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The Hawking process results in a monotonic decrease of the black hole mass, but a biased random walk
of the black hole angular momentum. We demonstrate that this stochastic process leads to a significant
fraction of primordial black holes becoming extremal Kerr black holes (EKBHs) of one to a few Planck
masses regardless of their initial mass. For these EKBHs, the probability of ever absorbing a photon or
other particle from the cosmic environment is small, even in the cores of galaxies. Assuming that EKBHs
are stable, they behave as cold dark matter, and can comprise all of the dark matter if they are formed with
the correct initial abundance.
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I. INTRODUCTION

Black holes (BHs) have long been considered a prom-
ising class of dark matter candidates [1–11]. To constitute
all the dark matter, they must be formed before big bang
nucleosynthesis (BBN), i.e., before the temperature of the
Universe has fallen below ∼1 MeV, and endure from their
epoch of formation to the present [6,11,12]. They must be
stable, or at least have lifetimes much longer than the
current age of the Universe.
Given evidence for the role of dark matter in the

Universe back to the epoch of BBN, plausible candidates
include BHs formed in the early Universe, with masses
therefore unrelated to those of the stellar mass black holes
that emerge from core-collapse supernovae. Most recent
attention has focused on BHs of large mass, M ≫ 1015 g
because they are expected to be stable, with decay lifetimes
much longer than the current age of the Universe [4].
As first pointed out in [8], if BH evaporation leaves

behind Planck mass stable relics, then they could be the
dark matter. Barrow et al. discussed [13] this possibility of
Planck relics from BH evaporation and concluded that a
substantial relic density could remain if the initial mass
function of primordial BHs was relatively narrow, and this
was followed up by others (e.g., [14]). Others argued more

recently [15–17] that BH decay inevitably resulted in a
Planck relic.
In this paper we argue that the Hawking process itself is

likely to “strand” a small fraction of all primordial BHs as
extremal Kerr black holes (EKBH), which are expected to
be stable. Recently, Dai and Stojkovic [18] have argued that
EKBHs undergo superradiance and therefore are not stable,
even though they do not undergo the Hawking process. We
comment on this possibility below. One way or another, the
scenario we present should be instructive for how BH decay
even in semiclassical general relativity may result in
naturally Planck relic dark matter if Planck relics are stable.
BHs are expected to decrease in mass via the Hawking

evaporation process [19–28]. For a Schwarzschild (i.e.,
uncharged, nonrotating) BH of mass MBH, the Hawking
temperature is

TSchw ¼ M2
Pl

8πM
≃ 1.1 × 1013 GeV

g
M

ð1Þ

(in units where ℏ ¼ c ¼ k ¼ 1) and the horizon radius is

RSchw ¼ 2M
M2

Pl

: ð2Þ
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Assuming that the spectrum of radiation is that of a black
body, this results in a Hawking luminosity (for one
massless degree of freedom)

LSchw ¼ 4πR2
SchwσT

4
Schw ¼ M4

Pl

15360πM2
; ð3Þ

and a Hawking lifetime of

tSchw ¼ 5120π3M3

M4
Pl

¼ 4

�
M

109 g

�
3

s: ð4Þ

The Hawking temperature characterizes the effective
temperature as inversely proportional to PBH mass and
is constrained by soft gamma ray constraints at the
∼1017 gm PBH mass scale, incorporating appropriate
spectral corrections due to nonthermal aspects of the
complex emission processes [29]. The direct gamma ray
signals associated with Hawking evaporation include the
511 keV gamma-ray line, produced by electron-positron
pair-annihilation. The INTEGRAL detection of the Large
Magellanic Cloud provides one of the strongest bounds
attainable with present observations [30]. Similar limits
come from Voyager constraints [31] as well as the diffuse
soft gamma x-ray background [32].
The temperature of a black hole is not, however,

determined exclusively by its mass [33–36]. For a rotating
(but uncharged) Kerr black hole with angular momentum J,
the temperature is

TKerr ¼
M2

Pl

4πM

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p ; ð5Þ

where

a� ≡ JM2
Pl

M2
: ð6Þ

If the Hawking process involved only photons (they
predominate), was entirely in the orbital angular momen-
tum zero channel (it predominates), and was unbiased as to
whether each photon was emitted spin-aligned or antia-
ligned with the black-hole spin (it is not, but we will return
to this point), then the evolution of J would be an unbiased
random walk with step-size 1 (i.e., ℏ).
We can investigate the fate of a black hole under this

simplified assumption—does it remain Schwarzschild like
if it begins uncharged and with J ¼ 0. Since TSchw ≪ M
for M ≫ MPl ≃ 2.17 × 10−5 g, a radiating Schwarzschild
black hole will emit N particles

