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Accurately modeling the tidal response of neutron stars is crucial to connecting gravitational wave
observations of binaries to ultradense nuclear physics. Most current models of the tidal response of
relativistic stars either assume a static response model, or use phenomenological models inspired by
Newtonian gravity. In this work, we present a general formalism for computing the linear dynamical tidal
response function of relativistic, spherically symmetric stars. Our formalism incorporates stratification due
to thermal and chemical imbalances, allowing one to study the effects of g modes on the tidal response
function. We also describe how to incorporate sources of dissipation due to shear and bulk viscosity. To
showcase the utility of our approach, we present several applications for polytropic stars in general
relativity. We show how our formalism can capture the dynamical tidal resonance due to the f and gmodes
of inviscid stars and explore the sensitivity of the dynamical tidal response to the compactness of the star.
We also compute the dissipative tidal deformability due to bulk and shear viscous dissipation assuming a
simple viscous profile for the bulk and shear viscosity.
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I. INTRODUCTION

Determining the properties of neutron star matter
remains an outstanding goal of nuclear physics and
astrophysics [1–3]. The physics of these objects can be
indirectly probed through the gravitational waves (GWs)
emitted from neutron star binaries. A neutron star in a
binary system is tidally deformed by the gravitational field
of its companion, and its tidal response is dictated by
the internal properties of the star. Thus, accurately
modeling the tidal response of a neutron star is essential
for connecting GW astronomical observations to nuclear
physics [4].
Several different approaches have been employed to

model the impact of tides on the gravitational waveform of
neutron star binaries. Some waveform models are based on
intuition from Newtonian theory [5]. Other models treat the
stars’ tidal response as a harmonic oscillator, with a
fundamental oscillation mode set to the f-mode frequency
of the star [6–8]. Both classes of waveform models are then
calibrated to results from numerical relativity simulations
of neutron star binaries [6,7,9]. These models have been
successfully applied to model f-mode resonances in the
tidal response and to place constraints on the f-mode
frequencies of a neutron star, using current and future GW
detectors [10,11].

Though successful, the dynamical tidal models of [6,7]
use a number of simplifying assumptions. These models of
dynamical tidal response assume that the dynamical tidal
response in general relativity is similar to the Newtonian
tidal response, i.e., that the tidal response can be spectrally
decomposed in terms of a complete set of basis functions,
consisting of the fundamental oscillation modes of a
neutron star. Additionally, these models cannot incorporate
viscous effects or model effects due to thermal and
chemical inhomogeneities, which might be important
during the late inspiral due to Urca reactions [12–16], or
other processes [17–20]. Moreover, these models use
numerical relativity simulations for calibration, which
can be computationally expensive. To improve the models
of [6,7], a prescription of dynamical tidal response that can
go beyond intuition from Newtonian theory, that can
incorporate viscous effects, and that is computationally
less expensive to evaluate is necessary.
While there is a large bodyofwork on the tidal response of

Newtonian stars, (e.g. [5,21–23]), most calculations of the
tidal deformability of relativistic stars assume that (i) the
tidal response is static [24–26] and (ii) conservative, and,
(iii) that the neutron star is convectively unstable or neutrally
stable, i.e., there are no low-frequency gmodes [24–26]. The
first and third assumptions require that the external tidal
field experienced by a neutron star in a binary changes
much more slowly than any relevant internal timescale of
the star—that is, that the star is not resonantly excited
during the inspiral. The second assumption requires that
the neutron star tides only cause reversible changes to
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their internal energy. These assumptions are sufficient to
accurately model the tidal response of stars during the
early inspiral stage, provided the viscous effects are
small and there is no substantial stratification of different
layers.
Due to the highly dynamical nature of spacetime during

the late inspiral phase, both of these effects (i.e., viscous
effects and stratification) may be large enough to be
physically relevant for modeling the GWs emitted from
the binary. The consequences of stratification (through,
e.g., temperature gradients or gradients in the chemical/
nuclear composition at different densities) will become
more pronounced should the orbital frequency approach the
frequency of any modes of the star. Viscous effects due to
out-of-equilibrium nuclear reactions within the star (such as
Urca reactions) may also be large enough to measurably
affect the orbital motion of the stars [27].
In this paper, we first describe how to compute the

relativistic tidal response of neutron stars. The formalism
we develop is flexible enough to model the low-frequency
behavior of the g-mode resonances due to stratification
within the star, and the dissipative tidal response. Our
approach relies on reducing the internal problem of the
polar perturbations of a spherically symmetric neutron star
background into three master equations, involving the
perturbation to the gravitational potential and the radial
and angular components of the Lagrangian displacement
vector [28,29]. These equations are essentially relativistic
generalizations of the tidal equations for Newtonian stars.
To treat the external problem of imposing the tidal
boundary conditions, we use the approach proposed
recently by Poisson [30] and show how one can resum
this expansion in the frequency domain to obtain the full
dynamical tidal response. We include viscous effects by
using a perturbative expansion in the Reynolds number [31]
and provide general expressions for the viscous source
functions.
We present several applications of our formalism for

quadrupolar deformations of neutron stars obeying a poly-
tropic equation of state (EoS), which we use as a toy model
for illustrative purposes. We first show that our formalism
reproduces the results of static tides in general relativity in
the low-frequency regime for stars that are unstable/neu-
trally stable against convection—that is, for stars that do not
have any low-frequency resonant (g) modes [24–26]. We
next show how to obtain the f-mode and g-mode resonances
of convectively stable stars using our formalism. Finally, we
calculate the dissipative tidal lag due to shear and bulk
viscosity.
Finally, let us discuss the recent work of Pitre and

Poisson [32], which also treats the problem of dynamical
tidal response in full general relativity, and place it in the
context of our work. Our approach differs from theirs in a
number of ways. Pitre and Poisson treat both the internal

and external perturbations of the spacetime in the small-
time/small-frequency approximation. Working with such
an assumption inside the star only works if there are no
low-frequency g modes. While we treat the external
problem in the same way they do (in the time domain),
we resum the external problem (i.e. the master equations) in
the frequency domain to allow for the possibility of
resonances in the tidal response, both in the low-frequency
limit due to gmodes and, in the high-frequency limit due to
f modes. For the case of an f-mode resonance, Pitre and
Poisson had to resum the tidal response function after
solving for the tidal coefficients to obtain the complete tidal
response near the resonance. We also incorporate effects,
such as viscosity and stratification, which provides a more
flexible and comprehensive account of stellar tides. Finally,
the normalization choice we make for the particular
solutions of the gravitational master equation is different
from that of Pitre and Poisson. We discuss how this
normalization choice affects the tidal response function
in, and we also compare our work to [33] in Appendix F.
The outline for the rest of the paper is as follows. In Sec. II,

we review the major sources of dissipation inside a neutron
star. Next, in Sec. III, we review how the tidal response of a
neutron star is defined and review the properties probed by
the tidal coefficients in the low-frequency regime. In Sec. IV,
we describe the master equations and the treatment of our
boundary conditions for the tidal problem. In Sec. V, we
apply our formalism to compute the dynamical tidal
response of polytropic stars and the low-frequency tidal
lag coefficient of viscous polytropic stars. Finally, in
Sec. VI, we present our conclusions and directions for
future work. Henceforth, we use the following conventions:
the signature of our metric is ð−;þ;þ;þÞ, and we use
geometric units G ¼ 1 ¼ c.

II. PHYSICAL SOURCES OF DISSIPATION
IN NEUTRON STARS

Here, we review the various sources of dissipation that
could be present in the interior of neutrons stars.
Microscopic sources of dissipation arise from interactions
between fundamental particles inside a neutron star. Other
anomalous sources of dissipation arise from macroscopic
sources, such as turbulence or crust dynamics, and they
contribute as an effective source of viscosity. In giant stars
and planets, microscopic sources of dissipation are too
small to be relevant for the orbital dynamics of those
objects. Effective sources from convective damping are
considered to be major sources of dissipation in these
systems [23,34]. In neutron stars, there are only rough
order-of-magnitude estimates for sources of anomalous
viscous processes. For example, there could be dissipation
due to the melting of the solid crust during the late stages of
inspiral. There could also be dissipation due to turbulence
near the surface of neutron stars [35]. Such sources are
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speculative, but they ought to contribute to an averaged
shear viscosity as large as hηi ∼ 1029 g cm−1 s−1 [35] where
brackets stand for the volume average over the entire star.
By contrast, several microscopic sources of neutron star

viscosity have been studied in great detail. Viscosity
generated by microscopic processes in neutron stars
depends sensitively on the local stellar temperature profile
T. The temperature profile affects not only the theoretically
predicted values of viscosity, but also the mechanism that
drives dissipation. Electron-muon scattering contributes to
the shear viscosity, which scales as T−2 [36]. The peak value
of this contribution is expected to be hηi ≲ 1022 g cm−1 s−1.
Bulk viscous contributions due to the presence of hyperons
scale as T−2 and may be the dominant source of dissipation
in neutron stars at very low (∼keV) temperatures. The
maximum value of hyperon bulk viscosity is estimated to be
hζi ∼ 1030 g cm−1 s−1 in some models [17–20].
Bulk viscous contributions from direct and modified Urca

processes are expected to dominate at higher temperatures,
because those reactions scale asT4 andT6, respectively [37].1

Typical predictions for the bulk viscosity for Urca-process-
driven viscosity range from hζi ∼ 1026 g cm−1 s−1 when
T ∼ 0.1 MeV, to hζi ∼ 1031 g cm−1 s−1 when T ∼ 1 MeV,
depending on the equation of state (EoS) [14,39]. Given such
high values of bulk viscosity, several groups have started to
use numerical simulations to understand the impact of bulk
viscosity during the late merger/post-merger phase. Some
groups have found that bulk viscous effects (from Urca
processes) are enhanced during the late inspiral [14,40,41].
Meanwhile, other groups, workingwithmoment-based treat-
ments of neutrino transport, have not found evidence for large
out-of-thermodynamic-equilibrium effects, which are neces-
sary for generating an effective bulk viscosity during the late
inspiral [42]. Nevertheless, these moment-based treatments
of neutrino transport have revealed evidence of bulk viscous
effects within a small window after the merger before
matter returns to equilibrium [43]. GW observations from
GW170817 have also been used to constrain the amount of
bulk and shear viscosity during the inspiral [44]. Preliminary
estimates indicate that the bulk viscosity during the inspiral is
less than ∼1031 g=cm s; similarly, shear viscosity during the
inspiral was constrained to be less than∼1028 g=cm s. These
constraints are expected to improve by 2–3 orders if
GW170817-like events are observed using 3G detectors.
Clearly, the strength of dissipative processes within a

neutron star in a binary depends sensitively on the temper-
ature profile of the star, and also on how the stellar
temperature evolves over time. As the binary enters the
late inspiral, heating from tidal friction due to Urca
reactions may increase the temperature of the two stars

to tens of keV [45], with additional hyperonic bulk viscous
contributions possibly heating the stars to higher temper-
atures [20]. Numerical relativity simulations of neutron star
mergers additionally suggest tidal heating could increase
the stellar temperature to a few MeV during the last few
orbits [46]. This being said, there remains considerable
uncertainty in the profile, value, and evolution of the
temperature of neutron stars in binaries.

III. TIDAL RESPONSE OF NEUTRON STARS
AND THE PROPERTIES PROBED
BY THE TIDAL COEFFICIENTS

In this section, we define the tidal response function of
compact objects, discuss the impact of the low-frequency
tidal coefficients on the gravitational waveform, and review
distinct physical processes probed by the low-frequency
tidal coefficients. Our discussion is based on [27,30], and
we refer the reader to those references for a more detailed
discussion. In this section, we adopt the following notation.
We work with Cartesian coordinates ðt; x; y; zÞ. The indices
ði; j;…Þ are used to denote spatial coordinates only. We
denote the Lth multipole moment of body A by ILA where
L ¼ l1;…lL denotes a multi-index of size L. We denote
the mass and radius of objects A and B by mA=B and RA=B.
We occasionally denote time derivatives with an overhead
dot. We use h� � �i in index lists to denote the symmetric
trace-free (STF) combination of tensorial indices. We
transform from physical space to Fourier space by replac-
ing ∂t → −iω.
To describe the tidal response of two compact objects in

a binary, we first review their motion in the center-of-mass
frame in Newtonian theory. We model the binary as a
system of two point particles, and introduce finite size
corrections order by order in a multipolar expansion of each
object (for a review, see e.g. [47]). To leading order in the
multipolar moments of objects A and B, the center-of-mass
acceleration of the binary is

ai ¼ −
M
d2

ni þ
X∞
l¼2

M
2

 
IhLiA

mA
þ IhLiB

mB

!
∂i∂L

1

d
; ð1Þ

where ai ≡ ẍiA − ẍiB is the relative acceleration, M is the
total mass, d is the distance between the two objects and ni
is the normal vector. We assume the binary is evolving in a
circular orbit of frequency ωorb.
To close the system of equations, we must relate the

multipolar moments of each star to the gravitational field
external to it. We assume that the tidal response can be
modeled via linear response theory. We can then relate the
STF multipole moments of object A to the external field it is
immersed in, EL

A, via the tidal response function Klðt − t0Þ
through,

1We note that beyond a resonant peak, these reactions become
less strong at higher temperatures; current estimates place this
peak at T ∼ 5 MeV [38], that is at higher temperatures than we
expect the stars to reach during the inspiral.
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IhLiA ðtÞ ¼ −
2

ð2l − 1Þ!!R
2lþ1
A

Z
∞

−∞
Klðt − t0ÞEL

Aðt0Þdt0:

In Fourier space this integral equation becomes

ÎhLiA ðωÞ ¼ −
2

ð2l − 1Þ!!R
2lþ1
A K̂lðωÞÊL

A: ð2Þ

We now switch from an STF-tensor description to a
spherical-harmonic description, using the relation (see,
e.g. Sec. 1.5.2 of [47])

ÎhLiA ðωÞ≡ 4πl!
ð2lþ 1Þ!!

