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We introduce a machine learning model designed to rapidly and accurately predict the time domain
gravitational wave emission of nonprecessing binary black hole coalescences, incorporating the effects of
higher order modes of the multipole expansion of the waveform. Expanding on our prior work [Phys.
Rev. D 103, 043020 (2021)], we decompose each mode by amplitude and phase and reduce dimensionality
using principal component analysis. An ensemble of artificial neural networks is trained to learn the
relationship between orbital parameters and the low-dimensional representation of each mode. Our model
is trained with ∼105 signals with mass ratio q∈ ½1; 10� and dimensionless spins χi ∈ ½−0.9; 0.9�, generated
with the state-of-the-art approximant SEOBNRV4HM, and it is able to generate waveforms up to ∼4 × 105M
long. We find that it achieves a median faithfulness of 10−4 averaged across the parameter space. We show
that our model generates a single waveform 2 orders of magnitude faster than the training model, with the
speedup increasing when waveforms are generated in batches. This framework is entirely general and can
be applied to any other time domain approximant capable of generating waveforms from aligned spin
circular binaries, possibly incorporating higher order modes.
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I. INTRODUCTION

With almost a hundred of confirmed detections, gravi-
tational wave (GW) astronomy is entering a mature state,
where many loud GW events will force the scientific
community to develop faster analyses to deliver precision
measurements. Expanding on past results [1–3], the recent
transient catalog GWTC-3 [4] is the latest achievement of
the effort carried on by the LIGO-Virgo-KAGRA collabo-
ration [5–8] and it relies on both instrument and data
analysis development.
A crucial element of the data analysis is the ability to

quickly and accurately generate waveforms for GW signals
emitted by coalescing binary black holes (BBHs). Such
waveforms are used for the expensive Bayesian estimation
of the parameters characterizing a BBH [9]: the analysis of
a single event requires the online generation of up to
billions of waveforms. As we move towards the next
generation of detectors, such as Einstein Telescope
[10,11] and Cosmic Explorer [12,13], it will become
paramount to deploy accurate waveform models that are

fast and, at the same time, incorporate the full physics of the
problem, otherwise our analyses will become subject to
systematic errors in the parameter recovery [14]. On the
other hand, accurate models are often slow to generate on a
computer and the analyses might struggle to keep up with
the large event rate expected in the next-generation
observatories [15]. Balancing the two needs is challenging,
since speed and accuracy are often at trade.
An essential aspect for a realistic BBH signal model is

the incorporation of higher-order modes (HMs) of the
multipole expansion of the waveform [16]. For nearly equal
mass systems, the leading-order mode is orders of magni-
tude larger than the others and, including the HMs, does not
significantly affect the parameter estimation. However, it
has been demonstrated [17–20] that HMs are observable in
highly asymmetric binary systems. In fact, the effect of
HMs has already been observed in at least two BBH events
originating from asymmetric binaries [21,22]. This under-
scores the importance of including HMs in any parameter
estimation pipeline in order to avoid biases in the recovered
parameters.
Two main families of models have been developed, both

being able to incorporate HMs. One family relies on the*s.schmidt@uu.nl
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effective one body (EOB) formalism [23–30], which maps
the complicated general relativistic binary system into a
problem governed by an effective Hamiltonian. EOB
models tend to be accurate but are quite costly to generate,
since for each waveform one needs to solve the
Hamiltonian equation of motion. On the other hand, the
phenomenological waveforms [31–33] are based on ana-
lytical expressions, making use of the post-Newtonian
formalism to model the inspiral, and on fits to numerical
simulations to describe the intermediate and merger-ring-
down regimes. They tend to be faster to evaluate than the
EOB models. Both families, EOB and phenomenological,
need to be calibrated with numerical relativity waveforms,
computed by directly solving the Einstein equations in
discretized form. The calibration makes sure that a model
retains its accuracy even close to merger, where approxi-
mate treatments such as the post-Newtonian or EOB
formalisms are no longer applicable by themselves.
Besides the standard families, surrogate waveform mod-

els have been developed with the aim of reproducing the
output of a target model and of making feasible the usage of
the underlying model. A first class of surrogates is designed
to closely reproduce numerical relativity (NR) waveforms
[34–40] and, accordingly, it is trained using only NR
waveforms as input. NR surrogates are very accurate but
they tend to be very short, due to the nature of the NR
waveforms employed for training. For this reason, they are
often hybridized using an analytical expression for the early
inspiral. Besides targeting NR waveforms, a second class of
surrogates has been developed to accelerate EOB models
[41–45], even including HMs. While traditional surrogate
models build an empirical interpolant on the waveform
space, a more recent approach relies on performing a
regression using machine learning techniques [46–48].
Among others, [49] introduced a machine learning

surrogate model, based on a dimensionality reduction
scheme followed by a regression. The framework was later
applied to the generation of frequency domain signals from
binary neutron star (BNS) systems [50]. In this work, we
extend themodel toHMs andwe improve the accuracy of the
regression by employing artificial neural networks (ANN).
Our model marks a step towards the development of a faster,
yet precise, waveform model, and will help enable the
accurate analysis of next-generation detector data.
We train our model on the widely used approximant