NðMÞ ≃ 1

γ

Z
M

Mi

−dM
TSchw

¼ 4π

γM2
Pl

ðM2
i −M2Þ; ð7Þ

where Mi is the black hole’s initial mass, M is the black
hole’s current mass, and

γ ¼ π4

30ζð3Þ ≈ 2.70: ð8Þ

In the meantime, the black hole’s spin will undergo an
unbiased random walk, and the expected root mean square
angular momentum will grow to

hJ2i1=2 ¼
ffiffiffiffiffiffiffiffiffiffi
NðϵÞ

p
¼ 2

MPl

ffiffiffi
π

γ

r
ðM2

i −M2Þ1=2 ð9Þ

A black hole becomes an EKBH once a⋆ ¼ 1 or when
JM2

Pl ¼ M2. Using Eq. (9), and for Mi ≫ MPl, this occurs
when M ≃ 1.5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MiMPl

p
. In other words, the typical

Schwarzschild black hole would be expected to become
an EKBH by the time its mass falls from some initial value
Mi to M ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MiMPl

p
.

In order for these EKBHs to be stable against Hawking
radiation before BBN, we would require tSchw ≲ 1 s, imply-
ing Mi ≲ 107 g. Essentially every single Schwarzschild
black hole ever formed with initial mass between MPl and
107 g would have become an EKBH by 1 s under this
assumption of unbiased emission of photons.
Hawking particle emission is not however expected to be

unbiased with respect to the alignment between the spin of
the photon and the spin of the black hole. Rather, the
emission is calculated to be biased to prefer the emission of
photons with spins parallel to that of the black hole [19,24].
This will reduce the probability of a black hole evolving to
extremality.
According to [37], for a� ≪ 1, the probabilities of

emitting photons (in the s-state) with spin (and thus angular
momentum) aligned/antialigned with J are

P↑↓ða�Þ ¼
1

2
∓ a� þOða2�Þ: ð10Þ

To evaluate the efficacy of this bias in suppressing the
formation of EKBH, we must extend these approximate
formulas to ja�j ¼ 1. Consider

P↑↓ða�Þ ¼
1

2
∓ a� �

a�ja�j
2

: ð11Þ

This correctly reduces to Eq. (10) for ja�j ≪ 1, is mono-
tonic on a� ∈ ½−1; 1�, and gives P↑↓ð∓ a�Þ ¼ 0 as required.
Of course, a Kerr black hole does not just emit photons

but will emit all particles with masses m < TKerr. They will
similarly preferentially be emitted in the s-wave, and with
spins preferentially aligned with the angular momentum of
the black hole [19,24]. For simplicity we focus on the s-
wave photons with the expectation that we will correctly
capture the qualitative behavior.
The authors of [28,35,38] have studied the effect of this

spin-down bias on the expected evolution of a�. They
conclude that even black holes with initial ja�j very near
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1 would be expected to evolve to very near a� ¼ 0 once
Hawking evaporation becomes significant. However, the
question we address here is not the expected evolution of the
black hole, but the evolution of a large number of black holes
governed by the stochastic nature of the Hawking process.
Unsurprisingly, spin-down bias substantially reduces the
probability of reaching extremality, but by how much? Do
enough black holes become EKBHs for these to constitute
the dark matter, and what would we expect their mass
distribution to be?

II. THE DISTRIBUTION OF EKBH

To answer these questions, we simulated the evolution of a
large number of initially Schwarzschild black holes as they
evaporated through the Hawking process. Starting from an
initial mass of Mðt ¼ 0Þ ≫ MPl, and Jðt ¼ 0Þ ¼ 0, each
black hole was followed until either:
(a) the mass of the BH reaches some cutoff value Mcut

[16,33,39];
(b) the black hole becomes extremal, i.e., jJj ≥ ðM=MPlÞ2

(at which point we set jJj ¼ ðM=MPlÞ2).
We assume that the terminal M ¼ Mcut black holes will
decay away, and focus on the properties of the EKBH.1

