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Parity violation in gravitational waves and observational bounds
from third-generation detectors
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In this paper, we analyze parity-violating effects in the propagation of gravitational waves (GWs). For
this purpose, we adopt a newly proposed parametrized post-Einsteinian (PPE) formalism, which encodes
modified gravity corrections to the phase and amplitude of GW waveforms. In particular, we focus our
study on three well-known examples of parity-violating theories, namely Chern-Simons, symmetric
teleparallel, and Hordva-Lishitz gravity. For each model, we identify the PPE parameters emerging from the
inclusion of parity-violating terms in the gravitational Lagrangian. Thus, we use the simulated sensitivities
of third-generation GW interferometers, such as the Einstein Telescope and Cosmic Explorer, to obtain
numerical bounds on the PPE coefficients and the physical parameters of binary systems. In so doing, we
find that deviations from general relativity cannot be excluded within given confidence limits. Moreover,
our results show an improvement of 1 order of magnitude in the relative accuracy of the GW parameters
compared to the values inferred from the LIGO-Virgo-KAGRA network. In this respect, the present work
demonstrates the power of next-generation GW detectors to probe fundamental physics with unprecedented

precision.
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I. INTRODUCTION

The gravitational wave (GW) observations by binary black
holes (BBH) and/or binary neutron stars (BNS) detected by
the LIGO-Virgo-KAGRA (LVK) Collaboration [1-3] have
opened a new window to investigate fundamental physics. In
this respect, the degeneracy among different theoretical
scenarios brings attention to the need for investigating
astrophysical sources via direct manifestations of gravita-
tional effects. This could yield valuable physical information
on the nature of gravity itself, thus playing a significant role
in probing extra degrees of freedom with respect to general
relativity (GR) [4-9]. On the other hand, the dark energy
issue related to the standard cosmological model further
motivated, in past years, the search for possible extensions or
modifications of GR [10-17]. The latter typically emerges
from high-energy theories and can lead to small departures
from GR in the infrared limit [18-25].

Different impacts of modified theories of gravity on
GWs can be ascribed to changes in the amplitude and/or the
phase of the GW signal propagation. Changes in the phase
(amplitude) may occur due to modifications of the real
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(imaginary) part of the dispersion relations of GWs [26-29].
An example of the broad class of modified gravity
scenarios sharing similar consequences is represented by
gravitational actions that are not invariant under a parity
transformation. Parity-violating theories are characterized
by an asymmetry in the propagation amplitude and speed of
the left- and right-handed GW polarization modes, leading
to amplitude and phase birefringence, respectively [30-37].

A well-known example of a parity-violating gravity
scenario is the Chern-Simons (CS) theory [38-43], in
which the Einstein-Hilbert action is extended to contain
a dynamical scalar field coupled to the CS term. The parity-
violating effect is due to the coupling between the (even
parity) cosmological scalar field and the (odd parity)
Pontryagin invariant. CS gravity takes inspiration from
string theory [44] and represents the only case of a metric
theory, quadratic in the curvature and linear in the scalar
field, violating parity. Moreover, the CS theory can be
obtained as a limit case of the more general class of ghost-
free scalar-tensor gravity [31,45,46], which includes parity-
violating terms arising from higher-order derivatives of the
scalar field.

Additional relevant examples of parity-violating theories
include symmetric teleparallel (ST) gravity [47-49], which
is built upon the nonmetricity tensor, and some versions of
Horava-Lifshitz (HL) gravity [50]. First introduced as a

© 2024 American Physical Society


https://orcid.org/0000-0003-2342-1134
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.104062&domain=pdf&date_stamp=2024-05-20
https://doi.org/10.1103/PhysRevD.109.104062
https://doi.org/10.1103/PhysRevD.109.104062
https://doi.org/10.1103/PhysRevD.109.104062
https://doi.org/10.1103/PhysRevD.109.104062

CALIFANO, D’AGOSTINO, and VERNIERI

PHYS. REV. D 109, 104062 (2024)

renormalizable extension of GR, HL gravity breaks Lorentz
invariance and contains higher-order derivative operators
that induce parity violation [51].

A widely adopted framework to explore deviations from
GR in GW propagation is provided by the parametrized
post-Einsteinian (PPE) formalism [52]. Similar to the post-
Newtonian (PN) scheme, the PPE formalism encodes modi-
fied gravity corrections to the phase and amplitude of GR
waveforms [53-55]. Thus, the PPE formalism can reveal a
useful tool to probe GR through GW data. Several non-PPE
analyses of GW data to search for possible parity violations
were previously performed only for particular waveform
parametrizations [56-58]. In fact, the first full PPE study of
parity-violating theories has been recently presented in
Ref. [37], where a model-independent framework was
introduced to parametrize parity-violating effects in the
GW-modified gravity propagation under a general scheme.

In light of the theoretical results found in Ref. [37], we
intend to apply the PPE framework to future GW simulated
observations, in order to obtain forecast bounds on gravi-
tational parity violation. For this purpose, we employ in
our analysis the experimental sensitivities of the third-
generation (3G) GW detectors, such as the Einstein
Telescope (ET) [59,60] and Cosmic Explorer (CE)
[61,62] interferometers. The latter have been extensively
used, in recent years, to investigate scenarios beyond GR,
the dark energy problem and many other fundamental
questions in gravitational physics [63-76].

The structure of the paper is as follows. In Sec. II, we
introduce the parity-violating features in the GW propa-
gation. In particular, we present a general parametric
framework for describing parity-violating deviations from
GR in terms of a few coefficients related to the modified
GW amplitude and phase. Then, we take into account
modifications in the GW waveform through the detector
response to binary system signals. Moreover, we show how
to map the PPE parameters to the parity-violating terms of
modified gravity theories. In Sec. III, we consider the main
theoretical frameworks where parity violation can emerge
from the high-order corrections to Einstein-Hilbert action.
In particular, we focus our analysis on three different
scenarios: CS, ST, and HL gravity models. In Sec. 1V,
using the simulated sensitivities of future GW detectors, we
place bounds on the parity-violating coefficients and the
PPE parameters of the aforementioned theories. We con-
clude our study in Sec. V with a discussion of the obtained
results, and we draw our final considerations for future
developments.

