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We performed a post-Newtonian analysis of the regularized four-dimensional Einstein-Gauss-Bonnet
gravitational theory. The resulting metric differs from the classical parametrized post-Newtonian (PPN)
formalism in that a new gravitational potential arises from the integration of the approximate field
equations. We also investigated the conserved quantities and equations of motion for massive bodies and
light rays to a certain degree. By computing the predicted periastron advance rate in a binary system, we
obtained an observational constraint that is stronger than those of previous analyses. Although the usual
10 PPN parameters can still be derived within the PPN framework, an extra parameter is needed to account
for the full post-Newtonian tests.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) has passed
numerous experimental tests since its inception in the early
20th century. GR could accurately explain the precession of
Mercury’s perihelia, a significant accomplishment at the
time. Over the past century, GR has been put to the test on
various fronts [1,2]. In 2015, a major milestone was
achieved when the Laser Interferometer Gravitational
Wave Observatory (LIGO) interferometer successfully
detected the first signals of gravitational waves (GWs)
emitted by the merger of two black holes [3]. This
groundbreaking discovery was followed by another sig-
nificant event in 2017, when Advanced LIGO and Virgo
detected the electromagnetic counterpart of a binary neu-
tron star coalescence [4]. In 2019, the EHT Collaboration
released the first image of the shadow cast by the super-
massive black hole harbored by the elliptical galaxy M87
belonging to the nearby Virgo galaxy cluster [5]. These
remarkable achievements have opened up new avenues for
studying the Universe and have further validated the
predictions of Einstein’s theory of general relativity.

However, there are several areas where GR still requires
improvement in order to accurately describe various physi-
cal phenomena. One such area pertains to the observed
acceleration of the Universe, as indicated by the seminal
works of type Ia supernovae (standard candles) [6,7]. This
suggests the existence of a new component (dark energy)
with negative pressure, which is responsible for this
acceleration. Initially, the addition of a cosmological
constant to Einstein’s field equation was seen as the most
plausible solution, despite the discrepancy between the
observed value and the theoretical prediction from vacuum
energy in quantum field theory [8–11]. Other avenues
consider that dark energy could be explained in terms of a
dynamical field with really a small mass [12–14]. A
modified theory of gravity could also explain the
Universe’s acceleration on a cosmological scale (see
Refs. [15–18]). A more reliable approach could be intro-
ducing a new degree of freedom, a scalar field, coupled to
curvature terms without spoiling all the nice properties of
Einstein’s field equations (see the conditions mentioned
in Lovelock’s theorem [19]) and without introducing
Ostrogradsky instability [20,21]. Among the new healthy
theories with all those properties, the so-called Horndeski
theories [22] have attracted considerable attention in recent
years [23–26]. From an observational standpoint, there
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are compelling reasons to consider theories such as
Horndeski’s and beyond. These theories have successfully
met rigorous constraints based on multimessenger gravi-
tational-wave astronomy. The detection of the GW170817
binary neutron star merger, along with its associated
electromagnetic counterparts, has provided an accurate
bound on the speed of gravitational waves, jcg=c − 1j <
10−16 [27,28].
In connection with the frameworks mentioned above, an

appealing version of the Einstein-Gauss-Bonnet theory in
four dimensions (4D-EGB) was constructed after a regu-
larization process [29–32]. As is well known, the GB
curvature invariant reduces to a topological surface term
in four dimensions, so whether the EGB theory can be
defined correctly in the limit D → 4 was an open
question [33–37]. A neat way to deal with this issue is
by considering a conformal transformation and employing
a subtraction method to render the theory well defined in
that limit [37]. The conformal factor involves a scalar field
that introduces a new degree of freedom into the model.
Interestingly enough, the regularized 4D-EGB model can
be accommodated as a particular case within the shift-
symmetric Horndeski theories [22,26]. Another possibil-
ity for obtaining a well-defined 4D-EGB theory can be
achieved by implementing a Kaluza-Klein dimensional
reduction from a higher-dimensional Einstein-Gauss-
Bonnet gravity plus a scalar field. In that case, the scalar
field encodes the information of the volume’s size of the
compact internal dimension with maximal symmetry [31].
One way to characterize new theories is by using

observational tests on different scales, from the Solar
System to the cosmological scales [38]. In that regard,
the regularized 4D-EGB model was scrutinized on several
fronts. Considering the limits on the GW velocity from
the observations of GW170817 and gamma-ray burst
GRB170817A, the bounds on the rescaled coupling
parameter reads 0 < α̂ < 1050 eV−2 [39]. Stronger limits
on positive values come from binary black hole systems,
resulting in the overall range α̂ < 108 m2 [38]. In the weak-
field regime where the gravitational field is considerably
tiny, using the Laser Geodynamics Satellite data, one can
obtain comparable bounds on the Gauss-Bonnet coupling,
α̂ < 1010 m2 [38]. Additionally, assuming that the lightest
component of the GW190814 event corresponds to a black
hole with mass M ¼ 2.59þ0.08

−0.09M⊙, then the bound on
GB coupling reduces several orders of magnitude, α̂ <
59 × 106 m2 [40].1

In 2024, new constraints were reported within the
context of Friedmann-Robertson-Walker background with

nonzero spatial curvature [42]. To be more precise, the
latter case leads to a modified Friedmann equation for the
Hubble parameter after integrating the scalar field dynami-
cal equation; in fact, the nonlinear Friedmann equation has
a new dark radiation term multiplied by the GB coupling
constant. Physically speaking, the extra-dark radiation term
will modify the (massless) species number of neutrinos at
both the background and perturbative levels [42]. The
constraints based on the Atacama Cosmology Telescope
(ACTPol) data alone implies α̂C2 ¼ ð−9� 6Þ × 10−6H2

0,
where α̂C2 ¼ Ωextra

rad H2
0 stands for the geometrical dark

radiation term [42].
We aim to extend previous works on astrophysical

constraints on the regularized four-dimensional Einstein-
Gauss-Bonnet theory by reevaluating the parametrized
post-Newtonian (PPN) formalism [43] within the context
of the 4D-EGB theory and adding stronger astrophysical
observational constraints along with a whole discussion
about bounds coming from complementary probes.
The paper proceeds as follows. We obtain the effective

field equations for the metric and scalar fields in Sec. II.
Section III is devoted to determining the post-Newtonian
form of the metric within the PPN formalism standards,
where we have already obtained conclusions on the γ
parameter. In Sec. IV, we explore the post-Newtonian
conservation laws to draw conclusions on the ζ and α
parameters. All these parameters maintain their physical
meaning unaltered, and we show that they have the same
value as in GR. Section V is dedicated to computing the
center-of-mass acceleration of an extended object in a
system of N bodies within the PN approximation, where
we capture the standard GR term plus additional terms
proportional to the Gauss-Bonnet coupling α̂. In fact,
we use the previous results to estimate the shift in the
orbital periastron for a binary system due to the GB
coupling (Sec. VI). We also examine the effects of the GB
coupling on the periastron advance rate in the cases of
Mercury and the double pulsar. Section VII discusses
the role played by the β parameter in the PPN approach
and the Nordtvedt effect. It also includes an analysis
on how to extend the formalism to include the corrections
of the EGB coupling. We state our conclusions in
Sec. VIII.