As expected the black holes remained nearly
Schwarzschild (i.e., a2� ≪ 1) for the majority of their
evolution until M fell to just a few times MPl, i.e., until
the last few Hawking particle emissions. Using 2 × 109

simulations of black holes, we found that approximately
21.70% of them became extremal, independent of the value
of M0, so long as M0 ≫ MPl.
PðMextÞ, the probability density of a black hole becom-

ing extremal at mass Mext, is well approximated by

PðMextÞ ¼ KMext
ffiffiffi
ν

p �
1 −

bM2
extc

M̃2

�
2

exp

�
−
νbM2

extc2
M4

Pl

�
ð12Þ

where

K ¼ 8
ffiffiffi
π

p
γ

; ð13aÞ

ν ¼ ln

�
1þ 2M2

Pl

M̃2
−
M4

Pl

M̃4

�
; ð13bÞ

M̃ ¼ 1

2

�
Mext þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ext þ
γ

2π
M2

Pl

r �
ð13cÞ

and bxc is the greatest integer ≤ x. Black holes withffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
≤ Mext=MPl <

ffiffiffi
n

p
have J ¼ n, for n∈Z>1.

The final distribution of EKBH masses PcðMextÞ, where

PcðMextÞ ¼
PðMextÞR

∞
1 PðM0

extÞdM0
ext

ð14Þ

is shown in Fig. 1 forMcut ¼ MPl. The jagtooth shape of the
distribution seems extraordinary, however in the Appendix
we show that this can be understood as emerging from the
doubly stochastic process of black hole mass loss and black
hole angular momentum-biased random walk.
We see that the distribution is heavily weighted toward

the lightest possible EKBH, and so the fraction of initially
Schwarzschild black holes that reach Kerr extremality is a
steeply decreasing function of Mcut. The average mass of
the EKBH is M̄ ≃ 1.3MPl.
Of note is the structure of the distribution of final masses.

The distribution is a sawtooth that monotically increases
toward a local maximum as M increases from

ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
MPl

to
ffiffiffi
n

p
MPl (for integers n ≥ 2), then falls vertically to a

lower value for the next sawtooth maximum. This distri-
bution can be explained by considering a black hole in the

FIG. 1. The mass distribution function PcðMextÞ (scale on left
vertical axis) of extremal Kerr black holes emerging from the
Hawking-process evolution of an ensemble of initially Schwarzs-
child black holes of mass M0 ≫ MPl (allowing only for s-wave
photon emission). Numerical results from 2 × 109 EKBHs
(shaded histogram) are well described by Eq. (12) (red curve),
which is the result of an approximate analytic treatment of the
evolution of the ensemble (see Appendix). Black dashed vertical
lines markMext=MPl ¼

ffiffiffi
n

p
, for n∈Z>0, and the black holes withffiffiffiffiffiffiffiffiffiffiffi

n − 1
p

≤ Mext=MPl <
ffiffiffi
n

p
have J ¼ n. Since consequently a2� >

1 except atMext=MPl ¼
ffiffiffi
n

p
, which is unphysical, we also plot the

integrated weight between
ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
and

ffiffiffi
n

p
and display the values

as black dots.

1The code can be found at https://github.com/qtaylorphys/
BH_Extremal. The outline of the code is as follows: At each
time step t → tþ δt, the mass MðtÞ is updated via
Mðtþ δtÞ ¼ MðtÞ − δMðtÞ, where δMðtÞ ¼ xðtÞTKerrðMðtÞ;
a�ðtÞÞ. Here xðtÞ is a random value sampled from the Planck
distribution pðxÞ ¼ ð1=2ζð3ÞÞx2=ðex − 1Þ, and TKerr is given by
Eq. (5).Meanwhile, the angular momentum J of the BH is changed
by �1 with probabilities given by Eq. (11). We have checked that
our results do not depend materially on whether P↑↑=↑↓ða�Þ is
calculated using MðtÞ or Mðtþ δtÞ.
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last time step before it becomes extremal. With each
Hawking photon emitted, the value of J changes by �1
while the mass changes by an amount drawn randomly
from the Planck distribution of the appropriate temperature.
With the final photon, the black hole spin changes from
J ¼ n − 1 to J ¼ n (in the spin up case), and the black hole
becomes extremal with a massM ≤

ffiffiffi
n

p
MPl. The evolution

of a⋆ as a function of M is shown in Fig. 2.
Because we have quantized J but not MBH, the black

