
Phase spaces and symmetries of Vaidya superspace

Salvatore Ribisi 1 and Francesco Sartini 2
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We investigate the classical symmetries of the dynamics of the null-dust spherically symmetric Vaidya
spacetime. Einstein’s equations for this model can be obtained as equations of motion of a two-dimensional
field theory. We discuss the transformations leaving invariant such equations of motion. These are given by
two distinct sets, the residual diffeomorphisms coming from general relativity and the generalization of the
Schrödinger symmetry, recently found for the static Schwarzschild black holes. Surprisingly, these two sets
represent the symmetries of two different action functionals, leading to the same equations of motion, but
with different phase spaces.
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General relativity rests strongly on a symmetry principle,
the invariance under diffeomorphisms, corresponding to
coordinate changes on spacetime. However, these sym-
metries appear as gauge symmetries, redundancy of the
physical description. Hence, they are not associated with
any physical content. The Noetherian duality between
symmetries and conserved quantities, or charges, would
give zero charge for gauge symmetries, leading to the
cumbersome task of defining observables in gravity. The
situation changes dramatically in the presence of bounda-
ries, may they be asymptotic or at finite distance. They can
promote some gauge symmetries to have a nonzero charge
living on codimension-two corners of spacetime [1–8]
Thinking of boundaries as bridges between different

regions makes the corner symmetry algebra very relevant
for the study of entanglement entropy between subregions.
In this spirit, we can aim to use the representation theory of
the corner algebra as nonperturbative handles on quantum
gravity [8]; but it also allows us to, more conjecturally,
make spacetime and its topology emerge from quantum
entanglement between subregions [9,10].
However, even letting aside the boundaries, bulk sym-

metries might have their relevance. Some transformations
link different sets of bulk solutions in general relativity. For
example, the Newman-Janis algorithm allows obtaining
rotating black hole solutions, out of the Schwarzschild
one, through a complex coordinate transformation [11,12].
In addition, we have regularities in the tower of quasi-normal
modes or responses to perturbation that come from approxi-
mate near-horizon symmetries [13,14]. The latter is also
related to boundary structure andblack hole entropy [15–17].
Recently a very peculiar class of symmetries [18–21],

for some very regular solutions of general relativity, has
drawn some attention. These highly-symmetric spacetimes,

or minisuperspaces, can be described as mechanical mod-
els, focusing on the evolution in just one spacetime
direction and freezing the other ones. This is analogous
to selecting the zero modes of geometry, but despite
seeming very simple at first glance, they are relevant for
cosmological or near-singularity applications.
These symmetries fully encode the evolution of the

physical spacetime, and have an elegant interpretation in
terms of geometrization of the dynamical space. The
configuration field space is endowed with a metric, con-
structed out of the kinetic term of the reduced action [19,21].
Originally discovered for the isotropic cosmological

setup [22,23], these minisuperspace symmetries have also
been uncovered for black hole models [18–20] and aniso-
tropic cosmologies [21,24]. A review of a systematic
approach to the exploration of homogeneous models can
be found in [21,24] or see [19] for an equivalent technique,
known as Eisenhart-Duval lift, based on an extended phase
space [25].
The interest in minisuperspaces goes beyond the elegant

relationship between symmetries, dynamics and geomet-
rical structure of the field space. Recent works have
pointed out that astrophysically relevant models possess
a symmetry group equivalent to the Schrödinger group.
This conformal group has a key role in nonrelativistic
hydrodynamics and for some Bose-Einstein condensates.
It suggests an intriguing correspondence between the
response to perturbation of these gravitational systems
and fluid analogs.
Moreover, there seems to be an intriguing feature of the

minisuperspace symmetries in relationship with the boun-
daries of spacetime. In all these models we need indeed a
regulator to deal with an infinite homogeneous slice. This
turns out to interplay with the symmetries, being modified
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by them [20,24]. However, to better understand these
structures we should go beyond the simple homogeneous
setup, by including inhomogeneity in cosmologies or
nonstationary processes for black holes.
In this paper, we will discuss the extension of the

Schrödinger symmetry to the simplest nonstatic gener-
alization of the Schwarzschild solution, known as Vaidya
spacetime. This will force at least one field to evolve in
two directions. On top of the radial dependence of the
system, already considered for the stationary minisuper-
space, we will add the dependence on a null coordinate.
The richer spacetime structure makes the residual diffeo-
morphism gauge freedom less trivial than the static case.
We will then discuss how this gauge symmetry interplays
with the Schrödinger transformations.
The paper is organized as follows. We start in Sec. I by

introducing the Vaidya superspace as a two-dimensional
field theory, coming from the spherical symmetric general
relativity in a particular gauge. After verifying that the
solutions of the equations of motion are consistently
given by the Vaidya solutions alone, we will move to the
discussion about their symmetries. In Sec. II we intro-
duce these symmetries simply as the transformations
mapping solutions into solutions. However, to interpret
them in a Noetherian sense, we shall give a notion of
phase space. In III we show that the two sets of
transformations, Schrödinger and gauge symmetries, are
integrable on two different phase spaces, coming from
two different theories, leading to the same classical
equations.
Indeed the plural phase spaces in the title of this article

is not a typo, we can obtain the same classical spacetime
from two inequivalent phase spaces coming from differ-
ent action functionals.

I. ACTION AND EQUATIONS OF MOTION
OF VAIDYA SUPERSPACE

The Vaidya metric represents the simplest radiating
solution for black holes and provides a natural test bed to
address questions related to black hole evaporation [26–30].
The presence of hydrodynamical symmetries in such a
model might give new insights into the problem.
The metric is usually presented in the Eddington-

Finkelstein gauge, generalizing the spherically symmetric
ansatz by breaking the stationarity or equivalently partially
breaking the diffeomorphism invariance on the radial-
temporal plane. More in detail, we take a spherically
symmetric ansatz in four spacetime dimensions, which
means separating the angular directions with respect to the
other two coordinates. The latter represents the radial-
temporal plane, whose compactification is the Penrose
diagram. On top of this, we force one of the coordinates
to be null, imposing the gauge condition grr ¼ 0. The
ansatz that we take is thus

ds2 ¼ Bðv; rÞ
Xðr; vÞ dv

2 þ 2Nðr; vÞdvdrþ Xðr; vÞ2dS2ð2Þ; ð1Þ

where the term dS2ð2Þ represents the usual two-sphere

metric. The choice of parametrization for the gvv term is
chosen in this way to simplify the notation below. We insist
again on the fact that this ansatz partially breaks the
covariance along the mixed r − v direction, because it
does not contain the rr term, and constrains v to be a null
coordinate. In other words, the diffeomorphisms that
preserve the ansatz (1) are the ones generated by the vector
fields

ξ ¼ ξrðr; vÞ∂r þ ξvðvÞ∂v þ σ½Sð2Þ�; ð2Þ

with σ generating the celestial sphere’s global SO(3)
rotations. It has a non-null component only along the
angular direction, trivially commuting with the null and
radial diffeomorphisms. We will later show that the partial
breaking of the full two-dimensional diffeomorphism
group on the r-v plane will have the consequence of losing
one Einstein equation, corresponding to the mass conser-
vation. On the other hand, this allows us to obtain the
nonstatic Vaidya metric as a solution. We shall remark that
in principle our ansatz contains both the emitting and
absorbing Vaidya pure radiation fields,1 depending on the
sign of N.
We would like to obtain Einstein’s equation from the

variational principle of some action functional. The most
obvious being the reduced Einstein–Hilbert action

SEH ¼ 1

16πl2
Pl

Z
d4x

ffiffiffiffiffi
jgj

p
R

¼ 1

2l2
Pl

Z
dvdr

�
NþX0ð2∂vðNXÞ−B0Þ

N

�

þ 1

4l2
Pl

Z
dv

�
∂rðBX3Þ− 2X2Ṅ

NX2

�����rf
ri

−
X2

2l2
Pl

����rf ;vf
ri;vi

; ð3Þ

where the dot represents the derivative with respect to v and
the prime with respect to the radial direction. The four-
dimensional Ricci scalar is denoted withR, and we choose
units such that the four-dimensional Newton constant is
G ¼ l2