II. THE REGULARIZED 4D-EGB THEORY

In this section, we will derive the field equations of the
regularized 4D-EGB theory as obtained in the previous
Refs. [29–32]. Our starting point is to consider the gravity
sector of the EGB without cosmological constant in D
dimensions,

S ¼
Z
M

dDx
ffiffiffiffiffiffi−gp
2κ

ðRþ αGÞ; ð1Þ

1The most stringent limit on negative value of GB coupling
comes from the condition that atomic nuclei must not be shielded
by a horizon, yielding −α̂ > 10−83H2

0 [40]. Additionally, pri-
mordial GWs also provide another similar constraint on the GB
coupling, jα̂j < 1036 m2 [37,41].
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where κ ¼ 8πG=c4, withG as the gravitational constant and
c as the velocity of light in vacuum, whereas α stands for a
coupling constant associated with the quadratic term G. The
regularization process involves a conformal transformation,

followed by a redefinition of the coupling constant.
Specifically, we apply g̃μν ¼ e2Φgμν, which then transforms
the square root of the determinant as

ffiffiffiffiffiffi
−g̃

p ¼ eDΦ ffiffiffiffiffiffi−gp
. The

Gauss-Bonnet term changes as follows [37]:

ffiffiffiffiffiffi
−g̃

p
G̃ ¼ eðD−4ÞΦ ffiffiffiffiffiffi

−g
p h

G − 8ðD − 3ÞRμνð∇μΦ∇νΦ −∇μ∇νΦÞ − 2ðD − 3ÞðD − 4ÞRð∇ΦÞ2

þ 4ðD − 2ÞðD − 3Þ2□Φð∇ΦÞ2 − 4ðD − 2ÞðD − 3Þ∇μ∇νΦ∇μ∇νΦ − 4ðD − 3ÞR□Φ

þ 4ðD − 2ÞðD − 3Þð□ΦÞ2 þ 8ðD − 3Þð∇μΦ∇νΦÞð∇μ∇νΦÞ þ ðD − 1ÞðD − 2ÞðD − 3ÞðD − 4Þð∇ΦÞ4
i
: ð2Þ

The regularization method requires one to subtract a
counterterm α

ffiffiffiffiffiffi
−g̃

p
G̃ in the original action. The idea is to

expand the exponential aroundD ¼ 4, keep the lowest order
in (D − 4), and neglect all higher-order terms, namely,
eðD−4ÞΦ¼1þðD−4ÞΦþO½ðD−4Þ2�. We use the Bianchi
identities along with Bochner’s formula in curved space-
time, 1

2
∇μð∇ΦÞ2 ¼ ð∇μ∇νΦÞ2 þ∇μð□Φ∇μΦÞ− ð□ΦÞ2 þ

Rμν∇μΦ∇νΦ, for simplifying the action. In doing so, we
integrate by parts, discarding any surface terms. We set
D → 4 for the terms that are not of the form D − 4, and the
divergences in the original action are canceled provided the
term proportional to (D − 4) remains finite as they are
multiplied by the rescaled coupling α̂=ðD − 4Þ [29–32].
The resulting action of the system reads [29–32,44]

S4D-EGBreg ¼
Z

d4x
ffiffiffiffiffiffi−gp
2κ

h
Rþ α̂ð4Gμν∇μΦ∇νΦ −ΦG

þ 4□Φð∇ΦÞ2 þ 2ð∇ΦÞ4Þ
i
þ Sm; ð3Þ

where we identify Gμν as the Einstein tensor, whereas G ¼
RαβμνRαβμν − 4RμνRμν þ R2 denotes theGauss-Bonnet term.
As usual,R refers to the Ricci scalar, Sm describes the matter
action, and ∇μ indicates a covariant derivative. The extra
degree of freedomΦ comes from the scalar field that encodes
the conformal transformations that allow us to regularize the
gravitational action forD ¼ 4 dimensions [29]. For an entire
debate on the nature of this regularization process, we refer
the reader to the following works [29–32,44–46].
To explore the new modifications introduced by this

regularization process, we need to obtain the field’s
equation of the regularized 4D-EGB theory (3). We carry
on by computing the variation of action (3) with respect to
the metric, which is given by

Gμν ¼ α̂Ĥμν þ κTμν; ð4Þ
where Tμν is the energy-momentum tensor associated with

the matter fields and the tensor Ĥμν can be written as

Ĥμν ¼ 2Rð∇μ∇νΦ −∇μΦ∇νΦÞ þ 2Gμν

�
ð∇ΦÞ2 − 2□Φ

�
þ 4Gναð∇α∇μΦ −∇αΦ∇μΦÞ

þ 4Gμαð∇α∇νΦ −∇αΦ∇νΦÞ þ 4Rμανβð∇β∇αΦ −∇αΦ∇βΦÞ þ 4∇α∇νΦð∇αΦ∇μΦ −∇α∇μΦÞ
þ 4∇α∇μΦ∇αΦ∇νΦ − 4∇μΦ∇νΦ

�
ð∇ΦÞ2 þ□Φ

�
þ 4□Φ∇ν∇μΦ − gμν

�
2R

�
□Φ − ð∇ΦÞ2

�

þ 4Gαβð∇β∇αΦ −∇αΦ∇βΦÞ þ 2ð□ΦÞ2 − ð∇ΦÞ4 þ 2∇β∇αΦð2∇αΦ∇βΦ −∇β∇αΦÞ
�
: ð5Þ

The variation of the action (3) with respect to the scalar
field Φ leads to its equation of motion,

Rμν∇μΦ∇νΦ −Gμν∇μ∇νΦ −□Φð∇ΦÞ2 þ∇μ∇νΦ∇μ∇νΦ

− ð□ΦÞ2 − 2∇μΦ∇νΦ∇μ∇νΦ ¼ 1

8
G: ð6Þ

The field equation (4) can be rearranged with the help of
its trace by writing the Ricci scalar in terms of T and Ĥ, i.e.,
the respective traces of the energy-momentum tensor and
the tensor Ĥμν. This leads us to recast the metric field

equations in a more suitable way for solving them within
the post-Newtonian approximation as the standard Einstein
field equation plus a new contribution encoded in the Ĥμν

tensor,

Rμν ¼ 8π

�
Tμν −

T
2
gμν

�
þ α̂

�
Ĥμν −

Ĥ
2
gμν

�
; ð7Þ

where we chose a geometrodynamics system of units by
selectingG ¼ c ¼ 1. The aforesaid theory (7) is a particular
case of a broader class of shift-symmetric Horndeski’s
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theories. These theories have the property that their equations
of motion do not change when a constant shifts the scalar
field,Φ → Φþ c, where c is a constant; therefore, the theory
admits a conserved Noether current [22,26]. Specifically, it
corresponds toG2 ¼ 8α̂X2,G3 ¼ 8α̂X,G4 ¼ 1þ 4α̂X, and
G5¼4α̂lnX (where X ¼ − 1

2
∇μΦ∇μΦ). General Horndeski

theories have been previously analyzed within the post-
Newtonian approximation scheme, but only by considering
models in which the Gn functions can be expressed as a
Taylor series around X ¼ 0; this is not the case for G5 [47].
Notwithstanding, Eqs. (4) and (6) can be regularly treated
within the post-Newtonian limit, as seen in the following
sections.