holes with
ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
≤ MBH=MPl <

ffiffiffi
n

p
and J ¼ n have

a2� > 1. This is unphysical, and reflects the need to properly
deal with the quantum mechanical nature of the decay. One
way to resolve this issue [40] is to take the final mass of the
black hole to be

ffiffiffi
n

p
MPl so that a� ¼ �1 exactly. For

illustrative purposes we therefore also plot in Fig. 1 the

integrated weight under each “tooth” of the mass distri-
bution function, which corresponds to this resolution
(ignoring the low-likelihood possibility that the final
photon jumps the black hole across an entire tooth).
While the final black holes are extremal and no longer

radiating, if they were to absorb any energy they would be
kicked out of extremality, begin to radiate again, and would
once again be more likely to decay away than return to
extremality. This would be a problem if these black holes
were of a much larger mass, but with a geometric cross
section σ ¼ 16πM2

BH=M
4
Pl these black holes are extremely

weakly interacting, and are unlikely to ever be knocked out
of extremality once they reach it [41]. For example, the last
time that a typical primordial 109 g Schwarzschild black
hole would have even encountered a cosmic microwave
background (CMB) photon was well before recombination
[41]; see Fig. 3.

III. EKBHS AS DARK MATTER

The formation of black holes during the earlyUniverse has
been a rich area of study with many proposed mechanisms
[42–56]. One commonmechanism for the formation of these
primordial black holes (PBHs) comes from density pertur-
bations in the early Universe [2,51,57–69]. A black holewill
form if the density of the perturbed region reaches some
critical density δc. The resulting BH mass will be propor-
tional to the horizon mass [6]

MH ∼ 5 × 1020MPl

�
t

10−23 s

�
ð15Þ

In order for EKBHs to be the dark matter, and in order not
to disturb BBN, they need to have been in place before the
temperature of the Universe has fallen to 1 MeV, when
MH ∼ 5 × 1043MPl. However, since a BH will only evapo-
rate through Hawking emission when its Hawking temper-
ature is greater than the ambient temperature [21,70], the
initial black holes must be light enough that THðMiÞ ≫
1 MeV, i.e., Mi ≪ 5 × 1020MPl. The upper limit on Mi is
lowered even more due to the decay lifetimes τ of EKBHs
being constrained to less than 1 second. ThusMi ≤ 1013MPl.
Naively one might then simply solve for the initial

number density of black holes niBH required to constitute all
of the dark matter using

niBH ¼ ΩDMρc
PextM̄

ð1þ ziÞ3 ð16Þ

where the current average density of dark matter is
ρDM ¼ ΩDMρc ≃ 2.5 × 10−30 g=cm3, zi is the redshift of
BH formation, Pext ≈ 0.11 is the probability of a primordial
black hole becoming extremal, and M̄ ≈ 10−5 g is the
average mass of the EKBH that ultimately remains after
BH decay. For EKBHs made at t ¼ 10−22 s after the big

FIG. 2. The evolution of a⋆ for 25 black holes, each with an
initial mass of 5MPl, as they evaporate and either become a
EKBH (blue) or reach M ¼ MPl (orange).

FIG. 3. The time δt between CMB photons hitting different mass
EKBHs as a function of the age of the Universe (solid curves),
compared to the Hubble time (dotted curve).
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bang, the initial number density of black holes is
niBH ¼ 2.27 × 1012 cm−3. Before these black holes become
extremal, however, they radiate away almost all their mass
and contribute to the overall radiation energy density of the
Universe.2

dρrad
dt

¼ −
dMBH

dt
niBH

�
a
ai

�
−3

− 4ρrad

�
ȧ
a

�
ð17Þ

where

−
dMBH

dt
¼ σABHT4

BH ð18Þ

is the energy radiated away from the black hole.
Because decaying BHs remain nearly-Schwarzschild

(i.e., a2� ≪ 1) throughout their lifetime until nearly their
final moments, and because each Hawking particle typi-
cally reduces the mass by only a small fraction (i.e.,
TBH ≪ MBH), we can approximate the time evolution of
the BH mass as nearly the expected evolution of the mass.
For a Schwarzschild BH, this gives