Xl
m¼−l

Y�hLi
lm ÎA;lmðωÞ; ð3aÞ

ÊL
A ≡ −

4πl!
2lþ 1

Xl
m¼−l

dA;lmðωÞY�hLi
lm ð3bÞ

where Y�hLi
lm is the STF tensor that transforms Cartesian

STF tensors into spherical harmonics, ÎA;lm is the Fourier
transform of the multipole moment of object A, and dA;lm is
the tidal driving potential felt by object A due to object B.
From here on, we drop the labels A=B to simplify our
notation, unless the context makes it unclear.
Using the above definitions, Eq. (2) can be simplified to

ÎlmðωÞ ¼ 2R2lþ1K̂lðωÞdlmðωÞ: ð4Þ

The tidal response function K̂lðωÞ is, in general, a complex
function that depends on the internal structure of the
compact object and the frequency of the orbit. An elemen-
tary property of K̂lðωÞ follows from the fact that KlðtÞ is a
real function,

K̂�
lðωÞ ¼ K̂lð−ωÞ; ð5Þ

and therefore,

Re
�
K̂lðωÞ

� ¼ K̂lðωÞ þ K̂lð−ωÞ
2

; ð6aÞ

Im
�
K̂lðωÞ

� ¼ K̂lðωÞ − K̂lð−ωÞ
2i

: ð6bÞ

The real part of the tidal response is an even function of ω
and quantifies interactions that conserve orbital energy,
while the imaginary part probes dissipative interactions.
Henceforth, we will call ReðK̂lÞ the conservative tidal
response function and ImðK̂lÞ the dissipative tidal response
function. We also introduce the following definitions

klðωÞ≡ Re
�
K̂lðωÞ

�
; ð7aÞ

ωklðωÞτd;lðωÞ≡ Im
�
K̂lðωÞ

�
: ð7bÞ

The function klðωÞ is called the Love number [25,26,48],
while we call τd;lðωÞ the tidal lag function.
For perfect fluids in Newtonian theory, one can show that

the tidal response function is a real function, and that it can
be written as [22,49]

K̂l;NewtðωÞ ¼
1

2ð2lþ 1ÞRlþ1
A

X
j

Q2
j

ω2
j − ω2

ð8Þ

where, Qj is related to the “overlap integral” between
the external tidal field and the fluid oscillation modes of the
star [50]. For polytropic stars (and when one ignores the
self-gravity of linearized perturbations—the Cowling
approximation), the frequencies ωj can be classified into
the classical f-, p-, and g-mode frequencies [28,51]. For
perturbations that include self-gravitational forces, and for
more general EoSs, many stellar modes ωj can be thought
of as being close analogs to an f, p, or g modes (in the
sense that they approach an f, p, or g modes in the
Newtonian, polytropic limit). Given this, we will often refer
to f, p, or g modes without further qualification. The
frequencies of the f mode and p modes are mostly
determined by pressure restoration forces within the star.
Generally, the family of p modes includes modes of
arbitrarily large frequencies. The frequencies of the g
modes are mostly determined by gravitational forces,
and are only present when there is stratification due to
temperature or chemical gradients in the star.
Quantitatively, the criteria for the presence of g modes is

determined by the Schwarzschild-Ledoux criteria [52],
which determines if the star is stable against convection.
Suppose that the equilibrium sound speed is given by c2e ¼
dp=de where p is the pressure and e is the energy density.
The adiabatic sound speed is given by c2s ¼ γp=ðeþ pÞ
where γ is the adiabatic index. We say that a star is stable
against convection if

c2s > c2e ⇒ γ >
eþ p
p

dp
de

: ð9Þ

This is the Schwarzschild-Ledoux criteria. If this is
satisfied, then small vertical displacements of a stratified
boundary will oscillate (at the Brunt-Vaïsälä frequency) and
there are g modes; if this criterion is not satisfied, stratified
boundaries are unstable to convection and there are no g
modes. The gmodes can have extremely small frequencies;
for polytropic stars within the Cowling approximation, the
gmodes have an accumulation point at zero frequency [51].
These low-frequency oscillations can greatly complicate
the tidal response of a star, as in principle, very small
frequency perturbations may resonantly excite the star.
Assuming there are no g modes, we can expand the

conservative and dissipative tidal response functions in a
Taylor series about ω ¼ 0,
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klðωÞ ¼ klð0Þ þ ω2kð2Þl þOðω4Þ; ð10aÞ

τd;lðωÞ ¼ τd;lð0Þ þOðω2Þ: ð10bÞ

We can combine these two expansions to obtain

K̂lðωÞ¼ klð0Þþ iωklð0Þτd;lð0Þþkð2Þl ω2þOðω3Þ: ð11Þ

The constant klð0Þ is the equilibrium tidal Love number,

τd;lð0Þ is the tidal lag number, and kð2Þl is a “dynamical tidal
Love number” [53–55]. The dynamical tidal Love number
can be thought of as a correction to the equilibrium tidal
Love number due to dynamical process, such as stellar
oscillations and viscous relaxation.
Each of these low-frequency tidal coefficients probe

distinct physical processes and affect the gravitational
waveform at different post-Newtonian (PN)2 orders. The
l ¼ 2 equilibrium tidal Love number first appears in the
gravitational waveform at 5 PN order and has been used to
constrain the different equilibrium nuclear EoSs [48,56].
The tidal lag number affects the gravitational waveform at 4
PN order and has been used to inform the magnitude of
dissipative effects, such as bulk and shear viscous dis-

sipation [44]. The dynamical tidal Love number kð2Þl affects
the gravitational waveform at 8 PN order and is determined
mainly by the f-mode oscillations, and the viscous relax-
ation times that damp the f-mode excitation. While it
appears at very high PN order in the waveform, leaving out
the dynamical Love tidal number from a waveform model
may bias the measurement of klð0Þ over a population of
GWs from binary neutron stars [57]. The value of the
dynamical tidal number has been additionally constrained
with GW data from the event GW170817 [10,11].
The low-frequency expansion of Eq. (11) fails near

resonances. In the absence of gmodes, the largest resonance
first occurs near the f-mode frequency of the star [49]. We
can approximately represent the tidal response function near
this resonance as

K̂lðωÞ ≈
kl

ω2
f − iωðτd;lω2

fÞ − ω2
; ð12Þ

where ωf is the f-mode frequency. Most estimates of the
f-mode frequency give values of ωf=ð2πÞ ∼ 2 kHz, which
lies very close to the peak (merger) frequency of binary
neutron star coalescence [58]. Observe that the above
equation is equivalent to Eq. (8) when we set τd;l ¼ 0

and truncate Eq. (8) to just the f-mode frequency. The tidal

lag function acts a damping time to the star oscillating at a
driven frequency ω.
There is a robust and thoroughly developed formalism to

calculate the tidal response function K̂lðωÞ within
Newtonian theory [21–23,32]. For fully relativistic stars,
a robust formalism exists only for the calculation of the
equilibrium tidal love number (klð0Þ) [24–26]. Recently,
Pitre and Poisson introduced a method to calculate kð2Þl in
the absence of g modes [32]. Some references have used

effective models for calibrating the kð2Þl number, using
numerical relativity data [6]. In the following sections, we
remedy this situation by developing a formalism for
calculating the frequency-dependent tidal response func-
tion in general relativity.

IV. NONRADIAL POLAR PERTURBATIONS
OF SPHERICALLY SYMMETRIC

STELLAR SPACETIMES

In this section, we describe an approach to treat the time-
dependent tidal excitation of initially spherically symmetric
stars in full general relativity using the technique of
matched asymptotic expansions [30]. Extracting the tidal
response of compact objects requires that one solve the
Einstein equations in three distinct spacetime regions, and
that one matches these solutions inside regions of common
overlap.
To provide a concrete realization of these regions, we

consider the motion of two neutron stars of radius RA;B and
mass MA;B, moving in a circular orbit at an orbital
separation of d, as described by the relative acceleration
in Eq. (1). A cartoon depicting the objects on a fixed time
slice with different regions of interest is shown in Fig. 1.
The objects are moving around each other in an ambient PN
zone (colored in light blue in the figure, and sometimes also
called the “PN near zone”), which we define as the region
in which λ ≫ r̄A;B ≫ RA;B, where r̄A;B is the field point
distance as measured from star A or B and λ is the
characteristic GW wavelength. In the PN zone, the neutron
stars can be viewed as skeletonized compact objects with a
multipolar structure that obeys the equation of motion of
Eq. (1). The value of the multipole moments of the object
are unknown constants inside the PN zone and on a given
time slice.
Close to each compact object, we can define body zones.

To describe these regions, let us focus on object A (upper-
left corner in the figure) with mass mA and radius RA and
move into a frame where the compact object is at rest. Let
us further divide the body zone into an inner body zone,
r̄A < RA, and an outer body zone, d ≫ r̄A > RA. The outer
body zone of body A extends into the PN zone near body A,
thus defining an overlap region that we denote the buffer
zone (which will be important later on). In the inner/outer
body zones, the gravitational field of body A is strong. We
model the dynamics of this region by solving the full

2In the PN framework, one solves the Einstein equations
perturbatively in weak fields and small velocities. A term of NPN
order scales as v2N relative to the controlling factor of the
expansion.
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Einstein equations—that is, we do not make any weak-
gravity assumption.
In the inner and outer body zones and for weak tidal

interactions, one can solve the Einstein equations linearized
around a background equilibrium solution, but different
approaches in each zone. In the inner body zone, we must
solve the linearized Einstein equations in the presence of
matter and in conjunction with the linearized relativistic
fluid equations of the star. In the outer body zone, we only
have to solve the linearized Einstein equations in vacuum.
Once we solve the linearized Einstein equations in the inner
and outer zones, we glue them together by demanding that
the metric (and, thus, in particular, the gravitational
potential) be continuous and differentiable at the surface
of the star.
The gluing procedure leaves a number of constants

undetermined in the outer body zone, which must be found
through asymptotic matching to relate them to the multi-
pole and the tidal moments. That is, we demand that the
solution obtained in the outer body zone, asympotically
expanded in the PN zone, be asymptotic to the solution
obtained in the PN zone, asymptotically expanded in the

outer body zone, inside of the buffer zone region,
d ≫ r̄ ≫ RA. Technically, asymptotic matching also
requires that we ensure the outer body zone solution and
the PN zone solution are in the same gauge and coordinate
system, which requires a coordinate transformation that has
already been worked out in [30]. Asymptotic matching,
then, determines the constants and the multipole moments,
which are related to the tidal response function via e.g.
Eq. (2). The asymptotic matching procedure summarized
above is essentially identical to what has been carried out
for perturbed black holes in [59,60].
The rest of this section explains the details of the

calculation required of the matching procedure. We first
describe how to solve the Einstein equations in the inner
body zone by revisiting nonradial polar perturbations of
spherically symmetric neutron stars in Sec. IVA. We
reduce the coupled Einstein-fluid equations into three
master equations; a second-order equation for the gravita-
tional potential, and two first-order equations for the radial
and the angular components of the Lagrangian displace-
ment vector. We then solve the linearized Einstein equa-
tions in the outer zone in Sec. IV B and discuss the
matching between the outer zone and the PN zone to
obtain the tidal boundary conditions in Sec. IV C. Next, we
perturbatively add viscous fluid corrections to the equations
of motion, and solve the equations in the inner zone of the
star to obtain the dissipative tidal response function in
Sec. IV D. We then discuss the general nature of the
solutions near the origin and the surface of the star in
Sec. IV E. Finally, we provide another summary of our
calculational approach in Sec. IV F.

A. Field equations in the body zone

The equations of motion for the nonradial, linear, polar
perturbations of the Einstein equations coupled to a perfect
fluid (about a spherically symmetric background) were first
published by Thorne and Campolattaro [61]. In that work,
the authors additionally reduced the linearized, polar equa-
tions into a system of five coupled equations. Lindblom and
Detweiler later showed that these equations can be further
reduced into a system of four coupled equations [62,63].
Finally, in [29] Lindblom, Mendell and Ipser showed that
these four equations could be further simplified into a system
consisting of two subsystemsof two coupled equations each,
one for the gravitational potential and one for the fluid
perturbation. The Newtonian limit of these equations
reduces to their Newtonian analogs [28,49]. Here, we
present a different but essentially equivalent reduction of
the linearized, polar Einstein equations, which is valid for
stably stratified stars—that is, for stars that contain g-mode
oscillations. We find that this reduction is particularly
convenient when including viscous corrections to the
perturbative corrections; see Sec. IV D.
Before we describe the equations of motion, we set up

our notation. We are interested in describing the dynamics

FIG. 1. Cartoon (not to scale) depicting the motion of two
tidally interacting neutron stars in a circular orbit of radius d on a
constant time slice. The spacetime is separated into three distinct
zones; the inner body zone, the outer body zone and the post-
Newtonian zone. The mutual gravitational attraction between the
objects is weak in the post-Newtonian zone, and they are
described as skeletonized compact objects with a multipolar
structure in the post-Newtonian zone. The gravitational fields in
the inner and outer body zone are strong, and the matching
between the body zone metric and the post-Newtonian metric
determines the dependence of the multipole on the internal
structure of the objects.
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in the inner body zone. We consider linearized perturba-
tions to a spherically symmetric Tolman-Oppenheimer-
Volkoff (TOV) background in polar coordinates ðt; r; θ;ϕÞ.
These coordinates will be used to describe the dynamics in
both the inner and outer body zone. Capital Latin indices
A;B;… are used to denote the coordinates ðθ;ϕÞ. Note that
in this subsection we drop the use of A, B to denote body
A=B; we only consider the perturbation of one object in this
section. We Fourier transform the time dependence of all
the perturbed quantities, i.e. we replace ∂t → −iω. Scalar,
vector and tensor polar spherical harmonics are denoted by
Ylm, Elm

A and Zlm
AB respectively; see Appendix A for a brief

review. We only consider polar perturbations in this article.
We set uμ to be the fluid four velocity, p to be the pressure, n
to be the baryon number density, ρ ¼ mn the rest mass
energy density, also known as the baryon (mass) density, e to
be the total energy density, and η, ζ to be the shear/bulk
viscosity coefficients. Finally, we use δ and Δ to denote the
Eulerian and Lagrangian fluid perturbations, respectively;
we review relativistic fluid perturbation theory in
Appendix B. Since the field equations we discuss have been
described in detail in the literature before (e.g. [62–64]), our
discussionwill be brief, andwe relegatemost of the details to
Appendix B.
We analyze the Einstein equation and the fluid con-

servation equations coupled to a stress-energy tensor Tμν

and a source term Sμν,

Gμν ¼ 8πðTμν þ SμνÞ; ð13aÞ

∇μTμν ¼ −∇μSμν: ð13bÞ

The source term serves as a proxy for modeling out-of-
equilibrium contributions to the stress-energy tensor. The
stress-energy tensor is that of a perfect fluid obeying a
polytropic EoS pðeÞ

Tμν ¼ ðeþ pÞuμuν þ pgμν: ð14Þ

The background metric is given by

ds20 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2dΩ2: ð15Þ

We will assume that the source tensor Sμν vanishes on the
background and it is perpendicular to the fluid four-velocity
vector,

uμSμν ¼ 0: ð16Þ

The reason for using this additional restriction is that, for
small deviations from equilibrium, we want energy con-
servation [Eq. (B4)] to be valid. We could instead demand
that uμ∇νSμν ¼ 0, but since the viscous sources we con-
sider satisfy Eq. (16), we will restrict our attention to
sources that obey the less general Eq. (16). Extending our

reduction to more general sources that do not satisfy
Eq. (16) should be straightforward.

1. Background metric

The background metric of Eq. (15) and fluid variables
satisfy the TOV equations,

λ0ðrÞ ¼ 1 − eλðrÞ þ 8πr2eλðrÞeðrÞ
r

; ð17aÞ

ν0ðrÞ ¼ −1þ eλ þ 8eλπr2p
r

; ð17bÞ

p0ðrÞ ¼ −
ðeþ pÞð−1þ eλ þ 8eλπr2pÞ

2r
: ð17cÞ

We introduce the mass aspectmðrÞ, which is related to λðrÞ
by the equation

λðrÞ ¼ − log

�
1 −

2mðrÞ
r

�
: ð18Þ

From Eq. (17a) we have that

m0ðrÞ ¼ 4πr2eðrÞ: ð19Þ

For numerical integration, it is beneficial to use Eqs. (17b),
(17c) and (19) and invert eðpÞ to pðeÞ.
To integrate the TOV equations, we need to understand

the local behavior of the variables at the origin (r ¼ 0) and
at the surface of the star (r ¼ R), which is defined by
pðRÞ ¼ 0, pðr < RÞ > 0. Series expanding about the
origin and imposing regularity of the spacetime, the
TOV equations admit a closed form, perturbative solution,

pðrÞ ¼ pc −
2πr2

3
ðpc þ ecÞð3pc þ ecÞ þOðr4Þ; ð20aÞ

MðrÞ ¼ 4π

3
r3ec þOðr5Þ; ð20bÞ

νðrÞ ¼ νc þ
4πr2

3
ð3pc þ ecÞ þOðr4Þ; ð20cÞ

where ec, pc and νc are the values of the energy density,
pressure and νðrÞ at r ¼ 0. The behavior near the surface of
the star is more complicated and depends on how the
pressure goes to zero. In this paper, we assume that the EoS
near the surface of the star is locally a polytrope with
polytropic index n > 0

p ¼ p0

�
e
e0

�
1þ1

n

: ð21Þ

The procedure for obtaining the polytropic index for a
numerically integrated TOV solution is described in [62].
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Once we have solved for n, we obtain the following
closed-form, perturbative solution near the stellar
boundary,

z≡ R − r; ð22aÞ

pðrÞ ¼ pR;0znþ1 þO
�
znþ2

�
; ð22bÞ

MðrÞ ¼ M þO
�
znþ1

�
; ð22cÞ

νðrÞ ¼ log
�
1 −

2M
R

�
−

2Mz
RðR − 2MÞ þO

�
znþ2

�
; ð22dÞ

λðrÞ¼− log

�
1−

2M
R

�
þ 2Mz
RðR−2MÞþO

�
znþ2

�
; ð22eÞ

where M and R are the mass and the radius of the star, and
where

pR;0 ≡ p0

Rnþ1
: ð23Þ

When integrating the TOV equations [Eq. (17)], a detailed
knowledge of behavior of the variables p, M, ν and λ near
the surface is not necessary. We present them here because
these expansions will be needed when solving the time
dependent perturbation equations presented in the next
section.