SEOBNRV4HM [25] to target systems with mass ratio
q∈ ½1; 10� and dimensionless spin components between
½−0.9; 0.9�. Our model is able to generate waveforms with a
maximum length of t ¼ 2 M

M⊙
s, which amounts to t ≃

4.06 × 105M in geometrized units, and achieves 10−4

median faithfulness (with tails up to 10−2) when averaged
across a wide range in parameter space. Our numerical
experiments show that our model offers a substantial
speedup with respect to the original model, matching the
speed of the state-of-the-art surrogate models.

Our methodology distinguishes itself from previous
approaches [46–48] in several ways. First of all, to predict
the phase ϕlm of each mode, we use three separate models
for predicting the basis coefficients of the principal com-
ponent decomposition. This “distribution of tasks” allows
for more flexibility, a significant reduction in the total
number of model parameters, and fewer training wave-
forms. Second, we improve on choosing the hyperpara-
meters of the ANNs. Whereas previous approaches arrive at
their configuration of hyperparameters using somewhat
limited heuristics, we introduce a more rigorous method by
using Bayesian optimization to tune hyperparameters.
Lastly, and more importantly, even though we have not
incorporated precession, we show that our approach is
viable for the large range of parameters q × χ1z × χ2z ¼
½1; 10� × ½−0.9; 0.9� × ½−0.9; 0.9�. Previous approaches
either focused solely on the dominant mode of nonprecess-
ing spin-aligned waveforms [46,47] or on precessing HM
waveforms but with a limited range in mass ratio q∈ ½1; 2�
and with χ2 ¼ 0 [48].
This paper is organized as follows. In Sec. II we

introduce the details of the model presented here, stressing
the differences with the model in [49]. Section III is
devoted to the validation of our model: we will motivate
our choice of several hyperparameters and perform an
accuracy and speed study. In Sec. IV, we present some final
remarks and highlight future perspectives.

II. BUILDING THE MODEL

A nonprecessing BBH can be described by four intrinsic
parameters, which specify the two BH masses m1 and m2

and the z components of the two dimensionless spins, χ1z
and χ2z. Since the total mass M ¼ m1 þm2 acts as a
scaling parameter, when generating nonprecessing BBH
signals, one only needs to consider the mass ratio q ¼
m1=m2 ≥ 1 together with the spins. We refer to the relevant
parameters as ϑ ¼ ðq; χ1z; χ2zÞ. Besides the masses and
spins, the gravitational wave emitted by the system depends
also on luminosity distance to the source dL, the inclination
angle ι of the source, and the reference phase φ0; these are
the extrinsic parameters.
As is standard, we expand the angular dependence on

ι;φ0 of the complex waveform hðtÞ in terms of a sum of
spin-2 spherical harmonics. A GW is then parametrized1

as [51]

hðt; dL; ι;φ0; m1; m2; χ1z; χ2zÞ
¼ hþ þ ih×

¼ G
c2

M
dL

X∞
l¼2

Xl
m¼−l

−2Ylmðι;φ0Þhlmðt=M;ϑÞ; ð1Þ

1Such parametrization is particularly convenient as it separates
the waveform dependence over intrinsic and extrinsic parameters.
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where we refer to the functions hlmðt;ϑÞ as modes of the
waveform. We note that, for nonprecessing systems,
hlm ¼ ð−1Þlh�l−m, hence we will only consider modes
with m > 0.
The mode ðl; mÞ ¼ ð2; 2Þ is the largest in amplitude,

hence it is often referred to as the dominant mode. The
other subdominant modes are usually a few orders of
magnitude smaller in amplitude and become more relevant
(and measurable) for high mass ratios [20–22].
In this work, we introduce a machine learning model to

perform a regression,

ðq; χ1z; χ2zÞ ⟼ hlmðt;ϑÞ; ð2Þ

for each mode ðl; mÞ. The regression is designed to
reproduce waveforms from a given dataset; such wave-
forms can be generated by any time-domain approximant.
We decompose each mode in an amplitude term Alm and