MSchwðtÞ ¼
�
M3

SchwðtiÞ −
M4

Pl

5120π
ðt − tiÞ

�
1=3

ð19Þ

To find ρðtÞ, we utilize the Friedmann equation

�
−Ṫ
T

�
2

¼ 8π

3M2
Pl

ðρrad þ ρmÞ; ð20Þ

where we used a=a0 ¼ T0=T. Taking the time derivative of
both sides

T̈
T
− 3

�
Ṫ
T

�
2

¼ −
4π

3M2
Pl

MBHðtÞniBH
�
T
Ti

�
3

: ð21Þ

Solving Eq. (21) numerically gives TðtÞ for t < τ,
enabling us to find ρradðt ¼ τÞ, as a function of the initial
mass and number density of the black holes. (For simplicity
we assume that all the black holes were formed at the same
time with a unique mass.)

1 ¼ ρmðteqÞ
ρradðteqÞ

≃
ρBHðt ¼ τÞ
ρradðt ¼ τÞ

1þ zτ
1þ zeq

ð22Þ

where we have substituted in ρBH for ρm since the matter
energy density is dominated by the energy density from
DM. Equation (22) is then used to find the values for ni that
satisfy the equality.

For a single set of black holes made at time t ¼ 10−15 s,
the behavior of ρBH=ρrad as the black holes evaporate is
shown in Fig. 4.

IV. CONCLUSIONS AND CONSIDERATIONS

We have shown that the biased random walk of a black
hole’s angular momentum can result in extremal Kerr black
holes when the mass of these black holes is initially of order
MPl. If the minimum mass of a stable black hole is
Mi < 1013MPl, then of the initial number of black holes
simulated around 21.70% become extremal Kerr black
holes with average mass M̄ ¼ 1.3MPl. Using this percent-
age and average mass, we have calculated the initial
density, as a function of initial mass, of EKBHs needed
to be the dark matter in the Universe today.
For our analysis, however, we have considered that the

contribution of the black hole entropy is only due to the
outer horizon of the Kerr black holes. References [71,72]
show that the inner horizon of black holes effects the
entropy of the black hole, ultimately resulting in the
temperature of a black hole being only proportional to
mass. This will make all black holes with inner horizons
radiate like a Schwarzschild black hole, making them
unstable. In [18], it is argued that waves incident on black
hole horizons undergo super-radiance and take away
energy from the black hole. This would also cause the
EKBH to radiate and make them unsatisfactory as dark
matter candidates. However, the calculation of [18]
assumed a single isolated EKBH, whereas dark matter
of mass μMPl would have a cosmological average abun-
dance of 2=μ × 10−19 cm−3, and thus a mean separation of
just∼15 km. Their individual Kerr metrics would dominate
the instantaneous local geometry at most over that distance.

FIG. 4. The evolution of ρBHðtÞ=ρradðtÞ as black holes formed at
ti ¼ 10−15 s with an initial mass Mi evaporate. Here ρrad is taken
to be the radiation energy density in a radiation-dominated
Universe (with the 106.75 effective relativistic degrees of free-
dom of the Standard Model at high temperature).

2For simplicity, we will take the number of effective relativistic
degrees of freedom of the Universe to always be equal to the
number for the Standard Model of particle physics at high
temperature, 106.75.
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The prospect that the dark matter is stabilized by its own
many-body effects is intriguing.
While EKBHs are a good candidate for the dark matter in

the Universe, they are a troubling candidate. Their small
geometric cross section is a double-edged sword: while this
ensures the stability of EKBH’s due to their low interaction
rate with other objects in the Universe, it also means that
detecting such dark matter would also be extremely
difficult, though perhaps not impossible [9,40,73–75].
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APPENDIX: APPROXIMATING THE EXTREMAL
MASS DISTRIBUTION

We want to approximate analytically the distribution of
extremal black hole masses that emerges from the numeri-
cal evolution of an ensemble of EKBH’s (blue dots in
Fig. 1). The evolution of a black hole is driven by two
stochastic processes: the random decrease in the black
hole’s mass, and the biased random walk of the black hole’s
angular momentum.3

Note that for convenience, in this appendix we set
MPl ¼ 1 in addition to ℏ ¼ c ¼ k ¼ 1, and take the
minimum mass of a black hole to be Mcut ¼ 1.

