð1Þ
4 is

provided in Eq. (47). Their ratio, namely, the excitation
factor of the quadratic QNM with frequency 2ωL, reads

MKinnersley
Ψ4

¼
½rΨð2Þ

4 �ð∞Þ
lQ;mQ

f½rΨð1Þ
4 �ð∞Þ

lL;mL
g2

¼ 4E
ω8
Lð
P

anÞ2
: ð96Þ

We note that the value of the excitation factor for Ψ4 relies
on the choice of tetrad. The result in Eq. (96) is associated
with the Kinnersley tetrad in Eq. (2). It differs from the one
used by the numerical-relativity code SpEC [73,74]:

lSpEC ¼ 1ffiffiffi
2

p ð∂t þ ∂rÞ; nSpEC ¼ 1ffiffiffi
2

p ð∂t − ∂rÞ: ð97Þ

The conversion is given by [42]

MSpEC
Ψ4

¼ 1

2
MKinnersley

Ψ4
: ð98Þ

Furthermore, the excitation factor for the strain can be
obtained straightforwardly via the relation ΨSpEC

4 ¼ −ḧ,
which yields

MSpEC
h ¼ ω2

L

4
MSpEC

Ψ4
¼ E

2ω6
Lð
P

anÞ2
: ð99Þ

Therefore, to compute the excitation factor MSpEC
h , it

suffices to integrate Eqs. (91) and (92) along with the
continuity conditions in Eqs. (93) and the boundary
conditions in Eq. (94). It is important to note that there
exists a stable integration direction on the vertical paths.
This is because Eq. (91) admits two independent solutions.
One corresponds to the QNM solution, asymptoting to
e2iωLr� ∼ e−2ℜωLy as y → ∞. The second one is nonphysi-
cal, diverging at infinity e−2iωLr� ∼ e2ℜωLy. At the initial
point of the integration, due to finite numerical accuracy,
the nonphysical solution emerges alongside the physical
one. To ensure stability, an integration direction must be
chosen such that the nonphysical solution decays through-
out the integration, preventing it from exponentially blow-
ing up and eventually overshadowing the physical QNM
solution. Consequently, the stable direction on both vertical
paths has to be top-down. In practice, the shooting method
is employed to achieve this goal: using the explicit Runge-
Kutta method of order 5, two solutions are shot separately
from “a” and “b”, with the same shooting parameter E. At
the matching point in Fig. 2, the Nelder-Mead method is
adopted to match the two shoots through the continuity
conditions in Eq. (93).
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VI. NUMERICAL CALCULATIONS AND RESULTS

Having discussed two basic ingredients: metric
reconstruction and the complex-plane technique, we are
now in the position to compute the value of the excitation
factor for quadratic QNMs. To start with, we explore a toy
model in Sec. VI A to establish a qualitative understanding
of the numerical aspects for the complex-plane method. In
Sec. VI B, we proceed to investigate quadratic QNMs.

A. A toy model

We consider a source QðrÞ that has a form of

QðrÞ ¼ XQðr − rþÞΔ
X
n¼0

fn

�
r − rþ
r − r−

�
n
: ð100Þ

Following [32], we use Leaver’s representation to construct
the solution [52]

Rð2Þ
lQ
ðrÞ ¼ XQðr − rþÞΔ

X
n¼0

dn

�
r − rþ
r − r−

�
n
: ð101Þ

By virtue of the Teukolsky equation, the coefficients dn are
determined by three-term recurrence relations

α0d1 þ β0d0 ¼ f0; ð102aÞ

αndnþ1 þ βndn þ γndn−1 ¼ fn; ð102bÞ

where αn, βn, and γn are given in Eq. (A1). We consider a
special source:

f0 ¼ α0 þ β0; f1 ¼ β1 þ γ1; f2 ¼ γ2; fn>2 ¼ 0:

The corresponding solution has an analytic expression

Rð2Þ
lQ
ðrÞ ¼ XQΔðr − rþÞ

�
1þ r − rþ

r − r−

�
: ð103Þ

This implies that E ¼ 2 and aQ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
in Eq. (94).

Then we use the method given in Sec. V C to compute
the value of E numerically. Our numerical settings are listed
below

Rerb ¼
rþ þ r−

2
¼ 1; Rera ¼ 3; Imrmatching ¼ −5;