III. POST-NEWTONIAN EXPANSION

Let us focus on solving the theory’s field equation in a
regime where the gravitational field is weak everywhere
and matter moves in small velocities compared to light
speed. We proceed by expanding Eqs. (7) and (6) using the
following perturbation’s scheme:

gμν ¼ ημν þ hμν; ð8Þ
Φ ¼ ϕ0 þ ϕ; ð9Þ

where hμν encodes the metric perturbations concerning
Minkowski’s background, whereas ϕ stands for the scalar
field perturbation around its constant background value ϕ0.
For the matter content, we use a perfect fluid approach,

Tμν ¼ ðρþ ρΠþ pÞuμuν þ pgμν; ð10Þ
where ρ is the mass density, Π is the fluid’s internal energy
per unity mass, p is the pressure, and uμ ¼ u0ð1;vÞ is the
four-velocity of the fluid. In the post-Newtonian approxi-
mation scheme, the energy-momentum tensor components
should be expanded in power of v, taking into account also
that p=ρ ∼ Π ∼Oð2Þ. Here and after, we use the notation
OðNÞ to represent quantities of order vN. Moreover, time
derivatives must be considered as order of magnitude 1,
∂t ∼Oð1Þ, since the dynamical timescale in the Solar
System is governed by the motion of planets.
As expected, the metric perturbations hμν will also be

expanded in powers of v. To obtain the first post-Newtonian
corrections to the equations ofmotion ofmassive bodies, one
needs to knowh00 up to orderv4,h0i up to orderv3, andhij up
to order v2, where Latin indices run over the three spatial
dimensions. The approximation procedure described above
is standard in the post-Newtonian approach and is explained
in great detail in Refs. [43,48], which wewill follow closely.
The fluid dynamics is subjected not only to conservation

of the energy-momentum tensor,∇νTμν ¼ 0, but also to the
conservation of rest mass density,

∇μðρuμÞ ¼ 0: ð11Þ

This equation can be reexpressed as an effective flat-space
continuity equation as follows:

∂tðρ�Þ þ ∂iðρ�viÞ ¼ 0; ð12Þ
where the conserved density is defined in terms of zero
component of the four-velocity field and the square root of
the determinant,

ρ� ≡ u0
ffiffiffiffiffiffi
−g

p
ρ: ð13Þ

Since ρ� is the conserved density, in the sense of (12), it is
more convenient to use it to express the energy-momentum
tensor components. As will become clear later, having the
gravitational potentials expressed in terms of the conserved
density will lead to an easy way to integrate the equations
of motion of massive bodies.
Applying the above approximations, one can verify that

the first nonvanishing terms in Eq. (6) and for Ĥμν occur in
the fourth order only. Consequently, 4D-EGB gravity will
deviate from GR only at the fourth order [see Eq. (7)].
Thus, up to Oð3Þ, the metric components reads

g00 ¼ −1þ 2U þOð4Þ; ð14Þ

g0i ¼ −4Vi þOð5Þ; ð15Þ

gij ¼ ð1þ 2UÞδij þOð4Þ; ð16Þ

where U is the negative of the Newtonian potential,

U ¼
Z

ρ�ðt; x0Þd3x0
jx − x0j ; ð17Þ

and

Vi ¼
Z

ρ�ðt; x0Þvi
jx − x0j d3x0: ð18Þ

To determine the fourth-order term of g00 we first
consider Eq. (6), which gives,

∂ijϕ∂
ijϕ − ð∇2ϕÞ2 ¼ ∂ijU∂

ijU − ð∇2UÞ2; ð19Þ

where we are using the notation ∂ij ¼ ∂=∂xi∂xj. The
simplest solution to the above equations reads

ϕ ¼ �U: ð20Þ

Using Eqs. (14)–(16) and (20), the 00 component of field
Eq. (7) becomes

∇2h00 ¼ −ρ�
�
1þ 3

2
v2 − U þ Πþ 3p

�

− 2∂ttU � α̂Gð4Þ þOð6Þ; ð21Þ
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where Gð4Þ is the fourth-order approximation of Gauss-
Bonnet invariant,

Gð4Þ ¼ 8∂ijU∂
ijU − 8ð∇2UÞ2: ð22Þ

Assuming asymptotically flatness, the general solution of
(21) reads

h00 ¼ −2U þ 2ðΨ −U2 ∓ α̂ΦGÞ þOð6Þ; ð23Þ

with

Ψ≡ 3

2
Φ1 −Φ2 þΦ3 þ 3Φ4 þ

1

2
∂ttX; ð24Þ

and the PN potentials that appear can be recast as follows:

Φ1 ¼
Z

ρ�0v02

jx − x0j d
3x0; Φ2 ¼

Z
ρ�0U0

jx − x0j d
3x0; ð25Þ

Φ3 ¼
Z

ρ�0Π0

jx − x0j d
3x0; Φ4 ¼

Z
p0

jx − x0j d
3x0; ð26Þ

X ¼
Z

ρ�0jx − x0jd3x0; ΦG ¼ 1

4π

Z
Gð4Þd3x0

jx − x0j : ð27Þ

The prime symbol indicates that a quantity is evaluated at
the spatial coordinates x0.
In brief, the post-Newtonian metric of 4D-EGB theory is

given by

g00 ¼ −1þ 2U þ 2ðΨ − U2Þ ∓ α̂ΦG þOð6Þ; ð28Þ

g0i ¼ −4Vi þOð5Þ; ð29Þ

gij ¼ ð1þ 2UÞδij þOð4Þ: ð30Þ

The above metric is consistent with previous analyses on
weak-field and slow-motion approximations of 4D-EGB
gravity [38]. However, a couple differences deserve to be
mentioned: (i) we are working with harmonic gauge
instead of the traditional PPN gauge, and (ii) we are
defining potentials in terms of the conserved density.
Notwithstanding, this does not change the form of the
correction brought by this theory, represented by the
potential ΦG. This potential is not covered by the PPN
formalism, implying that it is not correct to read off the PPN
parameters directly from the metric structure. One must
investigate the equations of motion of massive bodies and
light rays to correctly identify the new potential influence in
the standard PPN parameters.
It is worth mentioning that this is not a particularity of

the 4D-EGB model, once several modern theories of
gravity do not fit entirely to the PPN formalism assump-
tions. A fundamental rule that could determine when a

model may have extra-PPN potentials seems not to exist.
An a priori simple theory, like purely scalar gravity, can
produce an extremely knotty PN metric [49], while GR
extensions motivated by nontrivial renormalization group
effects at large scales may not spoil the PPN framework at
all [50]. Determination of PPN parameters for theories with
extra-PPN potentials is usually possible, as in the case of
Palatini fðRÞ gravity [51], for instance. However, some-
times some extra, although reasonable assumptions are
needed, as in scalar-tensor and metric fðRÞ formulations
[52,53]. Fortunately, the latter is not the case with 4D-EGB.