a phase term ϕlm as follows:

hlmðt;ϑÞ ¼ Almðt;ϑÞeiϕlmðt;ϑÞ; ð3Þ

and, for each mode, we perform a regression for ampli-
tude and phase separately. The regression scheme closely
follows [49] and relies on:
(a) a suitable vector representation of the regression target

by choosing a fixed time grid;
(b) a principal component analysis (PCA) model to reduce

the dimensionality of each waveform;
(c) an artificial neural network (ANN) regression to learn

the dependence on ϑ of the reduced waveform.
While the first two elements are unchanged from the

previous work, the ANN regression is first introduced here.
Indeed a NN has more representation power than the
mixture of experts model [52], used in [49]: the change
was needed to achieve better accuracy for the model.

A. Dataset creation

To construct a dataset, we follow [49] and we set a
dimensionless time grid. We construct the grid by settingD
points equally spaced in τα, where τ is the physical time
scaled by the totalmass of the systemM: τ ¼ t=M. Using the
findings of [49], we set D ¼ 2000 and α ¼ 0.5. This is a
good compromise between the need of having a faithful
representation of thewaveform (which requires a large grid)
and the need of having a compact model (which points to a
sparse grid). Thewaveforms are time shifted so that the peak
of the amplitude of the (2, 2) mode happens at τ ¼ 0. The
grid starts at (scaled) time τmin ¼ −τ0, where τ0 sets the
length of thewaveform that our model is able to generate (as
a function of the total mass M). We choose τ0 ¼ 2s=M⊙,
which in geometrized units (i.e., with G ¼ c ¼ 1) amounts
to a waveform length of t ≃ 4.06 × 105M. We populate the
dataset with 68000 waveforms.

To make sure that the distribution of q is skewed towards
the boundaries, where the regression is less accurate, we
sample the mass ratio q in the range [1, 10] with the
following procedure:

(i) We sample q1;…; q5 ∼ U ½1;10�.
(ii) We sample x ∼ U ½0;1�.
(iii) We select q, based on the value of x,

if x∈ ½0; 0.3Þ, min q1;…; q5,
if x∈ ½0.3; 0.8Þ, q1,
if x∈ ½0.8; 1�, max q1;…; q5,

where U ½a;b� is the uniform distribution in ½a; b�. The spins
are drawn uniformly in the range ½−0.9; 0.9�.
Once a time grid is set, we evaluate all the modes

(amplitude and phase) on the time grid and represent them
as vectors in RD. We then create a dataset fX; Yg of N
elements. Each row of the dataset is of the form

X ¼ ½q; χ1z; χ2z� ð4Þ

Y ¼ ½AT
lm;ϕ

T
lm;…�: ð5Þ

The dataset Y gathers the amplitude and phase for the
different modes in the dataset. We include all the modes
available in SEOBNRV4HM: ðl; mÞ ¼ fð2; 2Þ; ð2; 1Þ; ð3; 3Þ;
ð4; 4Þ; ð5; 5Þg. In what follows we will refer to any of the
vectors Alm or ϕlm as f . Note that we use the same grid for
all the modes.
It is well known [34,35] that in the case of a symmetric

BBH, where m1 ≃m2 and χ1z ≃ χ2z, the amplitude of the
odd-m modes vanishes, making the phase Eq. (3) ill
defined. Clearly this is a challenge for the regression,
which is likely to perform poorly in such situations. While
several alternatives are available in the literature, we will
address the challenge in future work. For the moment we
will content ourself with a poor performance of the
regression for the odd-m modes in the m1 ≃m2 region,
as we will show in Figs. 2 and 4. This will have little impact
for the overall faithfulness, due to the small amplitude of
such modes.

B. Dimensionality reduction

It is unfeasible to perform a regression targeting a high-
dimensional vector such as f ∈RD. For this reason, in [49]
we introduced a principal component analysis (PCA)
dimensionality reduction scheme. It is an approximately
invertible linear mapping between a vector f ∈RD in a
large dimensional space to lower dimensional vector
g∈RK:

g ¼ Hðf − μÞ; ð6Þ

f̂ ¼ HTgþ μ; ð7Þ

where μ∈RD and H is a K ×D matrix. The rows Hi∶
of H, also called principal components (PC), form an
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orthonormal set of vectors, i.e.,
P