2. Master equations for nonradial perturbations

We now consider nonradial polar perturbations of the
background metric in Eq. (15) in Regge-Wheeler gauge.
We decompose the linearly perturbed metric components
into spherical harmonics Ylm, so that the line element
reads

ds2 ¼ −eνðrÞ
�
1 − 2HðrÞe−iωtrlYlm

�
dt2

− 2iH1ðrÞe−iωtrlYlmdtdr

þ eλðrÞ
�
1þ 2H2ðrÞe−iωtrlYlm

�
dr2

þ r2
�
1 − KðrÞe−iωtrlYlm

�
dΩ2: ð24Þ

Equation (16) and the assumption that Sμν vanishes in
equilibrium implies that Stμ ¼ 0. We next decompose the
nonzero components of source tensor in terms of scalar
Ylm, vector Elm

A , and tensor spherical harmonics Zlm
AB ,

Srr ¼ S0ðrÞe−iωtrl−2Ylm; ð25aÞ

SrA ¼ S1ðrÞe−iωtrl−1Elm
A ; ð25bÞ

SAB ¼ SZðrÞe−iωtrlZlm
AB

þ SΩðrÞe−iωtΩABrlYlm; ð25cÞ

where ðS0ðrÞ; S1ðrÞ; SZðrÞ; SΩðrÞÞ are functions to be
determined. The nonzero components of the Lagrangian
displacement vector are parametrized as

ξr ¼ WðrÞe−iωtrl−1e−λ=2Ylm; ð26aÞ

ξA ¼ −VðrÞe−iωtrlElm
A ; ð26bÞ

where ðWðrÞ; VðrÞÞ are functions to be determined. We
can now determine the Eulerian perturbation of the four-
velocity vector by using Eq. (B2).

δut ¼ e−
ν
2rlHe−iωtYlm; ð27aÞ

δur ¼ −iωe−ðλþνÞ=2rl−1We−iωtYlm; ð27bÞ

δuA ¼ iωe−ν=2rlVe−iωtElm
A : ð27cÞ

We use Eq. (26a) to obtain Δn=n using Eq. (B3),

1

rle−iωtYlm

Δn
n

≡ n0ðrÞ ¼ −H2 þ K −
lð1þ lÞV

r2

−
e−

λ
2ð1þ lÞW

r2
−
e−

λ
2W0

r
: ð28Þ

The Lagrangian perturbations of the energy density and
the pressure are parametrized by using Eqs. (B4) and (B5).
We note that the assumption in Eq. (16) is crucial in
deriving Eq. (28), as that expression follows from the
particle current conservation equation ∇μðnuμÞ ¼ 0.
At this point, the unknown functions that we

need to determine from the field equations are
ðH;W; V;H1; H2; K; n0Þ. We will now use the field equa-
tions to obtain three master equations only involving the
variables ðH;W; VÞ. We first find a relation forH2 by using
the ðθ;ϕÞ component of the Einstein equation [see
Eq. (13a)],

H2 ¼ H − 8πSZ: ð29Þ

Next, we use Eq. (29) to get rid ofH2 in the ðr; θÞ and ðt; θÞ
components of Eq. (13a) to obtain expressions for H1

and H0
1,

H1 ¼ −
eνlK
rω

þ 16eνπS1
rω

−
2eνH0

ω
−
eνK0

ω

þ 8eνπSZð2þ rν0Þ
rω

−
2eνHðlþ rν0Þ

rω
; ð30aÞ
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H0
1 ¼ 16eλπωðeþ pÞV −

8eνπS1ð2l − rλ0 þ rν0Þ
r2ω

þ eνH0ð2l − rλ0 þ rν0Þ
rω

þ eνK0ð2l − rλ0 þ rν0Þ
2rω

þ K

�
−eλωþ eνlð2l − rλ0 þ rν0Þ

2r2ω

�

− SZ

�
16eλπωþ 4eνπð2þ rν0Þð2l − rλ0 þ rν0Þ

r2ω

�

þH

�
2eλωþ eνðlþ rν0Þð2l − rλ0 þ rν0Þ

r2ω

�
: ð30bÞ

From the θ component of the fluid conservation equation
[see Eq. (13b)], we obtain an expression for the Eulerian
perturbation of the pressure δp (and hence the Lagrangian
perturbation Δp as well). Using the relation Eq. (B5), can
then rewrite n0 as

n0ðrÞ ¼
Hðeþ pÞ

pγ
þ ð−2þ lþ l2ÞSZ

2r2pγ
−

SΩ
r2pγ

−
e−νω2ðeþ pÞV

pγ
þ e−

λ
2Wp0

rpγ
−
e−λS01
rpγ

−
e−λS1ð2þ 2l − rλ0 þ rν0Þ

2r2pγ
: ð31Þ

We can eliminate K and K0 by using the ðr; rÞ component
and the ðt; rÞ component of the field equations [Eq. (13a)]
to obtain

K ¼ α0H þ α1W þ α2V þ α3H0

þ α4S0 þ α5S1 þ α6SZ þ α7SΩ þ α9S01; ð32aÞ

K0 ¼ β0H þ β1W þ β2V þ β3H0

þ β4S0 þ β5S1 þ β6SZ þ β7SΩ þ β9S01: ð32bÞ

In the above, we used Eqs. (29), (30), and (B5) to remove
H1, H2, and δp. The functions αi and βi are completely
determined by the background metric of Eq. (15) and are
provided in the supplementary Mathematica file available
at [65].
Equations (29), (30), (31) and (32) allow us to eliminate

the variables ðH1; H2; K; n0Þ and their derivatives from the
other field equations. The master equations are obtained by
simplifying the r component of the fluid conservation
equation and the ðt; tÞ component of the Einstein field
equation. Schematically, they take the following form:

W0 ¼ HαW;0 þWαW;1 þ VαW;2 þ αW;3H0

þ αW;4S0 þ αW;5S1 þ αW;6SZ

þ αW;7SΩ þ αW;9S01; ð33aÞ

V 0 ¼ HαV;0 þWαV;1 þ VαV;2 þ αV;3H0

þ αV;4S0 þ αV;5S1 þ αV;6SZ þ αV;7SΩ þ αV;8S00
þ αV;9S01 þ αV;10S0Z þ αV;11S0Ω þ αV;12S001; ð33bÞ

H00 ¼ HαH;0 þWαH;1 þ VαH;2 þ αH;3H0

þ αH;4S0 þ αH;5S1 þ αH;6SZ þ αH;7SΩ þ αH;8S00
þ αH;9S01 þ αH;10S0Z þ αH;11S0Ω þ αH;12S001: ð33cÞ

The functions αH;i; αV;i and αW;i are functions αi; βi; β0i, and
the other background variables, and they are provided in the
supplementary Mathematica file [65]. For ease of notation,
we write the master equation in vector form by defining,

Y⃗ ≡ ðH;W; V;H0Þ; ð34aÞ

S⃗≡ ðS0; S1; SZ; SΩ; S00; S01; S0Z; S0Ω; S001Þ; ð34bÞ

and the matrices

A≡

0
BBBB@

0 0 0 1

αW;0 αW;1 αW;2 αW;3

αV;0 αV;1 αV;2 αV;3

αH;0 αH;1 αH;2 αH;3

1
CCCCA; B≡

0
BBBB@

0 0 0 0 0 0 0 0 0

αW;4 αW;5 αW;6 αW;7 0 αW;9 0 0 0

αV;4 αV;5 αV;6 αV;7 αV;8 αV;9 αV;10 αV;11 αV;12

αH;4 αH;5 αH;6 αH;7 αH;8 αH;9 αH;10 αH;11 αH;12

1
CCCCA: ð35Þ

The master equation can now be written as a system of four
first-order differential equations,

Y⃗ 0 ¼ AY⃗ þ BS⃗; ð36Þ

where, the matrices A and B depend only on the back-
ground TOV solution. When combined with suitable
boundary conditions, these equations provide a complete

description of the polar sector of the linearly perturbed field
equations.

B. Solution in the outer body zone in a
resummed small-frequency expansion

At the surface of the star, the gravitational field H must
be once differentiable. To match the interior and exterior
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solutions, we first find the general solution to the vacuum
perturbed Einstein equations. In vacuum the background
metric reduces to

eν ¼ e−λ ¼
�
1 −

2M
r

�
; ð37Þ

whereM is the mass of the star. In the region exterior to the
star, the master equations [Eq. (36)] reduce to a single,
second-order differential equation forH. One can relate this
equation to the Zerilli-Moncrief equation and the Regge-
Wheeler equation as we show in Appendix C. To impose
the tidal boundary conditions, we expand the potentialH as

Hðr;ωÞ ¼ Hþðr;ωÞ þH−ðr;ωÞ; ð38Þ

where the � parts of the potential are even and odd
functions of ω,

H�ðr;ωÞ ¼ �H�ðr;−ωÞ: ð39Þ

We expand the even and odd functions in a small frequency
expansion,

ε≡Mω ≪ 1; ð40Þ

namely,

Hþ ¼
X∞
k¼0

ε2kHð2kÞ
þ ðrÞ; ð41aÞ

H− ¼
X∞
k¼0

ε2kþ1Hð2kÞ
− ðrÞ: ð41bÞ

We note that the vacuum master equations [Eq. (36)] are
even in ω. Consequently, at each order in the frequency

expansion, Hð2kÞ
þ and Hð2kÞ

− take the same functional form
[see Eq. (42)].
In our approach, we truncate the expansion at Oðε2Þ; we

show how to extend the approach to higher orders in ε in
Appendix E. We note that to leading order (ε0 and ε1), the
master equation for H reduces to that for calculating
the exterior, static tidal response of a star [24–26]. The
solutions at this order of truncation are given by

Hð0Þ
� ¼að0ÞP;�M

l

rl
P̂2
l

�
r
M

−1

�
það0ÞQ;�M

l

rl
Q̂2

l

�
r
M

−1

�
; ð42aÞ

Hð2Þ
� ¼ að2ÞP;�M

l

rl
P̂2
l

�
r
M

− 1

�
þ að2ÞQ;�M

l

rl
Q̂2

l

�
r
M

− 1

�

þ að0ÞP;�M
l

rl
Hð2Þ

P;l þ
að0ÞQ;�M

l

rl
Hð2Þ

Q;l: ð42bÞ

The functions P̂2
l and Q̂

2
l are Legendre functions of the first

and second kind,3 with the normalization

P̂2
lðxÞ⟶

x→∞
xl; ð43aÞ

Q̂2
lðxÞ⟶

x→∞
x−l−1: ð43bÞ

The particular solutions Hð2Þ
P;l and Hð2Þ

Q;l are the same for
both the even and odd parts in ω of the solution. Although

we cannot determine the general solution to Hð2Þ
P=Q;l for all

l, finding the functional form for a given l is straightfor-
ward [30]. We list the functional form for l ¼ ð2; 3Þ in the
supplemental Mathematica notebook [65].

The particular solutions Hð2Þ
P=Q;l are not uniquely defined,

as one can add a homogeneous solution and the solution
would still be a solution to the differential equation. To
specify a unique solution, we need to impose additional
constraints on the behavior of the solution. To impose such
a constraint, we change coordinates to a Lorentzian
harmonic coordinate system, ðt; x̄1; x̄2; x̄3Þ,

x̄a ¼ r̄Ωa; r̄ ¼ r −M; ð44Þ

Ωa ¼ ½sinðθÞ cosðϕÞ; sinðθÞ sinðϕÞ; cosðθÞ�: ð45Þ

This coordinate system is harmonic in the exterior back-
ground Schwarzschild metric. The Schwarzschild metric
admits a PN expansion compatible with the PN metric
constructed in harmonic gauge in this coordinate system.
This fact will be used later when performing an asymptotic
expansion of the metric given in Eq. (15).
To completely specify the functional form of the par-

ticular solutions, we choose the following normalization
condition for r̄ ≫ M; we demand that the asymptotic

expansion when r̄ ≫ M of the function Hð2Þ
P=Q;lðrÞð1 −

2M=rÞ not contain any term proportional to r̄l or
r̄−l−1. If such terms are present, then we add/subtract
homogeneous solutions proportional to P̂2

lðrÞ or Q̂2
lðrÞ

so that these terms are canceled. Additionally, the appear-
ances of logðr̄Þ in the asymptotic expansion is normalized
as logðr̄=MÞ. We denote the normalized solution

by N̂Hð2Þ
P=Q;lðrÞ.

To see the normalization process more concretely, let us
look at the specific case of l ¼ 2. Consider the non-
normalized particular solution used in [30],

3Note that the Legendre function of the second kind Q̂m
l ðxÞ is

defined on the domain x > 1 unlike the normal convention where
it is defined on the interval −1 < x < 1. Practically, this amounts
to replacing terms proportional to logð1 − xÞ by logðx − 1Þ.
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Hð2Þ
P;2ðrÞ ¼

107u6 − 860u5 þ 1538u4 − 2074u3 þ 3989u2 − 3430uþ 70

630ðu − 1Þ2u − 4uLi2ðuÞ − 2ulog2ðuÞ

þ
�
u3

3
−
8u2

3
þ 214u

105
−

1

3u
þ 8

3

�
logð1 − uÞ − ðu4 − 8u3 þ 8u − 1Þ logðuÞ

3u
; ð46aÞ

Hð2Þ
Q;2ðrÞ ¼

5ðu4 − 8u3 þ 8u − 1Þlog2ðuÞ
32u

þ 107ðu4 − 8u3 þ 8u − 1Þ logð1 − uÞ
672u

þ 15uζð3Þ
2

−
15uLi3ðuÞ

2

−
857u5 − 7095u4 − 4ð642π2 − 3017Þu3 þ 8ð321π2 − 1729Þu2 þ 8655uþ 3307

4032ðu − 1Þu þ 5

8
ulog3ðuÞ

þ 1

112

�
−35u3 þ 280u2 − 428uþ 35

u
− 280

�
Li2ðuÞ þ

15

4
uLi2ðuÞ logðuÞ

þ 1

112

�
−35u3 þ 280u2 − 214uþ 35

u
− 280

�
logð1 − uÞ logðuÞ

−
ð107u6 − 860u5 þ 1538u4 − 2074u3 þ 3989u2 − 3430uþ 70Þ logðuÞ

672ðu − 1Þ2u ; ð46bÞ

where u ¼ 1–2M=r and Li2ðrÞ is the dilog function. The

asymptotic expansion of Hð2Þ
P=Q;2ðrÞð1 − 2M=rÞ for r̄ ≫

R > M are given by

Hð2Þ
P;2ðrÞð1− 2M=rÞ

¼ −
11r̄4

42M4
−
107r̄3

63M3
−
214r̄2

105
log

�
r̄
M

�

þ a2;2r̄2

M2
þ r̄
�
428 logð r̄MÞ þ 140π2 þ 1105− 428 logð2Þ�

105M

þ 1

630

�
−1284 log

�
r̄
2M

�
− 420π2 − 4789

�

þ 1507M2

630r̄2
þ 494M

315r̄
−
64M3

15r̄3
log

�
M
r̄

�

þ a1;2M3

r̄3
þOðr̄−4Þ; ð47aÞ

Hð2Þ
Q;2ðrÞð1− 2M=rÞ ¼ a4;2r̄2

M2
−
M
2r̄

−
M2

6r̄2

þ 214M3 logð r̄MÞ
105r̄3

þa1;2M3

r̄3
þOðr̄−4Þ;

ð47bÞ
where

a1;2 ≡ −
717

175
−

1

15
64 logð2Þ; ð48aÞ

a2;2 ≡ 214 logð2Þ
105

−
2

21
ð37þ 7π2Þ; ð48bÞ

a3;2 ≡ 2π2

3
þ 28076

3675
−

1

105
214 logð2Þ; ð48cÞ

a4;2 ≡ 0: ð48dÞ

The asymptotic expansions provided in Eq. (47) contains
terms proportional to r̄2 and r̄−3. To cancel these terms, we
add “counterterms” proportional to the homogeneous
solutions, namely a1;2ð1−2M=rÞQ̂2

lþa2;2ð1−2M=rÞP̂2
l.

