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We investigate possible configurations for vacuum multiblack holes that maintain static equilibrium in
expanding bubbles. Our analysis assumes a five-dimensional Weyl metric to describe the spacetime,
facilitating the derivation of solutions based on the provided rod structure. We consider a spacetime having
expanding bubbles caused by one or two acceleration horizons, and show that various configurations such
as two bubbles, four bubbles devoid of horizons, a black saturn, a black di-ring, a bicycling black ring
(orthogonal black di-ring), and a five-dimensional black hole binary can achieve equilibrium within
expanding bubbles. Specifically, we demonstrate that equilibrium requires two acceleration horizons on
both sides for the bicycling ring and the five-dimensional black hole binary. However, only one acceleration
horizon is necessary for achieving equilibrium in the case of the black saturn and the black di-ring.

DOI: 10.1103/PhysRevD.109.104067

I. INTRODUCTION

Despite recent significant development in solution-
generating techniques of black hole solutions, our com-
prehension of higher-dimensional black holes remains
limited due to its complexity and the multitude of degrees
of freedom it captures, since in higher-dimensional space-
time, the interaction among various sectors such as gravity,
rotations, electric or magnetic fields, and de Sitter expan-
sion (anti–de Sitter contraction) enriches the dynamics and
phases of black holes [1]. In particular, asymptotically flat,
stationary, biaxisymmetric five-dimensional black holes are
proven to admit horizons with spatial cross sections of a
ring S2 × S1 or a lens space Lðp; qÞ (where p, q are
coprime integers) as well as a sphere S3 [2–5]. In the
vacuum Einstein theory, there are several solutions with
corresponding topologies, each revealing unique properties
of black hole configurations. For instance, the Myers-Perry
black holes represent spacetimes with topology S3 [6], and
black rings exhibit a topology of S2 × S1 [7,8]. On the other
hand, previous attempts to find the vacuum black lens a
topology of Lðp; qÞ have been met with challenges and
were ultimately unsuccessful [9–11], and its nonexistence
was suggested [12]. However, it is noteworthy that the

black lenses with an Lðn; 1Þ horizon (where n is an integer
with n ≥ 2) were at least discovered as a supersymmetric
solution [13–15], highlighting the potential existence of
such black hole configurations within a class of non-
supersymmetric solutions. Additionally, there are multi-
black-hole solutions describing the black saturn, which is a
superposition of S3 and S2 × S1, and the black di-ring or
bicycling black ring (orthogonal black di-ring), which is a
superposition of two S2 × S1 [16–19].
Exact solutions of the Einstein equations describing

multiple black holes are of significant interest in physics,
since they allow us to gain insights into the interactions
between these objects. However, due to a lack of symmetry,
solving the Einstein equations and deriving such solutions
poses a challenging problem. Despite this difficulty, there
are several previous studies on the topic. As a first example,
Israel and Khan [20] found the exact solution that describes
an arbitrary number of Schwarzschild black holes arranged
along a rotational axis. These black holes remain in static
equilibrium thanks to conical singularities extending
between them, which are crucial for counterbalancing their
gravitational attraction. Tan and Teo [21] used the gener-
alized Weyl formalism to construct an asymptotically flat
static vacuum Einstein solution, representing a superposi-
tion of multiple five-dimensional Schwarzschild black
holes as a five-dimensional analog of the Israel-Khan
solution [20]. The equilibrium of these black holes is still
maintained only by conical singularities along the two
rotational axes. Thus, vacuum static solutions are plagued
by unavoidable conical singularities because, in a vacuum
case, there exists no force capable of counterbalancing
gravity. This fact has been demonstrated through analyses
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of static, asymptotically flat, vacuum black hole solutions
in Einstein theory in four or more dimensions, revealing the
uniqueness of the Schwarzschild solution and, hence, the
absence of multi-black-hole solutions [22–24]. This leads
to the intriguing question of whether the centrifugal
(repulsive) force generated by rotation can effectively
balance the gravitational attraction. In a related develop-
ment, Herdeiro et al. [25] utilized the inverse scattering
method to create an exact solution depicting the super-
position of two Myers-Perry black holes, analogous to the
double Kerr solution [26] in five dimensions. Each black
hole in this solution has a single angular momentum
parameter, and they are aligned in the same plane.
However, this solution generally also exhibits unavoidable
conical singularities in both spatial two-planes.
However, when including charges, static equilibrium of

the multiblack hole is allowed. For instance, the Majumdar-
Papapetrou solution [27,28] is a well-known exact solution
in Einstein-Maxwell theory which describes a configuration
of multiple charged black holes in static equilibrium. In this
solution, the gravitational attraction between the charged
black holes is exactly balanced by the repulsion due to their
electric charges. As a result, these black holes can remain
static and in equilibrium without collapsing into a single
massive black hole or flying apart due to the electromagnetic
repulsion. Thus, the Majumdar-Papapetrou solution plays
an important theoretical role in general relativity by dem-
onstrating how the interplay between gravity and electro-
magnetism can lead to stable configurations of multiple
black holes or charged objects in equilibrium. This was
also generalized to asymptotically flat solutions in higher-
dimensional Einstein-Maxwell theory [29] and asymptoti-
cally Kaluza-Klein solutions with a compact dimension in
five-dimensional Einstein-Maxwell theory [30]. As for
nonspherical black holes in five dimensions, the interplay
between centrifugal force from rotation and gravitational
attraction can permit the existence of multi-black-hole
configurations like the black saturn [16], black di-ring
[17] and bicycling black ring [18,19]. This highlights the
significant role of electric charge and rotation in facilitating
the presence of multi-black-hole systems. Moreover, a
recent development introduced the first multi–black hole
solutionwithin four-dimensional Einstein theory featuring a
positive cosmological constant, without the presence of
charge or rotation [31]. In this case, static equilibrium is
achieved by the force balance of the gravitational attraction
between two black holes and cosmic expansion, marking a
notable instance of nonuniqueness in four-dimensional
Einstein theory without charge and rotation.
A notable contrast between five-dimensional and four-

dimensional spacetime lies in the presence of horizonless
structures known as “bubble of nothing” or simply
“bubble” [32], which also act as gravitational solitons in
higher-dimensional gravity theories. In five-dimensional
Kalzua-Klein theory, the regular exact solutions that

describe two black holes in static equilibrium on bubbles
were constructed [33–35]. Recent studies have revealed that
an expanding bubble connected to an acceleration horizon
can exert an expansion force on the enclosed spacetime,
maintaining static equilibrium in various nonrotating setups
like five-dimensional nonrotating black rings and four-
dimensional nonrotating black hole binaries [36]. This
expansion force can be roughly likened to that experienced
in de Sitter spacetime, suggesting that such configurations
could potentially withstand de Sitter expansion. The gen-
eralized Weyl ansatz offers a straightforward approach to
obtaining solutions for black holes within expanding bub-
bles in equilibrium [37], facilitating the search for de Sitter
solutions in similar configurations. The formations of
expanding bubbles in these dimensions emerge as a result
of the limiting process of static black hole binaries and black
rings, respectively. This limit is characterized by a scenario
where the separation between the two black holes or the
inner hole of the black ring diminishes significantly, leading
to the acceleration horizons of the bubbles aligning with the
horizons of the black holes. Furthermore, they demonstrated
that bubble spacetimes have the capacity to accommodate
black hole binaries and black rings in static equilibrium,
where their gravitational attraction is counteracted by the
expansion of the background spacetime. However, previous
research has demonstrated that the expansion force gener-
ated by expanding bubbles is insufficient to balance non-
rotating black lenses [38].
In this study, our attention is directed towards various