A. The γ parameter

For the propagation of light, the first post-Newtonian
correction is obtained by considering only the second-order
terms of the metric. The PPN formalism only assumes the
Newtonian potential to be present at order 2, and any
deviation from GR is encoded in the single parameter γ
multiplying the gii components (see Ref. [52] for a detailed
discussion on the parametrization of propagation of light).
Thus, once the 4D-EGB theory produces only the
Newtonian potential at the second-order metric, one can
conclude that the physical meaning of the γ parameter
remains unaltered. Since the spatial component of the
second-order metric is the same as in GR [Eq. (30)], it
is obtained

γ ¼ 1; ð31Þ

in full agreement with tests in the Solar System based on
propagation of light. The remaining PPN parameters can be
inferred from the calculations of the conserved quantities
and the equations of motion of massive bodies. In the
following sections, we will perform this analysis.

IV. CONSERVED QUANTITIES

In this section, we obtain the expressions for a fluid
system’s total mass energy and momentum, which are
conserved in the post-Newtonian limit. The rescaled
density ρ� allows one to define the fluid material mass
in a given volume as follows:

m ¼
Z

ρ�d3x: ð32Þ

Hence, for an isolated body, by using the continuity
equation for ρ� [cf. Eq. (12)], it is shown that mass m is
conserved, i.e.,

dm
dt

¼ 0: ð33Þ

The above result assumes that density ρ� is zero at the
boundary of the integration volume. The statement above
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only depends on the fluid definition, not on the used gravity
model. The situation is different for energy and momentum
conservation.
From the energy-momentum tensor conservation, we

write

∇νTμν ¼ ∂νð
ffiffiffiffiffiffi
−g

p
TμνÞ þ Γμ

λνð
ffiffiffiffiffiffi
−g

p
TλνÞ ¼ 0: ð34Þ

We want to integrate the above expression in its post-
Newtonian approximation and obtain the conserved quan-
tities in 4D-EGB gravity. For practical reasons, one can
work with a redefinition of Eq. (28), such as

g00 ¼ ðg00ÞGR ∓ α̂ΦG=2; ð35Þ

where ðg00ÞGR stands for the post-Newtonian metric from
GR. Then, one can easily separate the contributions
inserted by the 4D-EGB theory and use the standard GR
results as shown in Ref. [48], for instance.
The statement of energy conservation is derived from the

μ ¼ 0 component of (34), where there are no fourth-order
metric contributions. Hence, the results are the same as in
GR: the leading order reproduces the continuity equa-
tion (12) and the next order gives the energy that is
conserved at post-Newtonian regime, namely,

E≡
Z �

1

2
ρ�v2 þ ρ�Π −

1

2
ρ�U

�
d3x: ð36Þ

Thus, the total mass energy is given by

M ¼ mþ E: ð37Þ
For the conservation of the total momentum, we consider

only the case μ ¼ i in Eq. (34), which can be written as
follows:

ð∇νTv
iÞGR � α̂

2
ρ�∇iΦG ¼ 0; ð38Þ

where ð∇νTv
iÞGR stands, once again, for the ordinary GR

terms. By integrating this expression over the volume
occupied by the fluid, we are able to derive the total
momentum that is conserved. We only need to integrate the
last term in (38) since the results from the GR contributions
are already known [48]. To do so, we first verify that (see
Ref. [38]) ΦG can be expressed in terms of U as follows:

ΦG ¼ −8
�
1

2
j∇Uj2 −Φ7

�
; ð39Þ

where we have defined,2

Φ7 ¼ −
Z

ρ�0∂0jU
0 ðx − x0Þj
jx − x0j3 d

3x0: ð40Þ

By integrating the gradient of Φ7 and using the identity
∂ifðx − x0Þ ¼ −∂0ifðx − x0Þ plus an exchange of variables,
x ↔ x0, one arrives at the following expression:

Z
ρ�∂iΦ7d3x ¼

Z
ρ�∂jU∂ijUd3x;

¼ 1

2

Z
ρ�∂iðj∇Uj2Þd3x: ð41Þ

Combining (39) and (41), one shows that the following
relation holds true:

Z
ρ�∂iΦGd3x ¼ 0: ð42Þ

Consequently, after integrating (38), one gets the same
results as in GR for the total conserved momentum,

Pj ¼
Z

ρ�vj
�
1þ v2

2
−
U
2
þ Πþ 3p

ρ�

�
d3x

−
1

2

Z
ρ�Wjd3x; ð43Þ

where the post-Newtonian gravitational potential Wi is
written as

Wi ¼
Z

ρ�½v · ðx − x0Þ�ðx − x0Þi
jx − x0j3 d3x0: ð44Þ

The previous results show that 4D-EGB gravity does not
violate the total conservation of energy and momentum in
the PN regime. This is an expected outcome since the
theory is Lagrangian based and, as shown in Ref. [54], they
should not violate PN conservation laws.

A. The ζ and α parameters

In the context of the PPN formalism, the results obtained
here directly show that the PPN parameters ζ1, ζ2, ζ3, ζ4,
and α3 do not have their physical meaning changed by the
presence of the potential ΦG in the PN expansion. Their
values, if different from zero, continue to indicate a
violation of energy and momentum conservation. Thus,
one can conclude that, for 4D-EGB theory, one has

ζ1 ¼ ζ2 ¼ ζ3 ¼ ζ4 ¼ α3 ¼ 0: ð45Þ

Since the expressions (36) and (43) are identical to GR
counterparts, one can also conclude that parameters α1
and α2 retain their physical meaning unchanged since
no extra-PPN potentials are present in the expressions
for the conserved energy and momentum. Moreover,

2Symbols Φ5 and Φ6 are already used within GR to represent
other gravitational potentials. This is the reason why we useΦ7 to
represent this new potential. It is the same potential described in
Ref. [38] as ψ1.
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assuming (45) and comparing with the general PPN
expression for Pj [cf. (A3)], the following result is
obtained:

α1 ¼ α2 ¼ 0: ð46Þ

The latter result shows that 4D-EGB theory does not have
any preferred frame effects (see the Appendix for details).