1. Approximating the mass trajectory

We start by defining an affine parameter λ that increases
monotonically as the black hole decays. The black hole
starts out at λ ¼ 0 with mass Mð0Þ ¼ M0 and angular
momentum Jð0Þ ¼ 0.
Our first approximation is related to the evolution of the

mass of the black hole MðλÞ. Though this evolution is
stochastic in the simulations,MðλÞ stays in the vicinity of a
deterministic curve M̄ðλÞ, with only small discrepancies
until near the end of the evolution. For the majority of the
black hole’s Hawking process evolution, MðλÞ ≫ 1, hence
TðλÞ ≪ MðλÞ. Also ja⋆ðλÞj ¼ jJðλÞ=M2ðλÞj ≪ 1, so the
black hole is nearly Schwarzschild.
The individual decrements in MðλÞ, δMðλÞ, are each

stochastic draws from a black body distribution of

temperature TðλÞ. However, since a large number of these
decrements are needed to substantially decrease MðλÞ, the
stochasticity of δMðλÞ gets averaged out as seen in Fig. 5.
We can thus replace the stochastic mass decrement by a
deterministic Schwarzschild approximation:

δM̄ðλÞ ≈ γT̄ðλÞ; ðA1Þ

where

γ ¼ π4

30ζð3Þ and T̄ðtÞ ¼ 1

8πM̄ðtÞ :

This deterministic approximation Eq. (A1) for the black
hole mass decrement allows us to define λ in such a way
that M̄ðλÞ obeys a simple differential equation:

dM̄ðλÞ
dλ

¼ γ

8πM̄ðλÞ ; ðA2Þ

which has the solution

M̄ðλÞ ¼ M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

γλ

4πM2
0

s
: ðA3Þ

We will always restrict ourselves to λ < 4πM2
0=γ, so that

M̄ðλÞ as given by Eq. (A2) is real and positive.
We can easily relate the affine parameter λ to the time t,

because for a Schwarzschild black hole Eq. (3) gives

dM̄
dt

¼ −
1

15360π

1

M̄2
: ðA4Þ

Comparing to Eq. (A1)

dλ
dt

¼ 1920π2γM0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

γλ

4πM2
0

s
; ðA5Þ

so that

tðλÞ ¼ M0

240πγ2

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

γλ

4πM2
0

s #
: ðA6Þ

Near the end of the black hole’s evolutionary trajectory,
the mass decrements are no longer small compared to the
black hole mass, and it is no longer necessarily the case that
ja⋆ðλÞj ≪ 1, indeed for an EKBH we have ja⋆ðλÞj → 1.
There are therefore noticeable differences between the
actual MðλÞ and M̄ðλÞ. However, in order to enable an
analytical approach, we will ignore these differences and
assume MðλÞ ≈ M̄ðλÞ.

3In principle, we should add a third random process—the
random walk of the black hole’s electromagnetic charge. Indeed,
to really understand the formation of extremal black holes near
the Planck mass we might rightly consider the random walk of all
the black hole’s SUð3Þ × SUð2Þ ×Uð1Þ gauge charges, however
we defer those complications to future considerations.
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2. Trajectory end time distribution

Unlike the evolution of the black holes mass, the
evolution of the angular momentum cannot be approxi-
mated as deterministic. With each photon emission, the
spin J changes by�1with probability given by (11), which
we can rewrite in terms of the probability to emit a photon
with spin up (þ1) or down (−1):

ρ↑ðJ;MÞ ¼
( ðJ−M2Þ2

2M4 J ≥ 0

ðJ−M2Þ2−2J2
2M4 J < 0

ðA7Þ

ρ↓ðJ;MÞ ¼ 1 − ρ↑ðJ;MÞ ðA8Þ

In the simulations, the black hole evolutionary trajectory
starts with J ¼ 0 at λ ¼ 0 and ends at some λf when jJj ≥
M2 (orM ¼ 1). We can study this in the approximation that
M changes deterministically as M̄ðλÞ. We can model the
terminal-λ distribution with a survival probability, ΣðλÞ, or
the cumulative probability that the spin trajectory has not
reached λf. This is related to the probability densityPðλÞ of
trajectory termination λ, i.e., λf, by