In this work, we set units such that c = G = 1.

II. PARITY VIOLATION IN THE
GRAVITATIONAL WAVE PROPAGATION

We here show how amplitude and speed in GW
propagation from BBH and BNS can be parametrized in
a model-independent way. These results can then be used to

probe parity violation in specific modified gravity theories.
The gravitational parity-violating contribution can be
encoded by a correction to the Einstein-Hilbert action:

1
S:2/d4x\/_—gR+Spv, (1)
K

where k = 87, g is the determinant of the metric tensor g,,,,
and R is the Ricci scalar. The term Spy can be, in general, a
function of the curvature and an auxiliary scalar field, and is
responsible for modifying the GW dispersion relation.

To study how the field equations get modified, we
consider the spatially flat Fridmann-Lemaitre-Robertson-
Walker (FLRW) line element

ds? = —di* + a*(1)8;;dx'dx, (2)

where a is the normalized scale factor as a function of
cosmic time, f.

Thus, we introduce linear perturbations around the
background (2):

ds* = a*(n)[—dn* + (5;; + h;j)dx'dx’], (3)

where 7 is the conformal time, such that dn = dt/a(r),
while h;; are tensor perturbations satisfying 0;2'; =0 = h';.
In particular, in this work, we focus on the two polar-
izations corresponding to helicity Az = *£1, where the
subscripts {R,L} refer to the right and left-handed GW
polarizations, respectively. In the Fourier space, we can
write

hgy(n) = AR,L(’?)e_i[q’(”)_k"xi], (4)

where Ag is the polarization amplitude, ¢(n) is the GW
phase, and k is the comoving wave number. To derive the
GW propagation equation that violates parity, although
being invariant under translations and spatial rotation, one
could make use of the following assumptions:

(i) deviations from GR are small, such that all mod-
ifications can be worked out within an effective field
theory framework;

(i1) only corrections to GR that are parity-violating are
taken into account;

(iii) under the assumption of locality and small devia-
tions from GR, all modifications of Einstein’s
gravity are expected to be polynomial in k; and

(iv) GW wavelengths are shorter than the Universe
expansion, i.e., k > H, being H =a'/a the con-
formal Hubble parameter, where the prime denotes
the derivative with respect to 7.

Within the above requirements, it was shown in Ref. [37]
that the most general parametrization of parity-violating
deviations in the GW propagation—including up to the
second-order derivatives over time—can be expressed as
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W aH P
hﬁ'L - {2H - ﬂR’L;k {(Mpva)" - (MPVa>n_1:| }hi{‘L
+ w} hry =0, (5)

where wg 1 is the angular frequency,

)

12 m—1 m m
wRL =k { e Zk [ (Mpya)™ * (MPva)m_l} }’
(6)

being n={1,3,5,...} and m ={0,2,4,...}. Here,
k = |k| = 27w, where v is the GW frequency. In such a
description, parity violation is quantified by the functions
a, f3, v, and d depending on the conformal time, and Mpy, is
the energy scale of the theory. It is worth noticing that
modified gravity theories that violate parity usually involve
dynamical scalar fields, so the expansion coefficients in
the effective field framework may show a nontrivial
dependence on these fields and their derivatives. Based
on the assumption of small departures from GR, in our
analysis, we consider only the leading-order corrections
to GR, whose GW propagation is recovered as soon
asa=p=y=0=0.

Thus, the modified dispersion relation is obtained by
replacing Eq. (5) into Eq. (4):

: a,H P
(p”—i—z{ZH—f—/l. k“[ —+ ,,_Hrﬂ’
R'LZH: (MPVa) (Mpva) !
+ ¢ - a)lzi,L =0, (7)

where it is assumed that the changes in the GW amplitude
occur over a very long timescale compared to those relative
to the phase. Considering linear perturbations around the
GR background, one can write as ¢ = ¢gr + 6¢, where ¢
accounts for amplitude and velocity birefringences in its
imaginary and real parts, respectively:

0 = —idR LOPA + AR LOPY - (8)

Consequently, a series expansion of Eq. (7) under the
assumptions 8¢ < @gr, @ < ¢, and 6¢" < PgréQ’
leads to [77]

3 (e G

Sl == ,
Ph=3 ~ Mpya)" =~ (Mpya)"™!

1)
oy, = k™ Yml + n ] . 10
¢V 22 [ MPVa (Mpva)m_l ( )

The above expressions could be simplified by assuming
a slow time-varying behavior for the parity-violating
parameters. The latter can thus be approximated with its

corresponding zeroth-order Taylor series term at the present
time. Then, converting the time derivative into derivatives
with respect to the redshift z by means of the relation
dz/dt = —(1 + z)H(z), the integration of Egs. (9) and (10)
yields

k" ay, :Bn
Spp =S = (1+2)" |2 o+ p 11
D I =T WL N Y}

n

Dpalal]. (12

¢ :Zk—m(1+z)m Tmo o g Mo
Y42 My, " M

where we made use of the following definitions [26]:

D,(z) = (1+ Z)l_"/%da (13)
=(1 +Z)_”/(1+d§)l_ﬁ. (14)

Therefore, the modifications to the GW polarization modes
can be written as

hr1 = h{QC,}II_UeJF&pAﬂéq)V- (15)

A. Waveform modifications

To perform a comparison with GW measurements, we
shall work out the parity-violating modifications in the
standard +/x basis. Specifically, from the circular polari-
zation modes, one can define the linear modes

hg + hy g —hy,
h, = . =1 . 16
Thus, expanding Eq. (15) at the first order gives
hy = h —isp, T+ 5pun ™, (17)
hy = B 4 ispa '™ = 5y h R (18)

For a given detector, the measured GW response
function may be written as

h=F h, +Fh,, (19)

where the beam functions F', , depend on the polarization
angle and location of the GW source in the sky [78]. In the
PN approximation, we can write the GR polarization modes
in the case of quasicircular and nonprecessing binaries
as [79]

B = A(L+ &)e, (20)
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;I(XGR> _ 2A§ei(y/+ﬂ/2)’ (21)

where A and y are the GW amplitude and phase, respec-
tively, in the stationary phase regime. Moreover, £ = cos 1,
being : the inclination angle between the line of sight and
the angular momentum vector of the source. The detector
response as a function of the GW frequency is given by

har(v) = Av7/6ilw+0w) (22)
where
M5/6
>R+ &) 4428, (23
9671'4/3 dL(Z>\/ +( +§) + 5 ( )
2F
Sy = tan™! [—X(gz] : (24)
F.(1+&)
being M = (m;my)*> x (m, + m,)~"/> the chirp mass of

the binary system composed by the objects with masses m1;
and m,, and d; (z) the luminosity distance.’