D
k¼1HikHkj ¼ δij. The

PCs are the first K eigenvectors of the D ×D covariance
matrix of the dataset, as described in Sec. 12 of [53].
The mapping is only approximately invertible, in the

sense that f̂ is only an approximation of the high dimen-
sional vector f. The quality of the approximation is
controlled by the number K of PCs considered: the more
PCs, the more accurate the reconstruction of f is.
One can have a deeper insight on PCA considering the

following formula for the reconstructed vector f̂ (setting
μ ¼ 0 without loss of generality):

f̂ ¼
XK−1
i¼0

hfjHi∶iHi∶; ð8Þ

where hajbi ¼ P
D−1
i¼0 aibi is the Euclidean scalar product

between two vectors a;b∈RD. Since less important PCs
are more orthogonal to data, the typical magnitude of
gi ¼ hfjHi∶i decreases as i increases.2 As a consequence,
the regression for a lower order PC needs to be more
accurate than the one for the higher order PC. This will be
taken care of by a suitable choice for the loss function for
the regression (see next section).
Following [49], in this work we employ for each mode

six PCA components for the phase model and four for the
amplitude. While it is plausible that an optimal number of
components may vary for different modes, we opt for
simplicity by employing the same number of PCA com-
ponents for all modes, a configuration tuned based on the
(2, 2) mode only.

C. Neural network regression

An artificial neural network (ANN) is a popular regres-
sion model, consisting of a powerful parametric function,
whose parameters (or weights), when properly set, can
represent a large variety of relations between input and
output [53–55]. An ANN is built by stacking together NL
layers in such a way that the output of a layer is the input of
the following layer. Each layer is a function L∶ RD0

→ RD00

and has the following functional form:

y ¼ aðW000xÞ; ð9Þ

where W000 is a D00 ×D0 matrix and a∶R → R is an
activation function that acts elementwise on the vector
W000x. Each component yi of the output of the layer is called
a node and the number of nodes is a tunable parameter,
controlling the representative power of the layer.

An ANN N is obtained by composing NL different
layers (each with a suitable number of nodes):

NW ¼ LNL
∘ � � � ∘ L2 ∘ L1; ð10Þ

where we denote by W the set of all the parameters the
ANN depends on.
The number of layers, together with the number of nodes

per layer, are hyperparameters that need tobe carefully chosen,
to balance model accuracy and model complexity. Another
important choice is the activation function: several possible
choices are possible, the most popular being the sigmoid, the
hyperbolic tangent or the so-called ReLU function. In our
work, we consider the sigmoid function between all layers,
except for the very last layer which has linear/identity
activation so that negative values are also possible.
Once the ANN is set up, we need to set its weights to the

values that achieve our regression task. This procedure is
called training, where we minimize a loss function with
respect to the weights W of the model. The loss function
depends on the dataset at hand fxi; yig. Mathematically, the
weights are given by

W ¼ argmin
W

LðW; fxi; yigiÞ: ð11Þ

The minimization of the loss function is performed by
stochastic gradient descent, as implemented by the NADAM

algorithm [56], which combines the popular ADAM algo-
rithm [57] with the Nesterov momentum. The optimization
relies on the gradients ∂WL of the loss function, computed
through the back-propagation algorithm [58].
To perform our regression θ ↦ g, we employ an

ensemble of networks that suitably combined delivers
accurate results. To improve the representative power or
the ANN, we employ feature augmentation on the vector
ϑ ¼ ðq; χ1z; χ2zÞ, effectively using the augmented vector ϑ̃
as input for the regression. Although different ANNs will
need different features, we will for convenience abuse the
notation ϑ̃ to denote any augmented vector. Indeed, the
features to add need to be chosen with a validation process:
this will be discussed in the next section.
Before the training, the regression targets yi are scaled

such that yi →
yi
w, where w keeps the maximum of jyij along

each axis. In this way all the regression targets span the
same order or magnitude, facilitating the “learning” task.
For the amplitude Alm of each mode, we employ a single

ANN N Alm
that predicts the first four PCA components.

The predicted amplitude Âlm, including the PCA
reconstruction, has the following form:

ÂlmðϑÞ ¼ μAlm
þHT

Alm
N Alm

ðϑ̃Þ: ð12Þ

For the phase ϕlm, we employ one ANN N ϕlm-01 to
predict only the first two PCA components. Another ANN

2For this reason PCA can be seen as a perturbative expansion
on the basis vectors Hi∶, where the accuracy is roughly measured
by the eigenvalues of the first neglected PC. Increasing the
number K of PCs considered increases the accuracy of the model
(but also the complexity of the model).
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will take care of the remaining components N ϕlm-2345. On
top of this, we build an additional ANN N ϕlm-residual to
target the residual of the predictions of N ϕlm-01. The
scheme makes sure that the first two PCs are predicted
with much larger accuracy than the others. Indeed, the
reconstructed waveform depends largely on the first two
components and a small fractional error can potentially
have a large impact on the overall accuracy.
The predicted phase ϕ̂lm is then given by