Pl, with the Plank length lPl. The action must be
thought to describe the variational problem in the region
between two slices at a constant radius and two null
surfaces at constant v. However, for the moment let us

1With the notation chosen here we have an absorbing field for
positive N, for which we usually use the ingoing null coordinate
v. On the contrary, the outgoing null coordinate is typically
denoted by the letter u. We choose here to keep v for the null
coordinate, also in the ingoing case. We use the sign of the fieldN
to flip between absorbing and emitting cases.
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neglect the discussion about boundary conditions and just
focus on the bulk equation of motion.
The first part of the action (3) contains the bulk

Lagrangian and the second term is a boundary term, acting
on the polarization of the phase space (when evaluating the
evolution in the r direction). The last one is a corner term
for the symplectic potential and might play a role in the
determination of the charges and algebra. However, for
the study of the classical solutions and bulk symmetries, the
only relevant part is given by the bulk term. We can thus
evaluate the variational principle of the two-dimensional
field theory action

S0 ¼
1

2l2
Pl

Z
dvdr

�
N −

X0ðB0 − 2∂vðNXÞÞ
N

�
: ð4Þ

The first property that we shall verify is the consistency
with general relativity. The fact that the Euler-Lagrange
equations for the Lagrangian (4) give Einstein’s equations
for the metric (1) is a highly nontrivial statement. Indeed we
will show that one equation is missing and the mass will be
allowed to evolve in the null direction. A straightforward
computation gives us the equations of motion for the field
theory (4):

0 ≈ ∂rðX0=NÞ; ð5Þ

0 ≈ NðBX00 − 4NẊ0Þ − BX0N0 − 2XðNṄ0 − ṄN0Þ;

0 ≈ N2 þ X0BX0 − N∂v∂rX2:

These are not all independent, because of the residual
gauge freedom generated by (2). We can analytically solve
the equations of motion for any function X, that will be later
identified as a dilatonic field from a two-dimensional
perspective [31–34]. We can deparametrize the evolution
with respect to this field, and add two free functions
depending only on v as initial conditions. The general
solutions of (5) are2

B≈B0ðvÞ−XnðvÞ2þ2nðvÞXẊ; N≈nðvÞX0: ð6Þ

As expected, the solution space is not completely invariant
under spacetime reparametrization, but only under the
action of the residual diffeomorphisms (2). Among them,
only the radial and null directions act nontrivially on the
solution space, while the celestial sphere angular directions
are gauged out of the model. The coordinates r and v play
two different roles, and our ansatz (1) is invariant only
under diffeomorphisms that leave v as a null coordinate. As
already announced, from the variation of the action we miss
the mass conservation, leading to an on-shell Vaidya
metric. Replacing the solutions (6) into the ansatz (1)

we explicitly get

ds2 ¼ −
�
n2 −

B0

X
− 2nẊ

�
dv2 þ 2nX0dvdrþXðr; vÞ2dS2ð2Þ

¼ −
�
1−

2GMðvÞ
X

�
n2dv2 þ 2ndvdX

þX2dS2ð2Þ;2l
2
PlMðvÞ ¼ B0=n2: ð7Þ

The usual null coordinate of Eddington-Finkelstein
parametrization of Vaidya is given by �dV ¼ nðvÞdv,
while X represents the radial coordinate.3

The missing equation, which should come from the
variation of the action with respect to the gvv term,4 is the
mass conservation. Indeed the on-shell Einstein tensor for
our ansatz has a nonvanishing component

Gvv ≈
nḂ0 − 2B0ṅ

X2n2
¼ 2l2

PlṀ
X2

: ð8Þ

This means that the variational principle of the action (4)
gives nonvacuum Einstein’s equations for the bulk
ansatz (1), effectively coupled to a pure radiation field
with stress-energy tensor satisfying

Tμν ≈
1

4π

Ṁ
X2

lμlν; ð9Þ

with the null form lμdxμ ¼ −dv. The full diffeomorphism
invariance on the r-v plane can be restored by adding such
null dust to the Lagrangian [26,29]. This will give the
Vaidya solution for an ansatz in which v is not necessarily
null, adding a grr term, whose variation will impose the
total mass conservation. We chose here to hide the matter
contribution in the partial gauge fixing, to make the
comparison with the static case easier to handle.

A. Relationship with two-dimensional
dilatonic gravity

Before moving to the discussion about the classical
symmetries of this model, let us open a small parenthesis
on an interesting relationship between this model and a
general two-dimensional dilatonic theory. A general class
of such theories, whose dynamical content is given by a

two-dimensional metric gð2Þμν and a scalar field Φ, is given
by [32,33]

2We use ≈ to denote on-shell equalities.

3The variational principle of the action (4) allows for both
positive and negative N, representing emitting and absorbing
Vaidya spacetimes. Moreover, the residual diffeomorphisms
allow to flip the sign of N by exponentiation of a ξ pointing
backward in the v direction.

4The vanishing of the grr term is, of course, equivalent to the
vanishing of gvv.
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SDGT ¼ 1

16πG2D

Z
d2x

ffiffiffiffiffiffiffiffiffiffi
jgð2Þj

q �
ΦR −UðΦÞð∇ΦÞ2

− 2VðΦÞ	; ð10Þ

where U and V are functions of the dilaton field Φ,
and R is the Ricci scalar of the two-dimensional metric.
Within this class, we have models such as JT gravity
(U ¼ 0, V ¼ ΛΦ) or the CGHS model (U ¼ 0, V ¼ λ).
The four-dimensional spherically symmetric gravity
also belongs to this class. Indeed we can identify the
two-dimensional metric as the one describing the radial
and temporal direction (i.e., the Penrose diagram),
while the scalar field determines the measure of the
celestial sphere (points on the Penrose diagram). Let us
consider a general four-dimensional spherically symmet-
ric ansatz

ds24D¼ e2ΩðΦÞgð2Þμν dxμdxνþΦdS; μ;ν∈f0;1g: ð11Þ

The two-dimensional metric can be identified up to a
conformal factor Ω, taken to be a function of the scalar
dilaton. The conformal rescaling interplays with the poten-
tialU, V and we can use this fact to set one of the potentials
to zero. The Einstein-Hilbert action of the spherically
symmetric line-element (11) is

S4D ¼ 1

16πl2
Pl

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
jgð4DÞj

q
R

¼ 1

4l2
Pl

Z
d2x

ffiffiffiffiffiffiffiffiffiffi
jgð2Þj

q �
ΦRþ 2e2Ω þ 1

2Φ
ð∇ΦÞ2

− 2Φ∇2Ω
�
þ “boundary terms”: ð12Þ

We can eliminate the kinetic term for the dilaton (up to a
boundary term) by choosing

e2Ω ¼ 1ffiffiffiffi
Φ

p : ð13Þ

This identifies the reduced four-dimensional action as the
one in the class (10) with U ¼ 0, V ¼ −1=

ffiffiffiffi
Φ

p
. At this

point, this model still possesses the whole invariance under
two-dimensional diffeomorphism, but we can immediately
recognize that our ansatz (1) corresponds to the Bondi
gauge of the two-dimensional metric, and the field X is the
square root of the dilaton. Taking the two-dimensional

metric gð2Þμν in the Bondi gauge

ds22D ¼ Bðv; rÞdv2 þ 2Xðr; vÞNðr; vÞdvdr ð14Þ

and plugging this ansatz in the dilatonic action, with the
choices U ¼ 0, V ¼ −1=X, Φ ¼ X2, gives the “Vaidya
action” (3), up to a boundary term, meaning that

SEH ¼ 1

4l2
Pl

Z
d2x

ffiffiffiffiffiffiffiffiffiffi
jg2Dj

p �
X2Rð2DÞ þ 2

X

�

þ 1

4l2
Pl

Z
dv

BX0

N
−
3X2

4l2
Pl

����rf ;vf
ri;vi

: ð15Þ

As a consequence, this observation implies that one must
be extremely careful when plugging the Bondi gauge in
off-shell quantities. As shown here, if we do so in the
two-dimensional case at the action level and then we
evaluate the Euler-Lagrange equation for the gauge fixed
action, we will lose the mass conservation equation.
Although here we want precisely to use this fact to
obtain the Vaidya solution from the “wrong” gauge fixing
without specifying the matter content of the theory, this
has important consequences for the study of asymptotic
symmetries.