Hence, one can feature the parity-violating GW propa-
gation as

h = hgr(1 4 6A, + 6Ay)e!Ovatowy), (25)
The corrections oy, and Sy, are found by plugging
Egs. (17) and (18) into Eq. (19), and then expanding the

resulting expressions for the amplitude and phase at the
linear order in ¢, y. In doing so, we obtain

0A, +0Ay = f(Fyx.8)0ps — g(Fix.E)dpy,  (26)

Swa+ 8wy = g(Fy x.8)0ps+ f(F i . E)py,  (27)

where we introduced the following auxiliary functions:

2(FF + F)(1+8)¢
AFRE + FL(1+8)Y

f(Fix.§) = (28)

+F><(1 _52)2
AF2E8 + F2 (14 &)

9(Fix.8) = (29)
In view of Egs. (26) and (27), Eq. (25) finally becomes

h=her[l + f(Fy . 8004 — g(Fy «.E)50y]
X exXp {i[g(FJr,xvé)a(PA +f(F+.><v {:)6¢V]} (30)

'Following the prescription of Eq. (13), di(z)=
(14 z)?D5(z), where D, (z) coincides with the angular diameter
distance.

B. PPE formalism

At this point, we shall show how the parity-violating
modifications in the propagation of GWs can be framed
within the PPE formalism [37,52]. For this purpose, let us
consider the following PPE waveform:

hepg = hor(1 + apppu®) exp {ippppu’™e}.  (31)

Here, the parameters appg, @ppp, Pppr, and bppg are
dimensionless coefficients to be mapped to different gravity
models, and u = azv M.

Then, to account for the parity-violating theories, we can
use Eq. (30) with the explicit forms of d¢p, and ¢y . In this
way, one finds the mapping

h— IleR < + ZuaPPEaaPPEEE ) exp{ ZubPPEﬁ Pp:f } (32)
appE bepg

from which we infer appr = bppg = (n, m). Specifically,
for appg = bppg = n, we have

2PPE) [2(1 + Z)]”f(F+,x,§)

[anozn + MPVﬂnODn+1 (Z)]’

n

MMpy 2
(33)
(PPE) 2(1 +2)|"9(Fyx6)
n = np<n M n Dn .
p [MMPV > [y 20 + Mpy P, D1 (2)]
(34)
On the other hand, for appg = bppg = m, one has
wee) _ _[200+2)]"9(F i x.§)
" MMpy 2
X [ymozm + MP\/émoDm+l (Z)}’ (35)
(PPE) 20+ 2) " f(Fyx. &)
m - m, m M 5m Dﬂ’l N
B, [MMPV > [V mgZm + MpySyy D]

(36)

Furthermore, it is possible to frame the GW linear
polarization modes within the PPE formalism. In particular,
we parametrize the detector response as

= ROV 4 64, e, (37)

By = R (1 + 64, e, (38)

which can be combined with Egs. (20) and (21) to obtain

T = RO+ ¢, (E)5pa)eiEr@oov(39)

*Notice that u = Mk/2.
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where we introduced
2 (1+¢)7
T4 26

Then, in this case, the PPE parameters are appg = n,
bPPE =m, and

a(PpE)_( 2 )"Q,x(@

T MMy 2

{9 {x(&) = (40)

[anozn + MPVﬁnoDn+l (Z)} ’

(41)

2 "C 4 x
:BSI?PE) - (MMPV> é‘+2(‘§) [ymozm + MPVémoDmJF] (Z)]

(42)

III. PARITY-VIOLATING THEORIES
OF GRAVITY

In this section, we briefly describe the main features of
the most relevant parity-violating modified gravity theories.
Thus, we infer the expressions of the PPE parameters for
the specific model under consideration.

A. Chern-Simons gravity

As mentioned earlier, the CS theory is one of the most
well-studied scenarios leading to parity violation [80]. In
this case, the modified gravity action is given by

1
Scs =5 / d*x\/=g <R + %SR*R) (43)
K

where acg is a coupling constant, 9 is a dynamical scalar
field, and R*R is the Pontryagin density defined as

1
R*R = ERabcdé'abefRCdef, (44)
where £%¢? is the Levi-Civita tensor.
Considering linear perturbations as in Eq. (3), the
equations of motion for the tensor modes are given by
(see [81] for the details)

sjl

DI, +5

e (8" —2HY )osh), + §9,D;] =0, (45)

where we defined
Dy; = W)+ 2HH, — 0,0'h;. (46)

Moreover, when searching for plane-wave solutions, the
GW polarization modes obey the dispersion relation [77]

k/lR,LaCSI.()

i+ P — K = —iRLACSY
v 1 — kg racsd?

(47)

Then, making use of the equation of motion for the scalar
field, 9 + 2H = 0, and linearizing Eq. (47), one finally
obtains

8 = —2iklg  acs,doz. (48)

Since the units of the acgd, term are those of a length, we
operate the redefinition acg — dcg = acgMpy in order for
Eq. (48) to be dimensionless.