ð104Þ

where the subscripts “a”, “b”, and “matching” refer to
three points in Fig. 2. We have checked that varying their
values introduces a relative error of less than 10−3% in the
results. The choice of the heights of the vertical paths,
namely, Imra and Imrb, requires more attention. For
simplicity, we set both heights to the same number. On
the one hand, positioning the boundary at small distances

can result in non-negligible systematic errors as the
boundary conditions in Eq. (94) are accurate only to linear
order. On the other hand, since the solution decays
exponentially at a large distance, placing the boundary
too far may cause the integrator to lose precision, espe-
cially when the wave function spans many orders of
magnitude. To see this, we calculate the value of E for
the ðl ¼ m ¼ 2; n ¼ 0Þ mode of a Schwarzschild BH at a
variety of heights. The orange curve in Fig. 3 displays its
deviation from the theoretical value 2. We can see the
optimum window is around [100, 160], beyond which the
error gradually worsens as the boundary distance further
increases. Nevertheless, the relative error remains below
3 × 10−2% throughout the entire range.
Since the analytic expression of the solution is available

in Eq. (103), we can refine the boundary conditions to
incorporate their exact expressions. The result is shown as
the green curve in Fig. 3. When the height of the vertical
paths is larger than 100, the error of E gradually approaches
the linear-order result at greater distances, suggesting that
the precision of the integrator becomes the primary source
of inaccuracy.
To make a more comprehensive comparison, we also

demote the boundary conditions in Eq. (94) to zeroth order
by setting aQ to 0. The blue curve in Fig. 3 shows the
corresponding result. This time, the relative errors increase
to ∼1%. We find the curve can be well fitted with a 1=r
form, suggesting the necessity of the linear-order correction
in our studies.
Finally, we switch our attention to the effect of BH’s

spin. We fix Imra and Imrb at 100, and vary the spin a from
0 to 0.99. As shown in Fig. 4, the error increases with a,
particularly when a > 0.8. This trend can be attributed to
the rising real part of the complex frequency with

FIG. 3. The relative error of the computed E in Eq. (94)
compared to the expected value of 2 for the toy model considered
in Sec. VI A. The boundary condition is accurate to the zeroth (in
blue) and first order (in orange). The green curve corresponds to
the exact boundary condition.
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increasing values of a, leading to a faster decay of the wave
function along the vertical paths and resulting in larger
numerical errors within the integrator. Nevertheless, the
relative error is still less than 0.25% at a ¼ 0.99.

B. Quadratic quasinormal modes

We are now ready to solve the quadratic Teukolsky
equation in Eq. (70). The treatment for the left-hand side
(namely the integrator) is the same as the toy model in
Sec. VI A, as outlined in Sec. V C. The only difference is
the source QðrÞ in Eq. (70).
We first notice that QðrÞ can be decomposed into the

following form:

QðrÞ ¼ r12ðþ2RlmωL
Þ2 ×W1ðrÞ

þ r10Δþ2RlmωL

�
d
dr þ2Rlmω

�
×W2ðrÞ

þ r8Δ2

�
d
dr þ2RlmωL

�
2

×W3ðrÞ; ð105Þ

where the first-order Teukolsky equation has been used to
repeatedly substitute d2þ2RlmωL

=dr2 and higher-order
radial derivatives with dþ2RlmωL

=dr and þ2RlmωL
. We then

evaluate their values via Leaver’s solution in Eq. (29).
Meanwhile, the three functions W1;2;3ðrÞ are complicated
rational functions of r. Note that we have separated the
leading terms r12, r10 and, r8 that are singular at infinity.
Consequently, W1;2;3ðrÞ behave regularly across the entire
contour C. In practice, we find that evaluating the analytical
expressions of W1;2;3ðrÞ is time consuming, adversely
affecting the numerical efficiency of the integrator. To
address this issue, we adopt linear spline interpolation to
obtain the values of the regular functions along C.

In this paper, we restrict ourselves to the quadratic effect
of the ðl ¼ m ¼ 2; n ¼ 0Þ QNM. Below we still use ωL to
represent its complex frequency. We compute its value
using a Python package qnm [75]. The corresponding

separation constant λð2ÞlQ
in Eq. (70), which is associated

with the quadratic mode 2ωL, can be evaluated with the
Black Hole Perturbation Toolkit [62]. Following Sec. VI A,
our numerical settings for the contour C are the same as
Eq. (104). Meanwhile, we set the height of vertical paths
Imra ¼ Imrb to 100, which was shown to be suitable for the
linear boundary conditions. We have checked that varying
the height from 90 to 150 yields ∼0.1% changes in results
for Kerr BHs with various spins.
Figure 5(a) displays the spin dependence of MSpEC

h , de-
fined in Eq. (99), for the excitation channel ðlL ¼ mL ¼ 2;
nL ¼ 0Þ2 → ðlQ ¼ mQ ¼ 4Þ. In the Schwarzschild case, the
amplitude and phase of MSpEC

h are 0.137 and −0.083,
respectively. With the increase of the spin, the amplitude
decreases monotonically. It approaches a value of 0.0964
when a ¼ 0.99. Meanwhile, the phase reaches its maximum
value at a ∼ 0.92. Compared with Fig. 1(b), we find the
spin dependence of MSpEC

h , both its amplitude and phase,
displays a strong correlation with the angular projections
hðL†

2S22Þ2jS44i and hS22L†
1L

†
2S22jS44i. More specifically,

we observe that the four components with distinct angular
dependences in Eq. (54) combine linearly in the equation.
This holds true for their contributions to MSpEC

h as well.