ΣðλÞ ¼ 1 −
Z

λ

0

dλ0Pðλ0Þ ðA9Þ

Note that Σð0Þ ¼ 1. If we find ΣðλÞ, then PðλÞ ¼
−dΣðλÞ=dλ. We can then change variables to get the
probability density at end times of final masses, PðMÞ.
The survival probability satisfies

dΣðλÞ
dλ

¼ −kðλÞΣðλÞ; ðA10Þ

where kðλÞ is the rate of loss, or the rate at which a
trajectory reaches the end conditions at λ. In other words,
the fraction of surviving trajectories will be diminished by

kðλÞΣðλÞ in times between λ and λþ dλ. With the boundary
conditions specified above,

ΣðλÞ ¼ exp

�
−
Z

λ

0

dλ0kðλ0Þ
�
; ðA11Þ

and hence

PðλÞ ¼ −
dΣðλÞ
dλ

¼ kðλÞ exp
�
−
Z

λ

0

dλ0kðλ0Þ
�
: ðA12Þ

We are only interested in λ < λmax ¼ ð4π=γÞðM2
0 − 1Þ,

so that M̄ðλÞ > 1. Because only about 21% of trajectories
end up as extremal, we can approximate the exponential
term in (A12) with 1.
In the code, the condition of extremality is jJj ≥ M2, if

the final spin jump occurs between increment λ and λþ δλ
the mass that determines ρ↑ is the mass MðλÞ ≈ M̄ðλÞ and
not M̄ðλþ δλÞ. To distinguish these two slightly different
masses, we will denote the ultimate mass as Mext, and the
penultimate mass as M̃ðMextÞ. The expected difference
between them is

dM̄ðM̃Þ ¼ γT̄ðM̃Þ ¼ γ

8πM̃
ðA13Þ

Thus

M̃ðMextÞ ¼ Mext þ
γ

8πM̃
: ðA14Þ

so that

M̃ðMextÞ ¼
1

2

�
Mext þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ext þ
γ

2π

r �
ðA15Þ

We can determine λðMextÞ from (A3), which we write as

λðMextÞ ¼
4π

γ
ðM2

0 −M2
extÞ − 1: ðA16Þ

Using the change of variable theorem for probability
densities, the distribution of final masses PðMextÞ is

PðMextÞ¼
���� dλ
dMext

����PðλðMextÞÞ≈
8πMext

γ
kðλðMextÞÞ: ðA17Þ

3. Approximating the trajectory loss rate

There are two major contributions to the loss function
kðλÞ at late λ: (i) the spin J ¼ bM2

extc, and the angular
momentum increases J → J þ 1; (ii) the spin J ¼ −bM2

extc,
and the angular momentum decreases J → J − 1. By
symmetry, both of these contributions have the same
probability, so we can focus on the positive spin case
and multiply by a factor of 2.

FIG. 5. The average mass values of 488 EKBH trajectories
plotted against Eq. (A3).
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Since Mext is slightly smaller than M̃, we know that
bM2

extc ≤ bM̃2c, with the two floor values usually equal.
However there are narrow ranges of λ when bM̃2c ¼
bM2

fc þ 1, and in these ranges J can go as high as

bM̃2c. During these times, we also have possible transitions
from J ¼ bM̃2c → bM̃2c þ 1 that would end the trajectory
(and their negative spin counterparts). However, as we will
see below, the probability of being at J ¼ bM̃2c ¼
bM2

extc þ 1 will be much smaller than J ¼ bM2
extc, so we

can safely ignore the contribution of these transitions.
Thus the loss rate kðλÞ can be expressed as:

kðλÞ ¼ 2pλðJ ¼ bM2
extcÞρ↑ðJ ¼ bM2

extc; M̃Þ

¼ pλðJ ¼ bM2
extcÞ

ðbM2
extc − M̃2Þ2
M̃4

: ðA18Þ

ρup is given by (11), and pλðJÞ is the probability to be at
spin J at affine parameter λ. The spin dynamics can be seen
as a discrete random walk under a force ρup − ρdown that is
approximately given by −2J=M̄2ðλÞ for small J. This acts
like a Hookean restoring force, biasing the walk toward
J ¼ 0. Since M̄2ðλÞ decreases with λ, the effective spring
constant gradually increases. Because the change in M̄ðλÞ
per λ increment is small, and the fraction of trajectories lost
per λ step is also small, we will assume the system is
roughly in quasiequilibrium. In other words, we will
approximate pλðJÞ by the equilibrium distribution of J
that would have occurred if the mass was fixed at a value
M ¼ M̄ðλÞ, and the boundary conditions at the smallest and
largest allowed spin values were reflecting rather than
absorbing. If the spin dynamics were a continuous Wiener
process, this equilibrium distribution under a Hookean
force would be a Gaussian. In the actual system the
discreteness of the dynamics complicates matters and
prevents a simple closed form solution. However inspired