Now, if we compare Eq. (48) to Eq. (8) with the help of
the expressions (11) and (12), we infer® a; = 4acsd,
whereas all the other parity-violating coefficients are
vanishing. Thus, from Egs. (33) and (34), we obtain the
PPE parameters corresponding to the CS theory:

epe)  f(Fyx.8)

% - MMopy, 1% (49)
epE) _ 9(F 4, &)
P —M+TPV05102~ (50)

B. Symmetric teleparallel gravity

Another relevant parity-violating theory we take into
account in our study is ST gravity. In particular, the ST
equivalent to GR action is given as [82]

1
SSTEGR = — B / d4x\/ —9LSTEGR (51)
where
1 abc 1 bac 1 a 1 Na
ESTEGR:_ZQuch +§Qach +ZQaQ _EQaQ .

(52)

Here, Q.. = V,gp. is the nonmetricity tensor, whose
contractions obey the relations

Q.= gbCQahw Qc = gaanhc- (53)
In ST geometry with coupling to a scalar field ¢, once
introducing perturbations as in Eq. (3), the only non-

vanishing parity-violating Lagrangians that are second
order in derivatives are (see Ref. [48] for the details)

2 abc e
Lé\g,l = &40, 0" §Q e Q14" (54)
2 abc e
Liy s = €050/ pQupe Qe (55)
Hence, the parity-violation action can be written as

1
SR =5 [ Ll (56

*From Eq. (14), one finds z; = z(1 +z)~".
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where agy; (i = 1,2) are arbitrary functions of ¢ and the
related kinetic term. One can show that the two
Lagrangians actually differ only by a constant and, thus,
the ST modified gravity action may be written as

2 1 2 2
SgT) = Zc/ d4xa3([‘§T)EGR + Cé\zh (57)
with
£8or =~ (g — 3Ry d s
STEGR — Z( ij — ijak )’ (58)
H .
['E?\z = ;aSTEUkhklaihjlv (59)

where agy can be thought of as a generic function of time.
Then, the equations of motion for tensor perturbations are
given by
2
hi; + 2Hh}; — 0*hy;

- 4H(ZST€kl(iakh§) == O, (60)

where 0° = §;;0'd’. Then, the dispersion relation reads [37]

i+ 2iHg' + ¢'* — k* + 4kHaspig . =0, (61)
and one finds
5(/) = _21R$LaST0 111(1 + Z)- (62)

From the comparison between the latter* and Eq. (8), we
can map yy = —4agr, while all the other parity-violating
coefficients are zero. Moreover, the PPE parameters read

ay™ = = g(F . 8), (63)
207
Py =T (F ). (64)

Furthermore, if one considers the third-order terms in
derivatives, the nonvanishing parity-violating Lagrangians
are [48]

L1(>3\2,1 = &9,V , 01,07 .. (65)
LS\B,Z = e¢9,V 07 . Opee. (66)
L1(>3\2.3 =PV 00y Qcd’ - (67)

In this case, the modified gravity action for GW propaga-
tion may be written as

3 | P 3 Pr 3
S0 = 5. [ e (e e+ o
By .3
. 68
oty v (68)

*Notice that, according to Eq. (14), In(1+ z) = 2.

where f; (i = 1,2, 3) are generic time-dependent functions,
and

LY) | = e hl0;hy, (69)
Ly, = 2Hehj0;hy,, (70)
LY) = ik 0y, (71)

Thus, the equations of motion read

e (P Ban

+ ﬁ2gj)qalh/kq + ﬂ3gj)qalh//kq]7 (72)

H; + 2Hh); — 0*hy; —

where g;; is the metric tensor for the line element (2), and
we defined

By = PH + pH 4+ 3(BH + yH) + BsH?, (73)
B> = Py + 3pH. (74)

The dispersion relation is given by [37]

o+ i B g, o ]
j’RLk o
-1 2 ) o, (75)

and we have
Ar 1 k

50 = = Saie a1+ DD2(2) + 320 ~ o))
AR (1422 Dy(2) (76)
2Mpy 10 — P20 Z 3(Z)-

Therefore, by rescaling 3, — 52 = f3,/Mpy, we find that
the nonvanishing parity-violating coefficients are

) = 3(,32 —ﬁ3), (77)
pr = ba. (78)
6y = p1 = po. (79)

As far as the PPE coefficients are concerned, we find

oPPB) fFix.é) [ o,
! 2 MPV

o1+ 2Dz >], (80)

F. .,
ﬂgppm _ M |:MPV 2+ 4, (1+ z)Dz(z)} . (81)
2 F X9
olPPE) — _W@O( 14+2)2D3(z),  (82)
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epE)  2f(Fi . &)

BT = o (142D, (8)

C. Horava-Lifshitz gravity

The HL theory of gravity was first proposed in
Ref. [50], where it was shown that both Lorentz
symmetry breaking and parity violation can occur. The
most general form of the gravitational part of the HL
action that is invariant under parity transformations is
given by [83,84]

1 a
S =5, / dixy=gN(Lyx = Ly = L)+ Ly + L),

K
(84)
where

‘CK :Kinij_/le, (85)

P = g—fi + iR + 2k(g2R* + g3R;;RY) + 4% g5 C;;CY,
(86)
LY = ~Eoaat + 2k[E (@) + & (a')? + & (azat)al;
+ &alag; + Esa;a'R + Egaza;RY + E;a'iR]
+ 4x2E5(V2al)?, (87)

Ly= % (2A—R), (88)

Ly=¢GI(2K;; +V,Vp+a,Vp) + (1 - 2)
x (V2 +a;Vig)* +2(Vip + a;Vip)K]
1 .
+ gg"’lk[4(vivj¢)a(kvz)¢ +5(a;Vp)au Ve
+2(Vid)ajuViyd + 6K;ja; Vi gl. (89)

Here, K;; and C;; are the extrinsic curvature and the
Cotton tensor, respectively, defined as

I,
Kljzﬁ(_glj+v’Nl+vJN’)’ (90)
gk i1
Cil := %Vk <Rl —ZR51>, (91)

while 4, ¢;(0=2,...,5) and &(i =0, ...,8) are coupling
constants. Also, a; = 0;(InN), a;; = V;a;, being N; =
g,-ij the shift vector and N the lapse function in the
Arnowitt-Deser-Misner decomposition. Moreover, A and
¢ are the U(1) gauge field and Newtonian prepotential,
respectively, whereas GV = ¢! ¢k — giigh and G;; is the

Einstein tensor including the contribution of the cosmo-
logical constant, A:

1
Gij=R;; - Egin + gijA. (92)
The parity-violating effects can be studied by including
in the action (84) the fifth- and sixth-order spatial
derivative operators [51]:

QHL,0 ii | QHL1 AHL?2 i
Loy = —==K, RY + s (T) + —== kR, V3RL,
VM, Y Mopy 5(I) M3, Tk

(93)

where ayp ; (i = 0,1,2) are dimensionless constants and
3(T) is the three-dimensional CS term

elik

\/__g

It is worth remarking that, in Eq. (84), we neglected extra
fifth-order operators that do not contribute to the tensor
perturbations.