The two dominant ones, ðL†
2S22Þ2 and S22L

†
1L

†
2S22,

offer the major contributions to MSpEC
h . The comparison

between the two figures suggests that a substantial portion

of the spin dependence ofMSpEC
h originates from these two

angular projections, as opposed to the radial integration. In
other words, qualitatively, the angular integrals offer a

means to capture the main feature of MSpEC
h without the

need to solve the Teukolsky equation.
This statement can also be applied to the excitation

channel ðlL ¼ mL ¼ 2; nL ¼ 0Þ2 → ðlQ ¼ 5; mQ ¼ 4Þ. In
Fig. 5(b), we show the corresponding MSpEC

h as a function
of spin. As expected, it vanishes for Schwarzschild BHs
because of the selection rule in Eq. (79). Subsequently, its
amplitude gradually rises to 0.00643 when the spin
approaches 0.99. The overall trend is consistent with that
of the angular projections in Fig. 1(a).
In a recent study [42], Zhu et al. extracted the value of

MSpEC
h for Kerr BHs by performing two types of numerical

experiments: 3þ 1 numerical-relativity simulations and
time evolution of second-order perturbation equations.
Focusing on the channel ðlL ¼ mL ¼ 2; nL ¼ 0Þ2 →
ðlQ ¼ mQ ¼ 4Þ, their results for the phase of MSpEC

h show
good agreement with ours (see their Fig. 1). However, the
amplitude has a larger discrepancy, especially at the low

FIG. 4. The spin dependence of the relative error for the
computed E compared to the expected value of 2, using the
toy model considered in Sec. VI A. We set Imra ¼ Imrb ¼ 100,
and the boundary condition is accurate to the first order.

SIZHENG MA and HUAN YANG PHYS. REV. D 109, 104070 (2024)

104070-16



spin. In particular, our amplitude for Schwarzschild BHs is
0.137, which is 11.6% smaller than the value of 0.153
obtained from their numerical-relativity simulations, and
27% smaller than the value of 0.174 obtained from their time
evolution of second-order perturbation equations. Additi-
onally, the studies in Ref. [41] yielded a smaller value
(≲0.066) than ours. The variations across these calculations
imply that the value of MSpEC

h may rely on the choice of
initial data in the time-domain simulations. To see this,
Nakano and Ioka (hereafter NI) [32] investigated the
quadratic effect of Schwarzschild BHs by focusing on
the even-parity perturbations. Specifically, they solved the
second-order Zerilli equation sourced by the first-order
Zerilli function, namely, ðlinear evenÞ × ðlinear evenÞ →
ðquadratic evenÞ. To convert their result to MSpEC

h , we use
the following relations:

χð2ÞNI ¼ −2iωLZð2Þ ¼ −2iωL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlQ − 2Þ!
ðlQ þ 2Þ!

s
hð2ÞSpEC;

χð1ÞNI ¼ −iωLZð1Þ ¼ −iωL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlL − 2Þ!
ðlL þ 2Þ!

s
hð1ÞSpEC: ð106Þ

Here χð1Þ;ð2ÞNI are NI’s dynamical variables that appear in the
first- and second-order Zerilli equations. They are related to
the Zerilli functions Zð1Þ;ð2Þ through a time derivative [see the
text below Eq. (5.1) of [32] ]. In addition, Zð1Þ;ð2Þ can be

further converted to strains hð1Þ;ð2ÞSpEC using the l-dependent
coefficients in Eq. (106). As a result, the corresponding
excitation factor for MSpEC

h is given by

FIG. 5. The spin dependence of the excitation factor MSpEC
h defined in Eq. (99), for the channel ð2; 2; 0Þ × ð2; 2; 0Þ → ð4; 4Þ (a) and

ð2; 2; 0Þ × ð2; 2; 0Þ → ð5; 4Þ (b). The right (left) column corresponds to its amplitude (phase). The spin ranges from 0 to 0.99.
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MSpEC
h ¼

h
hð2ÞSpEC

ið∞Þ
lQ;mQnh

hð1ÞSpEC

ið∞Þ
lL;mL

o
2

¼ −iωL

2

ðlL − 2Þ!
ðlL þ 2Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlQ þ 2Þ!
ðlQ − 2Þ!

s h
χð2ÞNI

ið∞Þ
lQ;mQnh

χð1ÞNI

ið∞Þ
lL;mL

o
2

¼ −iωL

2

ðlL − 2Þ!
ðlL þ 2Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlQ þ 2Þ!
ðlQ − 2Þ!

s
MNI

χ : ð107Þ

As for the case of ðlL¼mL¼2;nL¼0Þ2→ ðlQ¼mQ¼4Þ,
MNI

χ ¼ 0.221–0.489i (see Table II of [32]), which leads to

MSpEC
h ¼ −0.080 − 0.0154i, with an amplitude of 0.081,

which is smaller than our results and the numbers reported
by Zhu et al. [42]. A plausible source of the discrepancy
lies in the composition of our linear wave function for

Ψð1Þ
4 , including both even- and odd-party contributions.