five-dimensional multi-black-hole configurations without
matter, rotation, and cosmological constant, which are
balanced in expanding bubbles, extending the analysis
from Ref. [36]. Specifically, we investigate whether a black
saturn, a black di-ring, a bicycling black ring, and a black
hole binary can achieve equilibrium inside expanding
bubbles without the need for rotation and charge, although
rotation is crucial for the first three, and charge for the
fourth in an asymptotically flat case. Additionally, we
emphasize that several bubbles of nothing, without black
holes, can also maintain static equilibrium within expand-
ing bubbles. In this paper, we work with the assumption
that the spacetime is described by the five-dimensional
Weyl metric [37], which allows us to derive exact solutions
based on the provided rod structure. We focus on static
biaxisymmetric spacetime configurations with one or two
acceleration horizons attached to either one or both ends of
the rod structure. Our study reveals that these multiblack
holes can achieve static equilibrium in expanding bubbles
by balancing the gravitational force between two black hole
horizons and the pull force by the acceleration horizon. In
particular, we demonstrate that static equilibrium requires
two acceleration horizons on both sides for the bicycling
black ring and the five-dimensional black hole binary, but it
requires only one acceleration horizon for the black saturn
and the black di-ring.
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The remainder of this paper is organized as follows:
First, in Sec. II, we introduce the foundational framework
and provide a concise overview of the generalized Weyl
solution in five dimensions. This solution pertains to static
and axisymmetric vacuum spacetime characterized by three
commuting Killing vector fields. Subsequently, in Sec. III,
we consider static equilibrium of expanding bubbles of
nothing without horizons. In Sec. IV, we delve into various
configurations involving multiple black holes that are
balanced within expanding bubbles. The metric can be
easily read off from a so-called “rod diagram” [37,39]. This
section delves into the conditions necessary and sufficient
for achieving static equilibrium of various multiblack holes
within expanding bubbles in expanding bubbles, a black
saturn in Sec. IVA, a black di-ring in Sec. IV B, a bicycling
black ring in Sec. IV C, and a five-dimensional black hole
binary in Sec. IV D. Lastly, we provide a summary of our
findings and conclusions drawn from the study in Sec. V.

II. SETUP

In this paper, we investigate the multi-black-hole sol-
utions of the five-dimensional vacuum Einstein theory
which are in static equilibrium inside expanding bubbles
of nothing. Specifically, we examine a class of solutions
known as the generalized Weyl solution [37]. Let us
consider a five-dimensional static and axisymmetric vac-
uum spacetime admitting three commuting Killing vector
fields VðiÞ (i ¼ 1; 2; 3), following the argument in previous
works [37]. The commutativity of the Killing vectors,
denoted by ½VðiÞ; VðjÞ� ¼ 0, allows us to establish a coor-
dinate system such that VðiÞ ¼ ∂=∂xi (i ¼ 1; 2; 3), with the
metric being independent of the coordinates xi. Here, ∂=∂x1

represents the timelike Killing vector, while ∂=∂x2 and
∂=∂x3 denote the spacelike rotational Killing vectors, and
we denote the coordinate xi as ðx1; x2; x3Þ ¼ ðt;ϕ;ψÞ.
With these assumptions, the two-dimensional space

orthogonal to all three Killing vectors becomes integrable,
enabling us to express the metric as

ds2 ¼ gijðρ; zÞdxidxj þ fðρ; zÞðdρ2 þ dz2Þ; ð1Þ

together with the constraint

detðgijÞ ¼ −ρ2; ð2Þ

where the three-dimensional diagonal metric gij ¼
diagðg0; g1; g2Þ and the function f do not depend on xi.
Then, it follows from the Einstein equation Rij ¼ 0 that the
metric gij reduces to the harmonic equations on a three-
dimensional Euclid space in the abstract cylindrical coor-
dinate system, defined as γ ≔ dρ2 þ dz2 þ ρ2dφ2,

△γ log gk ¼ 0; k ¼ 0; 1; 2; ð3Þ

and moreover, from the other components of the Einstein
equation Rρρ − Rzz ¼ Rρz ¼ 0, the function f is deter-
mined up to a constant by

∂ρ log f ¼ −
1

ρ
þ 1

4ρ

X2
k¼0

g−2k ½ð∂ρgkÞ2 − ð∂zgkÞ2�;

∂z log f ¼ 1

2ρ

X2
k¼0

g−2k ∂ρgk∂zgk; ð4Þ

where the integrability condition ∂ρ∂zf ¼ ∂z∂ρf is derived
from Eq. (3). The solution for Eq. (3) is easily constructed
in terms of ρ2, μi, and μ̄i, where

μi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − ziÞ2

q
− ðz − ziÞ;

μ̄i ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − ziÞ2

q
− ðz − ziÞ: ð5Þ

The function log μi is one of the solutions to the harmonic
equation (3) for the semi-infinite rod z∈ ½zi;∞Þ with mass
density 1=2 on the z axis and log μ̄i for the semi-infinite rod
z∈ ð−∞; zi�. More general solutions can be obtained by
taking the product of ρ2, μi, and μ̄i, which is determined by
the mass distribution along the z axis, known as the “rod
structure” [37,39]. Once gij is determined, the solution f to
Eq. (4) can be obtained, following the procedure outlined in
the appendix of Ref. [18].
Additionally, a rod diagram is a graphical representation

of the rod structure, used often in the study of the
construction of higher-dimensional black hole solutions,
particularly in the context of the Weyl metric [37,39]. It is a
visualization technique that simplifies the description of the
spacetime geometry near black holes, focusing on the
essential features such as the presence of black holes,
acceleration horizons, expanding bubbles, and rotational
axes. In a rod diagram, each black hole is represented by a
finite line segment for g0 called a timelike rod, with the
length of the rod corresponding to the mass or charge of the
black hole. Acceleration horizons, which are associated
with the presence of expanding bubbles, are represented by
additional semi-infinite line segments attached to the
timelike rods. Furthermore, expanding bubbles and rota-
tional axes are represented by line segments for g1 or g2
called spacelike rods. In summary, a rod diagram provides
us a clear and intuitive way to visualize the complex
geometry of spacetimes with multiple black holes and
expanding bubbles, making it a valuable tool in theoretical
studies of gravitational physics.