Assuming the metric (3) under the gauge ¢ = 0, one has
N = a(n) and N' = A = 0 [84]. Then, considering up to
the second-order derivatives of the tensor perturbations, the
field equations read

2
w3(T) = <r;';a,r§m + gr;?,rj.mr,z;). (94)

h + 2HH; — oy 0hy;

1 ek 20m1,1

AHL,2 .
i Mpya 3()2 a,(azhjk) =0, (95)

(Mpya)

where a¥; =1+ 3ay oH/(2M3ya). We notice that a
healthy behavior of the theory on infrared scales requires
a?; ~ 1. This implies that one can set ay o = 0 without
any loss of generality. In this case, the GW dispersion
relation can be written as [37]

2 K?
i + @ +2iHe — K> + gy L;HL; _ (?\;L’Zaﬁ] B3 =0.
PV PV
(96)
which leads to
auL, 1, AR L
Sp = ——0C 2] D
» My (1+2)*Ds(2)
aHL,ZO/lR,L 4 4
——k(1 D . 97
S Sk s o)

Comparing the latter with the general parametrization
framework given in Eq. (8), we find the nonzero parity-
violating coefficients to be

0y = —OHL,1» 04 = aur - (98)
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Then, the PPE parameters are obtained as

o PPE) _M&zo(l +2)’Ds(2).  (99)

T MMy

pIPE) — W@O(l +2)2Ds(z),  (100)
P = —%%(1 +2)*Ds(z).  (101)
A = M%(l +2)*Ds(2).  (102)

MM,

IV. OBSERVATIONAL CONSTRAINTS

In this section, we study the power constraint of 3G
detectors on parity-violating theories. In particular, we
focus on the capabilities of ET and CE. For ET, we
consider a triangular-shaped configuration of three inde-
pendent detectors colocated in Italy (ET-1, ET-2, ET-3) by
using the 10 km arm ET-D noise curve model. While, for
CE, we consider two independent L-shaped detectors: the
first placed in the United States (CE1) and the second one
in Australia (CE2), with 40 and 20 km arm lengths,
respectively. In Fig. 1, we depict the detector’s amplitude
spectral density (ASD) for the 2G (LVK) and 3G detectors.’
Furthermore, in Table I, we describe the main features of
the interferometers: the localization, the orientation, and the
lowest frequency of the power spectral density.6 In the
present analysis, we consider the following configurations:
ET, ET and CE1 (ET + CE1), and ET along with the two
CE detectors (ET + CEI + CE2).

We model the quantity hgg in Eq. (32) with the
IMRphenomD ~ waveform, considering orbital confi-
gurations with spins aligned with the angular momentum.
Within this prescription, the set of binary parameters is
B={M,q,d;,i,t..p..w,x1, x> ra,dec,Oppg}. We can
distinguish the extrinsic and intrinsic parameters. The
former include the sky angles (ra, dec), the inclination
1, the polarization angle vy, the phase at coalescence ¢, the
coalescence time f., and the luminosity distance of the
source, d; . On the other hand, the intrinsic parameters are
the chirp mass M, the mass ratio ¢, and the projection y; of
the ith spin along z. Moreover, @ppg represents the set of
PPE expansion parameters encoding the parity-violating
effects of the gravity scenarios under study. It is worth
noticing that @ppg is independent of the localization
parameters (ra, dec, y, 1).

>The most recent ASDs of ET and CE can be found,
respectively, at https://www.et-gw.eu/index.php/etsensitivities
and https://dcc.cosmicexplorer.org/CE-T2000017/public.

®The locations and orientations of the interferometers are as
reported in Table I of Ref. [85].

1074 —— LIGO
—— Virgo
10719+ —— KAGRA
— — ET-D
= 1018
‘N
=)
o 10720 4
w0
<
10—22 4
10—24 4
10° 10! 102 10° 10*
Frequency [Hz]
FIG. 1. Amplitude spectral density for 2G and 3G detectors.

To simulate the injection and to analyze the GW wave-
form, we adopt the open software Bilby [86,87]. The
synthetic signal is taken into account by assuming the
system parameters as in the event GW150914 [88].
Furthermore, the PPE parameters are set to their corre-
sponding GR fiducial values. The fiducial values for the
binary parameters are reported in Table II. In Fig. 2, we
highlight the differences in the waveform when the @ppg
parameters are not vanishing.

Assuming the detector noise to be stochastic, stationary,
and a Gaussian function of time, we can evaluate the signal-
to-noise ratio (SNR) through the expression

SNR = \/(h. h),

(103)

TABLE I. Localization and the power spectral density lowest
frequency of the detectors considered in this study.