The subtraction of these counter-terms removes the terms
proportional to r̄−3 and r̄2 in the asymptotic expansion of
Eq. (47a). Similarly, we subtract the counter-term a3;2ð1 −
2M=rÞQ̂2

l þ a4;2ð1 − 2M=rÞP̂2
l to remove the terms pro-

portional to r̄−3 and r̄2 in the asymptotic expansion of
Eq. (47b). The normalized solutions are then

N̂Hð2Þ
P;2ðrÞ≡ Hð2Þ

P;2ðrÞ − a1;2Q̂
2
l − a2;2P̂

2
l; ð49aÞ

N̂Hð2Þ
Q;2ðrÞ≡ Hð2Þ

Q;2ðrÞ − a1;2Q̂
2
l − a2;2P̂

2
l: ð49bÞ

The asymptotic expansion of the normalized solutions for
r̄ ≫ R > M are given by

N̂Hð2Þ
P;2ðrÞ

�
1−

2M
r

�

¼−
11r̄4

42M4
−
107r̄3

63M3
−
214r̄2

105
log

�
r̄
M

�

þ r̄ð428 logð r̄MÞþ 140π2þ 1105− 428 logð2ÞÞ
105M

þ 1

630

�
−1284 log

�
r̄
2M

�
− 420π2− 4789

�

þ 1507M2

630r̄2
þ 494M

315r̄
−
64M3

15r̄3
log

�
M
r̄

�
þOðr̄−4Þ; ð50aÞ

N̂Hð2Þ
Q;2ðrÞ

�
1−

2M
r

�
¼−

M
2r̄

−
M2

6r̄2

þ214M3 logð r̄MÞ
105r̄3

þOðr̄−4Þ; ð50bÞ
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which clearly does not contain any terms proportional to r̄2

or r̄−3. The normalization procedure exemplified above will
be important when matching the metric obtained in the
body zone to that in the PN zone inside the buffer zone. A
Mathematica notebook for generating the normalized
solutions N̂HP=Q;l is available at [65].
After the normalization is carried out, the solution for

HðrÞ is given by

HðrÞ¼Ml

rl
�
að0ÞP;þþað0ÞP;−εþað2ÞP;þε

2það2ÞP;−ε
3
�
P̂2
l

�
r
M

−1

�

þMl

rl
�
að0ÞQ;þþað0ÞQ;−εþað2ÞQ;þε

2það2ÞQ;−ε
3
�
Q̂2

l

�
r
M

−1

�

þMlε2

rl
�
að0ÞP;þþað0ÞP;−ε

�
N̂Hð2Þ

P;lðrÞ

þMlε2

rl
�
að0ÞQ;þþað0ÞQ;−ε

�
N̂Hð2Þ

Q;lðrÞþOðε4Þ: ð51Þ

The above solution completes the description of the
solution in the outer body zone. The constants

ðað0ÞP;�; a
ð0Þ
Q;�; a

ð2Þ
P;�; a

ð2Þ
Q;�Þ are, as of yet, undetermined. We

relate these constants to the tidal potential and the multipole
moment of the object by asymptotically matching the outer
body zone solution to the solution in the PN zone. Before
proceeding with this matching calculation, let us point
out that the normalization described above was not made
in [30,32], as we have shown for the case of l ¼ 2 in
Eqs. (47a) and (47b). We compare our normalization choice
with that of [30,32] in Appendix F.

C. Matching the outer body zone solution
and the solution in the post-Newtonian zone

For the time-independent problem, the term proportional
to P̂2

l (the asymptotically “growing” potential) is usually
interpreted as the imposed tidal moment, while the term
proportional to Q̂2

l (the asymptotically “decaying” poten-
tial) is the induced multipole moment. In the time-
dependent problem we are interested in, we can make
the same separation if the object under consideration is
embedded in an ambient PN environment [30]. As we
described at the beginning of this section, the calculation of
a tidally interacting binary involves solving the Einstein
equations in three distinct zones on a fixed time slice; the
inner body zone, the outer body zone and the PN zone. In
the body zone the object is in its rest frame and the
dynamical description of the field equations are obtained by
the master equation [Eq. (36)] in the inner zone, while the
solution in the outer body zone is given by Eq. (51). In the
ambient PN zone, the object is viewed as a skeletonized
compact object, which is part of a global spacetime where it
is tidally interacting with an external environment.
To describe the solution in the PN zone, we set up

harmonic coordinates, ðT; XaÞ, such that the metric to

leading, Newtonian, order is given by

gTT;PN ¼ −1þ 2U þOð1=c4Þ; ð52Þ

gTa;PN ¼ Oð1=c3Þ; ð53Þ

gab;PN ¼ δab þOð1=c2Þ: ð54Þ

Here, the function UðT; XaÞ is the Newtonian gravitational
potential, and the Oð1=c2;3;4Þ are uncontrolled remainders
at 1PN order. For two point-particles, the Newtonian
potential to leading order takes the simple form Upp ¼
M1=r1 þM2=r2, where r1;2 are field point distances from
the two particles. However, for extended bodies, this
potential takes on a more complicated form that depends
on the perturbing tidal interaction between the objects.
The PN metric can be asymptotically expanded in the

buffer zone. Doing so, leads to

UðT; XaÞ ¼ M
s
−
4πÎlmðωPNÞYlme−iωPNT

ð2lþ 1Þslþ1

−
4πdlmðωPNÞYlme−iωPNt

2lþ 1
sl

þOð1=slþ2; slþ1Þ; ð55Þ

where M is the mass of the object, s ¼ jXa − ZaðTÞj is the
field point distance from the compact object in the PN zone,
with ZaðTÞ is the object’s worldline, Îlm is the multipole
moment of the object, dlmðωÞ is the tidal moment of the
object, and ωPN is the Fourier-domain frequency in the PN
zone. As one can see, the asymptotically expanded PN
metric in the buffer zone is a bivariate expansion in both
s ≪ d and s ≫ M.
To obtain a complete description of the Newtonian

potential, we need to find the multipole moments
ÎlmðωPNÞ, which are obtained through asymptotic match-
ing. The outer body zone metric, however, is not in the
same coordinate system as the PN metric. The coordinate
transformation from ðT; XaÞ to the harmonic coordinates
ðt; x̄aÞ in the body zone has already been worked out in
Sec. VI C of [30] and Sec. 8.3 of [47], and thus, we will not
present it again here. The PN metric, asymptotically
expanded in the buffer zone, and in the new coordinate
system becomes

gtt;PN ¼ −1þ 2Ū þOð1=c4Þ; ð56aÞ

gtā;PN ¼ Oð1=c3Þ; ð56bÞ

gā b̄;PN ¼ δā b̄ þOð1=c2Þ; ð56cÞ

where
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Ūðt; x̄aÞ ¼ M
r̄
−
4πÎlmðωÞYlme−iωt

ð2lþ 1Þr̄lþ1

−
4πdlmðωÞYlme−iωt

2lþ 1
r̄l

þOð1=r̄lþ2; r̄lþ1Þ: ð57Þ

With the discussion of the asymptotically expanded PN
metric complete, let us redirect our attention to the outer
zone metric. This metric was presented in Eq. (24) in
Schwarzschild-like coordinates, so we must first transform
it to harmonic coordinates through Eq. (44). After doing so,
and after asymptotically expanding this metric inM=r̄ ≪ 1,
one finds

gtt ¼−1þ 2M
r̄

þ 2
�
að0ÞP;þ það0ÞP;−εþað2ÞP;þε

2það2ÞP;−ε
3
�
Ylmr̄le−iωt

þ 2
�
að0ÞQ;þ það0ÞQ;−εþað2ÞQ;þε

2það2ÞQ;−ε
3
�M2lþ1Ylme−iωt

r̄lþ1

þ 2ð−1ÞlMlþ1

r̄lþ1

þO½1=c4;1=r̄lþ2; r̄lþ1� þO
�
logðr̄=MÞ�; ð58Þ

while the other components are trivial. In the expansion
above, we have only retained those terms that scale either as
1=r̄, r̄l or 1=r̄lþ1, since these are the only ones we will
need for the asymptotic matching. Note that the coefficients
of the r̄l and r̄−l−1 terms are exact toOðε4Þ, because of the
normalization condition, i.e. no PN truncation has been
made when writing these coefficients. We note that there
are also terms that scale with logðr̄=MÞ. These terms arise
because of the phase shift from the tortoise coordinate and
the appearance of logarithmic terms in the near zone
expansion of gravitational potential [66]. Though important
at extremely high-frequencies, these terms will be ignored
as they do not impact the tidal response in the regimewe are
interested in.
We can now match this asymptotically expanded outer

body zone metric to the asymptotically expanded PNmetric
inside the buffer zone. Matching will therefore determine
the values of the constants aP;i and aQ;i in the outer zone
metric in terms of the Îlm and dlm of the PN metric. We
first observe that the term 2ð−1ÞlMlþ1=r̄lþ1 is due to the
gravitational potential of the body and is of a very high PN
order, and we therefore discard it in the matching. The
matching procedure then shows that

að0ÞP;þ þ að0ÞP;−εþ að2ÞP;þε
2 þ að2ÞP;−ε

3 ¼ 4πdlmðωÞ
2lþ 1

; ð59aÞ

að0ÞQ;þþað0ÞQ;−εþað2ÞQ;þε
2það2ÞQ;−ε

3¼ 4πÎlmðωÞ
ð2lþ1ÞM2lþ1

: ð59bÞ

We have now asymptotically matched the metric of the
isolated body to the PN metric.
Let us now go back to the metric potential and carry out a

resummation of coefficients of the particular solution,
which is one of the new results of this paper. We rewrite
Eq. (38) using Eqs. (41) and (42) to find

H ¼ 4πdlmðωÞMl

2lþ 1
P̂2
l

�
r
M

− 1

�
r−l

þ 4π

2lþ 1

ÎlmðωÞ
Mlþ1

Q̂2
l

�
r
M

− 1

�
r−l

þ ε2
�
að0ÞP;þ þ að0ÞP;−ε

�
N̂Hð2Þ

P;l
Ml

rl

þ ε2
�
að0ÞQ;þ þ að0ÞQ;−ε

�
N̂Hð2Þ

Q;l
Ml

rl
þOðε4Þ: ð60Þ

Next, we note that using Eq. (59), we can rewrite

ε2
�
að0ÞP;þ þ að0ÞP;−ε

� ¼ ε2
4πdlm
2lþ 1

þOðε4Þ; ð61Þ

ε2
�
að0ÞQ;þ þ að0ÞQ;−ε

� ¼ ε2
4πÎlm

ð2lþ 1ÞM2lþ1
þOðε4Þ: ð62Þ

This is the critical step in which one effectively “resums”
the ε expansion for the coefficients to the particular
solution. We can then write the external gravitational
potential, Eq. (60), as

H ¼ 4πdlmðωÞMl

2lþ 1
P̂2
l

�
r
M

− 1

�
r−l

þ 4π

2lþ 1

ÎlmðωÞ
Mlþ1

Q̂2
l

�
r
M

− 1

�
r−l

þ ε2
�
4πdlmðωÞMl

2lþ 1

�
N̂Hð2Þ

P;lr
−l

þ ε2
�

4π

2lþ 1

ÎlmðωÞ
Mlþ1

�
N̂Hð2Þ

Q;lr
−l þOðε4Þ: ð63Þ

With this resummation, we have rewritten the external H
in terms of the tidal moment dlm and the induced multipole
moment Îlm. In Appendix E we show that we can perform
this resummation procedure at each order in the small
frequency perturbation and the resummation appears nat-
urally in perturbation theory. Let us now recall that the tidal
response K̂lm is defined by Eq. (4). Using this, we can
rewrite Eq. (63) in terms of the response and the tidal
moment coefficient dlm,
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H ¼ 4πdlmðεÞ
2lþ 1

Ml

rl

"
2K̂lðωÞ
C2lþ1

�
Q̂2

l þ ε2N̂Hð2Þ
Q;l

�

þ P̂2
l þ ε2N̂Hð2Þ

P;l

#
þOðε4Þ: ð64Þ

We recall that the boundary condition at the stellar surface
(r ¼ R) for H is that H and H0 must be continuous across
the boundary. This means that we must use Eq. (64) as the
exterior potential solution, which we match to the interior
(stellar) potential. This matching of the interior solution
for a given frequency ω provides the tidal response
function K̂lmðωÞ.

D. Interior solution in a small-frequency
and small-viscosity expansion

To summarize our setup so far, our goal is to solve
the master equations [Eq. (36)], which consists of four,
first-order differential equations for four unknowns
(V;W;H;H0). The exterior (vacuum) master equations
were discussed and solved in Sec. IV B using a small-
frequency expansion. This solution was then matched to the
solution in the PN zone in Sec. IV C. In this subsection, we
will explain how to obtain a solution to the interior
(nonvacuum) master equations in a small-frequency and
small-viscosity expansion, which must be initialized at the
origin by requiring the spacetime and fluid fields all remain
regular. This interior solution is important because it must
be matched at the surface of the star with the external
solution, i.e. we must require that H and H0 in the interior
be the same as the exterior solution of Eq. (64) at the stellar
surface. At the stellar surface, we also require that the
Lagrangian displacement of the pressure vanishes. This set
of boundary conditions, for a given background and choice
of ε, completely specifies the solution, and thus, the low-
frequency limit of the general tidal response function K̂ and
the tidal response coefficients of Eq. (11) for nonstrati-
fied stars.
Let us begin by describing how to take the low-

frequency limit and how to perturbatively incorporate
viscous corrections to the stress-energy tensor; we will
then use this expansion to compute the tidal lag parameter.
For a viscous fluid, the stress-energy tensor can be
decomposed as

Tfull
μν ¼ Tμν þ Sμν; ð65Þ

where Tμν is given by Eq. (14), and Sμν captures the effects
of out-of-equilibrium corrections to the perfect fluid stress-
energy tensor. For a fluid close to thermodynamic equi-
librium, one can generally view these corrections as adding
perturbative corrections to the perfect fluid equations of
motion.