V. EQUATION OF MOTION
OF MASSIVE BODIES

In this section, we split the fluid description of the source
into N separated bodies. We aim to obtain the PN equations
of motion for the body’s center-of-mass positions. This is a
realistic way to deal with the trajectories of massive and
finite-volume bodies instead of assuming that they can be
treated as test particles. Each body indexed by A has a
material mass given by

mA ¼
Z
A
ρ�d3x: ð47Þ

The volume where the integration above is calculated is a
time-independent region of space that extends beyond the
volume occupied by the body. It is large enough that, in a
time interval dt, the body does not cross its boundary
surface, but it is also small enough not to intersect with any
other body of the system. The center of mass of a body A,
its velocity, and acceleration are then defined as

rAðtÞ≡ 1

mA

Z
A
ρ�xd3x; ð48Þ

vAðtÞ≡ drA
dt

¼ 1

mA

Z
A
ρ�vd3x; ð49Þ

aAðtÞ≡ dvA

dt
¼ 1

mA

Z
A
ρ�

dv
dt

d3x: ð50Þ

The integrand of Eq. (50) is found from the Euler equation
with its PN extension, which can be derived from Eq. (38).
Each integral is then interpreted as a force that can be
calculated according to the techniques depicted in
Ref. [48]. Ordinary GR terms give rise to 18 forces, while
the 4D-EGB correction can be split into two more con-
tributions, namely,

Fi
19 ¼ ∓4α̂

Z
A
ρ�∂jU∂ijUd3x; ð51Þ

Fi
20 ¼ �4α̂

Z
A
ρ�∂iΦ7d3x: ð52Þ

These forces do not cancel one another, as in the previous
section, since the potentials in the integrand are integrals

over the volume occupied by the fluid, while the forces are
integrals over the volume surrounding the body A only.
To explicitly calculate the forces above, we need to

separate the potentials into an internal part, produced by the
body A, and an external one sourced by the remaining
bodies of the system. For instance, U can be written as
follows:

U ¼
Z
A

ρ�0

jx − x0j d
3x0 þ

X
B≠A

Z
B

ρ�0

jx − x0j d
3x0;

≡UA þ Uext
A : ð53Þ

Assuming a wide separation between bodies implies
that, when evaluating an external potential within the body
A, it can be expanded in a Taylor series. As an example,
one has

Uext
A ðt; xÞ ≈Uext

A ðt; rAÞ þ x̄j∂jUext
A ðt; rAÞ þ…; ð54Þ

where x̄ ¼ x − rA. The series is truncated in its second term
since the next terms are at least of orderOðRA=rABÞ2, where
RA is the typical body radius and rAB ¼ jrA − rBj is the
distance between two bodies. This expansion is used to
extract the external pieces of potentials from the integrals.
Moreover, each body of the system is assumed to be
reflection symmetric above its own center of mass, i.e.,
ρ�ðt; rA − x̄Þ ¼ ρ�ðt; rA þ x̄Þ. This symmetry allows us to
eliminate any integral having an odd number of internal
vectors, such as x̄.
Starting with Fi

20, one has

Fi
20 ¼ �4α̂

Z
A
ρ�∂iΦ7;Ad3x� 4α̂mA∂

iΦext
7 ðt; rAÞ: ð55Þ

Using the brief notation s ¼ jx − x0j one can write ∂iΦ7;A ¼R
A ρ

�0
∂
0
jU

0
∂ijs−1d3x0 and, after separating the potential

inside the integrand in its internal and external parts, one
obtains

Z
A
ρ�∂iΦ7;Ad3x ¼

Z
A
ρ�∂jUA∂ijUAd3x̄

þ ∂jUext
A

Z
A
ρ�∂ijUAd3x̄: ð56Þ

In the above expression, we have changed the variables x
by x̄, and used, when necessary, the reflection-symmetric
properties discussed before.
For Fi

19, one has

Fi
19 ¼

Z
A
ρ�∂jUA∂ijUAd3x̄þ ∂jUext

A

Z
A
ρ�∂ijUAd3x̄

þ ∂ijUext
A

Z
A
ρ�∂jUAd3x̄þmA∂jUext

A ∂ijUext
A : ð57Þ
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After combining (55), (56), and (57), we notice that the first
terms in (57) cancel out due to the specific form shown
in (56). Besides, the third integral on the rhs above vanishes
since it has an odd number of internal vectors x̄ and x̄0 due
to the gradient of U. At the end, one has

Fi
19 þ Fi

20 ¼ �4α̂mAð∂iΦext
7;A − ∂jUext

A ∂ijUext
A Þ: ð58Þ

Here, the external potentials are always calculated at x ¼ rA
after the derivatives are done.
Now,we have to express the external potentials in terms of

the center-of-mass positions. We start by calculating ∂jUext
A

and ∂ijUext
A . These potentials depend on derivatives of s and

integrations over the volume occupied by the bodies B ≠ A,
for instance, ∂jUext

A ¼ P
B≠A

R
B ρ

�0
∂js−1d3x0. Thus, due to

the wide separation between bodies in the system, we can
write s ¼ jx − rB − x̄0j and expand around x̄ ¼ 0 in order to
obtain the following derivatives:

∂js−1 ≈ −
sjB
s3B

þ x̄0k
�
sjBs

k
B

s5B
−
δjk

s3B

�
; ð59Þ

∂ijs−1 ≈ −
δij
s3B

þ 3
siBs

j
B

s5B

þ 3x̄0k
�
5siBs

j
Bs

k
B

s7B
−
δkðisjÞB þ δijskB

s5B

�
; ð60Þ

where we used the short notation sB ¼ x − rB with sB being
its norm. Also, indices between parentheses indicate their
symmetric counterparts. With the expansions above at hand,
it is easy to verify that

∂jUext
A ðt; rAÞ ≈ −

X
B≠A

mBn
j
AB

r2AB
; ð61Þ

∂ijUext
A ðt; rAÞ ≈ −

X
B≠A

mB

r3AB
ðδij − 3niABn

j
ABÞ; ð62Þ

whereniAB ¼ riAB=rAB.Using the above results, one canwrite

∂jUext
A ∂ijUext

A ¼
X
B≠A

�
−
2m2

B

r5AB
niAB

þ
X
C≠A;B

mBmC

r2ABr
3
AC

ðniAB − 3ðnAB · nACÞniACÞ�:

ð63Þ

The case of ∂iΦext
7;A is more involved since it depends on

another potential. This last must be separated into a part
generated by body A, another by the body B (the same as
the integral limit), and a third one sourced by the remaining
bodies of the system. By doing that, one can write

∂jΦext
7;A ¼

X
B≠A

�Z
B
ρ�0∂0iU

0
A∂ijs

−1d3x0 þ
Z
B
ρ�0∂0iU

0
B∂ijs

−1d3x0

þ
X
C≠A;B

Z
B
ρ�0∂0iU

0
C∂ijs

−1d3x0
�
: ð64Þ

The first integral reads

Z
B
ρ�0∂0iU

0
A∂ijs

−1d3x0 ¼
Z
A

Z
B
ρ�0ρ�00∂0is

0−1
∂ijs−1d3x0d3x0;

ð65Þ

with s0 ¼ jx0 − x00j. The expansion of ∂ijswill be equivalent
to (60). However, the expansion of ∂0is

0 is not straightfor-
ward since x0 is expanded around rB, whereas x00 is
expanded around rA. We only need to get the leading
order of this expansion, which gives ∂

0
is

0 ≈ niAB=r
2
AB, and

the first term on the rhs of (64) can be accommodated as

X
B≠A

2mAmB

r5AB
njAB: ð66Þ

The second integral in (64) is similar to (65), but now both
limits of integration refer to the volume occupied by the
body B. Thus, we simply expand ∂ijs provided ∂

0
is

0 ¼
ðx̄0 − x̄00Þi=jx̄0 − x̄00j3. Using (60) once again, one arrives at
the following integral:

Z
B
ρ�0∂0iU

0
B∂ijs

−1d3x0 ≈ 3

�
5siBs

j
Bs

k
B

s7B
−
δkðisjÞB þ δijskB

s5B

�

×
Z
B
ρ�0ρ�00

x̄0kðx̄0 − x̄00Þi
jx̄0 − x̄00j3 d3x̄0d3x̄00:

ð67Þ

The integral in the second line above can be symmetrized to
acquire the structural integral shape shown below,

Ωik
B ¼ −

1

2

Z
B
ρ�0ρ�00

ðx̄0 − x̄00Þkðx̄0 − x̄00Þi
jx̄0 − x̄00j3 d3x̄0d3x̄00: ð68Þ

It is worth noting that the trace ofΩij
B gives the gravitational

energy of the body B. At the end, the second term in (64)
will read

X
B≠A

3Ωik
B

r4AB
ðδiknjAB þ 2δijnkAB − 5niABn

k
ABn

j
ABÞ: ð69Þ

The third term in (64) is calculated similar to the first
one, but now x0 is expanded around rB, while x00 is
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expanded around rC. Thus, ∂0is
0 ≈ −niBC=r2BC and, using the

leading part of (60) with x ¼ rA, one gets

X
B≠A

X
C≠A;B

mBmC

r3ABr
2
BC

½njBC − 3ðnAB · nBCÞnjAB�: ð70Þ

By collecting all the previous results, the external contri-
bution to the gradient of Φext

7;A can be recast as

∂jΦext
7;A ¼

X
B≠A

�
2mAmB

r5AB
njAB

þ 3Ωik
B

r4AB
ðδiknjAB þ 2δijnkAB − 5niABn

k
ABn

j
ABÞ

þ
X
C≠A;B

mBmC

r3ABr
2
BC

ðnjBC − 3ðnAB · nBCÞnjABÞ
�
: ð71Þ

The 4D-EGB correction to the PN equation of motion of
well-separated massive bodies is given by the force
expressions (58). Substituting in that the results given
in (63) and (71), one can explicitly write the acceleration
of body A in a system of N bodies as follows:

ajA ¼ ajA½GR� ∓ 8α̂
X
B≠A

MBðMA þMAÞ
r5AB

njAB

� 6α̂
X
B≠A

Ωik
B

r4AB
ðδiknjAB þ 2δijnkAB − 5niABn

k
ABn

j
ABÞ

� 4α̂
X
B≠A

X
C≠A;B

MBMC

r2AB

�
njAB
r3AC

− 3
ðnAB · nACÞnjAC

r3AC

−
njBC

rABr2BC
þ 3

ðnAB · nBCÞnjAB
rABr2BC

�
: ð72Þ

In Eq. (72), ajA½GR� represents the standard GR term to
the equation of motion of each body, say body A, where
each mass term m was replaced by M provided the mass
energy is conserved [cf. (37)], and the corrections intro-
duced by these exchanges are beyond the PN order. In
addition to that, the terms proportional to the rescaled
coupling α̂ accommodate the new contributions to the
acceleration of the A body. In the next section, we will
employ (72) to perform some astrophysical constraints on
the 4D-EGB theory, for instance, by obtaining the orbital
periastron shift in a binary system.3

VI. ASTROPHYSICAL CONSTRAINTS

A. The periastron advance rate

To analyze the 4D-EGB contributions to the orbital
periastron advance, we consider the two-body problem. We
work in terms of relative acceleration, a⃗ ¼ a⃗1 − a⃗2 and use
the notation r⃗ ¼ r⃗1 − r⃗2, n̂ ¼ r⃗=r and m ¼ M1 þM2. We
focus on the case of nearly spherical bodies; the approxi-
mation Ωik

N ≈ δikΩN=3 remains valid. Replacing the latter
approximation in (72), one then obtains a simplified
version for the total acceleration,

a⃗ ¼ a⃗½GR� � 8α̂m2

r5
n̂: ð73Þ

The 4D-EGB contribution to the two-body system relative
acceleration is of PN order; thus, it can be considered a
perturbing acceleration that gives origin to perturbed
Keplerian orbits.
Exploiting the method of osculating orbital elements (see

Ref. [48]), the perturbed motion is interpreted as an
instantaneous Keplerian orbit, and the system is always
describing an ellipse, but with the orbital elements varying
with time. The perturbing acceleration is decomposed in a
radial component R, a component W normal to the orbital
plane, and a third component S transversal to the previous
two directions. Equation (73) thus shows

R ¼ 8α̂m2

r5
; W ¼ S ¼ 0: ð74Þ

The variations of the orbital elements can then be directly
related to these components.

B. Mercury’s periastron advance rate

Once observations are made in geocentric coordinates,
the periastron argument measured is relative to the equinox.
Consequently, it can be recast as ω̃ ¼ ωþ Ω cos i, whereΩ
is the angle from the ascending node to the Earth-Sun
direction, and ω is the angle between the periastron and the
ascending node. At the same time, i indicates the orbital
plane inclination angle relative to the ecliptic [43]. Using
the fact that, for all planets in the Solar System, i is too
small, the variation of ω̃ then is determined by the
following derivative:

dω̃
df

¼ p2 sin f
emð1þ e cos fÞ2

�
S
2þ e cos f
1þ e cos f

−R cot f

�
; ð75Þ

where f is the true anomaly (the angular position of
the planet with respect to its periastron direction), p ¼
að1 − e2Þ is the semilatus rectum, whereas a denotes the
semimajor axis, and e stands for the eccentricity of the

3The dynamics of binary systems at the first post-Newtonian
level were investigated in the context of Einstein-Cartan theory.
Specifically, this study focused on a neutral spinning perfect fluid
(also known as the Weyssenhoff semiclassical model). The aim
was to explore deviations from general relativity by analyzing the
induced terms in the relative acceleration of the two-body
problem and their observational constraints [55,56].
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orbit. Within this Keplerian description, the Sun-planet
relative position is given by the usual conic equation,

r ¼ p
1þ e cos f

: ð76Þ

Integrating over a complete orbital period gives us the
secular change in the periastron position. Using (73), one
can calculate the 4D-EGB contribution to this effect, and,
after including the GR contribution, one obtains

Δω̃ ¼ 6πm
p

�
1� α̂

p2
ð4þ e2Þ

�
: ð77Þ

The result above is precisely found in Ref. [38], where the
authors considered the planets as described by test par-
ticles. Although the general equation of motion (72) shows
terms depending explicitly on the body’s internal structure,
through their gravitational energy tensor Ωik, all those
terms cancel each other when assuming nearly spherical
bodies. Therefore, it remains to be analyzed in situations
where the internal structure of the bodies does contribute to
the orbital motion.
The advance per orbit Δω̃ can be converted to a rate by

dividing it by the orbital period P. The result is given by

˙̃ω ¼ 3

�
2π

P

�
5=3 m2=3

1 − e2
� 3α̂

�
2π

P

�
3 4þ e2

ð1 − e2Þ3 ; ð78Þ

after using Kepler’s third law, P2 ¼ 4π2p3=mð1 − e2Þ3.
Equation (78) can be used to put some constraints over

the parameter α̂. Data analysis from the MESSENGER
mission estimates secular Mercury’s periastron precession
as ˙̃ω ¼ ð42.9799� 0.0009Þ arcsec=century [57]. With the
help of the orbital parameters e ¼ 0.2056, P ¼ 87.97 days,
M⊙ ¼ 1.9891 × 1030 kg, and M☿¼3.3011×1023 kg [58],
one can find an upper bound limit for the GB coupling,
which is given by

jα̂j ≲ 1.67 × 1016 m2: ð79Þ

This constraint is 2 orders of magnitude stronger than the
one established in Ref. [38] due to the use of less precise
data on Mercury’s orbit.