X-arm y-arm fini
Detector  Latitude Longitude azimuth azimuth [Hz]
ET-1 0.7615 0.1833 0.3392 5.5752 1
ET-2 0.7629 0.1841 4.5280 3.4808 1
ET-3 0.7627 0.1819 2.4336 1.3864 1
CEl1 0.7613 -2.0281 1.5708 0 5
CE2 —0.5811 2.6021 2.3562 0.7854 5
TABLE II. Injection parameters for the binary system.
Parameter Value Parameter Value
MM 28.1 y [rad] 2.66
q 0.81 ra [rad] 1.38
d; [Mpc] 400 dec [rad] —-1.21
X1 0.31 1 [rad] 0.40
X2 0.39 ¢, [rad] 1.30
tC [S} 0.00 oppE 0.00
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FIG. 2. Top panel: waveforms for a GW150914-like event for different values of the @ppg parameters. Bottom panel: residual strain,
ie., szR — hpp, for the different theories under consideration in this work.

where the inner product (-, -) is defined as

(A, B) —4R% el o

and S, (f) is the one-side power spectrum of the detector.
For a network of N detectors, the total SNR is given by

(105)

The estimated SNR values for the injected signal are 935,
1740, and 1811 for the ET, ET + CEl, and ET + CE1 +
CE2 networks, respectively. Since the SNR is very high, we
expect the localization parameters (ra,dec,y,1) to be
weakly correlated with the intrinsic parameters. Hence,
adopting the same approach as that used in the recent work
[89], we fix the localization parameters to their fiducial
values. In so doing, the inference parameter set reduces to

B={M.q.d.t..p..x1.x2.0ppE}. (106)

Therefore, we sample the posterior distributions by the
Bilby-MCMC algorithm [90], using the priors shown in
Table III. In our numerical analysis, we marginalize over
the phase ¢, and coalescence time ., and we set the
minimum frequency to 10 Hz, the maximum frequency to
1024 Hz, and the signal duration of 64 s. Additionally, we
fix Hy = 67.7 kms~! Mpc~!, and Q,,, = 0.308 in order to
convert the d; sampling into that over z. In what follows,
we present the numerical constraints on the PPE parameters
for the different theoretical scenarios.

TABLE III. Priors for the free parameters of the sampling,
where U indicates a uniform distribution function.

Parameter Prior

M[Mg] (20, 100)

q U(0.125,1)

d; [Mpc] U(100,5000)

X1 U-1.1)

X2 U(—l, l)

Oppr U(-500,500)
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TABLE IV. Best-fit values and 1o uncertainties on the GW parameters of the theoretical scenarios under study, for different detector

configurations. n.c. stands for not constrained.

Network MM q d; [Mpc] X1 22 AZI:\/ [Mo]
(a) CS gravity

ET 28.09100 0.8170% 400.021038 0.2970% 0.411513 1.8211 0%

ET + CEl 28.092+0:903 0.8110%2 400.14792 0.275083 0.4470:08 -0.28"8%

ET + CEl + CE2 28.09210007 0.817901 399.88107) 0.297904 0.41710:9 -5.27124!
a b

Network M[M)] q dr, [Mpc] Xi Ve M%fi, M| p1,Mpc™] ML:V [MEMpc™']
(b) ST gravity

ET 28107001 0.811090  399.50793% 0327001 0.39509) n.c. 0.001008 —1.3414

ET + CEl 28.0907 0005 0.7961050¢  400.39103%  0.3127000:  0.3897059%  n.c. -0.03750% 17928

ET+CEl +CE2 28.09370005 0.80510%¢ 400.267035 0.3147000; 03847092 nc  -0.0021007  =2.1973

Network MMy q d; Mpc] P2 2 (M3 Mpe™!] - [ME Mpe™!]
(c) HL gravity

ET 28.08°001  0.817090 400331033 031500 0.395901 —0.441]02 n.c.

ET + CEl 28.10010%07  0.80%001  399.867017 03067500 03937095 12313 n.c.

ET+ CEl +CE2  28.0920%%5  0.82700]  400.070 03147055  0.383 0504 —0.72458 n.c.

A. Chern-Simons gravity

From Egs. (49) and (50), the PPE parameter for CS
gravity is

(107)

In Table I'V(a), we present the results of our analysis for the
different detector networks, whereas, in Fig. 3, we show
the 1o, 20, and 30 confidence level (CL) regions and the
posterior distributions of the GW parameters. In particular,
we note that the PPE parameter is weakly correlated with
d; and y;. The PPE parameter is constrained with an
accuracy of (10.93,6.70,5.91)M, for ET, ET + CEl, and
ET + CE1 + CE2, respectively.

In Fig. 4, we compare the results obtained from 3G
detectors with those of the 2G detector network, keeping
the localization parameters fixed at their fiducial values.
Specifically, we quantify the deviations of the posterior
distributions from the injected values of the GW param-
eters. As such, we highlight an improvement on the PPE
parameter of a factor ~18.

B. Symmetric teleparallel gravity

Given Egs. (80)—(83), we can define the PPE parameter
set in ST gravity as follows:

%] )
Oppr = {—Oﬁl ’—0}-
p " Mpy

(108)
The Markov Chain Monte Carlo (MCMC) results are listed
in Table IV(b) and plotted in Fig. 5. It is worth noticing that in
all configurations the quantity %’V turns out to be uncon-
strained, as it is not characterized by a specific posterior
distribution, which simply reflects the chosen priors. The
same behavior occurs also by enlarging the priors. On the
other hand, the parameter f3;  is bounded with an accuracy of
0.08, 0.06, and 0.074 under the ET, ET + CEl, and ET +
CEl + CE2 configurations, respectively. The same detector

networks are capable of constraining %’V with an accuracy of
(1.80, 1.70, 1.53)M% Mpc~!, respectively.

Similar to the case of CS gravity, we compare the results
obtained for the 3G and 2G detector networks in Fig. 6.

104062-10



PARITY VIOLATION IN GRAVITATIONAL WAVES AND ... PHYS. REV. D 109, 104062 (2024)

— ET
— ET + CE1L
— ET + CE1 + CE2

5

b o b —

s,

O.’]D

I}

PRI

Q& N\ N
S E S P
DD S0
M Mo
M, PV

FIG. 3. The 68%, 95%, and 99% CL contours, with posterior distributions, for the free parameters of CS gravity under different
detector configurations. The straight lines indicate the injected values of the GW parameters.
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FIG. 4. Deviations of the posterior probability distributions from the injected values of the GW parameters for CS gravity. The injected
signal is analyzed for both the 3G detector (ET + CE1 + CE2) and the 2G detector (LVK) configurations. The horizontal dashed lines
indicate zero deviations from the injected signal.
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FIG. 5. The 68%, 95%, and 99% CL contours, with posterior distributions, for the free parameters of ST gravity under different
detector configurations. The straight lines indicate the injected values of the GW parameters.
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FIG. 6. Deviations of the posterior probability distributions from the injected values of the GW parameters for ST gravity. The injected
signal is analyzed for both the 3G detector (ET + CE1 + CE2) and the 2G detector (LVK) configurations. The horizontal dashed lines
indicate zero deviations from the injected signal.
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FIG. 7. The 68%, 95%, and 99% CL contours, with posterior distributions, for the free parameters of HL gravity under different
detector configurations. The straight lines indicate the injected values of the GW parameters.
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FIG. 8.