ϕ̂lmðϑÞ

¼ μϕlm
þHT

ϕlm

�N ϕlm-01ðϑ̃ÞþN ϕlm-residualðϑ̃Þ
N ϕlm-2345ðϑ̃Þ

�
: ð13Þ

We train our model using the PCA dataset, obtained by
PCA reducing the training set. Each ANN is trained using
the following loss function:

L ¼ 1

N

XN
i¼1

ððN ðϑiÞ − yiÞÞ2w; ð14Þ

where yi is the (scaled) regression target of each network
and w∈RK takes into account the fact that different PCs
have different orders of magnitude.
The network is implemented and trained using the python

package KERAS [59], built on TensorFlow backend [60].

III. PERFORMANCE STUDY

In this section, we first study how the model performance
depends on the different choices of hyperparameters (net-
work architecture, learning rate, features, …). The archi-
tecture details of the model (chosen after hyperparameters
tuning) are reported in Table I. We then evaluate the
faithfulness of our model and report the speedup that we
obtain when using our surrogate instead of the training

model SEOBNRV4HM. In what follows, we will refer to our
model as MLGW-SEOBNRV4HM.
To measure the discrepancy between two waveforms h1,

h2, we define a scalar product,

ðh1jh2Þ ¼ 4ℜ
Z

∞

0

df
h̃�1ðfÞh̃2ðfÞ

SnðfÞ
; ð15Þ

where ˜ denotes the Fourier transform and SnðfÞ is the
power spectral density (PSD) of the detector’s noise. We
can use the scalar product to arrive at a normalized
waveform, ĥ ¼ hffiffiffiffiffiffiffiffi

ðhjhÞ
p .

To measure the discrepancy between two individual
modes h1lm and h2lm, we define the match M:

M ¼ max
t;ϕ

ðĥ1lmjĥ2lmei2πftþiφÞ; ð16Þ

where hei2πftþiφ denotes (with a slight abuse of notation) h
translated in time by a factor of t and with its phase shifted
by φ. We call mismatch the quantity F ¼ 1 −M.
The match defined above amounts to the search statistics

being used for matched filtering searches of nonprecessing/
non-HM signals [61]. A different statistic is needed to
search for HM signals, hence the match defined above is
not suitable to compare two different waveforms with HM
content as in Eq. (1). In this case, we need to compare the
two polarizations hþ, h× of a waveform with a signal s
observed at the detector:

s ¼ Fþhþ þ F×h×; ð17Þ

where Fþ; F× are called antenna pattern functions, depend-
ing on the sky location of the source and on the polarization
angle [16].
Following [62], we introduce the symphony match

between a signal s and a waveform h:

Msym ¼ max
t

ðŝjĥþÞ2 þ ðŝjĥ×Þ2 − 2ðĥ×jĥþÞðŝjĥþÞðŝjĥ×Þ
1 − ðĥ×jĥþÞ2

:

ð18Þ

Note that Msym depends on the signal s, hence it depends
on the sky location and polarization angle. As above, we
define the symphony mismatch as F sym ¼ 1 −Msym.
In what follows, we always use a constant (i.e., flat)

PSD. While this certainly does not correspond to any actual
detector, it makes sure that all the frequencies are weighted
equally, hence giving a detector agnostic measure of the
mismatch.

A. Hyperparameter tuning

The performance of the model depends on a number
of crucial choices about some nontrainable parameters,

TABLE I. Architecture of the four ANNs employed to generate
each mode. For each ANN we report the number of layers and the
number of units per layer. We perform data augmentation by
adding all the polynomial terms in the chosen features. The
architecture has been chosen after hyperparameter tuning
(see Fig. 1). Among other features, we use the chirp mass

Mc ¼ ðm1m2Þ3=5
ðm1þm2Þ1=5, the symmetric mass ratio η ¼ m1m2

ðm1þm2Þ2, and the

effective spin parameter χeff ¼ m1χ1zþm2χ2z
m1þm2

.