The general mode coupling involves three excitation
channels: ðlinear evenÞ× ðlinear evenÞ→ ðquadratic evenÞ,
ðlinear oddÞ × ðlinear oddÞ → ðquadratic evenÞ, and
ðlinear oddÞ × ðlinear evenÞ → ðquadratic oddÞ. The last
two contributions were omitted by NI [32], who essentially
examined the quadratic effect of a pure-even mode. To our
knowledge, the calculations that involve the odd parity are
still missing in the literature. If the excitability for the odd
sector differs from that of the even parity—despite the
isospectrality of Schwarzschild BHs, the ultimate value of
MSpEC

h will hinge on the composite of the linear wave or, as
per Zhu et al. [42], the initial data of numerical simulations.
Finally, to close this section, we want to emphasize that

the spin-weighted spheroidal harmonics used for the
quadratic mode 2ωL, e.g., −2S44;2ω220

, are different from
those of the linear child modes, e.g., −2S44;ω440

, even though
they have the same l and m. This is because spin-weighted
spheroidal harmonics depend on modes’ complex frequen-
cies. To compare our results for Kerr BHs with other
studies, one has to collect the mode content 2ωL in all l’s
and transform the coefficients to the new angular basis,
such as spin-weighted spherical harmonics used in numeri-
cal relativity.

VII. CONCLUSION

In this paper, we have developed a method to compute
the excitation factor of quadratic QNMs at null infinity for
Kerr BHs. The main procedure includes two essential steps:
(a) analytically reconstructing the metric through the CCK
approach and (b) numerically solving the second-order,
frequency-domain Teukolsky equation using the shooting
method along a complex contour.
We have implemented this method on two mode-cou-

pling channels ðlL ¼ mL ¼ 2; nL ¼ 0Þ2 → ðlQ ¼ mQ ¼ 4Þ

and ðlL ¼mL ¼ 2;nL ¼ 0Þ2→ ðlQ¼ 5;mQ ¼ 4Þ. The results
reveal a correlation between the spin dependence of the
excitation factor and the dominant angular projection,
providing insights into the origin of the spin dependence.
Furthermore, this feature facilitates the construction of a
qualitative understanding of the spin dependence without
requiring the direct solution of the Teukolsky equation.
Depending on whether the angular selection rule in Eq. (79)
is violated or not, the excitability of the quadratic QNM
increases or decreases with the BH’s spin. For both cases,
the factors do not vanish in the extremal limit.
Our result for the channel ðlL ¼ mL ¼ 2; nL ¼ 0Þ2 →

ðlQ ¼ mQ ¼ 4Þ in the Schwarzschild BH case does not
fully agree with the values reported by [41,42], implying
the dependence of the excitation factor on initial data (or
equivalently, the parity content of the linear mode). For
instance, we have shown that the excitation factor of a
pure-even linear mode is different from that of a linear
Teukolsky mode by comparing with results in [32]. A
study of couplings between even and odd modes in the
future will help understand the variation caused by the
“parity freedom” in the initial data, and construct an
explicit connection between nonlinear phenomena within
the Regge-Wheeler-Zerilli and Teukolsky formalisms.
In the future, a valuable avenue is to generalize our

calculations to the coupling between arbitrary modes and
subsequently compare them with numerical-relativity
simulations. The associated results will provide the
theoretical foundation for assessing the detectability of
the quadratic effect through various ringdown analysis
methods [13,17,19,20,76,77]. It is also interesting to
compute the excitation factor of quadratic modes near
BH horizons, which has been observed by characterizing
dynamical horizons in numerical-relativity simulations [31].
The complex-contour technique will not be suitable for this
calculation, and an alternative promising direction is to
solve the second-order, frequency-domain Teukolsky equa-
tion on a hyperboloidal slicing. In the extremal limit,
the mode coupling together with the collective excitation
[78,79] of zero-damping modes [78,80–83] may give rise to
a new (nonlinear) instability in addition to the Aretakis
instability [84–87]. It is however also worth noting that the
definition of such excitation factor at horizon may not be
gauge invariant.
Finally, as a byproduct, we have found that the Weyl

scalars Ψ2 and Ψ3 can be concisely expressed through the
Hertz potential. These relations might be useful to study
BH ringing in modified theories of gravity [69–71].
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APPENDIX A: LEAVER’S REPRESENTATION

The coefficients of the three-term recurrence relation in
Eq. (17) are given as follows [52]:

αn ¼ n2 þ ðc0 þ 1Þnþ c0;

βn ¼ −2n2 þ ð2þ c1Þnþ c3;

γn ¼ n2 þ ðc2 − 3Þnþ c4 − c2 þ 2; ðA1Þ

with

c0 ¼ 1 − s − 2iσþ;

c1 ¼ −4þ 4iσþ þ 4irþω;

c2 ¼ sþ 3 − 4iω − 2iσþ;

c3 ¼ 4ω2ð2þ 2bÞ − λ − 4amω − s − 1

þ 2ð1þ bÞiωþ ð8ωþ 2iÞσþ;
c4 ¼ sþ 1 − ð2sþ 1Þiω − ð8ωþ 2iÞσþ;

and b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
.