B. Linear radial gauge

Inspired by the previous works on Schwartzschild black
holes [19,20,24], we do a further gauge choice by picking a
linear square root of the dilaton, i.e., imposing

Xðr; vÞ ¼ A0ðvÞ
�
r − ϕ0ðvÞ

	
: ð16Þ

By doing so, we obtain a solution space spanned by four
free functions depending on the null coordinate. The same
happens in [33], where they study the integrability of
asymptotic large diffeomorphisms in two-dimensional
gravity, even if therein the linearity condition is on
Φ ¼ X2. The choice here is taken as a natural generaliza-
tion for the previous works in black hole minisuperspaces
and it is implemented by the condition N0 ¼ 0, which is the
same as the one chosen in [19,20], while the one in [33] is
implemented by ∂rðXNÞ ¼ 0.
The equations of motion get rewritten in this

gauge as

0 ≈ X00; ð17aÞ

0 ≈ B00 − 4NẊ0; ð17bÞ

0 ≈ N2 þ X0B0 − N∂v∂rX2; ð17cÞ

and the solution space is now spanned by four functions of
the null coordinate alone A0, B0, ϕ0, and n,

X ≈ A0ðvÞ
�
r − ϕ0ðvÞ

	
;

B ≈ B0ðvÞ − A0nðr − ϕ0Þ
�
n − 2ðr − ϕ0ÞȦ0 þ 2A0ϕ̇0

	
;

N ≈ A0ðvÞnðvÞ: ð18Þ
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II. MOEBIUS SYMMETRY AND RESIDUAL
DIFFEOMORPHISMS

With the solution space at hand, we can now turn to the
study of the symmetries of this model. In the first place, we
will search for sets of transformations that preserve the
equations of motion, in the sense that they map solutions
of (17) into solutions. We also work within the linear
gauge N0 ¼ 0.
This section aims to show how it is possible to generalize

the minisuperspace Schrödinger symmetry, originally
found for the static black holes to the Vaidya model. For
this let us recall that the two-dimensional Schrödinger
group splits into the semidirect product

Shð2Þ ¼ �
SLð2;RÞ × SOð2Þ	 ⋉ ðR2 ×R2Þ; ð19Þ

where the algebra generating the Abelian part ðR2 ×R2Þ
contains a central extension. In quantum mechanics, where
the group has been introduced in the first place, the central
charge is the Plank constant. Classically, the Abelian
symmetry group corresponds to constant shifts of position
andmomenta of a free particle. The SO(2) part represents the
rotations of the two-dimensional plane, and SL2 generates
conformal symmetries of the Schrödinger equation.
In particular, the realization of the SLð2;RÞ × SOð2Þ

subgroup on the black hole superspace translates into a
Moebius transformation on the radial coordinate, while the
metric coefficients transform as conformal fields of differ-
ent weights. At the level of spacetime, this corresponds to
an anisotropic Weyl rescaling of the geometry and is not a
residual diffeomorphism [21,24]. To begin, we will focus
on this subgroup to try to extend the symmetry to the
Vaidya superspace.
In the minsuperspace setup, the Schrödinger symmetry

emerges naturally from a second geometrization procedure,
mapping the spacetime dynamics to a point particle
geodesic motion on the field space. From this perspective,
the symmetries are associated with conformal properties of
the supermetric [19,21]. In the case we study here, we lack
such a point particle interpretation, because of the presence
of an infinite dimensional field space. However, we can
rewrite the equations of motion in a similar way to the
finite-dimensional space. We can achieve this by redefining
the fields to get rid of the null direction derivatives in the
equations of motion. While this is already the case for X
in (17), it is convenient to introduce the quantity

B ≔ B − 2rNẊ: ð20Þ

It is easy to convince ourselves that the equation of
motion (17b) for B is rewritten in a very simple way for
the new field, namely B00 ≈ 0. Although this field redefi-
nition makes the equations of motion have a nicer form,
its geometrical interpretation is not straightforward.

It also turns out to be useful to redefine the field N in a
way that makes the last equation more compact. Let us
consider the combination

N 2 ≔ N2 − 2NẊ0ðX − rX0Þ: ð21Þ

Combining the gauge condition N0 ¼ 0 and the equation of
motion X00 ¼ 0, we can show that alsoN is independent of
the radial coordinate. Equivalently, on our solution space,
N 0 ≈ 0. This brings us to make the v derivatives completely
disappear from the equation of motions, turning (17) into

0 ≈ X00; ð22aÞ

0 ≈ B00; ð22bÞ

0 ≈N 2 þ X0B0: ð22cÞ

In particular, the first two equations decouple the evolution
of X and B and are both in a form which is invariant under
Moebius reparametrization of the radial coordinate.5 Let us
define the transformation

r→ r̃¼ hðrÞ≔ αrþβ

γrþδ
; αδ−βγ¼ 1;h0ðrÞ¼ 1

ðγrþδÞ2 ;

ð23aÞ

Xðr;vÞ→ X̃ðr̃;vÞ¼ λ
ffiffiffiffiffiffiffiffiffiffi
h0ðrÞ

p
Xðr;vÞ; λ¼ const; ð23bÞ

Bðr; vÞ → B̃ðr̃; vÞ ¼ λ−1
ffiffiffiffiffiffiffiffiffiffi
h0ðrÞ

p
Bðr; vÞ; ð23cÞ

This is easily shown to leave the first two equations of
motion (22a) and (22b) invariant, we have indeed, e.g., the
first one

X00 ↦ ∂
2
r̃ X̃ ¼ λ

h02X00 þ Xð2h0h000 − 3h002Þ=4ffiffiffiffi
h0

p ¼ λh03=2X00;

ð24Þ

recognizing the Schwarzian derivative, that vanishes for the
Moebius transformation above,

Sch½h� ≔ h000

h0
−
3

2

�
h00

h0

�
2

¼ 0 ⇔ h ¼ αrþ β

γrþ δ
: ð25Þ

The same happens for the Eq. (22b) concerning the
evolution of B.
We now need to discuss the last equation of motion and

the transformation for N . The most naive way of defining

5The same form indeed appears in the minisuperspace setup,
once we write the field space in the appropriate null variables
[21], and it is related to the conformal invariance of the free
particle mechanics.
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how N transform, is precisely through the equation of
motion (22c). Indeed, for the transformations to be sym-
metries, we must have

Ñ ≈ ð−∂r̃X̃∂r̃B̃Þ1=2 ¼
1ffiffiffiffi
h0

p
�
−X0B0 −

1

2
∂r

�
h00

h0
XB

��
1=2

≈
1ffiffiffiffi
h0

p
�
N 2 −

1

2
∂r

�
h00

h0
XB

��
1=2

: ð26Þ

We can use the last expression to define Ñ . This expression
maps N to some r dependent field, seeming to break the
gauge condition. However, once it is projected onto the
solution space, it happens to be consistent with the gauge
choice. If the Eq. (22) hold, and N 0 ¼ 0, then we also
have Ñ 0 ¼ 0.
We can also work with on-shell quantities and find a

closed expression for the symmetry flow on the solution
space (see also appendix A). This takes a very compact
form in terms of a particular combination of initial con-
ditions. Let us define the quantities

ψ0 ≔
n∂vðϕ0A0Þ2 þ n2ϕ0A0 þ B0

A0nð2ϕ0Ȧ0 þ nÞ ; ð27aÞ

Q0 ≔ nA0ð2ϕ0Ȧ0 þ nÞ; ð27bÞ

corresponding respectively to the zero and (minus) the first
derivative of the on-shell field B. The SLð2;RÞ × SOð2Þ
group maps solutions for the fields X and B into solutions,
and it acts nontrivially on the solution space as