More specifically, let us denote the volume-averaged
viscosity (shear/bulk), the volume-averaged pressure, and
the volume-averaged energy density inside the neutron star
by hηi, hpi, and hei, respectively, where volume average is
here defined via

hAi ¼ 3

R3

Z
R

0

AðrÞr2dr: ð66Þ

for any function AðrÞ. The spatial parts of the ideal fluid
stress-energy tensor and the viscous stress-energy tensor
then roughly scale as

jT ideal
ij j ∼ hpi þ heiω2δL2; ð67aÞ

jTvisc
ij j ∼ hηiωδL

L
; ð67bÞ

where L is a typical length scale of oscillations inside the
neutron star, and δL is a typical value of the Lagrangian
displacement vector. In the regions of the star away from
the surface, one can assume that δL=L ≪ 1. When ω2 is
small, one can also ignore the kinetic energy contribution to
the ideal fluid stress-energy tensor. Therefore, in the
interior of the star (away from the surface), we assume that

ϵ≡ hηiωδL
Lhpi ¼ hη̄ihΩiδL

L
≪ 1 ð68Þ

where the dimensionless quantities hη̄i and hΩi are
defined by

hη̄i≡ hηi ffiffiffiffiffiffiffiffiffiffiffiffi
4πheip

hpi ≪ 1; ð69aÞ

hΩi≡ ωffiffiffiffiffiffiffiffiffiffiffiffi
4πheip ≪ 1: ð69bÞ

Near the surface of the star, these assumptions can easily
fail because δL ∼ L and ðp; eÞ → 0. To avoid this potential
issue, we assume that the viscous coefficients go to zero
more rapidly than the ideal part of the stress-energy
tensor, e.g.

lim
p→0

η

p
¼ 0: ð70Þ

In the interior of the star, we wish to expand the master
variables in a small ϵ expansion. A practical way of doing
so is to first expand the solutions in small viscosity hη̄i,

Y⃗ðr;ωÞ ¼ Y⃗ð0Þ þ ihη̄iY⃗ð1Þ þOðϵ2Þ; ð71Þ

where we treat hη̄i as a formal order-counting parameter,
i.e. this parameter can be set to unity when numerically
solving for the perturbations. Inserting the expansion of
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Eq. (71) into the master equation [Eq. (36)] we obtain,

Y⃗ 0
ð0Þ ¼ AY⃗ð0Þ; ð72aÞ

Y⃗ 0
ð1Þ ¼ AY⃗ð1Þ −

i
hη̄iBS⃗: ð72bÞ

Note that S⃗ ∝ hη̄i, and therefore, the above expression is
valid. Finally, we solve the above system in the small
frequency limit by choosing a range of value of ω that
ensure Eq. (69b) is valid. The combined effect of these
expansions (i.e. of a small hη̄i and a small ω expansion) is a
small ϵ expansion.
The source vector S⃗ depends on the decomposition of the

viscous source tensor Sbulk
μν through Eq. (25), so let us

discuss this quantity in more detail. The viscous source
tensor we use is

Sbulk
μν ¼ −ζθð0ÞΔ

ð0Þ
μν ; ð73aÞ

Sshear
μν ¼ −2ησð0Þμν ; ð73bÞ

where ζðpÞ and ηðpÞ are the bulk and shear viscosities, and
Δμν ≡ uμuν þ gμν. The fluid expansion and the shear tensor
are given by

θð0Þ ≡ ð∇μuμÞð0Þ; ð74Þ

σð0Þμν ≡ �Δγ
ðνΔ

δ
νÞ∇γuδ

�ð0Þ − 1

3

�
ΔμνΔγδ∇γuδ

�ð0Þ: ð75Þ

We note that here the label (0) indicates that the sources are
evaluated using the zeroth-order (in ϵ) solution to the
master equation [Eq. (72a)]. That is, we substitute our
solution to the perturbative perfect fluid equations (zeroth-
order in the viscosity expansion) into the viscous source
tensor Eq. (73). We list the source functions S0; S1; SZ and
SΩ for the bulk and shear viscosities (Eq. (73)) in
Appendix D.
The expressions for the source functions S0; S1; SZ and

SΩ in terms of the viscosities present an important property:
The first-order master equation [Eq. (72b)] for a purely
bulk-viscous perturbation (η ¼ 0) depends only on ζðpÞ,
while for a purely shear viscous perturbation (ζ ¼ 0), the
master equations depend only on η; dη=dp and d2η=dp2.
This implies that shear perturbations are very sensitive to
changes in the local values of the profile of the shear
viscosity. In particular, small changes to the shear viscosity
profile near the surface of the star can lead to significant
changes to the tidal response of the star.
Before we proceed further, we briefly discuss some facts

about causal relativistic fluid theories. The source functions
in Eq. (73) do not describe causal and stable fluid
propagation if one considers nonperturbative solutions to

the relativistic equations of motion [67,68]. To remedy this
situation, a number of relativistic viscous fluid theories
have been proposed [69–75]. The structure of the dissipa-
tive part of the stress-energy tensors of these fluid theories
differ from the one given in Eq. (73) to ensure the fluid
theory remains causal (e.g. [76]), but these differences
matter only at high frequencies because they are of Oðω2Þ.
Therefore, if one restricts attention to low frequencies and
small deviations from equilibrium, only the “hydrody-
namic” (low-frequency) modes should survive and the
leading-order dissipative part of the stress-energy tensor
should be equal to the one given in Eq. (73). The
perturbative scheme in Eq. (72) then is only theoretically
consistent (as a relativistic description of the system) when
ω=

ffiffiffiffiffiffiffiffiffiffiffiffi
4πheip

≪ 1, which is the region in which we obtain the
tidal lag parameter for highly relativistic stars. Hence, we
will ignore the contributions from the causal corrections to
the viscous stress-energy tensor in this paper.

E. Boundary conditions for the internal
problem near the origin and the surface

To solve the master equations in the interior we need to
understand the local behavior of Y⃗ near the origin and the
surface. The discussion in this section will be general and
should highlight the general pattern of the calculation to
obtain the tidal response function. For specific applications,
see Sec. IV F. A general solution to the master equation
[Eq. (36)] is a sum of the homogeneous and particular
solutions,

Y⃗ ¼ Y⃗hom þ Y⃗part: ð76Þ

The form of the particular solution depends on the source
functions S⃗. To keep the discussion general, we focus on
the boundary conditions for the homogeneous solution. The
local properties of the particular solution for bulk and shear
viscous source are provided in the supplementary
Mathematica file [65] and the source properties are
provided in Appendix D.
The master equations [Eq. (72)] possess two singular

points, one at the origin and one at the surface of the star,
r ¼ R. A physically acceptable solution must be regular
(finite) at both of these singular points. To solve the field
equations, we divide the domain of the star into a left
r∈ ð0; rf� and a right r∈ ½rf; RÞ domain, separated by a
fiducial point rf. This fiducial point is artificial, so one
must ensure than any final physical solution that is obtained
numerically is insensitive (up to numerical error) to the
choice of rf.
Let us now discuss the solution in the left domain. At the

origin, we assume that the solution is analytic and so we
expand it in a Taylor series

HhomðrÞ ¼ h0 þ r2h2ðh0; w0Þ þOðr4Þ; ð77aÞ
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WhomðrÞ ¼ w0 þ r2w2ðh0; w0Þ þOðr4Þ; ð77bÞ

VhomðrÞ ¼ −
w0

l
þ r2v2ðh0; w0Þ þOðr4Þ; ð77cÞ

where h0 and w0 are constants. The structure of the field
equations show that all the Taylor series coefficients are
completely determined by the constants ðh0; w0Þ.
Therefore, near the origin, we have two linearly indepen-
dent solutions corresponding to our choices for the values
of these constants. To obtain the most general solution, we
integrate the homogeneous equation with two linearly
independent values of ðh0; w0Þ [for example (1,0) and
(0,1)]. Let us denote these linearly independent homo-
geneous solutions by Y⃗hom;L;1 and Y⃗hom;L;2. Finally, we
denote the particular solution on the left domain by Y⃗ left;part.
The general solution in the left domain then is

Y⃗ left ¼ Y⃗ left;part þ a1Y⃗hom;L;1 þ a2Y⃗hom;L;2; ð78Þ

where a1 and a2 are arbitrary constants.
To determine the general solution in the right domain, we

need to find local solutions near the surface of the star. The
solution may not be analytic near the stellar surface for an
arbitrary EoS. Despite this, we can show the near-surface
solution is analytic if we assume a polytropic EoS near the
stellar surface p ∝ e1þ1=n, with n the polytropic index and
γ ¼ 1þ 1=n the adiabatic index. We parametrize the
adiabatic index as

γðpÞ ¼ χ0ðeðpÞ þ pÞ
pe0ðpÞ ; ð79Þ

where χ0 is a constant used to denote the degree of
stratification [see Eq. (9)]. We can then expand the master
variables near the stellar surface as follows:

HhomðrÞ ¼ hr;0 þ zhr;1 þOðz2Þ; ð80aÞ

WhomðrÞ ¼ wr;0 þ zwr;1ðhr;0; hr;1; wr;0Þ þOðz2Þ; ð80bÞ

VhomðrÞ ¼
hr;0ðR − 2MÞ

Rω2
−
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R − 2M

p
wr;0

R5=2ω2

þ v1ðhr;0; hr;1; wr;0ÞzþOðz2Þ; ð80cÞ

where z ¼ R − r. The near-surface solution is completely
determined if we specify the three independent constants
ðhr;0; hr;1; wr;0Þ.4 We pick three linearly independent values
of ðhr;0; hr;1; wr;0Þ and integrate the homogeneous equa-
tions on the right domain; we denote the solutions by
Y⃗hom;R;1, Y⃗hom;R;2 and Y⃗hom;R;3. We write the particular

solution as Y⃗right;part. In principle, then, we have three
linearly independent solutions in the right domain,

Y⃗right ¼ Y⃗right;part þ b1Y⃗hom;R;1

þ b2Y⃗hom;R;2 þ b3Y⃗hom;R;3: ð81Þ

To determine the perturbative solution for the entire star,
we need to find the constants ai and bi. Demanding
continuity of the solution at the fiducial point rf provides

us with four equations (for the four components of Y⃗)

Y⃗ left;partðrfÞ þ a1Y⃗hom;L;1ðrfÞ þ a2Y⃗hom;L;2ðrfÞ
¼ Y⃗right;partðrfÞ þ b1Y⃗hom;R;1ðrfÞ þ b2Y⃗hom;R;2ðrfÞ
þ b3Y⃗hom;R;3ðrfÞ: ð82Þ

To completely specify the solution, we need a relation
between H and H0 at the surface. This is obtained by
matching H and its first derivative to the exterior vacuum
metric solution of Eq. (63),

Hright;partðRÞ þ b1Hhom;R;1ðRÞ þ b2Hhom;R;2ðRÞ
þ b3Hhom;R;3ðRÞ

¼ 4πdlmðωÞ
2lþ 1

Ml

rl

	
2K̂lðωÞ
C2lþ1

�
Q̂2

l þ ðMωÞ2N̂Hð2Þ
Q;l

�
þ P̂2

l þ ðMωÞ2N̂Hð2Þ
P;l


����
r¼R

; ð83aÞ

d
dr

Hright;partðRÞ þ b1
d
dr

Hhom;R;1ðRÞ

þ b2
d
dr

Hhom;R;2ðRÞ þ b3
d
dr

Hhom;R;3ðRÞ

¼ d
dr

�
4πdlmðωÞ
2lþ 1

Ml

rl

	
2K̂lðωÞ
C2lþ1

�
Q̂2

l þ ðMωÞ2N̂Hð2Þ
Q;l

�
þ P̂2

l þ ðMωÞ2N̂Hð2Þ
P;l



����
r¼R

: ð83bÞ

For a given value of the background TOV solution,
the tidal field dlmðωÞ, and the frequency ω, Eqs. (82)
and (83) provide six linear equations for the unknowns
ða1; a2; b1; b2; b3; K̂lðωÞÞ, which can be solved to obtain
these quantities, including the tidal response func-
tion K̂lðωÞ.

F. Summary of solutions in the body zone

While the set of equations we provide above in principle
are sufficient to describe the driven tidal response of a star,
here we provide more details on the algorithm we used in
practice to obtain the tidal response function K̂lðωÞ for two
special cases that we investigate in more detail later in this

4We provide the expressions for h2, w2, v2, wr;1 and vr;1 in the
supplementary Mathematica notebook [65].
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paper. First, we discuss how we obtain the tidal response for
nonviscous (perfect fluid) stars, and then we describe how
we obtain the low-frequency limit of the tidal response for
viscous stars. We hope the summary below serves as a
useful guide for numerical implementations.

1. High-frequency conservative tidal
response function for inviscid stars

Here, we summarize the steps needed to obtain the high-
frequency tidal response of an inviscid star with Sμν ¼ 0.
The field equations for polar perturbations are governed by
three master equations, which are written schematically as
shown in Eq. (36),

Y⃗ 0 ¼ AY⃗: ð84Þ

To integrate these equations, we divide the domain ð0; RÞ
into a left domain ð0; rfÞ and a right domain ðrf; RÞ
separated by a fiducial point rf. The choice of the fiducial
point depends on the problem but typically we choose
rf ∼ ð0.5–0.8ÞR. For stratified stars, we choose the
fiducial point around rf ∼ 0.8R. We solve the master
equation in the left and right domains using the technique
described in Sec. IV E. The right and left solutions are
matched at the fiducial point to obtain a system of linear
equations,

a1Y⃗hom;L;1ðrfÞ þ a2Y⃗hom;L;2ðrfÞ
¼ b1Y⃗hom;R;1ðrfÞ þ b2Y⃗hom;R;2ðrfÞ
þ b3Y⃗hom;R;3ðrfÞ: ð85Þ

The boundary condition for the gravitational potential for
the zeroth-order solution is given by

H ¼ 4πdlmðωÞ
2lþ 1

Ml

rl

	
2kl
C2lþ1

�
Q̂2

l þ ðMωÞ2N̂Hð2Þ
Q;l

�
þ P̂2

l þ ðMωÞ2N̂Hð2Þ
P;l



; ð86Þ

where klðωÞ is the conservative tidal response function.
Matching this solution and its derivative with the right
domain solution at the surface, we obtain the following
system of equations:

b1Hhom;R;1ðRÞ þ b2Hhom;R;2ðRÞ þ b3Hhom;R;3ðRÞ

¼ 4πdlmðωÞ
2lþ 1

Ml

rl

	
2kl
C2lþ1

�
Q̂2

l þ ðMωÞ2N̂Hð2Þ
Q;l

�
þ P̂2

l þ ðMωÞ2N̂Hð2Þ
P;l


����
r¼R

; ð87aÞ

b1
d
dr

Hhom;R;1ðRÞ þ b2
d
dr

Hhom;R;2ðRÞ þ b3
d
dr

Hhom;R;3ðRÞ

¼ d
dr

�
4πdlmðωÞ
2lþ 1

Ml

rl

	
2kl
C2lþ1

�
Q̂2

l þ ðMωÞ2N̂Hð2Þ
Q;l

�
þ P̂2

l þ ðMωÞ2N̂Hð2Þ
P;l



����
r¼R

: ð87bÞ

For a given value of frequency, Eqs. (85) and (87)
provide us with six equations for the six variables
ða1; a2; b1; b2; b3; klðωÞÞ. We solve these linear equations
to obtain the solution and the conservative tidal response
function klðωÞ for inviscid stars. We note that we can
always scale the linear system of equations by dlmðωÞ,
i.e. the solution H depends linearly on dlm. We use this
freedom to set dlmðωÞ ¼ 1.