APPENDIX B: EXPRESSING
SPIN COEFFICIENTS IN TERMS
OF THE HERTZ POTENTIAL

Below we list the spin coefficients in terms of the Hertz
potential

λð1Þ ¼ −
Δ3

16Γ̄4

	
−ΣD†

2D
†
2 þ 2rD†

2 − 2


D†

2Ψ̄ORG: ðB1Þ

−
8Γ̄4

Δ
σ̄ð1Þ ¼ ΔΣ

	
−ΣD2D

†
2 − 2þ 2Γ̄D2



D†

2Ψ̄ORG

þ 2ia cos θ
	
ΔΣD†

2 − 4a2rsin2 θ


D†

2Ψ̄ORG

þ 4ira sin θ
	
2r − ΣD†

2



L†
2Ψ̄ORG: ðB2Þ

−
8
ffiffiffi
2

p
Γ̄4

ΓΔ2
πð1Þ ¼ Γ̄2D†

2

�
D†

2 −
2

Γ̄

�
L†
2Ψ̄ORG

þ ia sin θ
Γ

ð2Γ − 2ΣD†
2 þ Γ̄2D†

2ÞD†
2Ψ̄ORG:

ðB3Þ

8
ffiffiffi
2

p
Γ̄2

ΓΔ2
τ̄ð1Þ ¼

�
D†

2 þ
1

Γ
−
1

Γ̄

��
D†

2 −
1

Γ
−
1

Γ̄

�
L†
2Ψ̄ORG

−
ia sin θ
Σ2

h
2ðΣ − Γ2 þ Γ̄2Þ − Σð2Γ̄ − ΓÞD†

2

i
×D†

2Ψ̄ORG: ðB4Þ

During the calculation, we find that it is convenient to
introduce the following two variables:

αð1Þw ≡ αð1Þ −
βð0Þ

2
hm̄ m̄; β̄ð1Þw ≡ β̄ð1Þ þ βð0Þ

2
hm̄ m̄: ðB5Þ

Their expressions are given by

−
8
ffiffiffi
2

p
Γ̄3

Δ2
αð1Þw ¼ ½−1 − rD†

0 þ ΣD†
1D

†
2�L†

2Ψ̄ORG

þ ia cos θD†
2L

†
2Ψ̄ORG þ 3ia sin θD†

2Ψ̄ORG

þ 2a2 sin θ cos θD†
1D

†
2Ψ̄ORG

− 2ira sin θD†
2D

†
2Ψ̄ORG: ðB6Þ

−
16

ffiffiffi
2

p
Γ̄3Γ

Δ2
β̄ð1Þw ¼

�
−6Γ − 2rΓD†

0 þ ðΓ2 þ 7ΣÞD†
2

−
4ΓΣðr − 1Þ

Δ
D†

2 − 4Γ̄
�
L†
2Ψ̄ORG

þ ia sin θð−6Γ − 2Γ2D†
0

þ 4rΓD†
1 þ 4Γ̄ÞD†

2Ψ̄ORG: ðB7Þ

The expressions of ϵð1Þ, ρð1Þ, and κð1Þ are quite lengthy.
They can be constructed from four building blocks:

ðδþ 2β þ 2τ − πÞð0Þhlm̄ ¼ −
Δ
4Γ̄3

�
Γ̄ðΣD†

2 − 2rÞL†
1L

†
2

þ 4ia sin θð2r − ΣD†
2ÞL†

2

þ 2a2sin2 θðΓ̄ − 2ΓÞD†
2

�
Ψ̄ORG:

ðB8Þ

ð−Δþ 2γ̄ þ μ − μ̄Þð0Þhll ¼ −
Δ
4Γ̄2

½ðΓ − Γ̄ − ΣD†
1ÞL†

1

þ 2ia sin θð1 − Γ̄D†
1Þ�

× L†
2Ψ̄ORG þ c:c:: ðB9Þ

ðD − ρÞð0Þhlm̄ ¼ −
Δ

2
ffiffiffi
2

p
Γ̄3

½ðΣ2D1D
†
2 − 2rΣD1 þ 2Γ̄ΣD†

2

− 2Σþ Γ2 − Γ̄2ÞL†
2 − 4ia3cos2 θ sin θD†

2

þ a2Σ sin 2θD1D
†
2�Ψ̄ORG: ðB10Þ
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2
ffiffiffi
2

p
Γ̄δð0Þhll ¼ ½2a2sin2 θ þ 2ia sin θΓðL1 − L†

1Þ
þ Γ2L0L

†
1�L†

2Ψ̄ORG þ ð2a2sin2 θ
þ Γ̄2L̄0L̄

†
1ÞL̄†

2ΨORG: ðB11Þ

Combining with Eq. (B8)–(B11), (3), and (33), one can use
the following relations to obtain their expressions:

ϵð1Þ ¼ 1

4
ð−Δþ 2γ̄ þ μ − μ̄Þð0Þhll

þ 1

4
ð−δ − 2β þ π̄ − 2τÞð0Þhlm̄

þ 1

4
ðδ̄þ 2β̄ − 5π − 2τ̄Þð0Þhlm: ðB12Þ

ρð1Þ ¼ −
1

2
ðδþ 2β − π̄ þ 2τÞð0Þhlm̄

þ 1

2
ðδ̄ − 3π þ 2β̄Þð0Þhlm þ 1

2
μð0Þhll: ðB13Þ

κð1Þ ¼ ðD − ρ̄Þð0Þhlm −
1

2
ðδ − π̄ þ τÞð0Þhll: ðB14Þ

Note that the expressions above have been simplified in
ORG. See, e.g., [34] for the full expressions.
For Schwarzschild BHs, the results can be simplified to

λð1Þ ¼ Δ3

16r2

�
D†

2 −
1

r

�
2

D†
2Ψ̄ORG: ðB15Þ

σ̄ð1Þ ¼ Δ2

8
D2

�
D†

2 −
2

r

�
D†

2Ψ̄ORG: ðB16Þ

κ̄ð1Þ ¼ rΔ
2
ffiffiffi
2

p
�
D1 þ

2

r

��
D†

2 −
2

r

�
ðΨ̄ORG

þ r

4
ffiffiffi
2

p ð̄ððΨ̄ORG þ r

4
ffiffiffi
2

p ð̄ ð̄ ð̄ΨORG: ðB17Þ

ϵð1Þ ¼ −
1

8
ð̄ ð̄ΨORG þ Δ

8

�
D†

1 þ
1

Δ

�
ððΨ̄ORG: ðB18Þ

ρð1Þ ¼ −
Δ
8

�
D̄†

2 −
1

r

�
ð̄ ð̄ΨORG þ Δ

8

�
D†

2 −
3

r

�
ððΨ̄ORG:

ðB19Þ

τ̄ð1Þ ¼ −
Δ2

8
ffiffiffi
2

p
r

�
D†

2 −
1

r

�
2

ðΨ̄ORG: ðB20Þ

πð1Þ ¼ Δ2

8
ffiffiffi
2

p
r

�
D†

2 −
1

r

�
2

ðΨ̄ORG: ðB21Þ

αð1Þw ¼ Δ2

8
ffiffiffi
2

p
r

�
D†

1D
†
2 −

D†
0

r
−

1

r2

�
ðΨ̄ORG: ðB22Þ

β̄ð1Þw ¼ Δ2

8
ffiffiffi
2

p
r

�
−
2

Δ
D†

2 þ
D†

2

r
þ 4

Δr
−

1

r2

�
ðΨ̄ORG: ðB23Þ

Notice that αð1Þw and β̄ð1Þw have a certain spin weight.

APPENDIX C: EXPRESSING Ψð1Þ
2 IN TERMS

OF THE HERTZ POTENTIAL

We start with the Ricci identity [48].

3Ψ2 ¼ ðδ̄ − 2αþ β̄ − π − τ̄Þβ − ðδ − ᾱþ π̄ þ τÞα
þ ðDþ ϵþ ϵ̄þ ρ − ρ̄Þγ − ðΔ − γ̄ − γ þ μ̄ − μÞϵ
þ ðδ̄ − αþ β̄ − τ̄ − πÞτ − ðΔ − γ̄ − γ þ μ̄ − μÞρ
þ 2ðνκ − λσÞ: ðC1Þ

To the linear order, the identity simplifies to

3Ψð1Þ
2 ¼ ðδ̄− 3αþ β̄− π− τ̄Þð1Þβð0Þ − ðδþ 2τÞð0Þαð1Þ

þ ðδ̄þ β̄− τ̄− πÞð1Þτð0Þ
þ ðDþ ϵþ ϵ̄þ ρ− ρ̄Þð1Þγð0Þ− ðΔ− 2γÞð0Þðϵþ ρÞð1Þ
þ ðδ̄− 2αþ β̄− π− τ̄Þð0Þβð1Þ− ðδ− ᾱþ π̄þ τÞð1Þαð0Þ
þ ðδ̄−αþ β̄− τ̄− πÞð0Þτð1Þ; ðC2Þ

where we have used the facts that λð0Þ ¼ σð0Þ ¼ νð0Þ ¼
νð1Þ ¼ γð1Þ ¼ μð1Þ ¼ Δð1Þ ¼ 0 and αð0Þ ¼ πð0Þ − β̄ð0Þ.