Network n-layers Units Features Order

N Alm
1 35 Mc, χeff 1

N ϕlm-01 2 50 Mc; η; log q; χeff 3
N ϕlm-2345 1 50 Mc; η; log q; χeff 1
N ϕlm-residual 5 50 Mc; η; log q; χeff 2
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usually called hyperparameters. The hyperparameters
define the architecture of the ANN as well as some
parameters relevant to the training. Setting the right values
for the hyperparameters is crucial for the ANN perfor-
mance, as one needs to balance between accuracy and
speed; this procedure is called hyperparameter tuning and
can be done automatically to optimize manual work and to
make sure to find a good minimum.
We optimize the following hyperparameters:
(i) n-layers: number of hidden layers in the ANN;
(ii) units: number of nodes per hidden layer;
(iii) features: features to use for data augmentation;
(iv) order: the data will be augmented with all the

monomials of the chosen features up the given order.
For each of the four ANNs useful to produce a single

mode [see Eqs. (12) and (13)], we train a network for
different combinations of hyperparameters. The figure of
merit of each hyperparameter choice is the logarithm of the
loss function [see Eq. (14)] evaluated on the validation set.
For our experiments we only use the dataset of the (2, 2)
mode and we employ the package KERAS-TUNER [63].
Specifically, we use the Bayesian optimization tuner which
somewhat prioritizes searching around more promising
configurations.
We report our results in Fig. 1, where each combination

of hyperparameters tested is represented in the n-layers–
units plane and colored by the validation score. We can see
that all four ANNs share the same trend: the most effective
way to improve regression accuracy is to increase the
number of units as opposed to the number of layers. The
number of layers is far more important than extra features
or the polynomial order for data augmentation.
Furthermore, we note that the regressions for the

amplitude and for the high phase PCs (i.e., components
2–5) can be performed with a smaller model, compared to
the models for the first two PCs of the phase. This can be
explained by the fact that most of the physical information
is stored in the first two components of the phase, making
this a harder regression problem.
In Table I we report the final hyperparameter choice we

made for each of the networks. The architectures are the
same across the different modes considered.
As discussed above, we note that models N Alm

and
N ϕlm-2345 are very simple, having only one layer and a
small polynomial order, while the other ANNs have a more
complicated architecture. We note here that an accurate
ANN for the residuals of the phase is crucial to obtain a
good accuracy: indeed N ϕlm-residual is the most complex
model we employ, meaning that the residual phase dataset
is the “hardest” to learn.

B. Accuracy study

To test the accuracy of our model, we generate a test set
with 50000 randomly chosen waveforms generated with
the training model SEOBNRV4HM. The waveform masses are

characterized by a total mass M ¼ 20M⊙ and by a mass
ratio q∈ ½1; 10�, while the spins are chosen in the range
½−0.9; 0.9�. The inclination angle ι and reference phase φ0

are drawn uniformly from a sphere. To vary the length in
time of the waveforms considered, we sample the starting
frequency fmin uniformly in the range [15, 75] Hz.
In Fig. 2, we report the histogram of the distribution of the

mismatches between MLGW-SEOBNRV4HM and the test wave-
forms. The upper part refers to the mismatches Eq. (18)
computed on the overall waveforms (with sky location
sampled uniformly over the sky); the lower box refers to
mismatches computed mode by mode with Eq. (16).
First of all, we note that the model shows very high

faithfulness. With a median value of 4 × 10−4 and with
virtually no signals with a symphony mismatch higher
than 10−2, the accuracy of MLGW-SEOBNRV4HM matches
the accuracy of other state-of-the-art surrogate models
[44,45,47] and the accuracy of the training model
SEOBNRV4HM in reproducing numerical relativity wave-
forms [25]. The faithfulness for the (2, 2) mode is even
higher, with no signals with mismatch exceeding 2 × 10−3.
On the other hand, the higher order modes are less
accurately reproduced than the dominant mode. In particu-
lar, for the modes (2, 1), (3, 3), (5, 5) a limited number of
waveforms show very high mismatches Oð1Þ. See below
for more discussion.
In Fig. 3 we report the dependence of the symphony

mismatch as a function of the different orbital parameters.
From the figure, it is manifest that the model has very stable
performance across the parameter space. The faithfulness
decreases for high positive values of the spin of the first
object s1z and for mass ratio q ∼ 1. Despite this, in such
“extreme” regions, the average mismatch is still of the order
of 10−4. The performance of the regression does not depend
on χ2z, since the quantity plays a very little role in defining
the waveform features.
Longer waveforms, characterized by a lower fmin, tend

to show higher faithfulness. As longer waveforms are
dominated by the inspiral phase, we can conclude that
our model is more successful in reproducing the inspiral as
opposed to the merger and the ringdown, prevalent in short
waveforms. This feature is very important for the extension
of our model to longer time grids, a necessity for analyzing
binary neutron star systems or for applications in next-
generation detectors [14].
In Fig. 4, for each mode we report the mismatch as a

function of the mass ratio and of s1z. One more time, we
can see that the model faithfulness decreases for low mass
ratios and for high spins. Moreover, the subdominant
modes show a poorer performance as compared to the
dominant one: this was already observed in Fig. 2.
The observed decrease in faithfulness for subdominant