A0 →
λA0ffiffiffiffiffiffiffiffiffiffiffiffiffi
h0ðϕ0Þ

p ; ð28aÞ

ϕ0 → hðϕ0Þ; ð28bÞ

Q0 →
Q0

λ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h0ðψ0Þ

p ; ð28cÞ

ψ0 → hðψ0Þ; ð28dÞ

on_shell_mob for the Moebius function h defined in (23). It
is also useful to write the corresponding infinitesimal
transformations, both on the field and solution spaces.
We evaluate them at the same space-time point, meaning
that we define the variation of a field χðr; vÞ, or of a
solution space parameter ψðvÞ as

δχ≔ χ̃ðr;vÞ−χðr;vÞ¼ χ̃ðr̃; ṽÞ−χðr;vÞ−δrχ0−δvχ̇; ð29Þ

δψ ≔ ψ̃ðvÞ − ψðvÞ ¼ ψ̃ðṽÞ − ψðvÞ − δvψ̇ :

Let us remark that, for both fields X and B, we have
assumed that the finite conformal transformations (23)

leave the null coordinate invariant. We set then δv ¼ 0,
and wewill discuss later the residual null reparametrization,
coming from the reduction of gauge diffeomorphisms (2).
The infinitesimal generator of theMoebius transformation is
given by a second-degree polynomial [20], while λ differs
from the identity by a small constant,

hðrÞ ∼ rþ ϵðrÞ; ϵ000 ¼ 0;

λ ∼ 1þ η; η ¼ const: ð30Þ

This gives infinitesimal variations on the field space

δX¼X

�
ϵ0

2
þη

�
− ϵX0; δB¼B

�
ϵ0

2
−η

�
− ϵB0; ð31Þ

and on the solution space

δA0 ¼ A0

�
ξ −

ϵ0ðϕ0Þ
2

�
; ð32aÞ

δϕ0 ¼ ϵðϕ0Þ; ð32bÞ

δQ0 ¼ −Q0

�
ξþ ϵ0ðψ0Þ

2

�
; ð32cÞ

δψ0 ¼ ϵðψ0Þ: ð32dÞ

We refer to appendix A for the transformation laws for B0

and n.
On top of the conformal symmetries (23) there is also

another, already known, set of transformations that leave
invariant the linear Bondi gauge in two-dimensional
dilatonic gravity. This is given by the residual diffeo-
morphisms (2), after imposing the linear radial gauge. A
three-parameter family vector field generates them [33],

Ξ ¼ EðvÞ∂v þ
�
XðvÞrþHðvÞ	∂r: ð33Þ

We use capital letters to distinguish these transformations
from the previous ones. The action of these diffeomor-
phisms can be equivalently thought of as acting on the
four-dimensional ansatz (1), or on the two-dimensional
plane (14), with X as a scalar field. Under these, the
solution space transforms as

ΔA0 ¼ XA0 þ EȦ0; ð34aÞ
Δϕ0 ¼ −Xϕ0 þ Eϕ̇0 −H; ð34bÞ

ΔB0 ¼ 2B0Ė þ EḂ0; ð34cÞ

Δn ¼ nĖ þ Eṅ: ð34dÞ

In this case, the expressions take a more compact way in
terms of B0, n, with respect to Q0 and ψ0. We see
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immediately that for this transformation the mass is con-
served, transforming as a scalar δM ¼ EṀ. This is not the
case for the Moebius transformation (A6). It is possible to
show that the only field-independent transformation that
belongs to both classes is the constant translation in space,
given by the condition ϵðrÞ ¼ −HðvÞ ¼ const.

III. PHASE SPACE AND
CONSERVED CHARGES

In order to discuss the structure of the phase space and
the charges associated with the symmetries, we will use the
covariant phase space formalism. This has been developed
to deal with the role of boundary conditions in gauge
theories, highlighting the integrability of charges and their
relationship with edge modes [35–38,43–46]. At the same
time, it allows us to deal with the definition of a Poisson
structure, through a symplectic structure, for theories with
gauge symmetries. For an action S, functional of the fields
χ, the variation is

δS ¼
Z
M

EoM δχ þ
Z
∂M

θðχ; δχÞ; ð35Þ

where θ is the presymplectic potential. It vanishes if we hold
fixed some boundary condition on the hypersurface ∂M, to
have a well-defined variational principle. In principle, it
might also contain a term of codimension two, representing
the so-called edge, or corner, modes [4–10,47–49]. This
contributes to the ambiguity of the definition of the
symplectic potential, together with a possible total variation,
coming from a boundary Lagrangian and changing the
polarization of the phase space.
Let us start with the first order action (4). We recall that

our field theory is defined in a null stripe between vi and vf
bounded by two surfaces at constant radius ri and rf , which,
in principle, might be either inside or outside the black hole
horizon. The gauge choice allows us to solve the equations
of motion explicitly in the radial direction, which makes it
the natural evolution parameter (in a Hamiltonian sense) for
our theory. This makes us identify the slice at ri as the
Cauchy slice on which we shall set the initial conditions for
the variational problem, which then evolves through the
other slices ΣðrÞ at a constant radius. The null disconnected
boundaries at vi and vf are then collectively denoted by Γ
(see Fig. 1). We can decompose the boundary of the support
for the field theory as ∂M ¼ ΣðriÞ ∪ ΣðrfÞ ∪ Γ.
The presymplectic potential has two different compo-

nents, coming from the variation along the radial and null
coordinates, these are respectively:

θr ¼ δBX0 þ δX
�
B0 þ 2∂vðNXÞ	

2Nl2
Pl

; ð36aÞ

θv ¼ ðXδN þ NδXÞX0

Nl2
Pl

¼ X0

Nl2
Pl

δðXNÞ: ð36bÞ

The first is integrated over the slices Σ, while the second
one lives on the boundary Γ. Once going on-shell of the
bulk equations of motion, we can explicitly carry the
integration over r and project the whole symplectic
potential on a slice Σ

Θ ≔
Z

dv

�
θr þ

Z
dr∂vθv

�

≈
1

2l2
Pl

Z
dv

�
−
δB0

n
þ ṅδðA2

0ϕ
2
0Þ

n

−
∂vðA2

0ϕ
2
0Þδn

n
þ δY

�
;

with Y ¼ r2
A2
0ṅ
n

þ 2rA0

�
n −

A0ϕ0ṅ
n

�
− 2A0nϕ0 − ∂vðA2

0ϕ
2
0Þ: ð37Þ

We immediately see that we can renormalize the presym-
plectic potential, to make it independent of the radius, by
eliminating the total variation Y, which in any case does not
play a role for the symplectic structure Ω ¼ δΘ. The latter
turns out to be always conserved along the radial direction,

FIG. 1. Schematic representation of the Penrose diagram of
Vaidya spacetime. We allow here for simplicityM to vary only in
the region between vi and vf , starting from the Minkowski
vacuum MðviÞ ¼ 0, and settling down to a static black hole after
vf . The lines at constant radius are drawn in red. While we have
the apparent horizon at X ¼ 2M, that coincides with the event
horizon only in the static patch. The null boundary Γ is then
represented by the two surfaces at vi and vf , while the Cauchy
slices are at constant r. Let us remark that this is just a pictorial
representation because in principle the slices at constant r do not
coincide with the ones at constant X, unless A0 and ϕ0 are
constants. Our model is well defined in the bulk regardless of the
signature of the slices Σ.
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without the need to impose extra boundary conditions on Γ.
By eliminating Y, we also recover a well-defined varia-
tional principle for the boundary condition (on the Cauchy
slice) δB0 ¼ 0, δn ¼ 0, δðA0ϕ0Þ ¼ 0. The renormalized
symplectic form is at the end of the day