1. The first line of Eq. (C2)

Many terms in the first line of Eq. (C2) can be elegantly
canceled. To see this, we use the following identities [35]:

β̄ð1Þw −αð1Þw þ μ̄ð0Þhlm̄þ π̄ð0Þ

2
hm̄m̄ ¼ 1

2
ðδþ 4βÞð0Þhm̄m̄; ðC3Þ

Δð0Þβð0Þ þ μ̄ð0Þβð0Þ ¼ 0; ðC4Þ

πð1Þ þ τ̄ð1Þ ¼ −
π̄ð0Þ þ τð0Þ

2
hm̄ m̄: ðC5Þ

We first adopt Eq. (C5) and the complex conjugate of
Eq. (35c), which leads to

ðδ̄ − 3αþ β̄ − π − τ̄Þð1Þβð0Þ − ðδþ 2τÞð0Þαð1Þ

¼
�
−hlm̄Δð0Þ þ 1

2
hm̄ m̄δð0Þ − αð1Þ þ β̄ð1Þ

�
βð0Þ

þ π̄ð0Þ þ τð0Þ

2
hm̄ m̄β

ð0Þ − ðδð0Þ þ 2βð0ÞÞαð1Þ − 2τð0Þαð1Þ:

ðC6Þ
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Then we use Eq. (B5) to replace some αð1Þ and β̄ð1Þ with
αð1Þw and β̄ð1Þw . This yields

L:H:S ¼ ð−hlm̄Δð0Þ − μ̄hlm̄Þβð0Þ þ
τð0Þ

2
hm̄ m̄β

ð0Þ

− ðδð0Þ þ 2βð0ÞÞαð1Þw − 2τð0Þαð1Þ; ðC7Þ

where we have used Eq. (C3). Here L. H. S refers to the first
line of Eq. (C2). Finally, the first line of Eq. (C7) vanishes
due to Eq. (C4), and we end up with

L:H:S¼−ðδþ 2βÞð0Þαð1Þw − 2τð0Þαð1Þw −
τð0Þ

2
hm̄m̄β

ð0Þ

¼−
τð0Þ

2
hm̄m̄β

ð0Þ−
1ffiffiffi
2

p
Γ

�
L†
1−

2ia sinθ
Γ̄

�
αð1Þw : ðC8Þ

2. The second line of Eq. (C2)

By using

δð0Þτð0Þ ¼ τð0Þðτ þ 2β − π̄Þð0Þ; ðC9aÞ

Δð0Þτð0Þ ¼ −τð0Þðμþ μ̄Þð0Þ; ðC9bÞ

and Eq. (C5), the second line of Eq. (C2) can be reduced to

ðδ̄þ β̄ − τ̄ − πÞð1Þτð0Þ ¼ τð0Þ

2
hm̄ m̄β

ð0Þ

þ
�
hlm̄ðμð0Þ þ μ̄ð0ÞÞ þ hm̄ m̄τ

ð0Þ þ β̄ð1Þw

�
τð0Þ: ðC10Þ

Note that the first terms of Eqs. (C8) and (C10) are
identical, resulting in additional cancellation.

3. The last two lines of Eq. (C2)

In Appendix D, we show that

ðδ̄ − 2αþ β̄ − π − τ̄Þð0Þβð1Þ − ðδ − ᾱþ π̄ þ τÞð1Þαð0Þ

¼ ðδ̄þ 2β̄ − π − τ̄Þð0Þβð1Þw − ᾱð1Þw πð0Þ

− πð0Þ
�
δ̄þ 2β̄ −

5π þ τ̄

2

�ð0Þ
hmm: ðC11Þ

After inserting the result above, along with the expression
for hmm in Eq. (33b) and spin coefficients in Appendix B,
into the last two lines of Eq. (C2), we find it vanishes
identically, namely,

ðδ̄ − 2αþ β̄ − π − τ̄Þð0Þβð1Þ − ðδ − ᾱþ π̄ þ τÞð1Þαð0Þ
þ ðδ̄ − αþ β̄ − τ̄ − πÞð0Þτð1Þ ¼ 0: ðC12Þ

4. Final result

Finally, by collecting the outcomes in Eqs. (C8), (C10),
and (C12) along with the relations

½D†
m;D†

n� ¼ ðn −mÞ 2
Δ

�
1 −

2ðr − 1Þ2
Δ

�
; ðC13aÞ

D†
3D

†
1 −D†

2D
†
2 ¼ −

2

Δ
; ðC13bÞ

we arrive at our final result for Ψð1Þ
2 in Eq. (38).