III. BUBBLES IN EXPANDING BUBBLES

In this section, we consider two horizonless spacetimes
with only bubbles of nothing.
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A. Expanding bubbles of nothing

First, as a simplest example of only expanding bubbles,
let us consider the spacetime with the rod structure given by
Fig. 1, from which the metric can be read off as

ds2¼−
ρ2μ2
μ0

dt2þμ0
μ1

dϕ2þμ1
μ2

dψ2þfðdρ2þdz2Þ; ð6Þ

with

f ¼ Cf
μ2
μ0

R01R02R12

R00R11R22

; ð7Þ

where Rij ≔ ρ2 þ μiμj and Cf is an arbitrary constant. This
solution was first studied in Ref. [37] and then can be
obtained in Ref. [36] by the limit at which the two black
holes become infinitely large for the five-dimensional
asymptotically flat, static black hole binary with inevitable
conical singularities [21]. This spacetime admits the pres-
ence of two accelerating horizons, which correspond to the
timelike semi-infinite rods ð−∞; z0� and ½z2;∞Þ. The two
spacelike rods ½z0; z1� and ½z1; z2� represent bubbles, each
having topology D2, which are orthogonal and intersect at
the point z ¼ z1. Meanwhile, the timelike semi-infinite rods
ð−∞; z0� and ½z2;∞Þ represent the bubble acceleration
horizons with topology S1 ×R2.
Since in general, the spacetime includes conical singu-

larities in two rods ½z0; z1� and ½z1; z2� on the z axis, we
eliminate them by imposing the regularity conditions as
follows:

(i) On the spacelike finite rod ½z0; z1�, which represents
an expanding bubble corresponding to ϕ-rotational
axis, the absence of conical singularities requires the
periodicity of ϕ,

lim
ρ→0

ffiffiffiffiffiffiffi
ρ2f
gϕϕ

s
¼ Δϕ

2π
⇔ 4Cfz10z20 ¼

�
Δϕ
2π

�
2

: ð8Þ

(ii) On the spacelike finite rod ½z1; z2�, which represents
the bubble corresponding to ψ -rotational axis, sim-
ilarly, the absence of conical singularities requires
the periodicity of ψ ,

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
gψψ

s
¼ Δψ

2π
⇔ 4Cfz20z21 ¼

�
Δψ
2π

�
2

: ð9Þ

In order to solve these, we choose the parametrization of
the rod end points as

l1 ≔ z21; l2 ≔ z10; Cf ¼ 1

4
; ð10Þ

where l1 and l2 present the size of the bubbles ½z1; z2� and
½z0; z1�, respectively. Then Eqs. (8) and (9) simply set the
periodicity of ψ and ϕ, respectively, as

l1ðl1 þ l2Þ ¼
�
Δψ
2π

�
2

; l2ðl1 þ l2Þ ¼
�
Δϕ
2π

�
2

; ð11Þ

without further constraints. Since Eq. (11) simply deter-
mines the periodicities of ϕ and ψ , both of the bubble sizes
l1 and l2 can have any values, with conical singularities on
both the bubbles being absent, and hence two bubbles
can have arbitrary size. This spacetime reduces to the
Minkowski spacetime at the limit l1; l2 → ∞ with rescaling
ϕ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðl1 þ l2Þ

p
ϕ;ψ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1ðl1 þ l2Þ

p
ψ , while keeping

the absence of conical singularities.

B. Bubbles in expanding bubbles

Next, as a second example, we consider “two bubbles
inside two expanding bubbles of nothing” whose rod
diagram is given by Fig. 2. From this rod diagram, we
can construct the metric as

ds2 ¼ −
ρ2μ4
μ0

dt2 þ μ0μ2
μ1μ3

dϕ2 þ μ1μ3
μ2μ4

dψ2

þ fðdρ2 þ dz2Þ; ð12Þ
with

f ¼ Cf
μ4
μ0

R01R03R04R2
12R14R2

23R34

R00R02R11R2
13R22R24R33R44

: ð13Þ

This spacetime also admits the presence of two bubble
acceleration horizons with topology S1 × R2 on the time-
like semi-infinite rods ð−∞; z0� and ½z4;∞Þ, and two
expanding bubbles on the spacelike finite rods ½z0; z1�,
½z3; z4�with topologyD2, and two additional bubbles on the
spacelike finite rods ½z1; z2�, ½z2; z3� with topology S2,
where the latter two are orthogonal and intersect at the
point z ¼ z2.

FIG. 1. Rod diagram of 5D expanding bubble of nothing. FIG. 2. Rod diagram of two bubbles inside 5D expanding
bubble of nothing.
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In order to eliminate conical singularities on two rods
½z1; z2�, ½z2; z3� on the z axis as well as ½z0; z1�, ½z3; z4�, we
impose the regularity conditions as follows:

(i) On the spacelike finite rod ½z0; z1�which represents an
expanding bubble corresponding to the ϕ-rotational
axis, the absence of conical singularities requires the
periodicity of ϕ,

lim
ρ→0

ffiffiffiffiffiffiffi
ρ2f
gϕϕ

s
¼ Δϕ

2π
⇔ 4Cf

z10z30z40
z20

¼
�
Δϕ
2π

�
2

: ð14Þ

(ii) On the spacelike finite rod ½z1; z2�which represents a
bubble corresponding to the ψ-rotational axis, the
absence of conical singularities requires the perio-
dicity of

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
gψψ

s
¼ Δψ

2π
⇔ 4Cf

z221z30z40z41
z20z231

¼
�
Δψ
2π

�
2

:

ð15Þ

(iii) On the spacelike finite rod ½z2; z3�which represents a
bubble corresponding to the ϕ-rotational axis, the
absence of conical singularities requires the perio-
dicity of ϕ,

lim
ρ→0

ffiffiffiffiffiffiffi
ρ2f
gϕϕ

s
¼ Δϕ

2π
⇔ 4Cf

z30z232z40z41
z231z42

¼
�
Δϕ
2π

�
2

:

ð16Þ

(iv) On the spacelike finite rod ½z3; z4� which represents
an expanding bubble corresponding to the ψ-rota-
tional axis, the absence of conical singularities
requires the periodicity of

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
gψψ

s
¼Δψ

2π
⇔ 4Cf

z40z41z43
z42

¼
�
Δψ
2π

�
2

: ð17Þ

To avoid conical singularities on ϕ and ψ rotational axes
simultaneously, from Eqs. (14)–(17), we have

�
Δϕ
2π

�
2

¼ z10z30z40
z20

¼ z30z232z40z41
z231z42

; ð18Þ

and

�
Δψ
2π

�
2

¼ z40z41z43
z42

¼ z221z30z40z41
z20z231

; ð19Þ

where we choose Cf ¼ 1=4.
Let us choose the parametrization of the rod end points

ziði ¼ 0;…; 4Þ as

z0 ¼ −ð1þ μÞl; z1 ¼ −l; z2 ¼ 0;

z3 ¼ νl; z4 ¼ ðνþ γÞl; ð20Þ

where μl, l, νl, and γl correspond to the sizes of the
bubbles on ½z0; z1�, ½z1; z2�, ½z2; z3�, and ½z3; z4�, respec-
tively. Equations (18) and (19) can be rewritten as,
respectively,

�
Δϕ
2π

�
2

¼l2μðμþνþ1Þðγþμþνþ1Þ
μþ1

¼l2ν2ðγþνþ1Þðμþνþ1Þðγþμþνþ1Þ
ðνþ1Þ2ðγþνÞ ; ð21Þ

�
Δψ
2π

�
2

¼ l2ðγ þ νþ 1Þðμþ νþ 1Þðγ þ μþ νþ 1Þ
ðμþ 1Þðνþ 1Þ2

¼ γl2ðγ þ νþ 1Þðγ þ μþ νþ 1Þ
γ þ ν

: ð22Þ

From the above equations, we obtain the relation on the size
of bubbles,

μ¼ ν2ðνþ1Þðνþ2Þ
ν3þ3ν2þ4νþ1

; γ¼ ðνþ1Þð2νþ1Þ
ν3þ4ν2þ3νþ1

; ð23Þ

from which the sizes of the bubble on ½z0; z1� and the
expanding bubble on ½z3; z4� are determined by the size of
the bubble on ½z2; z3�. Substituting this into Eqs. (21) and
(22), we obtain