Ω0 ≈
Z

vf

vi

dv

�
δB0 ⋏ δn
2l2

Pln
2

þ ∂v

�
δðA2

0ϕ
2
0Þ ⋏ δn

2l2
Pln

��

¼ δðA2
0ϕ

2
0Þ ⋏ δn

2l2
Pln

����vf
vi

þ
Z

vf

vi

dv δM ⋏ δn; ð38Þ

with the field space wedge product ⋏. We recognize the first
part to be a corner term, evaluated on two points in the
two-dimensional picture or two opposite homogenous
celestial spheres in the four-dimensional point of view.
To lighten the notation we will drop the vi and vf from the
formulas. The subscript 0 refers to the fact that we have
started from the action S0, adding boundary a Lagrangian
can change the corner term. We see that, as should be
expected, the only bulk degrees of freedom are the mass
and its conjugate momentum which is the null coordinate in
the Eddington–Finkelstein gauge [see Eq. (7)]. To make
this clearer, let us consider the bulk symplectic potential

Θ0 ≔
Z

ðnδMÞdv¼
Z

ðδMÞdV; dV¼ ndv ð39Þ

and assume an infalling thin shell, corresponding to a step
function mass MðVÞ ¼ MΘHðV − V0Þ, for some insertion
time of the shell V0. Then we can explicitly integrate over
the Cauchy slice and get

Θ0 ≔
Z

dV½ΘHðV − V0ÞδM − δðV − V0ÞMδV0�

¼ VfδM − δðV0MÞ; ð40Þ

assuming V i < V0 < Vf . Discarding the total variation
δðV0MÞ, we see that the conjugate variable to the mass
is the null coordinate of the boundary Vf.
As already pointed out, the corner term in the symplectic

current depends on the boundary Lagrangian that we
choose. For example, if we consider the Einstein-Hilbert
action (3) including the boundary terms, we get

ΩEH ≈
δðA2

0ϕ
2
0Þ ⋏ δn

4l2
Pln

þ A0ϕ0δA0 ⋏ δϕ0

2l2
Pl

þ
Z

dv δM ⋏ δn:

ð41Þ

Let us assume the general case (that might correspond to
different boundary conditions on the Cauchy slice, e.g.
Dirichlet, Neumann or mixed)

Ω≈ κ1
δðA2

0ϕ
2
0Þ ⋏ δn

4l2
Pln

þ κ2
A0ϕ0δA0 ⋏ δϕ0

2l2
Pl

þ
Z

dv δM ⋏ δn

≔ ωc þ
Z

dvω0; ð42Þ

with the codimension-2 term ωc, relevant to discuss
the integrability of large diffeomorphisms, and the
codimension-1 term ω0, capturing the bulk physical
degrees of freedom. The presence of local degrees of
freedom, represented by the bulk term is a consequence
of the bad gauge fixing provided by the ansatz (1). The
missing mass conservation in the equations of motion,
hiding some matter contribution, is translated on the phase
space as the seeming emergence of local degrees of
freedom from the gravitational action alone.
With the phase space at hand, we can discuss the

realization of the symmetries (23) and (34) on it, the
corresponding integrability of charges and their algebra.
Wewill beginwith the studyof the residual diffeomorphisms.

A. Integrability of the residual diffeomorphisms

Along the lines of [33], we will discuss the integrability
of the residual diffeomorphisms when they act nontrivially
on the boundary Γ, or equivalently on the corner part of the
symplectic current. For this, we shall contract the sym-
plectic form Ω with the residual spacetime diffeomor-
phisms (34).
From the codimension-1 term, we immediately see that

we can hope to make them integrable only on the solutions
with constant mass (nonradiative). Indeed we have

ΔΞ · ω0 ¼ EṀδn − ∂vðEnÞδM ¼ δQ: ð43Þ

As we stressed before, this is a consequence of ignoring the
matter degrees of freedom responsible for the collapse. We
leave the problem of including them in the analysis for
future works.
Setting Ṁ ¼ 0, we can search for a change of slicing on

the phase space that makes the charges integrable. This is
also called the Pfaff problem [33,50–55] and amounts to
finding a field-dependent choice for the diffeomorphisms
parameter (34), such that the variation (43) is exact. In
general, it is expected that for nonradiative phase spaces
(without local degrees of freedom passing through the
boundary) such a problem has an infinite number of
solutions.
For this, let us take6 ∂vM ¼̂ 0. We can easily find a field-

dependent parameter that makes the bulk piece integrable.
Let us take E ¼ Ẽ=n

ΔΞ̃ · ω0 ¼̂ − ∂vẼδM; ð44Þ

6Imposing this condition will be denoted by the symbol b¼, as it
can be thought of as a nonradiative boundary condition on Γ.
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that gives the mass aspect as the charge associated with
reparametrization of the null direction. As a side effect we
also see that for constant mass solutions, the last expression
in the equation above is turned to a corner term.
Using the redefinition of E to study the corner part of the

symplectic current, we get

ΔΞ̃ ·ωc ¼ Ẽ
�

κ1
4n2l2

Pl

∂vðA2
0ϕ

2
0Þδn− κ2

∂vϕ
2
0δA

2
0−∂vA2

0δϕ
2
0

8nl2
Pl

�

þδðA2
0ϕ

2
0Þ

4l2
Pl

�
κ2X−

κ1
n
˙̃E
�

−H

�
κ1

2l2
Pln

A2
0ϕ0δn−

κ2
4l2

Pl

ϕ0δA2
0

�
: ð45Þ

We can make this a δ-exact form, by taking the field-
dependent transformations

E ¼ Ẽ
n
; ð46aÞ

X ¼ X̃
A2
0

ϕ2
0

�
A2
0ϕ0

nκ1=κ2

�
α

þ H̃
A2
0

ϕ2
0

�
A2
0ϕ0

nκ1=κ2

�
β

−
Ẽ
nA0

Ȧ0 þ
κ1
κ2n

˙̃E;

ð46bÞ

H ¼ H̃
A2
0

ϕ0

�
A2
0ϕ0

nκ1=κ2

�
β

þ X̃
A2
0

ϕ0

�
A2
0ϕ0

nκ1=κ2

�
α

þ Ẽ
nA0

∂vðA0ϕ0Þ;

ð46cÞ

for some real numbers α, β. With this choice, on constant
mass solutions, we get the codimension-2 charges

ΔΞ̃ ·Ω ¼̂ δ

�
κ2
2l2

Pl

X̃
α

�
A2
0ϕ0

nκ1=κ2

�
α

þ κ2
2l2

Pl

H̃
β

�
A2
0ϕ0

nκ1=κ2

�
β

− ẼM
�
:

ð47Þ

The value of the charges seems to depend both on the
choice of boundary condition (i.e., the κ’s) and the
particular solution of the Pfaff problem that we choose
(i.e., α and β). However, the charge algebra turns out to be
independent of these choices and it is the Abelian algebra

fQ½Ξ̃1�; Q½Ξ̃2�g ¼ ΔΞ̃1
· ΔΞ̃2

· Ω ¼ 0: ð48Þ

This is consistent with the results in [33], except for the
missing central charge in our case. This difference can have
its origin in the different gauge fixing choices. We recall
that while here we have fixed ∂rN ¼ 0, the choice in [33]
and the usual literature about 2d gravity is instead
∂rðXNÞ ¼ 0. The different gauge fixing can be interpreted
as two different reference frames, and thus two different
observers [9,10]. Thus, it is not surprising that the algebras
are different as different observers are measuring different

physical quantities. A more refined analysis taking into
account different gauge fixing and the mapping between
them as a change of reference frame is needed to further
comment on the comparison with previous results. This is
beyond the scope of the present work and we postpone such
questions to future works. However, we would like to stress
the independence of the Abelian algebra on the particular
choice of boundary conditions. The latter corresponds to
different presymplectic boundary potentials, it is known
that the numerical value of the charge can depend on the
choice of boundary conditions [39–41], without affecting
their algebra. On the quantum level, this is mapped to the
choice of different irreducible representations of the same
algebra.
We would like to end this section with a small remark

concerning the edge modes literature. An alternative way of
making the charges integrable is to add some edge modes
fields, living on the boundary Γ, that can be interpreted as
the image of the residual degrees of freedom leaving in the
complementary region outside Γ. We chose here the
approach in [33] of slice changing, i.e., considering
field-dependent diffeomorphisms, avoiding going too
deeply into the construction of reference frames or edge
modes [9,10,42]. We expect however the two approaches to
be related, as we can usually interpret a field-dependent
diffeomorphism as a change of reference frame [9,10].