APPENDIX D: DERIVATION OF EQ. (C11)

Replacing αð0Þ with πð0Þ − β̄ð0Þ yields two terms

ðδ̄− 2αþ β̄− π − τ̄Þð0Þβð1Þ þ ðδ− ᾱþ π̄þ τÞð1Þβ̄ð0Þ; ðD1Þ

and

−ðδ − ᾱþ π̄ þ τÞð1Þπð0Þ: ðD2Þ

1. Eq. (D1)

Replacing βð1Þ with βð1Þw , the first part of Eq. (D1)
becomes

ðδ̄þ 2β̄ − 3π − τ̄Þð0Þβð1Þ ¼ ðδ̄þ 2β̄ − 3π − τ̄Þð0Þβð1Þw

−
β̄ð0Þ

2
ð2β̄ − 3π − τ̄Þð0Þhmm

−
hmm

2
δ̄ð0Þβ̄ð0Þ −

β̄ð0Þ

2
δ̄ð0Þhmm:

ðD3Þ

Meanwhile, the second part of Eq. (D1) can be converted to

ðδþ β− ᾱþ π̄þ τÞð1Þβ̄ð0Þ

¼
�
−hlmΔð0Þ þ 1

2
hmmδ̄

ð0Þ þ β− ᾱþ π̄þ τ

�ð1Þ
β̄ð0Þ

¼
�
hlmμð0Þ þ

1

2
hmmδ̄

ð0Þ þ βð1Þ− ᾱð1Þ−
πð0Þ þ τ̄ð0Þ

2
hmm

�
β̄ð0Þ

¼
�
hlmμð0Þ þ βð1Þw − 2β̄ð0Þhmm− ᾱð1Þw −

πð0Þ þ τ̄ð0Þ

2
hmm

�
β̄ð0Þ

þ 1

2
hmmδ̄

ð0Þβ̄ð0Þ þ β̄ð0Þ2hmm; ðD4Þ
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where we have used Eq. (35c) for the first equality, Eq. (C4)
for the second equality, and Eq. (B5) for the last one.
Combining Eqs. (D3) and (D4) yields

Eq:ðD1Þ ¼ ðδ̄þ 2β̄ − 3π − τ̄Þð0Þβð1Þw þ β̄ð0Þπð0Þ

2
hmm

þ
�
βð1Þw − ᾱð1Þw þ μð0Þhlm þ πð0Þ

2
hmm

− 2β̄ð0Þhmm −
1

2
δ̄ð0Þhmm

�
β̄ð0Þ: ðD5Þ

The last parenthesis vanishes because of Eq. (C3). Then

Eq:ðD1Þ ¼ β̄ð0Þπð0Þ

2
hmm þ ðδ̄þ 2β̄ − 3π − τ̄Þð0Þβð1Þw : ðD6Þ

2. Eq. (D2)

With the help of

δð0Þπ̄ð0Þ ¼ 2π̄ðβ − π̄Þ; Δð0Þπ̄ð0Þ ¼ −2π̄ð0Þμ̄ð0Þ; ðD7Þ

it is straightforward to obtain

Eq:ðD2Þ ¼ −
β̄ð0Þπð0Þ

2
hmm

−
�
2hlmμð0Þ − ᾱð1Þw −

3πð0Þ þ τ̄ð0Þ

2
hmm

�
πð0Þ:

ðD8Þ

3. Final result

Finally, we combine Eq. (D6) and Eq. (D8) to obtain
Eq. (C11) in the main text. Notice that the first term of
Eq. (D6) and Eq. (D8) cancel each other.

APPENDIX E: THE SOURCE OF THE SECOND-ORDER TEUKOLSKY EQUATION
FOR SCHWARZSCHILD BHS WITH lL = 2 AND lQ = 4

The source QðrÞ in Eq. (70) reads

48
ffiffiffiffiffiffi
7π

p

5
QðrÞ ¼ r2½−13r10ω6 − 34ir9ω5 þ r8ð35þ 269iωÞω4þ r7ð131iωþ 99Þiω3 þ r6ð865ω2 − 949iωþ 44Þω2

þ r5ð1249ω2 þ 530iω− 35Þiωþ r4ð−53ω2 − 196iωþ 557Þiωþ r3ð2144ω2 − 1540iωþ 120Þ
þ r2ð−1380ω2þ 930iω− 564Þþ rð816þ 408iωÞ− 168iω− 336�× ðþ2R22ωÞ2
þ r2Δ½32ir8ω5 − 78r7ω4 − r6ð424iωþ 130Þiω3 þ r5ð154þ 582iωÞω2 þ r4ð−968ω2þ 1227iωþ 42Þiω
− r3ð2320iωþ 300Þiωþ r2ð−936ω2 þ 1291iωþ 48Þ− rð192þ 2352iωÞþ 1152iωþ 192�

× þ2R22ω

�
d
drþ2R22ω

�
þΔ2½19r8ω4þ 50ir7ω3 − r6ð86þ 143iωÞω2 − r5ð339iωþ 91Þiω

þ r4ð−339ω2 þ 538iωþ 42Þ− r3ð306þ 945iωÞþ r2ð810þ 447iωÞ− 912rþ 360�×
�
d
drþ2R22ω

�
2

: ðE1Þ

Here ω stands for the linear mode ωL. The structure of QðrÞ follows Eq. (105) and its asymptotic expansion is given
in Eq. (71).
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