2. Low-frequency dissipative tidal response function

To obtain the tidal lag parameter, we need to solve the
master equations in a small viscosity and small frequency
approximation. We recall the small-viscosity expansion is
given by Eqs. (71) and (72). We first obtain the conservative
tidal solution Y⃗ð0Þ at a sufficiently small frequency, which, in
practice, corresponds to hΩi ∼ 0.01–0.05. We then use this
solution to compute the viscous source S⃗. The explicit
expression for the bulk and shear sources are provided in
Appendix D. From this, we can compute the particular
solution to Y⃗ð1Þ. We then proceed to obtain the first-order
solution to obtain the tidal lag parameter. The basic steps are
essentially the same as the ones we described in Sec. IV F 1.
The difference is that now we need to obtain the particular
solution corresponding to the presence of the viscous
source term.
We now describe the local structure of the particular

solution near the origin for bulk and shear viscous sources.
At the surface of the star we assume that the sources go to
zero, so the local structure of the particular solution is the
same as that of the homogeneous solution of Eq. (80). The
analytical solution near the origin depends on the zeroth-
order solution, we schematically discuss the expansion in
Appendix D and the explicit expression are provided in the
supplementary Mathematica notebook [65].
With these boundary conditions, we integrate the first-

order master equations and obtain the solutions in the left
and right domains. These solutions are matched at the
fiducial point to obtain

Y⃗ left;partðrfÞ þ að1Þ1 Y⃗ð1Þ;hom;L;1ðrfÞ þ að1Þ2 Y⃗ð1Þ;hom;L;2ðrfÞ
¼ Y⃗right;partðrfÞ þ bð1Þ1 Y⃗ð1Þ;hom;R;1ðrfÞ þ bð1Þ2 Y⃗ð1Þ;hom;R;2ðrfÞ
þ bð1Þ3 Y⃗ð1Þ;hom;R;3ðrfÞ: ð88Þ

We also expand the tidal response function in ϵ assuming
no g-mode resonances as
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K̂lðωÞ ¼ klðωÞ þ iϵklðωÞτd;lðωÞωþOðϵ2Þ; ð89Þ

where klðωÞ is the conservative tidal response function and
τd;lðωÞ is the tidal lag function. With this expansion, the
exterior potential simplifies to

H ¼ Hð0Þ þ iϵHð1Þ þOðϵ2Þ; ð90Þ

where [see Eq. (64)]

Hð0Þ ¼
4πdlm
2lþ 1

Ml

rl

	
2klðωÞ
C2lþ1

�
Q̂2

l þ ðMωÞ2N̂Hð2Þ
Q;l

�
þ P̂2

l þ ðMωÞ2N̂Hð2Þ
P;l



; ð91aÞ

Hð1Þ ¼
4πdlmðωÞ
2lþ 1

Ml

rl

	
2klðωÞτd;lðωÞω

C2lþ1

�
Q̂2

l

þ ðMωÞ2N̂Hð2Þ
Q;l

�

: ð91bÞ

The function klðωÞ is obtained by matching the zeroth
order solution. The boundary condition for the gravitational
potential for the first-order solution at the stellar surface is
given by

Hð1Þ ¼
4πdlmðωÞ
2lþ 1

Ml

rl

	
2klτd;lω
C2lþ1

�
Q̂2

l þ ðMωÞ2N̂Hð2Þ
Q;l

�

:

ð92Þ

Matching this with the right domain solution at the surface
we obtain,

Hright;partðRÞ þ bð1Þ1 Hð1Þ;hom;R;1ðRÞ þ bð1Þ2 Hð1Þ;hom;R;2ðRÞ
þ bð1Þ3 Hð1Þ;hom;R;3ðRÞ

¼ 4πdlmðωÞ
2lþ 1

Ml

rl

	
2klτd;lω
C2lþ1

�
Q̂2

l þ ðMωÞ2N̂Hð2Þ
Q;l

�
����
r¼R

;

ð93aÞ

bð1Þ1

d
dr

Hð1Þ;hom;R;1ðRÞ þ bð1Þ2

d
dr

Hð1Þ;hom;R;2ðRÞ

þ bð1Þ3

d
dr

Hð1Þ;hom;R;3ðRÞ

¼ d
dr

�
4πdlmðωÞ
2lþ 1

Ml

rl

	
2klτd;lω
C2lþ1

�
Q̂2

l

þ ðMωÞ2N̂Hð2Þ
Q;l

�

����
r¼R

; ð93bÞ

which are the low-frequency expansions of Eq. (63).
Equations (88) and (93) provide six equations for the six

unknowns ðað1Þ1 ; að1Þ2 ; bð1Þ1 ; bð1Þ2 ; bð1Þ3 ; τd;lðωÞÞ, which we

solve to obtain the first-order-in-ϵ solution and the tidal
lag parameter.

V. QUADRUPOLAR TIDAL RESPONSE
FUNCTION OF POLYTROPIC STARS

In this section, we apply the formalism we presented in
Sec. IV to compute the l ¼ 2 tidal response function for
relativistic stars with a polytropic EoS. We consider an
“energy” polytrope with the EoS

pðeÞ ¼ pc

�
e
ec

�
1þ1=n

; ð94Þ

where n is the polytropic index, while pc and ec are the
central pressure and energy density. For a polytropic star, it
is easier to quote results based on dimensionless param-
eters. We define dimensionless frequency Ω and space ξ
variables through

r ¼ r0ξ; ω ¼ ΩsΩ; ð95Þ

where we have defined

Ωs ≡
ffiffiffiffiffiffiffiffiffiffi
4πec

p
; ð96Þ

and r0 is a characteristic length scale. The dimensionless
variables are related to the relativistic Lane-Emden varia-
bles θ̄ and μ̄ via [77]

e ¼ ecθ̄n; m ¼ m0μ̄; ð97Þ

where m0 is a characteristic mass scale. The values of m0

and r0 are chosen to be

m0 ≡ 4πr30ec; r20 ≡ ðnþ 1Þpc

4πe2c
; ð98Þ

because this will simplify the TOV equations later. We
denote the dimensionless mass of the star and radius of the
star by μ̄1 and ξ1, respectively. Additionally, we introduce
the relativistic factor

b≡ pc

ec
; ð99Þ

which is a way of identifying relativistic corrections to the
Newtonian limit.
The background spacetime is completely specified by

the value of the polytropic index n and the relativistic factor
b. From the above definitions of dimensionless variables, it
follows that the polytropic EoS [Eq. (94)] reduces to
p ¼ pcθ̄

nþ1. We parametrize the adiabatic index γ as

γ ¼
�
1þ 1

N

�
ð1þ bθ̄Þ; ð100Þ
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the constant N denotes the degree of stratification. To
understand when a star is stable against convection we
substitute the above expression into Eq. (9) and use
Eq. (97) and simplify to get�
1þ 1

N

�
ð1þbθ̄Þ>eþp

p
dp
de

¼
�
1þ 1

n

�
ð1þbθ̄Þ: ð101Þ

Therefore, we see that a star is stable against convection if
n > N. Finally, we note that the parameter χ0 that appears
in Eq. (79) is equal to

χ0 ¼
1þ 1=N
1þ 1=n

; ð102Þ

for the parametrization of the adiabatic index given
in Eq. (100).
For the viscosity profiles of the star we use,

ζ ¼ ζ̄pc

Ωs
θ̄nþ3; ð103aÞ

η ¼ η̄pc

Ωs
θ̄nþ3: ð103bÞ

This ensures that the viscous sources go to zero faster than
the perfect fluid pressure near the surface [see Eq. (70)],
which holds for n > 0. While this is not the most general
function that obeys Eq. (70), we use this simple choice to
illustrate the difference in impact of the shear and bulk
viscosity for the same fixed viscous profile. We also rewrite
the tidal lag function due to bulk viscosity and shear
viscosity as [27]

τd;l;bulkðωÞ ¼
pl;bulkðωÞhζi

heiC ; ð104Þ

τd;l;shearðωÞ ¼
pl;shearðωÞhζi

heiC ; ð105Þ

where C≡M=R is the compactness of the star, and where
pl;bulk=shearðωÞ now carries all the frequency dependence of
the tidal lag function; it is easier to quote and plot the values
of pl;bulk=shearðωÞ instead of τd;l;bulk=shear, which is why we
rewrite the latter above.
As we discuss in Sec. IVA 1, we solve for the back-

ground by numerically integrating the TOVequations given
in Eq. (17). We have checked that the values we obtain for
the relativistic factor b, compactness C match those given
in Table V of [25]. The method of integration of the fluid
perturbation equations was described in Sec. IV F. In what
follows, we use these numerical solutions to present results
for the conservative tidal response function klðωÞ and the
tidal lag function through plðωÞ for the l ¼ 2 multipole,
i.e. the leading-order quadrupolar deformation.

Before we proceed further to present our results for the
dynamical tidal response function, we note that a C++ code
to generate obtain the dynamical tidal response of a
relativistic polytrope is available at [65].

A. Conservative tidal response function

We first present results for the full tidal response (non-
perturbative in the forcing frequency ω) for perfect fluid
stars. The sourceless master equations [Eq. (36)] can be
integrated to obtain the conservative tidal response function
for inviscid stars. We emphasize that unlike in previous
references [24–26], we calculate the tidal response function
kl without assuming the forcing tidal frequency ω is small
(see Sec. IV F 1). That is, we do not perform a small
frequency expansion for the interior stellar solution here.
Let us first discuss the results for a marginally con-

vectively unstable star, i.e. c2s ¼ c2e ⇒ N ¼ n; this
assumption is commonly used in modeling cold nuclear
EoSs and in calculating the Love numbers in the adiabatic
limit. In this case, there are no g modes in the mode
spectrum of the stellar model. In the left panel of Fig. 2, we
compare our dynamical calculation of k2ðΩÞ with the static
value kðstaticÞ2 provided in Table Vof [25] at low frequencies
for an n ¼ 1 polytrope for different values of compactness.
As we can see from the plot, the dynamical tidal response
function agrees well with the static value when Ω goes to
zero. Differences larger than 10%, however, begin to arise
as soon as Ω > 0.1. To map this to a physical number, we
need to pick a value for ec. Setting ec ¼ 624 MeV=fm3, we
see that for a star with compactness C ¼ 0.16 (bold green
line) we obtainM ¼ 1.4M⊙ and R ¼ 12.6 km. For this star
in an equal mass binary system, we see that differences
larger than 10% in the value of k2ðΩÞ arise for gravitational
frequencies of fGW > 184 Hz. Modeling dynamical effects
is therefore important when inferring the tidal love numbers
from gravitational wave data. We leave a detailed analysis
of the systematic effects arising from not modeling
dynamical effects in the evolution of the tidal response
to future work.
We now present results for the high-frequency

conservative tidal response function and the resonance
due to the f-mode frequency for different values of
compactness in the right panel of Fig. 2 for n ¼ N ¼ 1.
We see that as compactness increases, relativistic effects
make the f-mode resonance occur at a smaller value of Ω
given the same polytropic EoS. We leave a detailed
exploration of the behavior of the tidal response function
of different nuclear EoS to future work. Finally, in Fig. 3 we
present the results for a convectively stable polytrope with
n ¼ 1 and N ¼ 3=4 for different values of compactness.
This is the first calculation of g-mode resonances for
relativistic stars; for Newtonian calculations, see [21,22].
As we can see from the figure, the presence of g modes
leads to resonances in the low-frequency tidal response.
Similar to the f-mode resonance structure, we see that the
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resonances introduced by gmodes is shifted to lower values
of dimensionless frequency Ω due to relativistic correc-
tions, as compared to the g-mode resonance of a less
compact star with the same values of N and n, i.e. the
resonances are shifted to lower frequencies as the compact-
ness C increases. For example, we see that the first g-mode
resonance is at Ω ∼ 0.14 for the blue solid curve with
C ¼ 0.01, as compared to Ω ∼ 0.125 for green, dashed line
with C ¼ 0.15. Resolving the g-mode resonances at
extremely low frequencies requires the construction of a
numerical code which has increases resolution near the
surface to capture very low-frequency resonances which
pile up near the surface of the star. Since our code currently
does not have this feature, we cannot resolve the very low-
frequency g-mode resonances. We leave the construction of

a numerical code which resolves the low-frequency g
modes for future work.

B. Tidal lag parameter

Let us now consider an example calculation of the tidal
lag time τlm for a polytropic star, with viscous corrections.
To obtain the tidal lag due to viscosity, we need to solve the
master equations perturbatively, as summarized in Sec. IV
F 2. Figure 4 shows p2ðωÞ induced by bulk (left panel) and
shear viscosity (right panel), assuming the bulk and shear
viscous profiles provided in Eq. (103) with ζ̄ ¼ 1 ¼ η̄ and
different values of compactness, and assuming a marginally
convectively unstable star with n ¼ 1 ¼ N. Observe that
the tidal lag function induced by shear viscosity is 1000
times larger than that induced by bulk viscosity. Observe
also that p2ðωÞ does not depend sensitively on ω in the
regime of small frequencies. We also see that relativistic
effects (higher compactness) leads to smaller values of
p2ðωÞ. This is qualitatively similar to the case of k2ðωÞ. We
have checked that we obtain qualitatively similar behavior
for different polytropic indices n (assuming n ¼ N), and
thus, what we have discussed here seems to be generic for
polytropic EoSs.
As we mentioned above, for the same viscosity profile

and numerically equal value of ζ̄ and η̄, the dissipative tidal
response is almost two orders of magnitude larger when it is
induced by shear viscosities. The physical reason behind
this is that shear viscous effects are traverse, traceless and
“tensorial” in nature (i.e. arising through a nonzero shear
tensor σμν), while bulk viscous excitations are “scalar” in
nature (i.e. arising from a nonzero fluid expansion scalar θ).
Thus, the shear viscosity couples more strongly to the
tensorial gravitational perturbations of the star.

FIG. 3. Low-frequency resonances due to g modes in the
dynamical conservative tidal response function for a relativistic
polytrope with n ¼ 1 and N ¼ 3=4 for different values of
compactness.

FIG. 2. Dynamical conservative tidal response function for a convectively neutrally stable n ¼ 1 relativistic polytrope. Left: Fractional
percent difference between the static and the dynamical tidal Love number as a function of the dimensionless frequency for different
values of compactness. We see that the dynamical tidal Love number converges to the static Love number asΩ goes to zero. Right:High-
frequency tidal response function for different values of compactness. We see resonances due to the f-mode contribution to the tidal
response function.
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We warn the reader that the expected physical values of
bulk viscosity is order 4–8 orders of magnitude larger than
those of the shear viscosity for neutron star mergers (see
Sec. II). We here chose to focus our calculation on a simple
example, where we used the same profile for the shear and
bulk viscosity to compare the nature of the dissipative tidal
response. A physically realistic calculation would use a
more realistic equation of state, bulk viscosity and shear
viscosity profiles provided by nuclear physics calculations.

VI. CONCLUSION

Accurately modeling the tidal response of neutron stars
is crucial to obtain information about the internal structure
of these objects from GW observations. In this article, we
introduced a formalism for calculating the dynamical tidal
response of nonrotating neutron stars in general relativity.
Our formalism builds on [29,30], and reduces the internal
problem of sourced polar perturbations into a set of three
master equations: one for the gravitational potential, and
two from the polar and radial components of the
Lagrangian displacement vector. We solved for the exter-
nal, perturbed gravitational field in a small frequency
approximation. We then resummed the external small-
frequency expansion to obtain the tidal response function
in the high-frequency regime. We also proved that this
resummation procedure can be extended to all orders in the
frequency expansion. Finally, we showed how to incorpo-
rate shear and bulk viscous effects in the perturbative tidal
response of a star within a low-frequency expansion. With
this addition, we calculated the dissipative tidal response
function of a spherical polytropic star.
To demonstrate the power of our approach, we applied

our method to study the tidal response of relativistic
polytropes in both the high-frequency and low-frequency
regime. We first showed that for marginally convecti-
vely unstable inviscid stars, the low-frequency limit of
our method to calculate the tidal Love number agrees

with the methods used to calculate the static tidal
response [25,26,78]. We then showed how our formalism
enables the computation of the location of the f and
g-mode tidal resonances (for relativistic perfect fluid
stars) of highly relativistic stars. Finally, we presented
results for the dissipative tidal response function due to
shear and bulk viscous sources. We showed that, given
the same profile and numerical value for both viscosities,
shear viscosity couples more strongly to the perturbing
gravitational field than bulk viscosity does. The upshot of
this is that, for a fixed viscosity profile, the tidal response
function is a more sensitive function of the shear viscosity
than it is of the bulk viscosity.
Our work enables several directions for future work. First,

it would be interesting to compare our method of calculating
the tidal response function to the Newtonian-inspired phe-
nomenological models currently used in effective one body
framework to see how to systematically improve the latter.
One could also see how numerical relativity simulations
compare to our method of calculating the tidal response
function, both with and without viscosity. Another direction
for future work is to extend the formalism presented here to
slowly and rapidly rotating neutron stars. We expect our
approach to readily extend to slowly rotating neutron stars
(by employing a Hartle-Thorne-like expansion to the back-
ground and field perturbations). Extending our method to
rapidly-rotating neutron stars will likely be much more
challenging, as spin could no longer be added perturbatively
about a fiducial, spherically symmetric background.
A third direction for future work concerns the high-

frequency behavior of the tidal response. While one can
easily obtain analytical expressions for the external prob-
lem in a small frequency expansion to OðMωÞ2, obtaining
analytical expressions at higher order appears difficult.
Nonetheless, if one could obtain such analytical solutions,
one could then also explore how the addition of higher-
order terms enters the resumming of the external solution

FIG. 4. Dissipative tidal Love number p2 for bulk (left) and shear (right) viscous interactions as a function of frequency for the same
viscosity profile [see Eq. (103)] with η̄ ¼ 1 ¼ ζ̄. We see that at low frequencies the value of p2 remains constant and that the value of p2

for shear is 100–1000 larger than the bulk contribution. Relativistic corrections also lead to smaller values of p2ðωÞ.
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and changes or improves the high-frequency resonant
behavior. A fourth direction for future work concerns
extensions beyond the simple EoSs considered in our
paper. Here, we only explicitly calculated the conservative
and dissipative tidal response function for polytropic stars.
Calculating the conservative and dissipative tidal response
functions for more physically realistic EoSs will be
necessary to apply our results to gravitational waveform
models to constrain the equilibrium and out-of-equilibrium
physics of neutron stars [27,48]. A final direction for future
work would be to extend the computation of the dynamical
black hole tidal Love number of nonspinning/slowly
spinning black holes and to compare the results obtained
with calculations from [30,79].