modes needs some attention. As discussed in Sec. II A,
symmetric systems with q ≃ 1 have a vanishing amplitude
of the odd-m modes and a poorly defined phase and, as
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such, they correspond to “outliers” in the dataset. This
clearly poses a challenge for both the PCA and the
regression model for the amplitude, since modeling such
a sharp feature of the data requires an enhanced model
flexibility and more training examples. This is consistent
with the low performance of the fit at low q observed
in Fig. 4.
This matter is well known and several mitigation

strategies are available in the literature. First of all, we
might incorporate the vanishing behavior of the amplitude
in the functional model for the regression, as done in [34].
Concretely, we could introduce a q-dependent amplitude
scaling for the waveforms before adding them to the

dataset, resulting in a dataset with amplitude time series
of approximately the same magnitude. Second, we might
mitigate the effect of a poorly defined phase by trans-
forming all the modes except the (2,2) in the co-orbital
frame [35] according to

hlm → hlme−i
m
2
ϕ22 ; ð19Þ

where ϕ22 is the phase of the (2, 2) mode. Both of the
strategies above reduce the outlier nature of waveforms
with q ∼ 1 and will likely improve the quality of the fit.
Another straightforward alternative could deploy a

larger network for such modes. Indeed, we tuned the

FIG. 1. Results from the validation of our ANN models, using the l; m ¼ 2, 2 mode dataset. We tune the number of layers and the
number of features per layer, together with the features and the polynomial order for the data augmentation. Each panel in the figure
refers to a different ANN, taking care of different parts of the regression, as described in Sec. II C. For each regression, we train 100
ANNs with different choices of hyperparameters. Each point in the plot refers to a trained network and it is colored with the logarithm of
the loss function computed on the validation data, referred to as the validation score. Note that we do not report the features used for data
augmentation, so that the plot is degenerate in this quantity.
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hyperparameters on the (2, 2) mode (an “easy” regression
target). Performing a network tuning on the dataset of HMs
might reveal that our chosen architecture is not optimal.
Finally, we note that since for q ∼ 1, the subdominant

modes have a vanishing amplitude, a large mismatch in the
subdominant mode for q ∼ 1 has very little impact on the
overall waveform Eq. (1), as shown in Fig. 2. This explains
why the overall mismatch is low, despite high mismatch for
the HMs in some edge cases.

C. Timing study

A speedup in the waveform generation is the main
motivation to build a machine learning waveform generator;
for this reason it is crucial to assess the gain in waveform
generation time. For this reason, we use our test set to
measure the ratio between the time to generate a waveform
with SEOBNRV4HM and MLGW-SEOBNRV4HM. Our model
offers further speed by generating waveform in batches:
in this case, some operations are efficiently parallelized and
happen more efficiently. We report our findings in Fig. 5.
We achieve a speedup ranging between a factor of 150

and 250, depending on the waveform characteristics. When
waveforms are generated in batches of 100, the speedup can
be substantially larger, reaching up to 1200, although with
considerable variance, mostly due to the waveform length.
The speedup achieved by MLGW-SEOBNRV4HM is com-

parable to the one obtained by the SEOBNRV4HM_ROM

surrogate model [44], which is the state-of-the-art fre-
quency domain surrogate model trained on SEOBNRV4HM.
SEOBNRV4HM_ROM is obtained with standard techniques
and it achieves a speedup ranging between 100 and 200.
The two results might not be directly comparable, since the

FIG. 3. Dependency of the symphony mismatch Fsym between MLGW-SEOBNRV4HM and the training model SEOBNRV4HM, as a
function of some chosen waveform orbital parameters. The mismatch is computed on the 50000 waveforms on the test set described in
the text. On the left plot, we display the mass ratio and the starting frequency q − fmin on the two axes, while we consider the effect of
spins on the center and right plot by showing the variables q − χ1z and q − χ2z, respectively. Each bin is colored according to the average
mismatch and the three plots share the same color scale. We note that MLGW-SEOBNRV4HM’s faithfulness tends to decreases for low
values of q, large positive values of s1z, and higher values of fmin.

FIG. 2. We report the results of the mismatch between the
50000 test waveforms produced by MLGW-SEOBNRV4HM and by
the training model SEOBNRV4HM. In the top panel, we report the
histogram of the “symphony” mismatch Fsym for the overall
waveforms, where we compare the hþ and h× polarizations [see
Eq. (8)]. For the computation, we set random sky location. We
also report the median, the mean, and the maximum mismatch,
together with the value of the 90th percentile. In the bottom panel,
we report the histograms for the mismatches computed mode by
mode. The composition of the test set is described in the text.