Deviations of the posterior probability distributions from the injected values of the GW parameters for HL gravity. The injected

signal is analyzed for both the 3G detector (ET + CE1 + CE2) and the 2G detector (LVK) configurations. The horizontal dashed lines

indicate zero deviations from the injected signal.

We note that Aj—‘lfv remains unconstrained also for the 2G
detectors. Moreover, the two configurations provide similar
accuracy on the parameter f;. However, the posterior
distribution of the latter from the 3G detectors peaks around
0, while the result of the 2G detectors is almost flat in the

same confidence interval. Finally, the 3G detector network

. 5
improves the accuracy on 37% by a factor ~15.

C. Horava-Lifshitz gravity

The PPE parameter set in the case of HL gravity is
provided by Egs. (99)-(102):

ol ]
PPE — 7 a3 (°
Mpy’ M3y

We show the posterior distributions in Fig. 7, and the best-
fit values of the GW parameters in Table IV(c). We can see

(109)

P . o 6. .
that % is unconstrained, while MLI?V is bounded with an

PV
accuracy of 1.78, 1.08, and 1.00 under the ET, ET + CEl,
and ET + CEl + CE2 networks, respectively.
Furthermore, also for HL gravity, in Fig. 8 we highlight
the improvement one may obtain through 3G detectors
compared to the 2G detector network. In fact, the accuracy

&, .
on Mi;’v increase by a factor ~19.

V. SUMMARY AND DISCUSSION

We considered parity violation in the propagation of
GWs through a newly proposed PPE formalism. In par-
ticular, we framed deviations from GR through a general
parametrized framework taking into account the modified
amplitude and phase of GWs. We focused on the cases of
CS, ST, and HL gravity, where departures from Einstein’s
theory may emerge from additional parity-violating terms
included in the gravitational action. Then, we outlined the
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geometrical and physical characteristics of future ground-
based GW interferometers, such as ET and CE. We showed
how they can be used to probe parity violations, and we
described the method to constrain the PPE expansion
parameters.

Using the sensitivities of 3G detectors, we simulated GW
signals from binary systems, such as BBH and BNS, and
we obtained 68%, 95%, and 99% numerical bounds on
both binary and PPE parameters for different GW detector
networks. The accuracy of the GW and PPE parameters
increases when more detectors are considered in the net-
work, independently from the theoretical framework. As
the SNR is very high, the uncertainties on the GW
parameters turn out to be quite low. Indeed, for all models
under study, we constrained the chirp mass and mass ratio
with a relative accuracy of ~(0.04,0.03,0.01)% and
~(3,1.5,1)% for ET, ET + CEl, and ET + CEl + CE2,
respectively. Additionally, the precision on d; spans from
~0.2% in the case of ET alone to ~0.1% and ~0.08% when
ET is combined with one or two CE detectors. Moreover,
we bounded the spin parameter y; with a relative accuracy
of ~(20,10,3)% and ~(20, 10,2)% for the three detector
configurations, respectively. As regards the PPE parame-
ters, we found that one of them remains unconstrained in
ST and HL gravity. This feature may be related to the low-
frequency cutoff. In fact, to reduce the computational time,
we fixed the minimum frequency of 10 Hz. However, one
might extend the analysis to the 1-10 Hz frequency band,
and increase the duration of the signal, to improve the
constraints on GW parameters.

Furthermore, we compared the results of the com-
bined 3G detectors with those of the 2G detector
configuration of LVK interferometers. For each parity-
violating model, we showed the deviations of the
posterior distributions of the fitting parameters with
respect to the injected GR signal. Our results indicate
an improvement of roughly 1 order of magnitude
compared to those obtained for the 2G detectors.
Specifically, from the LVK configuration, we obtained
a relative accuracy of 0.5% on M, 7% on the mass
ratio, 1.6% on d;, and 63% and 80% on y; and y,,
respectively. We note that the constraint on the Agg
waveform parameters are almost independent of the
theoretical model also under the LVK analysis.

Finally, it is worthwhile to stress that the PPE
parameters enter the waveform at higher orders of the
PN expansion. Hence, a more accurate waveform would
be needed in the future to detect with greater precision
deviations from GR that arise from parity-violating
theories. In future investigations, we also plan to perform
a more comprehensive Bayesian analysis, allowing the
localization parameters to vary freely in the numerical
simulations.

ACKNOWLEDGMENTS

The authors acknowledge the financial support of
INFN—Sezione di Napoli, iniziative specifiche QGSKY,
MOONLIGHT and TEONGRAV. D. V. acknowledges the
FCT Project No. PTDC/FIS-AST/0054/2021.

[1] B.P. Abbott et al. (LIGO Scientific, Virgo, Fermi-GBM,
and INTEGRAL Collaborations), Gravitational waves
and gamma-rays from a binary neutron star merger:
GW170817 and GRB 170817A, Astrophys. J. Lett. 848,
L13 (2017).

[2] B.P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GWTC-1: A gravitational-wave transient catalog of
compact binary mergers observed by LIGO and Virgo
during the first and second observing runs, Phys. Rev. X
9, 031040 (2019).

[3] R. Abbott er al. (LIGO Scientific, VIRGO, and KAGRA
Collaborations), GWTC-3: Compact binary coalescences
observed by LIGO and Virgo during the second part of the
third observing run, Phys. Rev. X 13, 041039 (2023).

[4] J. M. Ezquiaga and M. Zumalacarregui, Dark energy after
GW170817: Dead ends and the road ahead, Phys. Rev. Lett.
119, 251304 (2017).