�
Δϕ
2π

�
2

¼ l2ν2ðνþ1Þ5ðνþ2Þ2ð2νþ1Þ2
ðν3þ3ν2þ4νþ1Þ2ðν3þ4ν2þ3νþ1Þ ; ð24Þ

�
Δψ
2π

�
2

¼ l2ðνþ1Þ5ðνþ2Þ2ð2νþ1Þ2
ðν3þ3ν2þ4νþ1Þðν3þ4ν2þ3νþ1Þ2 ; ð25Þ

which determine the periodicities of ϕ and ψ .
Therefore, we can observe that the presence of two

bubbles between two expanding bubbles requires the
existence of both acceleration horizons on ð−∞; z0� and
½z4;∞Þ. One can observe that the presence of both accel-
eration horizons on ð−∞; z0� and ½z4;∞Þ is necessary for
balance, as μ and γ given by Eq. (23) remain finite for any
finite ν > 0. More precisely, one cannot take the limit
γ → ∞ or μ → ∞ while keeping ν finite, as this corre-
sponds to the existence of a single acceleration horizon.
Therefore, we can conclude that the presence of two
bubbles between two expanding bubbles requires the
existence of both acceleration horizons on ð−∞; z0�
and ½z4;∞Þ.
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IV. MULTIBLACK HOLES
IN EXPANDING BUBBLES

Subsequently, in this section, we consider four configu-
rations of multiple black holes that are balanced within
expanding bubbles. The discussions focus on a black saturn
in Sec. IVA, a black di-ring in Sec. IV B, a bicycling black
ring in Sec. IV C, and a five-dimensional black hole binary
in Sec. IV D.

A. Black saturn in expanding bubbles

First, let us consider “a static black saturn in expanding
bubbles,” for which the rod diagram is depicted in Fig. 3.
Based on this rod diagram, we can construct the metric as
follows:

ds2 ¼ −
ρ2μ1μ3
μ0μ2μ4

dt2 þ μ0μ2
μ1μ3

dϕ2 þ μ4dψ2

þ fðdρ2 þ dz2Þ; ð26Þ
with

f ¼ Cf
μ4R2

01R
2
03R

2
12R14R2

23R34

R00R2
02R04R11R2

13R22R24R33R44

: ð27Þ

A black hole horizon with topology S3 exists on the
timelike finite rod ½z3; z4�, and it is surrounded by a black
ring horizon with topology S1 × S2 on the timelike finite
rod ½z1; z2�. Additionally, this spacetime also features a
single bubble acceleration horizon with topology S1 ×R2

on the timelike semi-infinite rods ð−∞; z0�, along with an
expanding bubble and another bubble on the spacelike
finite rods ½z0; z1� and ½z2; z3�, which have the cylinder
topology of S1 ×R.
In order to eliminate conical singularities on two rods

½z0; z1�, ½z2; z3� on the z axis, we impose the regularity
conditions as, respectively,

lim
ρ→0

ffiffiffiffiffiffiffi
ρ2f
gϕϕ

s
¼ Δϕ

2π
⇔ 2Cf

z210z
2
30

z220z40
¼

�
Δϕ
2π

�
2

; ð28Þ

lim
ρ→0

ffiffiffiffiffiffiffi
ρ2f
gϕϕ

s
¼ Δϕ

2π
⇔ 2Cf

z230z
2
32z41

z231z40z42
¼

�
Δϕ
2π

�
2

: ð29Þ

The absence of conical singularities on ½z4;∞Þ requires the
condition

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
gψψ

s
¼ Δψ

2π
⇔ Cf ¼

�
Δψ
2π

�
2

; ð30Þ

where in the parameter choice of Cf ¼ 1, Eq. (30) deter-
mines the periodicity of ψ as Δψ ¼ 2π. To avoid the
conical singularities on both of the ϕ-rotational axes,
Eqs. (28) and (29) must be satisfied simultaneously,

�
Δϕ
2π

�
2

¼ 2z230z
2
32z41

z231z40z42
¼ 2z210z

2
30

z220z40
: ð31Þ

To give these parameters a physical interpretation, we
introduce the positive parameters ðl; r; μ; RÞ as follows:

z0 ¼ −l; z1 ¼ 0; z2 ¼ rl;

z3 ¼ ðrþ μÞl; z4 ¼ ðrþ μþ RÞl; ð32Þ

where l and μl represent the sizes of the expanding bubble
on ½z0; z1� and the bubble on ½z2; z3�, respectively, while rl
and Rl correspond to the sizes of the black ring and black
hole horizons, respectively. Then in terms of these, Eq. (31)
can be expressed as

�
Δϕ
2π

�
2

¼ 2lðrþ μþ 1Þ2
ðrþ 1Þ2ðrþ μþ Rþ 1Þ

¼ 2lμ2ðrþ μþ 1Þ2ðrþ μþ RÞ
ðrþ μÞ2ðμþ RÞðrþ μþ Rþ 1Þ ; ð33Þ

which is equivalent to

R ¼ μðμþ rÞðμðrþ 2Þ − 1Þ
ð1 − μÞðð2þ rÞμþ rÞ ;

�
Δϕ
2π

�
2

¼ 2lð1 − μÞðμþ rþ 1Þ2ðð2þ rÞμþ rÞ
ðrþ 1Þ3ðr − ðμ − 2ÞμÞ ; ð34Þ

where R > 0 is satisfied only in the range

1

rþ 2
< μ < 1: ð35Þ

The first equation in Eq. (34) determines the size of the
black hole by the size of the black ring and the bubble on
½z2; z3�. The second equation determines the periodicity
of ϕ.
As is well known, the black hole temperature T ¼ 1=β

can be derived by means of the Euclidean approach, i.e., by
Wick rotation, compactifying the Euclidean time and the
absence of conical singularities requires identifying the
period with the inverse temperature:FIG. 3. Rod structure of a black saturn inside bubble of nothing.