B. Conformal transformation
and alternative action

For the Moebius transformation (23), we lack such
freedom of redefining the transformation parameter in a
field-dependent way. The finite-dimensional group
SLð2;RÞ × SOð2Þ does not allow to take the coefficients
of ϵ and ξ in (32) to vary along the null direction. For this,
we cannot aim for a change of slicing to make the charges
integrable and unfortunately, contracting the infinitesimal
transformations (32) into the symplectic current ω, we find
nonintegrable quantities. We refer to the appendix A for the
full (lengthy) expression of δQ, from which the takeaway
message is the nonintegrability of the transformation (23).
This, however, is not too surprising. At some heuristic

level, we can see that the Moebius transformations (34) and
the residual diffeomorphisms (43) look very different. The
former is more easily described by the pair of initial
conditions Q0 and ψ0, whose mechanical interpretation
is straightforward in terms of initial value and velocity of
the field B, while their spacetime interpretation is more
vague. Conversely, B0 and n are nicer geometric quantities,
related to the mass and the shell insertion, but their
expression in terms of dynamical quantities is more
involved.
More rigorously, this contrast between the two sets of

transformations is manifest in the noncovariance of the
Moebius transformation, meaning that δfϵ;ξg and ΔΞ do not
form a field independent closed Lie algebra. Although the

PHASE SPACES AND SYMMETRIES OF VAIDYA SUPERSPACE PHYS. REV. D 109, 104063 (2024)

104063-9



Moebius transformation (23) is a symmetry of the gauge
fixed equations of motion δfϵ;ξgEOM ≈ 0, it is not a
symmetry of the reduced Lagrangian in the Noether sense.
This is not something completely uncommon in physics,
even for the very simple model of a free particle, we know
that, in general, the conformal rescaling of the position is a
symmetry of the equation of motion, but it corresponds to a
rescaling of the Lagrangian, not to a total derivative, as
required by the Noether theorem.
Nonetheless, we can still associate with the Moebius

transformation some conserved quantities along the radial
direction. For this, let us consider, on the gauge fixed field
space, the following functional

Smob ¼
Z

drdv ½B0X0�: ð49Þ

The corresponding Euler-Lagrange equations are still (17a)
and (17b), the same as for the reduced action coming
from general relativity. But, in this case, we lose the
constraint (17c), which however can be obtained from
the other two. Indeed assuming B00 ≈ 0 ≈ X00 we trivially
get the conservation along the radial direction of the
quantity B0X0, that we can then define asN ðvÞ2, mimicking
the last equation of (17). From the point of view of the new
action functional, there is no gauge freedom, or redundancy
in the equation of motion. Equivalently, we can see this by
the noncovariance of the functional (49) under the residual
diffeomorphisms generated by (33).
From the variational principle of the action (49) we get

δSmob ¼−
Z

drdv½B00δXþX00δB�þ
Z

dv½B0δXþX0δB�;

ð50Þ
and thus the symplectic form

Ωmob ¼
Z

dv½δB0 ⋏ δX þ δX0 ⋏ δB� ð51Þ

≈
Z

dv½δQ0 ⋏ δðϕ0A0Þ þ δA0 ⋏ ðψ0Q0Þ�: ð52Þ

Contracting this with the Moebius transformations (32) we
get the integrable charges

δfϵ;ξg ·Ωmob≈
Z

dvδ

�
ξQ0A0ðψ0−ϕ0Þ

−A0Q0

�
ϵ0þ

ϵ1
2
ðϕ0þψ0Þþ ϵ2ψ0ϕ0

��

¼
Z

dvδ

�
ξQ0A0ðψ0−ϕ0Þ−

A0Q0

2

�
ϵðϕ0Þ

þ ϵðψ0Þ− ðψ0−ϕ0Þ2
ϵ00

2

��
≔ δQ½ϵ;ξ�; ð53Þ

for ϵðrÞ ≔ ϵ0 þ ϵ1rþ ϵ2r2. Their algebra reproduces the
Lie algebra of infinitesimal transformations

fQ½ϵ1; ξ1�; Q½ϵ2; ξ2�g ¼ Q½ϵ1ϵ02 − ϵ2ϵ
0
1; ξ ¼ 0�: ð54Þ

Contrary to the covariant description, in this case, we do not
have any edge modes or corner charges, the charges living
on the codimension-1 Cauchy slice ΣðrÞ. The action (49)
looks like a mechanical action, with a kinetic term
quadratic in the radial derivatives, and there is no presence
of the null coordinate, except for the integration interval. In
other words, the redefinition of the fields, introducing B,
formally maps the Vaidya superspace into an infinite set of
decoupled mechanical models isomorphic to the static case,
labeled by the null coordinate v. The side effect of this
construction is the loss of manifest covariance, which can
be seen either as the noncovariance of the action (49) under
residual diffeomorphisms (33) or as the impossibility of
making the gauge transformations (34) integrable on the
symplectic structure Ωmob.
Regardless of the noncovariance, we can associate

conserved quantities with the Moebius symmetry, in the
usual Noether sense. For this, we should work with the
presymplectic potential and infinitesimal transformations
on the fields B and X as in (31)

δfϵ;ξgΩmob ≈
Z

dv δ

�
ηðX0B − B0XÞ þ ϵðX0B0Þ

þ ϵ0ðXBÞ0 þ ϵ00

2
XB

�

¼
Z

dv δ

�
ηðX0B − B0XÞ þ 1

2
ðϵXBÞ00

−
3

2
ϵ0ðXBÞ0

�
≔ δQ: ð55Þ

These are conserved along the radial direction and agree
with the on-shell charges given in (53). Moreover, the
interpretation as an infinite set of mechanical models for
each null cut is consistent with the fact that the current
inside the integral is conserved along the radial direction,
even without integrating along the whole Cauchy slice. For
each point of ΣðrÞ we can define

j ≔ ηðX0B − B0XÞ þ 1

2
ðϵXBÞ00 − 3

2
ϵ0ðXBÞ0: ð56Þ

and we have j0 ≈ 0, corresponding to the Noether charge
associated with the Moebius symmetry as in the mechanical
setup [19,21].

C. Heisenberg extension and
full Schrödinger symmetry

We can extend the Moebius transformation, mimicking
the construction in [19,21]. The linearity of the solutions
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for B and X, makes them trivially invariant under the
transformations

Xðr; vÞ → X̃ðr; vÞ ¼ Xðr; vÞ þ p2ðvÞrþ q1ðvÞ; ð57aÞ

Bðr; vÞ → B̃ðr; vÞ ¼ Bðr; vÞ þ p1ðvÞrþ q2ðvÞ; ð57bÞ

They correspond to an Abelian symmetry of the equa-
tions of motion, for which the infinitesimal and finite
transformations coincide. The corresponding action on the
initial conditions is

δA0 ¼ p2; ð58aÞ

δϕ0 ¼ −
q1 þ ϕ0p0

A0

; ð58bÞ

δQ0 ¼ −p1; ð58cÞ

δψ0 ¼
q2 þ ϕ0p2

Q0

: ð58dÞ

Using this with the symplectic structure Ωmob also gives
an infinite tower of conserved quantities