by the continuum case, we will assume a Gaussian ansatz,
pλðJÞ ∝ expð−EλðJÞÞ, where EλðJÞ ¼ Eλð0Þ þ νðM̄ðλÞÞJ2
for some function νðMÞ.
In Fig. 6, we show simulation results for three different

fixed values of the mass, where the points represent EðJÞ ¼
− logpðJÞ from the numerically determined equilibrium
distribution pðJÞ (under reflecting boundary conditions). In
each case a parabola (red curve) provides an excellent fit,
validating the Gaussian ansatz. Note that the spin dynamics
has the property that if J ¼ 0 at λ ¼ 0 then only even values
of J are possible at even steps in λ, and odd values of J at
odd steps in λ. Thus, strictly speaking, the distribution
forever oscillates between even and odd values from λ-step
to λ-step. We simplify the situation by averaging over both
even and odd λ-steps, which gives an approximately
Gaussian stationary distribution.
To find an expression for νðMÞ, we note that the

stationary distribution should satisfy local detailed balance:
in equilibrium the probability of observing a transition from
J to J þ 1 should be the same as the probability of
observing a transition from J þ 1 to J. Namely,

pλðJÞρ↑ðJ;MÞ ¼ pλðJ þ 1Þρ↓ðJ þ 1;MÞ: ðA19Þ

where M ¼ M̄ðλÞ. This in turn implies that

pλðJ þ 1Þ
pλðJÞ

¼ ðM2 − JÞ2
M4 þ 2ðJ þ 1ÞM2 − ðJ þ 1Þ2 ðA20Þ

for 0 ≤ J < bM2c. We can thus solve for the successive
differences

EλðJ þ 1Þ − EλðJÞ ¼ ln

�
M4 þ 2ðJ þ 1ÞM2 − ðJ þ 1Þ2

ðM2 − JÞ2
�

ðA21Þ

FIG. 6. Results of spin dynamics simulations at three different fixed mass values, with reflecting boundary conditions at the smallest
and largest possible values of the spin, averaged over both even and odd time steps. The points show EðJÞ ¼ − logpðJÞ, where pðJÞ is
the distribution of spin values. The curves show parabolic fits to the simulation data.
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for 0 ≤ J < bM2c. To estimate νðMÞwe only need to know
Eλð1Þ − Eλð0Þ ¼ νðMÞ, and hence plug in J ¼ 0 into
Eq. (A21) to find

νðMÞ ¼ ln

�
M4 þ 2M2 − 1

M4

�
: ðA22Þ

Since EλðJÞ is not exactly parabolic, different choices of J
would give somewhat different estimates of νðMÞ, but the
J ¼ 0 expression is the simplest, and works well compared
to the numerics. In Fig. 7 we show νðMÞ from Eq. (A22)

versus numerical estimates (based on the same type of
simulations as in Fig. 6).
With proper normalization, the expression for pλðJÞ is

given by

pλðJÞ ¼
e−νðMÞJ2PbM2c

J0¼−bM2c e
−νðMÞJ02

≈

ffiffiffiffiffiffiffiffiffiffiffi
νðMÞ
π

r
e−νðMÞJ2 ; ðA23Þ

where we have approximated the sum in the denominator
by an integral over J0, letting the bounds go to�∞ since the
contribution from the Gaussian tails is negligible.

4. Analytical expression for final mass distribution

Putting together Eqs. (A17), (A18), and (A23), we get an
expression for the final mass distribution

PðMextÞ ¼
8

ffiffiffi
π

p
γ

Mext

ffiffiffiffiffiffiffiffiffiffiffi
νðM̃Þ

q �
1 −

bM2
extc

M̃2

�
2

e−νðM̃ÞbM2
extc2 ;

ðA24Þ

where νðM̃Þ is given by Eq. (A22) and M̃ðMextÞ is given by
Eq. (A15). Note that since PðMextÞdMext is the probability
of a black hole having a final mass between Mext and
Mext þ dMext, the integral

R∞
1 PðMextÞdMext gives the

overall probability of a black hole becoming extremal.
The integral can be evaluated numerically to give a value of
21.1% for this probability.
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