SHINYA TOMIZAWA and RYOTAKU SUZUKI PHYS. REV. D 109, 104067 (2024)

104067-6



lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
−gtt

s
¼ β

2π
: ð36Þ

The temperatures TBRð≕ 1=βBRÞ and TBHð≕ 1=βBHÞ for
the black ring horizon on ½z1; z2� and the black hole horizon
on ½z3; z4� can be computed as, respectively,

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
−gtt

s
¼ βBR

2π
⇔

z221z
2
30z41

z220z
2
31z40

¼
�
βBR
2π

�
2

; ð37Þ

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
−gtt

s
¼ βBH

2π
⇔

z41z43
z40z42

¼
�
βBH
2π

�
2

: ð38Þ

Furthermore, similarly, the temperature TAHð≕ 1=βAHÞ for
the bubble acceleration horizon on ð−∞; z0� can be
obtained as

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
−gtt

s
¼ βAH

2π
⇔ 1 ¼

�
βAH
2π

�
2

: ð39Þ

From Eqs. (37)–(39), the inverse temperatures of each
horizon can be written as

�
βBH
2π

�
2

¼ ðrþ μÞ3ðð2þ rÞμ − 1Þ
μð1þ rÞ3ðrþ ð2 − μÞμÞ ; ð40Þ

�
βBR
2π

�
2

¼ r2ð1þ rþ μÞ2
ðrþ 1Þ3ðrþ ð2 − μÞμÞ ; ð41Þ

�
βAH
2π

�
2

¼ 1: ð42Þ

To discuss the phase diagram of this black saturn in an
expanding bubble of nothing, we consider the temperature
ratio of the black ring horizon to that of the black hole
horizon, which is given by

�
TBR

TBH

�
2

¼
�
βBH
βBR

�
2

¼ ðrþ μÞ3ðð2þ rÞμ − 1Þ
r2μð1þ rþ μÞ2 : ð43Þ

In Fig. 4, we illustrate the phase diagram of the static black
saturn in the expanding bubble in the ðμ; rÞ plane, accom-
panied by the temperature ratio profile TBR=TBH.
According to Eq. (34), as μ→ðrþ2Þ−1, we have R → 0
and TBH → ∞, leading to the disappearance of the black
hole horizon. Consequently, the resulting spacetime cor-
responds to the static black ring in an expanding bubble, as
discussed in Ref. [36]. Conversely, in the r → 0 limit, TBR
diverges, causing the black ring horizon to vanish, resulting
in a static black hole in an expanding bubble.
One might question whether the black saturn can

maintain static equilibrium even with the addition of

another bubble acceleration horizon on the right end,
represented as a semi-infinite timelike rod on ½z5;∞Þ.
The answer is yes. However, the presence of only the
right acceleration horizon is insufficient to support the
black saturn due to unavoidable conical singularities. This
implies that the gravitational attraction between the black
hole and black ring cannot counterbalance the pulling force
along the ψ -rotational axis caused by the accelerating
horizon alone. Therefore, the left acceleration horizon on
ð−∞; z0� is necessary for achieving static equilibrium.

B. Black di-ring in expanding bubbles

Next, we consider “a static black di-ring in expanding
bubbles” for which the rod diagram is given in Fig. 5. Here,

FIG. 4. The temperature ratio between the black ring horizon
and black hole horizon for the black saturn in the expanding
bubble shown in the ðμ; rÞ plane. The blue curve [μ ¼ ðrþ 2Þ−1]
represents the points where TBH → ∞ and the black hole horizon
disappears, corresponding to the static black ring in the expand-
ing bubble. The green line r ¼ 0ðμ > 1=2Þ represents the points
TBR → ∞ and the black ring horizon disappears, corresponding
to the static black hole in the expanding bubble. There is no
balanced state in the hatched region. The red curve corresponds to
the phase where the black ring horizon and black hole horizon
have the same temperature.

FIG. 5. Rod structure of a black di-ring inside bubble of
nothing.
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from the same reason as in the black saturn, we assume
the presence of a single acceleration bubble horizon. The
metric can be written as

ds2 ¼ −
ρ2μ1μ3
μ0μ2μ4

dt2 þ μ0μ2μ4
μ1μ3μ5

dϕ2 þ μ5dψ2

þ fðdρ2 þ dz2Þ; ð44Þ

with

f ¼ Cf
μ5R2

01R
2
03R05R2

12R
2
14R

2
23R25R2

34R45

R00R2
02R

2
04R11R2

13R15R22R2
24R33R35R44R55

: ð45Þ

This spacetime has two black ring horizons with top-
ology S1 × S2 on the timelike finite rods ½z1; z2� and ½z3; z4�,
where they are concentric in the same plane, and the former
is outside the latter. Additionally, there is a single bubble
acceleration horizon with topology S1 ×R2 on the timelike
semi-infinite rods ð−∞; z0�. Furthermore, there exists an
expanding bubble with topology S1 ×R on the spacelike
finite rods ½z0; z1�, the inner ϕ-rotational axis on ½z2; z3�
with topology S1 × R, and the inner ϕ-rotational axis on
½z4; z5� with topology D2.
In order to eliminate conical singularities on three rods

½z0; z1�, ½z2; z3�, and ½z4; z5� on the z axis, we impose the
regularity conditions as, respectively,

lim
ρ→0

ffiffiffiffiffiffiffi
ρ2f
gϕϕ

s
¼ Δϕ

2π
⇔ 2Cf

z210z
2
30z50

z220z
2
40

¼
�
Δϕ
2π

�
2

; ð46Þ

lim
ρ→0

ffiffiffiffiffiffiffi
ρ2f
gϕϕ

s
¼ Δϕ

2π
⇔ 2Cf

z230z
2
32z

2
41z50z52

z231z
2
40z

2
42z51

¼
�
Δϕ
2π

�
2

; ð47Þ

lim
ρ→0

ffiffiffiffiffiffiffi
ρ2f
gϕϕ

s
¼ Δϕ

2π
⇔ 2Cf

z50z52z54
z51z53

¼
�
Δϕ
2π

�
2

: ð48Þ

Moreover, the absence of conical singularities on ½z5;∞Þ
requires the condition

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
gψψ

s
¼ Δψ

2π
⇔ Cf ¼

�
Δψ
2π

�
2

; ð49Þ

and from Eq. (49), the choice of Cf ¼ 1 determines
Δψ ¼ 2π. To avoid conical singularities on three ϕ axes,
the periodicities given in Eqs. (46)–(48) must coincide with
one another, which leads to

�
Δϕ
2π

�
2

¼ 2z210z
2
30z50

z220z
2
40

¼ 2z230z
2
32z

2
41z50z52

z231z
2
40z

2
42z51

¼ 2z50z52z54
z51z53

:

ð50Þ

To provide physical interpretations for these parameters,
we introduce the positive parameters ðl; r1; r2; μ1; μ2; νÞ as
follows:

z0 ¼ −l; z1 ¼ 0; z2 ¼ r1l; z3 ¼ ðr1 þ μÞl;
z4 ¼ ðr1 þ μþ r2Þl; z5 ¼ ðr1 þ μþ r2 þ νÞl; ð51Þ

where l represents the sizes of the expanding bubble on
½z0; z1�, μl and νl represent the sizes of the inner ϕ axis on
½z2; z3� between two black ring horizons and the inner ϕ
axis on ½z4; z5� inside the inner black ring, respectively.
Additionally, r1l and r2l denote the sizes of the outer
black ring horizon on ½z1; z2� and the inner black ring
horizon on ½z3; z4�, respectively. In terms of these param-
eters, Eq. (50) becomes