C. The double pulsar periastron shift

The binary’s orbital motion affects the pulses from a
pulsar in a binary system, altering their arrival times at radio
telescopes [59]. By measuring these arrival times accu-
rately over long periods of time, we can detect slight
variations in the orbital motion. In 2003, the double pulsar
PSR J0737–3039A/B was first detected, representing
probably one of the best binary systems for studying
gravitational effects. Such a claim is based on the following
facts: (i) it is the only binary where we can see both pulsars,

(ii) it is not so far from Earth—nearly 0.61 kpc, and (iii) its
orbit is almost “edge on” to us. All these listed properties
indicate why the double pulsar offers a unique opportunity
to explore the strong gravity regime and, consequently, any
deviation from GR.4

More recently Kramer et al. [61] presented precise
determination of periastron precession using a 16-yr data
span of the PSR J0737–3039A/B. To obtain stringent
bounds using this higher accurate system, it is necessary
to derive a new expression for ˙̃ω, since the inclination i is
now close to 90°. Being cos i ≈ 0, the variations of Ω will
not affect the periastron advance rate, which, in turn, will
lead to a modification in Eq. (75) proportional to W.
However, due to the radial nature of the 4D-EGB correction
to the relative acceleration, the expression (78) for ˙̃ω
remains valid for the double pulsar system. The total mass
of the two stars is 2.587M⊙, their orbit is slightly elliptical
with e ¼ 0.0878, and they complete one revolution in
P ¼ 0.10225 day. The measured precession rate reads
˙̃ω ¼ ð16.899323� 0.000013Þ°=yr. Using these data, it is
possible to obtain a stronger constraint on the rescaled GB
coupling, namely,

jα̂j ≲ 1.47 × 1011 m2: ð80Þ

By comparing the bounds found in Secs. VI B and VI C, it
is fair to state that the double pulsar system imposes a much
stronger constraint by reducing the bounds on α̂ by 5 orders
of magnitude. Nevertheless, the above estimation on GB
coupling represents an interesting improvement in regard to
the previous best estimates, jα̂j < 1015 m2 [38].

D. Other observational bounds

Let us discuss the improvement introduced on the α̂
coupling’s bound concerning other observational tests
reported in the literature in different regimes and sectors
of the 4D-EGB theory. Even though the constraints coming
from the double pulsar periastron (DPP) shift enhanced
the bounds on α̂ by several orders of magnitude, it fell
short regarding the bounds emerging in the strong-field
regime provided by the binary black hole (BBH)
system [38]. In other words, α̂BBH < α̂DPP < 1010 m2.
The latter situation is considerably improved once it is
assumed that the lightest component of the GW190814
event could potentially correspond to a stellar black hole
with mass M ¼ 2.59þ0.08

−0.09M⊙, yielding α̂GW190814 < 59 ×
106 m2 [40]. When we account for an extra-dark radiation
term at both the background and perturbative levels in
cosmology, we can constrain it using the ACTPol data
alone. This gives us α̂C2 ¼ ð−9� 6Þ × 10−6H2

0, where

4A recent study, which can be found in Ref. [60], discusses the
evolution of eccentricity in binary systems within the PN
framework, extending beyond Horndeski’s theory. This work
also explores its capability to differentiate from GR.
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α̂C2 ¼ Ωextra
rad H2

0 [42]. If we ignore the geometrical dark
radiation term, however, we get a less robust estimate on
α̂ < 1036 m2 [37]. Given that nucleosynthesis started at an
energy scale of E ∼MeV when the Universe is dominated
by radiation, we can estimate that α̂ < 1018 m2 [37].
However, this bound is much weaker than the double
pulsar’s best estimates.

VII. THE β PARAMETER AND THE NEW EGB
PARAMETER: AN EXTENDED PPN VERSION

The previous sections showed that 4D-EGB corrections
to GR post-Newtonian metric do not change how light
travels or how energy and momentum are conserved in the
weak gravity limit up to the first PN order. Within the PPN
formalism, these results demonstrate that the physical
meaning associated with parameters γ, ζ, and α are not
influenced by the new potential ΦG. Consequently, once it
was shown that photon geodesics and total energy and
momentum expressions are the same as in GR, it was
possible to conclude that γ ¼ 1 and all ζ’s and α’s are null.
The remaining PPN parameters to be determined are β and
ξ. To move forward with the determination of the PPN
parameters, one assumes the knowledge of the already
determined parameters in juxtaposition with the general
PPN expression for Δω, namely,

Δω̃PPN ¼ 2πm
p

ð4 − βÞ: ð81Þ

One might be tempted, by comparison with (77), to define
an effective β parameter that would encompass the
4D-EGB corrections to GR. However, we understand that
such treatment is not appropriate once it would lead to a
system-dependent parameter, a rather strange feature for the
PPN formalism. More drastically, if an effective parameter
is defined as a system-dependent constant, one could not
simply substitute the original parameter with its effective
version in each observable physical phenomenon. As an
example, we emphasize that, if an effective β were defined
through (81) and (77), this new parameter would not have
any influence on the so-called Nordtvedt effect: the
violation of the weak equivalence principle due to explicit
contributions of self-gravitational energy to a body’s
inertial and gravitational mass.
The Nordtvedt effect can be tested for the Earth-Moon

system by studying its motion in the Sun’s gravitational
field. If there is any difference between Earth’s free-fall
acceleration and the Moon’s toward the Sun, this effect will
be parametrized by the Nordtvedt parameter,

η ¼ 4β − 4 −
10

3
ξ; ð82Þ

where ξ is the PPN parameter related to the existence of
preferred-location effects, and, once again, we use γ ¼ 1 and
ζi ¼ αi ¼ 0. It has been shown that ΦG does not bring any

dependence in the acceleration of a body A with its internal
structure up to the Newtonian order [cf. Eq. (50)].
Consequently, η ¼ 0 and no Nordtvedt effect is present, just
like in GR. Therefore, a simple substitution of β, in (82), by
an effective parameter obtained from the periastron advance
would lead to erroneous conclusions for any theory.
The correct approach to tackle the issue abovewould be to

propose a new parameter, say β̃, to quantify the dynamical
effects associated with ΦG. In this extended PPN version
(EPPN), the Nordtvedt parameter will remain the same,
while the periastron advance per orbit will be given by

Δω̃EPPN ¼ Δω̃PPN þ β̃

p2
ð4þ e2Þ: ð83Þ

Within general relativity, for instance, β ¼ 1 and β̃ ¼ 0,
while in the case of 4D-EGB theory one has β ¼ 1 and
β̃ ¼ �α̂. Hence, with η ¼ 0 one would also obtain ξ ¼ 0.
However, it is important to emphasize that, within this
extended PPN approach, β alone does not determine the
post-Newtonian periastron advance effect, since β̃ also has
influence on this effect. Table I summarizes the physical
meaning that can be associated with each parameter of the
EPPN approach.
It is also essential to note that the current observational

constraint, established by the PPN formalism for β (see the
Appendix), cannot be directly applied in the EPPN.
Without an additional test for β and/or β̃, it is impossible
to derive independent bounds for each of these parameters.