ACKNOWLEDGMENTS

We are grateful to Elias Most for simulating the binary
neutron star mergers to confirm our predictions about the
tidal response function, which helped us look at the nor-
malization of the particular solution in more detail.We thank
Eric Poisson for reading the paper, providing helpful
comments and for discussing the calculation of the tidal
response function in full general relativity. We thank Rohit
Chandramouli for discussions about the paper. We acknowl-
edge support from the Simons Foundation through Award
No. 896696, the National Science Foundation (NSF) Grant
No. PHY-2207650, and the National Aeronatucis and Space
Agency (NASA) Award No. 80NSSC22K0806.

APPENDIX A: SCALAR, VECTOR, AND
TENSOR SPHERICAL HARMONICS

We work on the unit two-sphere S2, with metric ΩAB,
Levi-Cevita tensor εAB, and metric compatible derivative
DA. The Ricci tensor is R ¼ þ2. Our notation for the
spherical harmonics follows that of [80].

1. Scalar spherical harmonics

The scalar spherical harmonics satisfy�
ΩABDADB þ lðlþ 1Þ�Ym

l ¼ 0; ðA1Þ
along with the following orthogonality relation:Z

dΩYm
l Y

m0
l0 ¼ δll0δmm0 : ðA2Þ

2. Vector spherical harmonics

The polar and axial vector spherical harmonics respec-
tively are

½Em
l �A ≡DAYm

l ; ðA3aÞ
½Sml �A ≡ εBADBYm

l : ðA3bÞ

The vector spherical harmonics satisfy�
ΩABDADB þ ð−1þ lðlþ 1ÞÞ�½Vm

l �C ¼ 0; ðA4Þ

along with the following orthogonality relation:Z
dΩ½Vm

l �A½Vm0
l0 �A ¼ lðlþ 1Þδll0δmm0 : ðA5Þ

The divergence of the polar and axial-vector spherical
harmonics respectively are

DA½Em
l �A ¼ DADAYm

l ¼ −lðlþ 1ÞYm
l : ðA6aÞ

DA½Sml �A ¼ εBADBDAYm
l ¼ 0: ðA6bÞ

3. Tensor spherical harmonics

The polar and axial tensor spherical harmonics respec-
tively are

½Zm
l �AB ≡DADBYm

l þ 1

2
lðlþ 1ÞΩABYm

l ; ðA7aÞ

½Sml �AB ≡DðA½Sml �BÞ: ðA7bÞ

The tensor spherical harmonics satisfy�
ΩABDADB þ ð−2þ lðlþ 1ÞÞ�½Tm

l �CD ¼ 0; ðA8Þ

along with the following orthogonality relationZ
dΩ½Tm

l �AB½Tm0
l0 �AB ¼ 1

2
ðl − 1Þlðlþ 1Þðlþ 2Þδll0δmm0 :

ðA9Þ
The polar and axial tensor spherical harmonics are both
traceless

ΩAB½Zm
l �AB ¼ DADAYm

l þ lðlþ 1ÞYm
l ¼ 0; ðA10aÞ

ΩAB½Sml �AB ¼ DA½Sml �A ¼ 0: ðA10bÞ

The trace is captured by the scalar spherical harmonic
ΩABYm

l . The divergence of the polar and axial tensor
spherical harmonics respectively are

DA½Zm
l �AB ¼ DADADBYm

l þ 1

2
lðlþ 1ÞDBYm

l

¼
�
1 −

1

2
lðlþ 1Þ

�
½Em

l �B; ðA11aÞ

DA½Sml �AB ¼ 1

2
DAðDA½Sml �B þDB½Sml �AÞ

¼
�
1 −

1

2
lðlþ 1Þ

�
½Sml �B: ðA11bÞ
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We have used that DADBVC −DBDAVC ¼ RC
DABV

D,
RABCD ¼ ð1=2ÞðΩACΩBD −ΩADΩBCÞR and R ¼ 2.
Similarly,

DADAEB ¼ �1 − lðlþ 1Þ�EB; ðA12aÞ

DADASB ¼ �1 − lðlþ 1Þ�SB: ðA12bÞ

APPENDIX B: RELATIVISTIC THEORY OF
LAGRANGIAN FLUID PERTURBATION

Any field Q can be described in two ways; through the
Eulerian variation δQ, which is the change in the quantity at
a fixed point in spacetime, or the Lagrangian perturbation
ΔQ, which is the variation of the fluid quantity with respect
to a frame that is dragged along with the fluid along a
displacement vector ξα (for a review, see [81]). The
displacement vector ξα connects fluid elements in
the unperturbed fluid configuration to the elements in
the perturbed fluid. In the language of differential geom-
etry, ξα is the generator of diffeomorphisms that take world
lines in the unperturbed fluid into world lines of the
perturbed fluid. For general fields one has

Δ ¼ δþ Lξ; ðB1Þ

where Lξ is the Lie derivative along ξα. Unlike the Eulerian
variation, the Lagrangian variation is invariant under
infinitesimal changes in the coordinates. The Eulerian
and Lagrangian variations are both invariant under the
change ξα → ξα þ fuα, where f is a scalar field. We use
this freedom to make ξα purely spacelike, i.e. uαξα ¼ 0.
From uαuβgαβ ¼ −1, and Δuα ∝ uα, we then have

Δuα ¼ 1

2
uαuβuγΔgβγ: ðB2Þ

We now list thermodynamic identities that are valid in
the comoving Lagrangian frame of the fluid. A detailed
derivation of these equations is provided in [81]. For
adiabatic perturbations, the Lagrangian perturbation of
the baryon number density n is given by solving the
baryon conservation equation ∇αðuαnÞ ¼ 0, and taking
the Lagrangian perturbation of that expression,

Δ∇μðnuμÞ ¼ 0

⇒
Δn
n

¼ −
1

2
ðgαβ þ uαuβÞΔgαβ: ðB3Þ

From the first law of thermodynamics we have that

Δe
eþ p

¼ Δn
n

: ðB4Þ

Note that the above relations only hold when Eq. (16)
holds. We parametrize the Lagrangian perturbation of the
pressure with

Δp
p

¼ γ
Δn
n

: ðB5Þ

APPENDIX C: RELATIONSHIP BETWEEN HðrÞ
AND THE REGGE-WHEELER FUNCTION

One can show that if XRW;l is a solution to the Regge-
Wheeler equation

d2XRW;l

dr2⋆
þ ½ω2 − VRWðrÞ�XRW;l ¼ 0; ðC1Þ

where r⋆ ¼ rþ 2M logðr=2M − 1Þ is the tortoise coordi-
nate and VRWðrÞ is the potential

VRWðrÞ ¼
�
1 −

2M
r

��
lðlþ 1Þ

r2
−
6M
r3

�
; ðC2Þ

then

H ¼ J0
r2ðr − 2MÞXRW;l þ

J1
r2

d
dr

XRW;l; ðC3Þ

is a solution to the master equation [Eq. (36)] in the region
exterior to the star. The functions J0 and J1 are given by

J0 ¼ lðl3 þ 2l2 − l − 2ÞMð2M − rÞ�lðlþ 1Þr − 6M
�

− 2Mr2ω2
�
6M − lðlþ 1Þr��ðl2 þ l − 2Þrþ 6M

�
;

ðC4aÞ

J1 ¼ 2lðl3 þ 2l2 − l − 2ÞMrð3M − rÞ þ 24M2r3ω2:

ðC4bÞ

Relating H to the Zerilli-Moncrief function is straightfor-
ward using a Chandrasekhar transformation [82].

APPENDIX D: SOURCE FUNCTIONS
FOR VISCOUS PERTURBATIONS

In this section we provide the expressions for the
spherical harmonic decomposition [Eq. (25)] of the source
tensor for bulk and shear viscosity [see Eq. (73)].

1. Bulk viscosity

The nonzero source functions for the bulk viscous source
function [Eq. (73a)] are given by
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−iSΩ
ζðpÞ ¼ −

e−ν=2r2ωHð0Þðeþ pÞ
pγ

þ e−3ν=2r2ω3ðeþ pÞVð0Þ
pγ

−
e−

λ
2
−ν
2rωWð0Þp0

pγ
; ðD1aÞ

S0 ¼ SΩeλ: ðD1bÞ

We now note the following identities,

αV;8eλ þ αV;11 ¼ 0; ðD2aÞ

αH;8eλ þ αH;11 ¼ 0: ðD2bÞ

We can use Eqs. (D1) and (D2) to simplify the first-order
master equation given in Eq. (72b) for bulk viscous
perturbations to the following:

W0
ð1Þ ¼ Hð1ÞαW;0 þWð1ÞαW;1 þ Vð1ÞαW;2 þ αW;3H0

ð1Þ

þ αW;4S0 þ αW;7SΩ; ðD3aÞ

V 0
ð1Þ ¼ Hð1ÞαV;0 þWð1ÞαV;1 þ Vð1ÞαV;2 þ αV;3H0

ð1Þ
þ αV;4S0 þ αV;7SΩ þ αV;8S0λ0; ðD3bÞ

H00
ð1Þ ¼ Hð1ÞαH;0 þWð1ÞαH;1 þ Vð1ÞαH;2 þ αH;3H0

ð1Þ

þ αH;4S0 þ αH;7SΩ þ αH;8S0λ0: ðD3cÞ

That is, we are able to eliminate S00 and S
0
Ω from the master

equations. Thus, for bulk viscous perturbations, we only
need ζðpÞ to calculate the solutions to the first order master
equations [and not any derivatives of ζðpÞ]. Here the
subscripts (1) correspond to the solution at first order in
the viscosity (ϵ) expansion.
The schematic series solution near the origin for a bulk

viscous source (η ¼ 0) depends on the inviscid solution
obtained at zeroth order in perturbation theory,

Wð1ÞðrÞ ¼ w2;bulk

�
hð0Þ0 ; wð0Þ

0

�
r2 þOðr4Þ; ðD4aÞ

Vð1ÞðrÞ ¼ v2;bulk
�
hð0Þ0 ; wð0Þ

0

�
r2 þOðr4Þ; ðD4bÞ

Hð1ÞðrÞ ¼ h2;bulk
�
hð0Þ0 ; wð0Þ

0

�
r2 þOðr4Þ: ðD4cÞ

The expressions for w2;bulk, v2;bulk and h2;bulk are available
in the supplementary Mathematica notebook.

2. Shear viscosity

The nonzero source functions for the shear viscous
source function [Eq. (73b)] are given by

−
iSΩ
ηðpÞ ¼ −

1

3
e−

λ
2
−ν
2rω
�
2αW;0 þ eλ=2rð2þ α0Þ

�
Hð0Þ

−
1

3
e−

λ
2
−ν
2ωð−4þ 2lþ 2rαW;1 þ eλ=2r2α1ÞWð0Þ

−
1

3
e−

λ
2
−ν
2ω
�
2rαW;2 − eλ=2ðlþ l2 − r2α2Þ

�
Vð0Þ

−
1

3
e−

λ
2
−ν
2ωð2rαW;3 þ eλ=2r2α3ÞH0

ð0Þ; ðD5aÞ

−
iSZ
ηðpÞ ¼ −2e−ν=2ωVð0Þ; ðD5bÞ

−
iS1
ηðpÞ ¼ −e−ν=2rωHð0ÞαV;0

þ e−ν=2ωWð0Þðeλ=2 − rαV;1Þ − e−ν=2rωαV;3H0
ð0Þ

− e−ν=2ωVð0Þð−2þ lþ rαV;2Þ; ðD5cÞ

S0 ¼ −2SΩeλ: ðD5dÞ

Unlike the bulk viscous case, the master equations (72b)
depend on ηðpÞ, dη=dp and d2η=dp2 because of the
appearance of second derivatives of S1 in the master
equations (72b).
The schematic series solution near the origin for shear

viscous source depends on the inviscid solution obtained at
zeroth order in perturbation theory,

Wð1ÞðrÞ ¼ w2;shear

�
hð0Þ0 ; wð0Þ

0

�
r2 þOðr4Þ; ðD6aÞ

Vð1ÞðrÞ ¼ v2;shear
�
hð0Þ0 ; wð0Þ

0

�
r2 þOðr4Þ; ðD6bÞ

Hð1ÞðrÞ ¼ h2;shear
�
hð0Þ0 ; wð0Þ

0

�
r2 þOðr4Þ: ðD6cÞ

The expressions for w2;shear; v2;shear and h2;shear are available
in the supplementary mathematica notebook.

APPENDIX E: METHOD OF RESUMMING
THE EXTERNAL SOLUTION

We here present a proof that the resummation of the
external potential performed in Sec. IV B can be extended
to all orders in perturbation theory. To describe the
resummation procedure, it is useful to switch to a more
compact notation. The master equation for the external
gravitational potential can be written in the following
schematic form:

LðεÞHðεÞ ¼ 0; ðE1Þ

where ε ¼ Mω, HðεÞ is the gravitational potential, and
LðεÞ is a second-order differential operator. We next
expand the latter two as follows:
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LðεÞ ¼
Xn
j¼0

ε2jL2j þOðε2nþ2Þ; ðE2aÞ

HðεÞ ¼
Xn
j¼0

ε2jH2j þOðε2nþ2Þ: ðE2bÞ

We have only included even terms in the expansion of L
because it is even in ε, and, as we argued below Eq. (41),
the functional form for the gravitational potential with even
and odd powers of ε is the same (so we only include the
even powers here for our analysis). The arguments given
below apply equally well to the terms in the gravitational
potential that are odd in ε.
The perturbative expansion yields the following tower of

equations:

L0H0 ¼ 0; ðE3aÞ

L0H2 þ L2H0 ¼ 0; ðE3bÞ

L0H2j þ L2jH0 þ
Xj−1
i¼1

L2iH2j−2i ¼ 0; j > 1: ðE3cÞ

We define a set of solutions with the following properties:

L0P ¼ 0; ðE4aÞ

L0Q ¼ 0; ðE4bÞ

L0P2 þ L2P ¼ 0; ðE4cÞ

L0Q2 þ L2Q ¼ 0; ðE4dÞ

L0P2a12a2���2aj þ L2a1P2a2���2aj ¼ 0; j > 1; ðE4eÞ

L0Q2a12a2���2aj þ L2a1Q2a2���2aj ¼ 0; j > 1: ðE4fÞ

The functions P, Q, P2 and Q2 were defined in the main

text as P ¼ Mlr−lP̂2
l, Q ¼ Mlr−lQ̂2

l, P2 ¼ Mlr−lHð2Þ
P;l,

and Q2 ¼ Mlr−lHð2Þ
Q;l. We use this compact notation to

keep our expressions succinct. We note that each of the
basis solutions P2a12a2���2aj is not unique because we can
always add a term proportional to P or Q, which solves the
homogeneous equation. Similarly, we can add solutions
that are proportional to P2a12a2���2ak with k < j. One can
make a unique choice by demanding additional restriction
of the form of P2a12a2���2aj and Q2a12a2���2aj near spatial
infinity. We make the normalization choice that the
asymptotic expansion of P2a12a2���2ajð1 − 2M=rÞrl does

not contain any term proportional to r̄l or r̄−l−1.
Normalization choices beyond the leading-order condition
are difficult to impose without understanding the particular

form of the solutions. It is well-known that only polynomial
or logarithmic terms appear in the near zone expansion of
the gravitational potential [66,83]. Therefore, implement-
ing the normalization procedure for terms which scale as
logðr̄=MÞnrm is straightforward in principle but under-
standing the exact structure would require explicit calcu-
lation. We assume that such sub-leading normalization
conditions can be chosen as well in the following dis-
cussion. We demand the same normalization condition for
Q2a12a2���2aj near spatial infinity. We denote the normalized

solutions by N̂P2a12a2���2aj and N̂Q2a12a2���2aj . Note that this
normalization condition is equivalent to that made in the
main body of the paper when j ¼ 2.
With this unique basis of solutions, we can define the

solution at order j in perturbation theory. For example,

H0 ¼ ap;0Pþ aQ;0Q; ðE5aÞ

H2 ¼ ap;2Pþ aQ;2Qþ ap;0N̂P2 þ aQ;0N̂Q2; ðE5bÞ

H4 ¼ ap;4Pþ aQ;4Q

þ ap;2N̂P2 þ aQ;2N̂Q2 þ ap;0ðN̂P22 þ N̂P4Þ
þ aQ;0ðN̂Q22 þ N̂Q4Þ; ðE5cÞ

H6 ¼ ap;0ðN̂P6 þ N̂P42 þ N̂P24 þ N̂P222Þ
þ ap;2ðN̂P4 þ N̂P22Þ
þ ap;4N̂P2 þ ap;6N̂Pþ ðP ↔ QÞ: ðE5dÞ

The general solution at jth order in perturbation theory is
given by

H2j ¼ ap;2jPþ
Xj−1
k¼0

ap;2k

 Xj−k
m¼1

X
a1þ���am¼j−k

N̂ P2a1���2am

!