μ2ðr1 þ 1Þ2ðμþ r1 þ r2Þ2ðμþ νþ r2Þ
ðμþ r1Þ2ðμþ r2Þ2ðμþ νþ r1 þ r2Þ

¼ 1; ð52Þ

νðr1 þ 1Þ2ðμþ r1 þ r2 þ 1Þ2ðμþ νþ r2Þ
ðμþ r1 þ 1Þ2ðνþ r2Þðμþ νþ r1 þ r2Þ

¼ 1; ð53Þ

�
Δϕ
2π

�
2

¼ 2lðμþ r1 þ 1Þ2ðμþ νþ r1 þ r2 þ 1Þ2
ðr1 þ 1Þ2ðμþ r1 þ r2 þ 1Þ2 ; ð54Þ

where Eqs. (52) and (53) relate the sizes of two black ring
horizons to those of two inner ϕ axes, and Eq. (54)
determines the periodicity of ϕ.
The temperatures TBR;1ð≕ 1=βBR;1Þ, TBR;2ð≕ 1=βBR;2Þ,

and TAHð≕ 1=βAHÞ for the outer black ring horizon on
½z1; z2� and the inner black ring horizon on ½z3; z4� and the
bubble acceleration horizon on ð−∞; z0� can be computed
as, respectively,

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
−gtt

s
¼ βBR;1

2π
⇔

z221z
2
30z

2
41z50

z220z
2
31z

2
40z51

¼
�
βBR;1
2π

�
2

; ð55Þ

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
−gtt

s
¼ βBR;2

2π
⇔

z241z
2
43z50z52

z240z
2
42z51z53

¼
�
βBR;2
2π

�
2

; ð56Þ

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
−gtt

s
¼ βAH

2π
⇔ 1 ¼

�
βAH
2π

�
2

: ð57Þ

In terms of the parameters ðr1; r2; μ; νÞ, Eqs. (55)–(57) can
be written as, respectively,
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�
βBR;1
2π

�
2

¼ r21ðμþ r1 þ 1Þ2ðμþ r1 þ r2Þ2ðμþ νþ r1 þ r2 þ 1Þ
ðr1 þ 1Þ2ðμþ r1Þ2ðμþ r1 þ r2 þ 1Þ2ðþνþ r1 þ r2Þ

; ð58Þ

�
βBR;2
2π

�
2

¼ r22ðμþ νþ r2Þðμþ r1 þ r2Þ2ðμþ νþ r1 þ r2 þ 1Þ
ðνþ r2Þðμþ r2Þ2ðμþ r1 þ r2 þ 1Þ2ðμþ νþ r1 þ r2Þ

; ð59Þ

�
βAH
2π

�
2

¼ 1: ð60Þ

We characterize the solution by the ratio of the temper-
atures of the outer black ring to the inner black ring, which
is given by�

TBR;1

TBR;2

�
2

¼
�
βBR;2
βBR;1

�
2

¼ r22ðr1 þ 1Þ2ðμþ r1Þ2ðμþ νþ r2Þ
r21ðνþ r2Þðμþ r1 þ 1Þ2ðμþ r2Þ2

: ð61Þ

As shown in Fig. 6, the black di-ring can achieve static
equilibrium in an expanding bubble for any positive
parameters ðr1; r2Þ. In either limit r1 → 0 or r2 → 0 where
TBR;1 → ∞ or TBR;2 → ∞, it is possible to reproduce a
static black ring in an expanding bubble [36].
Despite the addition of another bubble acceleration

horizon on the right end, represented as a semi-infinite
timelike rod on ½z6;∞Þ, the static black di-ring can still
achieve balance. However, having only the right acceler-
ation horizon is insufficient to support the black di-ring due
to unavoidable conical singularities. This indicates that the
gravitational attraction between the two black rings cannot
counterbalance the pulling force along the ψ-rotational axis
caused by the right accelerating horizon alone. Therefore,

the presence of the left acceleration horizon on ð−∞; z0� is
necessary to achieve equilibrium.

C. Bicycling black ring in expanding bubbles

Third, we investigate “a static bicycling black ring in an
expanding bubble,” as depicted in Fig. 7. In contrast to the
previous two cases, where we assumed a single acceleration
bubble horizon for the black saturn, wewill observe that the
bicycling black ring necessitates two bubble acceleration
horizons on both sides for static equilibrium. From Fig. 7,
we can derive the metric as follows:

ds2 ¼ −
ρ2μ1μ4μ6
μ0μ2μ5

dt2 þ μ0μ2
μ1μ3

dϕ2 þ μ3μ5
μ4μ6

dψ2

þ fðdρ2 þ dz2Þ; ð62Þ

f¼Cf
μ1μ4μ6
μ0μ2μ5

×
R2
01R03R04R06R2

12R15R23R24R26R34R36R2
45R

2
56

R00R2
02R05R11R13R14R16R22R25R33R35R44R2

46R55R66

:

ð63Þ

FIG. 6. Phase diagram of the black di-ring in an expanding bubble. The temperature ratio between the two black ring horizons and the
values of μ and ν are given in the ðr1; r2Þ plane. In the right panel, the blue and red dashed curves correspond to constant curves of μ and
ν, respectively.
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This spacetime has two black ring horizons with topology
S1 × S2 on the timelike finite rods ½z1; z2� and ½z4; z5�,
where they are concentric and in the orthogonal planes.
Additionally, there exist two bubble acceleration horizons
with topology S1 ×R2 on the timelike semi-infinite
rods ð−∞; z0� and ½z6;∞Þ. Furthermore, there are two
expanding bubbles with topology S1 ×R on the spacelike
finite rods ½z0; z1� and ½z5; z6�. The two orthogonal inner
ϕ-rotational and ψ-rotational axes on the spacelike finite
rods ½z2; z3� and ½z3; z4� have topology D2, tangential at the
point z ¼ z3.
In order to remove conical singularities on four rods

½z0; z1�, ½z2; z3�, ½z3; z4�, and ½z5; z6� on the z axis, we impose
the regularity conditions as, respectively,

lim
ρ→0

ffiffiffiffiffiffiffi
ρ2f
gϕϕ

s
¼ Δϕ

2π
⇔ 4Cf

z210z30z40z60
z220z50

¼
�
Δϕ
2π

�
2

; ð64Þ

lim
ρ→0

ffiffiffiffiffiffiffi
ρ2f
gϕϕ

s
¼ Δϕ

2π
⇔ 4Cf

z30z32z40z42z51z60z62
z31z41z50z52z61

¼
�
Δϕ
2π

�
2

;

ð65Þ

and

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
gψψ

s
¼ Δψ

2π
⇔ 4Cf

z40z42z43z51z60z62z63
z41z50z52z53z61

¼
�
Δψ
2π

�
2

;

ð66Þ

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
gψψ

s
¼ Δψ

2π
⇔ 4Cf

z60z62z63z265
z61z264

¼
�
Δψ
2π

�
2

: ð67Þ

From Eqs. (64)–(67), we have

�
Δϕ
2π

�
2

¼ z210z30z40z60
z220z50

¼ z30z32z40z42z51z60z62
z31z41z50z52z61

; ð68Þ

and

�
Δψ
2π

�
2

¼ z60z62z63z265
z61z264

¼ z40z42z43z51z60z62z63
z41z50z52z53z61

; ð69Þ

where we have chosen Cf ¼ 1=4.
The temperatures TBR;1ð≕ 1=βBR;1Þ, TBR;2ð≕ 1=βBR;2Þ,

TAH;1ð≕ 1=βAH;1Þ, and TAH;2ð≕ 1=βAH;2Þ for the left black
ring horizon on ½z1; z2� and the right black ring horizon on
½z4; z5� and the bubble acceleration horizons on ð−∞; z0�
and ½z6;∞Þ can be written as, respectively,