VIII. SUMMARY

We presented a comprehensive analysis of the post-
Newtonian version of the regularized four-dimensional
Einstein-Gauss-Bonnet gravitational theory. Our investiga-
tion involved expanding the metric and the extra scalar field
around the Minkowski background and the constant scalar
field value, respectively. To model the matter content, we
adopted a perfect fluid approach. The post-Newtonian
metric components are detailed in Eqs. (14)–(16).
Notably, the primary correction emerges at fourth order
in the g00 component. Unlike previous works within the
post-Newtonian formalism, we utilized the harmonic gauge

TABLE I. The EPPN parameters and their physical meaning.

Parameter
Physical meaning

associated
Value
in GR

γ Light motion tests 1
β Periastron shift in 1
β̃ A binary system 0
ξ Preferred-location effects 0
α1, α2, and α3 Preferred-frame effects All null
ζ1, ζ2, ζ3, ζ4, and α3 Violation of conservation

of total momentum
All null
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and expressed the gravitational potential in terms of the
conserved density.
Starting from conservation laws, it was shown that there

is no violation of energy and/or momentum conservation
within the PN limit, confirming that the four ζi PPN
parameters and α3 vanish. Moreover, the expressions for
energy and momentum showed that parameters α1 and α2
are also zero; this highlights that the regularized four-
dimensional Einstein-Gauss-Bonnet gravitational theory
lacks any preferred frame effects.
We investigated the equation of motion for massive

bodies and derived the general expression for a body within
a system of N bodies. Furthermore, we recovered the
standard GR term and identified several contributions
arising from the Gauss-Bonnet term. The latter discovery
involves lengthy computations, but it was essential for
imposing physical bounds on the rescaled GB coupling.
From an observational perspective, we examined the

two-body problem for nearly spherical objects and utilized
the method of osculating orbital elements to derive the PN
corrections in the periastron advance rate due to the Gauss-
Bonnet term. By analyzing data from the MESSENGER
mission applied to secular Mercury’s periastron precession,
we arrived at an updated estimate for the GB coupling:
jα̂j≲ 1.67 × 1016 m2, consistent with previous results [38].
Further, we focused on the double pulsar J0737–3039A/B,
comprising two active radio pulsars in a binary system with
a period of 2.45 h and a mild eccentricity of e ¼ 0.088.
Taking into account the data collected on extensive pulse
timing experiments over 16 yr on six different radio
telescopes around the world, this experiment reported
the precession rate for the double pulsar system, ˙̃ω ¼
ð16.899323� 0.000013Þ°=yr (see Ref. [61] for further
details). We proceeded by using this precession rate of
the double pulsar system to put a tighter constraint on the
GB coupling, yielding jα̂j≲ 1.47 × 1011 m2; reducing the
former bound in 5 orders of magnitude. We also compared
other astrophysical and cosmological bounds on α̂ to
contextualize the newly updated results reported here.
Finally, we discussed, to a certain degree, the β PPN

parameter identification and the introduction of a new EGB
parameter. This analysis focused on the different conse-
quences of misreading the β PPN parameter within a
modified gravity scenario such as the 4D-EGB model.
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APPENDIX: THE PPN FORMALISM—A
SYNTHESIS

In order to distinguish between alternative theories
of gravity within the post-Newtonian regime, the PPN

formalism assumes a generic metric expansion under
reasonable (but restrictive) assumptions over the possible
gravitational potentials to be present.
The original PPN metric, as presented in Ref. [43], is

written in the so-called standard gauge. Nowadays, it is
more usual for PN analysis to work with the harmonic
gauge. The selection of a gauge is predicated on its
convenience; however, employing the harmonic gauge
facilitates a consistent integration of the post-Newtonian
approximation within the broader framework of post-
Minkowskian theory (see Ref. [48] for details). In the
harmonic gauge, the PPN metric reads

g00 ¼ −1þ 2U − 2βU2 þ ð2γ þ 2þ α3 þ ζ1 − 2ξÞΦ1

þ 2ð3γ − 2β þ 1þ ζ2 þ ξÞΦ2 þ 2ð1þ ζ3ÞΦ3

þ 2ð3γ þ 3ζ4 − 2ξÞΦ4 − ðζ1 − 2ξÞΦ6

− 2ξΦW þ ð1þ α2 − ζ1 þ 2ξÞ∂ttX;
g0i ¼ −ð2γ þ 2þ α1=2ÞVi;

gij ¼ ð1þ 2γUÞδij: ðA1Þ

The organization of the PPN parameters in the metric
above is done in such away that is possible to give to eachone
of thema specific physicalmeaning that associates themwith
a property or a measurable effect. Table II summarizes the
significance of each PPN parameter, and the current bounds
on PPN parameters are shown in Table III.
When a theory does not present violations of energy and

momentum at the PN regime, all ζ’s and α3 vanish. The
expressions for the conserved energy and momentum are
then reduced to

TABLE II. The PPN parameters physical meaning.

Parameter Physical meaning associated
Value
in GR

γ Light motion tests 1
β Periastron shift in a binary

system
1

ξ Preferred-location effects 0
α1, α2, and α3 Preferred-frame effects All null
ζ1, ζ2, ζ3, ζ4,
and α3

Violation of conservation
of total momentum

All null

TABLE III. Current limits on PPN parameters (from Ref. [1]).

Parameter Limit Parameter Limit

γ − 1 ≲2.3 × 10−5 α3 ≲4 × 10−20

β − 1 ≲8 × 10−5 ζ1 ≲2 × 10−2

ξ ≲4 × 10−9 ζ2 ≲4 × 10−5

α1 ≲7 × 10−5 ζ3 ≲10−8

α2 ≲2 × 10−9 ζ4 � � �

JÚNIOR D. TONIATO and MARTÍN G. RICHARTE PHYS. REV. D 109, 104068 (2024)

104068-12



E≡
Z �

1

2
ρ�v2 þ ρ�Π −

1

2
ρ�U

�
d3x; ðA2Þ

Pj ¼
Z

ρ�vj

�
1þ 1

2
v2 −

1

2
U þ Πþ p

ρ�

�
d3x −

1

2

Z
ρ�
�
ð1þ α2ÞΦj þ

1

2
ðα1 − α2ÞVj

�
d3x: ðA3Þ
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