þ ðP ↔ QÞ: ðE6Þ

We introduce

F ðj − kÞ≡Xj−k
m¼1

X
a1þ���am¼j−k

N̂ P2a1���2am; ðE7aÞ

Gðj − kÞ≡Xj−k
m¼1

X
a1þ���am¼j−k

N̂ Q2a1���2am: ðE7bÞ

With these definitions, we can rewrite Eq. (E6) as

H2j ¼ ap;2jPþ aQ;2jQ

þ
Xj−1
k¼0

ap;2kF ðj − kÞ þ aQ;2kGðj − kÞ: ðE8Þ
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The solution at nth order in perturbation theory is then given by

HðεÞ¼
Xn
j¼0

ε2jH2jþOðε2nþ2Þ;

¼
Xn
j¼0

ðap;2jε2jÞPþ
Xn
j¼0

ðaQ;2jε
2jÞQþ

Xn
j¼1

ε2j
Xj−1
k¼0

ap;2kF ðj−kÞþ
Xn
j¼1

ε2j
Xj−1
k¼0

aQ;2kGðj−kÞþOðε2nþ2Þ;

¼
Xn
j¼0

ðap;2jε2jÞPþ
Xn
j¼0

ðaQ;2jε
2jÞQþ

Xn
j¼1

ε2jF ðjÞ
 Xn−j

k¼0

ap;2kε2k
!
þ
Xn
j¼1

ε2jGðjÞ
 Xn−j

k¼0

aQ;2kε
2k

!
þOðε2nþ2Þ;

¼
Xn
j¼0

ðap;2jε2jÞPþ
Xn
j¼0

ðaQ;2jε
2jÞQþ

Xn
j¼1

ε2jF ðjÞ
 Xn−j

k¼0

ap;2kε2k
!
þ
Xn
j¼1

ε2jGðjÞ
 Xn−j

k¼0

aQ;2kε
2k

!
þOðε2nþ2Þ: ðE9Þ

We now note that adding

Xn
j¼1

ε2jF ðjÞ
 Xn

k¼n−jþ1

ap;2kε2k
!
þ
Xn
j¼1

ε2jGðjÞ
 Xn

k¼n−jþ1

aQ;2kε
2k

!
¼ Oðε2nþ2Þ ðE10Þ

does not change the uncontrolled remainder. Moreover, note that these terms are actually present if we go to higher order in
perturbation theory. Therefore, we rewrite Eq. (E9) as

HðεÞ ¼
Xn
j¼0

ðap;2jε2jÞPþ
Xn
j¼0

ðaQ;2jε
2jÞQþ

Xn
j¼1

ε2jF ðjÞ
Xn
k¼0

ðap;2kε2jÞ þ
Xn
j¼1

ε2jGðjÞ
Xn
k¼0

ðaQ;2kε
2jÞ þOðε2nþ2Þ;

¼
 Xn

k¼0

ap;2kε2k
! 

Pþ
Xn
j¼1

ε2jF ðjÞ
!

þ
 Xn

k¼0

aQ;2kε
2k

! 
Qþ

Xn
j¼1

ε2jGðjÞ
!

þOðε2nþ2Þ: ðE11Þ

Using the same PN matching procedure as in Sec. IV C, we
can identify

Xn
k¼0

ðap;2jε2jÞ≡ 4πdlmðωÞ
2lþ 1

; ðE12Þ

Xn
k¼0

ðaQ;2jε
2jÞ≡ 8πdlmðωÞK̂l

ð2lþ 1ÞC2lþ1
; ðE13Þ

to obtain

HðεÞ ¼ 4πdlm
2lþ 1

	
2K̂lðωÞ
C2lþ1

�
Qþ

Xn
j¼1

ε2jGðjÞ
�

þ
�
Pþ

Xn
j¼1

ε2jF ðjÞ
�


þOðε2nþ2Þ: ðE14Þ

This matches the expression given in Eq. (86) when n ¼ 2.
We note that we have assumed that the logarithmic
corrections are not important when performing this re-
summation. This assumption is valid because we are

matching to a Newtonian potential in the buffer zone.
For a binary system, this approximation works, provided
the stars are not too close to contact.

APPENDIX F: COMPARISON
TO PREVIOUS WORKS

In this appendix, we compare our prescription for
computing the tidal response function with that of Pitre
and Poisson (PP) [30,32]. Let us first note that PP only
calculated the conservative tidal response of relativistic
stars in the low-frequency regime. However, the overall
approach followed by PP remains is essentially the
approach taken in this article except, for the differences
which we outline here.
The first difference arises because the particular solution

at Oðε2Þ used by PP is not the same as the normalized
particular solution used in this article, as we described in
detail in Sec. IV B. The particular solution used by PP

[Hð2Þ
P=Q;l] differs from the normalized particular solution

[N̂Hð2Þ
P=Q;l] by a linear combination of the homogeneous

solutions,
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Hð2Þ
P;lðrÞ ¼ N̂Hð2Þ

P;lðrÞ þ a1;lQ̂
2
l

�
r
M

− 1

�

þ a2;lP̂
2
l

�
r
M

− 1

�
; ðF1aÞ

Hð2Þ
Q;lðrÞ ¼ N̂Hð2Þ

Q;lðrÞ þ a3;lQ̂
2
l

�
r
M

− 1

�

þ a4;lP̂
2
l

�
r
M

− 1

�
; ðF1bÞ

where ai;l are constants. The value of the constants ai;2 are
provided in Eq. (48).
The second difference arises in the definition of the tidal

response. Let us denote the metric potential used by PP by
H, the tidal moments by DlmðωÞ and the conservative tidal
response function by kl;PPðωÞ. The metric potential used by
PP written in our notation is then

H ¼ 4πDlmðωÞ
2lþ 1

Ml

rl

	
2kl;PP
C2lþ1

�
Q̂2

l þ ðMωÞ2Hð2Þ
Q;l

�
þ P̂2

l þ ðMωÞ2Hð2Þ
P;l



: ðF2Þ

Our metric potential, given in Eq. (86), will be exactly
equal to the above expression, but the value of DlmðωÞ and
kl;PPðωÞ will differ from that of dlmðωÞ and klðωÞ at a
sufficiently high frequency. This difference is due to the
normalization of the particular solution, the interpretation
of the tidal moments and the response used by PP.
Let us now compare the metrics obtained by PP to that

found in this paper. Let us denote the ðt; tÞ component of
the metric obtained using Eq. (F2) by gtt;PP. Outside the
star, the metric is given by

gtt;PP ¼ −
�
1 −

2M
r

�
½1 − 2HðrÞrle−iωtYlm�: ðF3Þ

Performing an asymptotic expansion of the above metric in
the buffer zone, using Eq. (F2), we find

gtt;PP ¼ −1þ 2M
r̄

þ 8πDlme−iωtr̄l

ð2lþ 1Þ
	
1þ a2;lε2 þ a4;lε2

�
2kl;PP
C2lþ1

�


þ 8πDlme−iωtM2lþ1

r̄lþ1ð2lþ 1Þ
	
2kl;PP
C2lþ1

ð1þ a3;lε2Þ þ a1;lε2



þOðc−4Þ: ðF4Þ

The asymptotic expansion of the ðt; tÞ component of the
metric obtained by us is given by

gtt ¼ −1þ 2M
r̄

þ 8πdlme−iωtr̄l

ð2lþ 1Þ

þ 8πdlme−iωtM2lþ1

r̄lþ1ð2lþ 1Þ
�

2kl
C2lþ1

�
þOð1 PNÞ: ðF5Þ

Since the metrics must be the same, we equate Eq. (F4) to
Eq. (F5) to obtain

DlmðωÞ
	
1þ a2;lε2 þ a4;lε2

�
2kl;PP
C2lþ1

�

¼ dlmðωÞ; ðF6Þ

Dlm

	
2kl;PPðωÞ
C2lþ1

ð1þ a3;lε2Þ þ a1;lε2


¼ 2dlmðωÞklðωÞ

C2lþ1
:

ðF7Þ

To invert these expressions we note that PP only defined
the tidal moments and the tidal response functions in the
low-frequency regime, assuming that a small ω expansion
is different from a small ε expansion. Physically, this
corresponds to saying that the tidal moments and the tidal
response function are slowly varying quantities on an
external timescale ω−1, which is different from the PN
time scale M−1. We also note that PP did not perform any
resummation. We thus invert the above expression first in a
small ε expansion to obtain,

DlmðωÞ ¼ dlmðωÞ
�
1 − a2;lε2 −

2klðωÞa4;lε2
C2lþ1

�
þOðε4Þ;

ðF8Þ

kl;PPðωÞ ¼ klðωÞ
�
1þ

	
a2;l − a3;l þ

2a4;lklðωÞ
C2lþ1



ε2
�

−
C2lþ1a1;lε2

2
þOðε4Þ: ðF9Þ

Let us first look at the first equation in the expression
above. To interpret dlmðωÞ as the tidal moment we
had to match the body metric [Eq. (F5)] to a PN metric
[Eq. (56a)]. This matching was done at leading,
Newtonian order in this paper, and it was done to
1 PN order in [30]. If one requires that Eq. (F8) only
hold to Newtonian order, then the terms inside the bracket,
which are proportional to ε2, can be said to be of 3 PN
order, when a2;l and 2klðωÞa4;lε2C−2l−1 are assumed to
scale as 0 PN quantities. This assumption was made by
PP; we therefore obtain that

DlmðωÞ ¼ dlmðωÞ þOð3 PNÞ: ðF10Þ

Now we apply the same logic to Eq. (F9). Expanding in
small ω, we find
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kl;PPð0Þ ¼ klð0Þ; ðF11Þ

k00l;PPð0Þ ¼ k00lð0Þ þ 2klð0ÞM2

	
a2;l − a3;l þ

2a4;lklðωÞ
C2lþ1



− C2lþ1a1;lM2: ðF12Þ

We see that, while the adiabatic Love number computed by
us agrees with that of PP, the low-frequency dynamical tidal
Love number satisfies

k00l;PPð0Þ ¼ k00lð0Þ þOð3 PNÞ: ðF13Þ

Is this disagreement in the low-frequency dynamical
tidal Love number a problem? No. From a physical
standpoint, the invariant function that we must all
agree on is the metric potentials HðrÞ and HðrÞ because
these functions directly impact observable quantities. As
we mentioned above, these two functions are equal to
each other irrespective of the definition of the tidal
response function. From a practical point of view, if
the star is not extremely compact, the 3 PN corrections
should be small and the two definitions of the Love
numbers will be practically equivalent in the low-fre-
quency regime. Since our approach normalizes the par-
ticular solution, one can interpret the r̄−l−1 piece as a tidal
response irrespective of the order in ε of the exterior
solution.
Moreover, we stress that choosing arbitrary nonzero

values for ai;l and ignoring the values of these constants as
higher PN corrections when matching in the buffer zone
[Eqs. (F6), (F10) and (F11) ] can lead to unphysical
solutions even for small frequencies for highly compact
objects. To show this, let us suppose that the values ai;2 in
Eq. (F1) are given by

a1;2 ¼ −
3029

1575
−

1

15
64 logð2Þ; ðF14aÞ

a2;2 ¼
214 logð2Þ

105
−
1037

45
; ðF14bÞ

a3;2 ¼
239453

11025
−
214 logð2Þ

105
; ðF14cÞ

a4;2 ¼ 0: ðF14dÞ

Let us denote the value of the metric potential for these
values of ai;l by Hunphy, the tidal response function by
kl;unphy and the tidal moments by Dlm;unphy. The metric
potential is then given by

Hunphy ¼
4πDlm;unphyðωÞ

2lþ 1

Ml

rl	
2kl;unphy
C2lþ1

ðQ̂2
l þ ðMωÞ2Hð2Þ

Q;lÞ

þP̂2
l þ ðMωÞ2Hð2Þ

P;l



: ðF15Þ

We compare the value of k2;unphyðΩÞ with the value of the
tidal response function obtained using the normalized
solution k2ðΩÞ, for an extremely relativistic polytrope
with n ¼ 0.75, b ¼ 0.58 and C ¼ 0.304 in Fig. 5. As we
can see from the plot, the value of k2;unphyðΩÞ decreases
with Ω while the normalized (physical) tidal response
function k2ðΩÞ increases as a function of frequency. From
the value of k2;unphyðΩÞ one could incorrectly interpret
that the star is unstable to tidal interactions in a binary
system. We have verified that this is indeed not true [84].
The unphysical behavior is an artifact of not normalizing
the particular solution correctly. The above example
highlights the importance of normalizing the particular
solutions to extract the right physical behavior. In con-
clusion, the logic used by PP when matching to the buffer
zone PN metric works very well for moderately relativ-
istic stars at small frequencies. Normalization is essential
when extending the method to higher frequencies and to
extremely relativistic stars.
Let us conclude this section with a short comparison of

our approach and that of [33]. The authors in [33] also used
the master equation approach of [29], but did not consider
stratification due to the presence of g modes or include
effects from viscous dissipation. The treatment of the
external problem additionally is different from the approach

FIG. 5. Comparing the tidal response of an non-normalized
solution k2;unphyðΩÞwith that of the normalized solution k2ðΩÞ for
an extremely relativistic polytrope. We see that the tidal response
decreases as a function of the dimensionless frequency for the non-
normalized solution (dashed blue line) while the normalized
solution (solid green line) provides the right physical behavior.
The unphysical behavior can be traced back to the artificial
truncation PN truncation of the tidal moments and the tidal
response function in the buffer zone [Eqs. (F6), (F10) and (F11)].
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we followed. The authors of [33] adopted an approach
based on effective field theory and perturbations of the
Regge-Wheeler equation using singular sources. They then
solved the Regge-Wheeler equation using analytical
method of Mano, Suzuki and Takasugi [85]. The method
used by the authors required the matching and fitting of a
re-normalization constant, in addition to the matching of

solutions at the surface of the star. The renormalization
constant appeared due to the presence of a logarithmic term
in the near zone expansion. In our work, we fixed a
normalization condition from the beginning which sim-
plified the formalism considerably. Because of these
differences, it is not straightforward to do a direct com-
parison of their work to ours.
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