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
−gtt

s
¼ βBR;1

2π
⇔

z221z30z40z51z60
4z220z31z41z50z61

¼
�
βBR;1
2π

�
2

; ð70Þ

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
−gtt

s
¼ βBR;2

2π
⇔

z51z254z60z62z63
4z50z52z53z61z264

¼
�
βBR;2
2π

�
2

; ð71Þ

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
−gtt

s
¼ βAH;1

2π
⇔

1

4
¼

�
βAH;1
2π

�
2

; ð72Þ

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
−gtt

s
¼ βAH;2

2π
⇔

1

4
¼

�
βAH;2
2π

�
2

: ð73Þ

Instead of the rod end points ziði ¼ 0;…; 6Þ, we use the
following positive parameters ðl; r1; r2; μ1; μ2; νÞ:

z0¼−ð1þ r1þμ1Þl; z1¼−ðr1þμ1Þl;
z2¼−μ1l; z3¼ 0;

z4¼ μ2l; z5¼ðr2þμ2Þl; z6¼ðr2þμ2þνÞl; ð74Þ

where l and lν represent the sizes of the expanding
bubbles on ½z0; z1� and ½z5; z6�, respectively; μ1l and μ2l
represent the sizes of the two inner ϕ and ψ axes on ½z2; z3�
and ½z3; z4�, respectively. Additionally, r1l and r2l denote
the sizes of the left black ring horizon on ½z1; z2� and right
black ring horizon on ½z4; z5�, respectively. From Eqs. (68)
and (69), one can obtain the balance conditions,

μ1ðμ1 þ μ2Þðr1 þ 1Þ2ðμ1 þ μ2 þ r1 þ r2Þðμ1 þ μ2 þ νþ r2Þ
ðμ1 þ r1Þðμ1 þ μ2 þ r1Þðμ1 þ μ2 þ r2Þðμ1 þ μ2 þ νþ r1 þ r2Þ

¼ 1; ð75Þ

μ2ðμ1 þ μ2Þðμ1 þ μ2 þ r1 þ 1Þðμ1 þ μ2 þ r1 þ r2Þðνþ r2Þ2
ν2ðμ2 þ r2Þðμ1 þ μ2 þ r1Þðμ1 þ μ2 þ r2Þðμ1 þ μ2 þ r1 þ r2 þ 1Þ ¼ 1: ð76Þ

FIG. 7. Rod structure of a bicycling black ring inside expanding
bubble.
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To find a solution, we first consider the simple case where
the spacetime becomes symmetric under the exchange
ϕ ↔ ψ :

r ≔ r1 ¼ r2; μ ≔ μ1 ¼ μ2; ν ¼ 1; ð77Þ

with which Eqs. (75) and (76) reduce to a single condition,

4μ2ð1þ rÞ2ð1þ rþ 2μÞ
ðrþ 2μÞ2ð1þ 2rþ 2μÞ ¼ 1: ð78Þ

This equation admits a simple solution:

r¼8μ3þ12μ2−10μ−1þð2μ−1Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8μ3þ4μ2þ6μ−1

p
4ð1−2μ2Þ ;

1þ ffiffiffiffiffi
17

p

8
<μ<

1ffiffiffi
2

p ; ð79Þ

where r takes the value between 0 and ∞ for the possible
range of μ. In more general cases, one can find the solution
for any set of ðν; r1; r2Þ by solving Eqs. (75) and (76)
numerically. In Fig. 8, we illustrate the phase diagram for
ν ¼ 0.5 and ν ¼ 1.
Taking the limit z6 → ∞ with the rescaling ϕ → z1=26 ϕ

and ψ → z6ψ , the right bubble acceleration horizon is
eliminated, and Eq. (69) simplifies to

z40z42z43z51
z41z50z52z53

¼ 1: ð80Þ

We can verify that the left-hand side is always less than
unity, indicating an unavoidable conical singularity on
½z3; z4�. Since the system is symmetric under ψ ↔ ϕ and
zi ↔ z6−i, the same holds for the limit z0 → −∞.
Therefore, the bicycling black ring cannot be supported
by a single acceleration horizon alone.

FIG. 8. The phase diagram of the bicycling black ring in expanding bubbles for ν ¼ 1 and ν ¼ 0.5 illustrated in the (r1, r2) plane. The
temperature ratio between two ring horizons and the values of μ1 (blue curves) and μ2 (red dashed curve) are shown in the ðr1; r2Þ plane.
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D. Five-dimensional black hole binary
in expanding bubbles

Finally, we examine “a static five-dimensional black hole
binary in expanding bubbles,” as illustrated in Fig. 9.
Similar to the previous bicycling black ring, which requires
the presence of two acceleration bubble horizons to achieve
static equilibrium, we will find that a five-dimensional
black hole binary also requires two bubble acceleration
horizons on both sides for equilibrium. From Fig. 9, we can
derive the metric as follows:

ds2 ¼ −
ρ2μ1μ4μ6
μ0μ2μ5

dt2 þ μ0μ3
μ1μ4

dϕ2 þ μ2μ5
μ3μ6

dψ2

þ fðdρ2 þ dz2Þ; ð81Þ
with

f¼Cf
μ1μ4μ6
μ0μ2μ5

×
R2
01R

2
04R06R12R13R15R23R24R2

26R34R35R45R2
56

R00R02R03R05R11R2
14R16R22R2

25R33R36R44R46R55R66

:

ð82Þ

This spacetime has two black hole horizons with top-
ology S3 located on the timelike finite rods ½z1; z2� and
½z4; z5�. Additionally, there are two bubble acceleration
horizons with topology S1 ×R2 positioned on the timelike
semi-infinite rods ð−∞; z0� and ½z6;∞Þ. Furthermore, there
are two expanding bubbles with topology S1 ×R situated
on the spacelike finite rods ½z0; z1� and ½z5; z6�. The two
orthogonal inner ψ-rotational and ϕ-rotational axes have
topology D2 located on ½z2; z3� and ½z3; z4�, orthogonal and
tangential at the point z ¼ z3.
In order to remove conical singularities on four rods

½z0; z1�, ½z2; z3�, ½z3; z4�, and ½z5; z6� on the z axis, we impose
the regularity conditions as, respectively,

lim
ρ→0

ffiffiffiffiffiffiffi
ρ2f
gϕϕ

s
¼ Δϕ

2π
⇔ 4Cf

z210z
2
40z60

z20z30z50
¼

�
Δϕ
2π

�
2

; ð83Þ

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
gψψ

s
¼ Δψ

2π
⇔ 4Cf

z31z32z240z42z51z60z
2
62

z30z241z50z
2
52z61

¼
�
Δψ
2π

�
2

;

ð84Þ

lim
ρ→0

ffiffiffiffiffiffiffi
ρ2f
gϕϕ

s
¼ Δϕ

2π
⇔ 4Cf

z240z42z43z51z53z60z
2
62

z241z50z
2
52z61z63

¼
�
Δϕ
2π

�
2

;