δfϵ;ξg · Ωmob ≈
Z

dv δ½−q1B0 − q2X0 þ p1ðX − rX0Þ

þ p2ðB − rB0Þ�

≈
Z

dv δ½p2ψ0Q0 − p1A0ϕ0 þ q1Q0 − q2A0�

≔ δQ½pi; qi�; ð59Þ

providing a centrally extended algebra

n
Q
h
pð1Þ
i ; qð1Þi �; Q½pð2Þ

i ; qð2Þi

io
¼

Z
pðIÞ
i qðJÞi ϵIJdv; ð60Þ

with the totally antisymmetric symbol ϵIJ. As for the
Moebius symmetry, we can define here some conserved
current on each slice at constant v. This means that the
centrally extended part in the Schrödinger algebra, which is
finite-dimensional, is promoted to an infinite dimensional
set in the Vaidya model. This can be understood from the
mechanical point of view because we can interpret the
action (49)as an infinite set of decoupled mechanical
models, one at each null cut v ¼ const. We can arbitrarily
deform the initial conditions on the slice Σ at any point v,
and the charges Q½pi; qi�, measures precisely these initial
conditions, namely the initial value of the fields B, X and
their velocity. The full algebra is thus�

slð2;RÞ ⊕ soð2Þ	 ⊕ �
C∞ðR2Þ ⊕c C∞ðR2Þ	: ð61Þ

As in the static case, this is an overcomplete set of charges
on the phase space. Although the initial conditions are an

infinite set of numbers, they can be represented as four
(continuous) functions of the null direction. So the charges
Q½pi; qi� are sufficient to specify the initial value problem
and integrate the motion along the radial direction, by
exponentiating the charge corresponding to ϵðrÞ ¼ 1,
generator of constant radial translations. It is indeed
possible to show that, as in the static setup, here we can
obtain the Moebius charges from quadratic combinations of
the linear charges Q½pi; qi�, for example, we have

Q½ϵ ¼ 1� ¼ Q½q1 ¼ qðvÞ; q2 ¼ 0; pi ¼ 0�
×Q½q1 ¼ 0; q2 ¼ 1=qðvÞ; pi ¼ 0�; ð62Þ

and similar for ϵ ¼ r, ϵ ¼ r2.
We would like to stress that all along these sections, we

have completely neglected the boundary conditions at the
null boundary Γ. However, restricting to some specific
conditions on Γ can only affect the fall-off conditions of the
initial conditions. Classically, because of the freedom of the
dynamics in the null direction, in the bulk, we are always
free to set fA0; Q0;ψ0;ϕ0g as we desire. The only way of
constraining the bulk dynamics is to specify some profile
for the infalling null dust, that goes beyond the scope of this
work. However, we should remark that once we want to
quantize the theory, the fall-off conditions become very
relevant, as they affect the structure of the Hilbert space,
and consequently the spectrum of some operators. We can
imagine that different representations of the symmetry
group might correspond to different choices of boundary
conditions on Γ, exploring this direction can give an
interesting further development of this work.

IV. DISCUSSION

In this article, we have discussed the symmetries of the
Vaidya superspace. We have shown that the evolution of a
general Vaidya spacetime in the radial direction can be
obtained from two different action principles. The first one
we have discussed (4) possesses manifestly some residual
gauge invariance, leading to codimension-two charges on
the corner of the Cauchy slice Σ. The phase space for this
action contains just the mass and the insertion time for a
null shell as conjugate variables. All the other degrees of
freedom are relevant only at the boundary, playing the role
of edge modes fields. We have shown that in order to make
the corresponding charges integrable, we need to consider
field-dependent gauge transformation. Such a choice is not
unique, but it always leads to the same Abelian charge
algebra (48).
On top of the residual gauge freedom,we have shown that

the partial gauge fixed equations ofmotion (22) are invariant
under a conformal reparametrization of the radius (23), and
an infinite set of linear transformations (57). These corre-
spond to nonintegrable charges on the gravitational reduced
phase space, due to the intrinsic noncovariance nature of the
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transformations. However, we have shown the existence of
an alternative action functional (49) leading to a different
phase space, where the extended Schrödinger symmetries
are integrable. The price to pay is unfortunately the loss of
covariance of the theory, which now looks like an infinite set
of decoupled mechanical models.
Although both sets of transformations map solutions of

the equations of motion in the linear gauge into solutions,
they are associated with two different phase spaces. The
difference between the two sets is manifest also in the fact
that their infinitesimal version separately provides Lie
algebras, but together they do not close into a bigger
algebra. The commutator of a diffeomorphism and a
Moebius transformation gives a new transformation, or
equivalently we can say that the structure constants of the
two algebras together are field-dependent.
The difference in the phase space is almost irrelevant on

the classical level, because the classical equations of
motion are the same for the two actions SEH and Smob,
but it becomes crucial once we quantize the theory. A
measurement involving quantum processes could then in
principle distinguish between the two models.
For the Moebius action, the physical degrees of freedom

are more numerous than in the general relativity phase
space, which is limited to the mass and its conjugated time.
The rest of the initial conditions get a physical meaning
only on the boundary, as edge modes for the gauge
transformation. Conversely in the mechanical setup, they
are all already physical in the bulk.
We would like to remark that this discussion does not

represent a no-go statement for a generalization of these
conformal symmetries in the full theory, but points out a
crucial difference with the boundary large diffeomor-
phisms, on the contrary to what has been conjectured in
previous works [20,24]. A more refined analysis including
reference frames and (matter) observers could shed light on
the origin of the two actions and the physical process
underlying this difference.
We stress again that, despite not being integrable on the

covariant phase space, the Schrödinger symmetries are
truly symmetries of the dynamics of Vaidya superspace,
mapping solution into solutions and being associated with
conserved quantities along the radial direction. As such,
they play a role in perturbation theory around the Vaidya
background. In the static framework, the conformal repar-
ametrization of the radius is related to the vanishing of Love
numbers [56], i.e., to the response of black holes to tidal
perturbations. The presence of such symmetry in the
Vaidya model opens interesting perspectives on the study
of its perturbations and the radiative/absorption processes
of black holes.
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APPENDIX A: ACTION OF THE SYMMETRY
ON THE SOLUTION SPACE

Let us consider the symmetry transformations as defined
in the main text in (23). These map solutions of the gauge
fixed equations (22) and (22b) into solutions. We also recall
that the on-shell expressions for the corresponding dynami-
cal fields are of course linear,

X ≈ A0ðr − ϕ0Þ; B ≈ −Q0ðr − ψ0Þ: ðA1Þ

Combining this with the symmetry transformation we get
the on-shell version of the transformed field, let us take,
e.g., X,

X̃ ≈ λA0

r − ϕ0

γrþ δ
¼ λA0

γϕ0 þ δ

�
αrþ β

γrþ δ
−
αϕ0 þ β

γϕ0 þ δ

�

¼ λ
A0ffiffiffiffiffiffiffiffiffiffiffiffiffi
h0ðϕ0Þ

p �
hðrÞ − hðϕ0Þ

	
; ðA2Þ

from which we easily read the transformation law for A0

and ϕ0 presented in the main text’s Eq. (28). The exact
same calculation for B gives us the transformation law for
the other two initial conditions Q0 and ψ0.
Concerning the off-shell transformation law for N, this

must be such that the constraint (17c) is preserved. As
shown in the main text, working with the rescaled field N
is easier. Its value on-shell is given by

N 2 ≈ −X0B0 ≈ nA2
0ðnþ 2ϕ0Ȧ0Þ ¼ Q0A0; ðA3Þ

Now, the constraint (17c) transform as in (26)

0≈Ñ 2þ∂r̃X̃∂r̃B̃

¼ Ñ 2þ 1

h0

�
X0B0 þ1

2
∂r

�
h00

h0
XB

��

≈Ñ 2−
A0

�
B0h00ðϕ0Þþ2n2A0h0ðϕ0Þþ2nϕ0∂vðA2

0h
0ðϕ0ÞÞ

	
2h0ðϕ0Þ2

¼ Ñ 2−
Q0A0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h0ðψ0Þh0ðϕ0Þ
p ¼ Ñ 2−Q̃0Ã0; ðA4Þ
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where in the last line we see that the transformations are indeed symmetries of the constraint (A3).
Inverting the definition of Q0 and ψ0, and using the variations (32), we can also write the infinitesimal transformation on

the alternative version of the initial conditions B0 and n:

δB0 ¼
B0

�
ϕ0ðȦ0ðϵ00 − 2ξÞ þ A0ϵ0

00ϕ̇0Þ þ nðϵ00 − 2ξÞ	þ 2A2
0n

2ϕ̇0

�
ϕ0ðϵ00 − 4ξÞ − 2ϵ0

	
2ðϕ0Ȧ0 þ nÞ ; ðA5aÞ

δn ¼ −
B0ϵ0

00 þ 2nA0

�
2ξnþ Ȧ0ð2ϵ0 þ ϕ0ð6ξ − ϵ00ÞÞ

	
4A0ðnþ ϕ0Ȧ0Þ

; ðA5bÞ

with the short hand notation ϵ0 ¼ ϵðϕ0Þ. Finally, let us remark that this is not a spacetime diffeomorphism, as the mass
content of the spacetime is changed, i.e., it does not transform as a scalar field under reparametrization of the null
coordinates. We explicitly have

δM ¼ A0

�
ϕ0ðA0ϕ̇0ðA0ðϵ00 − 4ξÞ þ l2

PlMϵ0
00	þ l2

PlMȦ0

�
10ξ − ϵ00Þ

	þ ϵ0
�
4l2

PlMȦ0 − 2A2
0ϕ̇0Þ

	
2l2

PlA0

�
ϕ0Ȧ0 þ nÞ	

þMnðA0ðϵ00 þ 2ξÞ þ 2l2
PlMϵ0

00Þ
2A0

�
ϕ0Ȧ0 þ nÞ	 : ðA6Þ

Let us finally give the explicit expression for the nonintegrability of the Moebius transformation on the symplectic form
Ω, separating the codimension-1 and codimension-2 terms we have

δfϵ;ξg · ω0 ¼
4A0n2

�
A0

2δnϕ̇0ðϕ0ðϵ00 − 4ξÞ − 2ϵ0Þ þ ξδB0

	þ 2A0n
�
Ȧ0δB0ðϕ0ð6ξ − ϵ00Þ þ 2ϵ0ÞB0δnðϵ00 − 2ξÞ	

8l2
PlA0n2ðȦ0ϕ0 þ nÞ

þ B0

�
ϵ0

00ð2A0
2δnϕ0ϕ̇0 þ δB0Þ þ 2A0Ȧ0δnϕ0ðϵ00 − 2ξÞ	

8l2
PlA0n2ðȦ0ϕ0 þ nÞ ; ðA7aÞ

δfϵ;ξg · ωc ¼
ϕ0κ1

8l2
PlnðȦ0ϕ0 þ nÞ

�
B0δðA0ϕ0Þϵ000 þ 2Ȧ0A0

2δnϕ0ðϕ0ð2ξ − ϵ00Þ þ 2ϵ0Þ
	

þ A0nϕ0

4l2
PlðȦ0ϕ0 þ nÞ

�
A0δϕ0ð2ξðκ1 þ κ2Þ − κ2ϵ

0
0Þ − 2κ2δA0ϵ0 þ 2κ1ξδA0ϕ0

	
þ 2A0ϕ

2
0

4l2
PlðȦ0ϕ0 þ nÞ

�
κ1δA0Ȧ0ϕ0ð6ξ − ϵ00Þ þ A0ðȦ0δϕ0ð2ξð3κ1 þ κ2Þ − ðκ1 þ κ2Þϵ00Þ þ κ1δnð2ξ − ϵ00ÞÞ

	
þ ϵ0A0ϕ0

2l2
PlðȦ0ϕ0 þ nÞ

�ðκ1 − κ2ÞδA0Ȧ0ϕ0 þ κ1A0ðȦ0δϕ0 þ δnÞ	: ðA7bÞ

APPENDIX B: SPHERICALLY SYMMETRIC
REDUCTION AND USEFUL FORMULAS

Let us write the spherically symmetric metric as

ds2 ¼ gð4Þμν dxμdxν ¼ gabdxadxb þ
Φðt; rÞ2

λ2
dΩ2; ðB1Þ

where gab is the 2-metric in the ðt; rÞ plane and
½λ� ¼ length−1. With this metric we getffiffiffiffiffiffiffiffiffiffi
−gð4Þ

q
¼ ffiffiffiffiffiffi

−g
p Φ2

λ2
sinθ;

Rð4Þ ¼Rþ2λ2Φ−2−2Φ−2ð∇ΦÞ2−4Φ−1∇2Φ; ðB2Þ
and therefore the Einstein–Hilbert action becomes

S¼ 1

κ

Z
M
d4x

ffiffiffiffiffiffiffiffiffiffi
−gð4Þ

q
Rð4Þ

¼ 1

κλ2

Z
d2x

Z
π

0

dθ sinθ
Z

2π

0

dφ
ffiffiffiffiffiffi
−g

p
Φ2Rð4Þ

¼ 4π

κλ2

Z
d2x

ffiffiffiffiffiffi
−g

p
Φ2ðRþ 2λ2Φ−2 − 2Φ−2ð∇ΦÞ2

− 4Φ−1∇2ΦÞ

¼ 4π

κλ2

Z
d2x

ffiffiffiffiffiffi
−g

p ðΦ2Rþ 2λ2 − 2ð∇ΦÞ2 − 4Φ∇2ΦÞ

¼ 4π

κλ2

Z
d2x

ffiffiffiffiffiffi
−g

p ðΦ2Rþ 2λ2 þ 2ð∇ΦÞ2 − 4∇aðΦ∇aΦÞÞ;

ðB3Þ
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where later on we will set κ ¼ 16π. The action for a
minimally coupled massless scalar field f is

Sm¼−
Z
M
d4x

ffiffiffiffiffiffiffiffiffiffi
−gð4Þ

q
ð∇fÞ2¼−

2π

λ2

Z
d2x

ffiffiffiffiffiffi
−g

p
Φ2ð∇fÞ2:

ðB4Þ

Under variations we have

δΓρ
μν ¼ 1

2
gρσð∇μδgσν þ∇νδgσμ −∇σδgμνÞ; ðB5aÞ

δRμν ¼ ∇ρδΓ
ρ
μν −∇νδΓ

ρ
μρ ¼ 1

2
ð∇ρ∇μδgρν

þ∇ρ∇νδgμρ − gρσ∇μ∇νδgρσ −∇2δgμνÞ; ðB5bÞ

δR ¼ δgμνRμν þ gμνδRμν

¼ δgμνRμν þ∇μðgρσδΓμ
ρσ − gρμδΓν

ρνÞ
¼ δgμνRμν þ∇μ∇νðδgμν − gμνgρσδgρσÞ
¼ δgμνRμν þ ð∇μ∇ν − gμν∇2Þδgμν
¼ δgμνRμν þ∇μ∇νðgμνgρσδgρσ − δgμνÞ; ðB5cÞ

δ
ffiffiffiffiffiffi
−g

p ¼ 1

2

ffiffiffiffiffiffi
−g

p
gμνδgμν: ðB5dÞ

Under a conformal rescaling gμν ¼ Ω2g̃μν ¼ e2σ g̃μν we
have

ffiffiffiffiffiffi
−g

p ¼ Ω2
ffiffiffiffiffiffi
−g̃

p
; ðB6aÞ

R ¼ Ω−2ðR̃ − 2Ω−1e∇2Ωþ 2Ω−2ðe∇ΩÞ2Þ
¼ e−2σðR̃ − 2e∇2σÞ; ðB6bÞ

∇μϕ ¼ e∇μϕ; ðB6cÞ

ð∇ϕÞ2 ¼ Ω−2ðe∇ϕÞ2; ðB6dÞ

∇2ϕ ¼ Ω−2e∇2ϕ; ðB6eÞ

∇μ∇νϕ ¼ e∇μ
e∇νϕ − e∇μσe∇νϕ − e∇μϕe∇νσ þ g̃μνe∇ασe∇αϕ:

ðB6fÞ

With this, for a Lagrangian of the form

L ¼ ffiffiffiffiffiffi
−g

p ðVðΦÞRþ UðΦÞ þWðΦÞð∇ΦÞ2Þ; ðB7Þ

we can always remove the kinetic term for Φ by using

ΩðΦÞ ¼ exp
�
−
Z

Φ

Φ0

WðzÞ
2V 0ðzÞ dz

�
: ðB8Þ
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