TIM GRIMBERGEN et al. PHYS. REV. D 109, 104065 (2024)

104065-8



comparison for SEOBNRV4HM_ROM is performed in fre-
quency domain and this involves computing the Fourier
tranform of the SEOBNRV4HM waveform. As we perform the
comparison in time domain, we omit the latter step,
possibly obtaining lower values for the speedup as the
ones obtained in [44].
On the other hand, the speedup achieved by MLGW-

SEOBNRV4HM is larger than the one obtained by the time

domain surrogatemodel SEOBNRV4PHMSUR [45]. Indeed, the
authors report a speedup always lower than 100. However,
also in this case, the comparisonmight be biased because the
latter study also considers the effects of precession.

IV. FINAL REMARKS AND FUTURE PROSPECTS

Building on our previous work [49,50], we generate a
machine learning surrogate model MLGW-SEOBNRV4HM

able to reproduce with very high fidelity the output of
the widely used approximant SEOBNRV4HM. MLGW-

SEOBNRV4HM can generate waveforms in a cuboid q ×
χ1z × χ2z ¼ ½1; 10� × ½−0.9; 0.9� × ½−0.9; 0.9� on a
(reduced) time grid of maximum length of 2s=M⊙, corre-
sponding to waveforms of length t ≃ 4.06 × 105M in
geometrized units. Our model offers a 2 orders of magni-
tude speedup over the training model, without trading for
accuracy, hence it is an attractive alternative for any data
analysis application. To encourage new applications, we
release our code (and our trained model) publicly as a
Python package through the PyPI repository.3

Future work should also include precession. This can be
achieved by means of the spin twist procedure [32,64–66].
It consist of a time dependent rotation of the plane of
emission, resulting in a phase and amplitude modulation
which approximates the effect of precession. Training an

FIG. 4. For each mode, we report the mismatch between MLGW-SEOBNRV4HM and the training model SEOBNRV4HM, as a function of q
and s1z. The mismatch is computed on the 50000 waveforms on the test set described in the text. Each bin is colored according to the
average mismatch. We note that the performance between different modes can vary significantly and in general they decrease for low
values of q and high values of spins.

FIG. 5. Speedup provided by MLGW-SEOBNRV4HM over the
training model SEOBNRV4HM. In the histogram, we report the
ration between the time tSEOBNRv4HM and the time tMLGW taken by
the two models to generate each of the waveforms in the test set.
The two histograms are in different scales, reported on the left and
right y axis for the “no batch” and “batch” case, respectively. We
note that MLGW-SEOBNRV4HM offers a speedup between a 150 and
250 with respect to the training model. MLGW-SEOBNRV4HM
offers the option to generate waveforms in batches, effectively
parallelizing some linear algebra operations. As shown in the
plot, the batch generation provides an additional speedup, which
can be as high as 1200.

3The package is distributed under the name MLGW and is
available at https://pypi.org/project/mlgw/.
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ANN to predict the time dependent rotation is a promising
step towards a complete machine learning surrogate model.
While the model is already applicable for most of the

parameter estimation problems with current detectors, it is
desirable to increase its range of validity, both in parameter
space and in time span. In principle, such an extension
should be straightforward with the current network setup.
On the other hand, due to an increased complexity of the
regression task, probably more flexible architectures should
be explored, using layers of different size. This would
require a more careful (and computationally expensive)
hyperparameters tuning.
An enhanced architecture should also benefit from

sharing some parameters between models for different
HMs—or even from treating the regression of the different
modes as a large single regression problem. Indeed, the
shapes of the different modes are correlated: for instance,
the phases of two HMs are approximately proportional to
each other. With the current architecture, the regression for
each mode is carried on separately, hence each ANN needs
to learn the waveform behavior independently. This could
result in many redundant parameters in the network
ensemble we introduced here. Inserting parameter sharing
inside the regression setup could result in a lighter ANN,
which would lead to a reduced inference time.
Finally, we also stress that our PCAþ ANN regression

framework is fully general and in principle is applicable,with

minimal modifications, to any chirplike gravitational wave
signal, such as extreme mass ratio inspirals [67,68] or BNSs.
Extending the width of parameter space, enriching the BBH
model with more physical effects, and supporting a larger
variety of systems will become mandatory for the next
generation detectors [14,69], when fast and reliable wave-
form models will be needed to mitigate the huge computa-
tional cost posed by very long observed waveforms. Our
framework is ideal to achieve such an ambitious goal.
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