ð85Þ

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
gψψ

s
¼ Δψ

2π
⇔ 4Cf

z60z262z
2
65

z61z63z64
¼

�
Δψ
2π

�
2

: ð86Þ

By choosing Cf ¼ 1
4
, from Eqs. (83)–(86), we have,

respectively,�
Δϕ
2π

�
2

¼ z210z
2
40z60

z20z30z50
¼ z240z42z43z51z53z60z

2
62

z241z50z
2
52z61z63

; ð87Þ

and �
Δψ
2π

�
2

¼ z31z32z240z42z51z60z
2
62

z30z241z50z
2
52z61

¼ z60z262z
2
65

z61z63z64
: ð88Þ

The temperatures TBH;1ð≕ 1=βBH;1Þ, TBH;2ð≕ 1=βBH;2Þ,
TAH;1ð≕ 1=βAH;1Þ, and TAH;2ð≕ 1=βAH;2Þ for the left black
hole horizon on ½z1; z2� and the right black hole horizon on
½z4; z5� and the bubble acceleration horizons on ð−∞; z0�
and ½z6;∞Þ can be written as, respectively,

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
−gtt

s
¼ βBH;1

2π
⇔

z21z31z240z51z60
4z20z30z241z50z61

¼
�
βBH;1

2π

�
2

; ð89Þ

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
−gtt

s
¼ βBH;2

2π
⇔

z51z53z262z54z60
4z50z61z252z63z64

¼
�
βBH;2

2π

�
2

; ð90Þ

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
−gtt

s
¼ βAH;1

2π
⇔

1

4
¼

�
βAH;1

2π

�
2

; ð91Þ

lim
ρ→0

ffiffiffiffiffiffiffiffi
ρ2f
−gtt

s
¼ βAH;2

2π
⇔

1

4
¼

�
βAH;2

2π

�
2

: ð92Þ

To solve the regularity conditions (87) and (88), we
introduce the positive parameters ðl; R1; R2; μ1; μ2; νÞ as

z0¼−ð1þR1þμ1Þl; z1¼−ðR1þμ1Þ;
z2¼−μ1l; z3¼0; z4¼μ2l;

z5¼ðR2þμ2Þl; z6¼ðνþR2þμ2Þl; ð93Þ
where l and lν represent the sizes of the expanding
bubbles on ½z0; z1� and ½z5; z6�, respectively, μ1l and μ2l
represent the sizes of the two inner ψ and ϕ axes on ½z2; z3�
and ½z3; z4�, respectively. Additionally, R1l and R2l denote
the sizes of the left black hole horizon on ½z1; z2� and the
right black hole horizon on ½z4; z5�, respectively. In terms
of these parameters, the conditions (87) and (88) can be
rewritten as

FIG. 9. Rod structure of a five-dimensional black hole binary in
expanding bubbles.
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μ2ðμ1 þ μ2ÞðR1 þ 1Þðμ1 þ R1 þ 1Þðμ2 þ R2Þðμ1 þ μ2 þ R1 þ R2Þðμ1 þ μ2 þ νþ R2Þ2
ðμ1 þ μ2 þ R1Þ2ðμ1 þ μ2 þ R2Þ2ðμ2 þ νþ R2Þðμ1 þ μ2 þ νþ R1 þ R2Þ

¼ 1; ð94Þ

μ1ðμ1 þ μ2Þðμ1 þ R1Þðμ1 þ μ2 þ R1 þ 1Þ2ðμ1 þ μ2 þ R1 þ R2Þðνþ R2Þðμ2 þ νþ R2Þ
ν2ðμ1 þ R1 þ 1Þðμ1 þ μ2 þ R1Þ2ðμ1 þ μ2 þ R2Þ2ðμ1 þ μ2 þ R1 þ R2 þ 1Þ ¼ 1; ð95Þ

and the temperature ratio between two black holes can be expressed as

�
TBH;1

TBH;2

�
2

¼
�
βBH;2

βBH;1

�
2

¼ ðR1 þ 1ÞR2ðμ1 þ R1 þ 1Þðμ2 þ R2Þðμ1 þ μ2 þ R1Þ2ðμ1 þ μ2 þ νþ R2Þ2
R1ðμ1 þ R1Þðμ1 þ μ2 þ R1 þ 1Þ2ðμ1 þ μ2 þ R2Þ2ðνþ R2Þðμ2 þ νþ R2Þ

: ð96Þ

By solving Eqs. (94) and (95) numerically, we obtain a
unique solution for any set of ðν; R1; R2Þ as shown in Fig. 10.
One can see that the presence of the acceleration bubble

horizons on both sides are inevitable to balance two
black holes. To see this, one can eliminate one bubble

acceleration horizon of two by taking the limit z0 → −∞ or
z6 → ∞ together with appropriate scalings of ϕ and ψ .
Utilizing the symmetry under the exchange ψ ↔ ϕ and
zi ↔ z6−i, we focus exclusively on the limit where
z6 → ∞. In this limit, the condition (88) can be written as

FIG. 10. The phase diagram of the five-dimensional black hole binary for ν ¼ 1 and ν ¼ 0.5 illustrated in the ðR1; R2Þ plane. The ratio
of the black hole temperature between two black holes is shown in the left panels. The constant curves of μ1 and μ2 are plotted by blue
solid and red dashed curves, respectively, in the right panels.
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z31z32z240z42z51
z30z241z50z

2
52

¼ 1: ð97Þ

However, it becomes evident that the numerator on the left-
hand side is smaller than the denominator. This observation
leads to the conclusion that the existence of conical
singularities cannot be avoided when dealing with a single
acceleration bubble horizon.

V. SUMMARY

In this paper, we have explored possible configurations
for vacuum multihorizon black holes that maintain static
equilibrium within expanding bubbles. When the spacetime
is described by the Weyl metric, solutions are readily
derived from the provided rod structure. We have specifi-
cally considered spacetimes with one or two acceleration
horizons attached to either one or both ends of the rod
structure. We have found that two bubbles, a black saturn, a
black di-ring, a bicycling black ring, and a five-dimensional
black hole binary can achieve static equilibrium within
expanding bubbles. As discussed in Ref. [36], the attraction
from the acceleration horizon behaves like the de Sitter
expansion force. For the black saturn and the black di-ring,
the presence of only the right acceleration horizon is
insufficient to support the two horizons due to the presence
of unavoidable conical singularities. This indicates that the
gravitational attraction between the black hole and black
ring cannot counterbalance the pulling force along the
ψ-rotational axis caused by the accelerating horizon alone.

Therefore, achieving static equilibrium necessitates the
presence of the left acceleration horizon. Meanwhile, for
the bicycling black ring and the five-dimensional black hole
binary, having only a single acceleration horizon, whether it
is right or left, is inadequate for achieving static equilibrium,
resulting in the unavoidable appearance of conical singu-
larities. This means that the gravitational attraction between
the two horizons is insufficient to counterbalance the pulling
force along either the ψ-rotational axis or the ϕ-rotational
axis caused by the single acceleration horizon. Therefore,
the presence of the second acceleration horizon is necessary
to achieve static equilibrium.
In this paper, for simplicity, we have dealt with only the

case of multiblack holes described by a diagonal metric. We
can also consider possible generalization of these solutions
to a rotational case and a charged case. Moreover, our
results suggest that in five-dimensional Einstein equations
with a positive cosmological constant, there exist exact
solutions describing static multi-black-hole configuration
such as a black saturn, a black di-ring, a bicycling black
ring and a five-dimensional black hole binary, which can
realize static equilibrium by balancing gravitational force
and cosmological expansion. We leave these interesting
issues for our future work.
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