[5] G. Farrugia, J. Levi Said, V. Gakis, and E.N. Saridakis,
Gravitational waves in modified teleparallel theories, Phys.
Rev. D 97, 124064 (2018).

[6] E. Belgacem, Y. Dirian, S. Foffa, and M. Maggiore,
Modified gravitational-wave propagation and standard
sirens, Phys. Rev. D 98, 023510 (2018).

[7] L. Jarv, M. Riinkla, M. Saal, and O. Vilson, Nonmetricity
formulation of general relativity and its scalar-tensor
extension, Phys. Rev. D 97, 124025 (2018).

[8] B.P. Abbott er al. (LIGO Scientific and Virgo Collabora-
tions), Tests of general relativity with GW170817, Phys.
Rev. Lett. 123, 011102 (2019).

[9] B.P. Abbott er al. (LIGO Scientific and Virgo Collabora-
tions), Tests of general relativity with the binary black hole
signals from the LIGO-Virgo catalog GWTC-1, Phys. Rev.
D 100, 104036 (2019).

[10] G.R. Bengochea and R. Ferraro, Dark torsion as the cosmic
speed-up, Phys. Rev. D 79, 124019 (2009).

[11] T. Clifton, P.G. Ferreira, A. Padilla, and C. Skordis,
Modified gravity and cosmology, Phys. Rep. 513, 1 (2012).

[12] R. D’Agostino and O. Luongo, Growth of matter perturba-
tions in nonminimal teleparallel dark energy, Phys. Rev. D
98, 124013 (2018).

104062-17


https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.13.041039
https://doi.org/10.1103/PhysRevLett.119.251304
https://doi.org/10.1103/PhysRevLett.119.251304
https://doi.org/10.1103/PhysRevD.97.124064
https://doi.org/10.1103/PhysRevD.97.124064
https://doi.org/10.1103/PhysRevD.98.023510
https://doi.org/10.1103/PhysRevD.97.124025
https://doi.org/10.1103/PhysRevLett.123.011102
https://doi.org/10.1103/PhysRevLett.123.011102
https://doi.org/10.1103/PhysRevD.100.104036
https://doi.org/10.1103/PhysRevD.100.104036
https://doi.org/10.1103/PhysRevD.79.124019
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1103/PhysRevD.98.124013
https://doi.org/10.1103/PhysRevD.98.124013

CALIFANO, D’AGOSTINO, and VERNIERI

PHYS. REV. D 109, 104062 (2024)

[13] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Modified
gravity theories on a nutshell: Inflation, bounce and late-
time evolution, Phys. Rep. 692, 1 (2017).

[14] R. D’Agostino, Holographic dark energy from nonadditive
entropy: Cosmological perturbations and observational
constraints, Phys. Rev. D 99, 103524 (2019).

[15] S. Capozziello, R. D’Agostino, and O. Luongo, Extended
gravity cosmography, Int. J. Mod. Phys. D 28, 1930016
(2019).

[16] R. D’Agostino and R. C. Nunes, Measurements of H in
modified gravity theories: The role of lensed quasars in the
late-time Universe, Phys. Rev. D 101, 103505 (2020).

[17] R. D’Agostino, O. Luongo, and M. Muccino, Healing the
cosmological constant problem during inflation through a
unified quasi-quintessence matter field, Classical Quantum
Gravity 39, 195014 (2022).

[18] K.S. Stelle, Classical gravity with higher derivatives, Gen.
Relativ. Gravit. 9, 353 (1978).

[19] A.A. Starobinsky, A new type of isotropic cosmo-
logical models without singularity, Phys. Lett. 91B, 99
(1980).

[20] R. Ferraro and F. Fiorini, Modified teleparallel gravity:
Inflation without inflaton, Phys. Rev. D 75, 084031 (2007).

[21] S. Deser and R.P. Woodard, Nonlocal cosmology, Phys.
Rev. Lett. 99, 111301 (2007).

[22] T.P. Sotiriou and V. Faraoni, f(R) theories of gravity, Rev.
Mod. Phys. 82, 451 (2010).

[23] S. Capozziello, R. D’ Agostino, and O. Luongo, The phase-
space view of non-local gravity cosmology, Phys. Lett. B
834, 137475 (2022).

[24] F. Bajardi and R. D’Agostino, Late-time constraints on
modified Gauss-Bonnet cosmology, Gen. Relativ. Gravit.
55, 49 (2023).

[25] S. Capozziello and R. D’Agostino, Reconstructing the
distortion function of non-local cosmology: A model-
independent approach, Phys. Dark Universe 42, 101346
(2023).

[26] S. Mirshekari, N. Yunes, and C.M. Will, Constraining
generic Lorentz violation and the speed of the graviton
with gravitational waves, Phys. Rev. D 85, 024041 (2012).

[27] M. Mewes, Signals for Lorentz violation in gravitational
waves, Phys. Rev. D 99, 104062 (2019).

[28] J.M. Ezquiaga, W. Hu, M. Lagos, and M.-X. Lin,
Gravitational wave propagation beyond general relativity:
Waveform distortions and echoes, J. Cosmol. Astropart.
Phys. 11 (2021) 048.

[29] C. Gong, T. Zhu, R. Niu, Q. Wu, J.-L. Cui, X. Zhang, W.
Zhao, and A. Wang, Gravitational wave constraints on
nonbirefringent dispersions of gravitational waves due to
Lorentz violations with GWTC-3 events, Phys. Rev. D 107,
124015 (2023).

[30] V. A. Kostelecky and M. Mewes, Testing local Lorentz
invariance with gravitational waves, Phys. Lett. B 757, 510
(2016).

[31] A. Nishizawa and T. Kobayashi, Parity-violating gravity and
GW170817, Phys. Rev. D 98, 124018 (2018).

[32] R. Nair, S. Perkins, H. O. Silva, and N. Yunes, Fundamental
physics implications for higher-curvature theories from
binary black hole signals in the LIGO-Virgo catalog
GWTC-1, Phys. Rev. Lett. 123, 191101 (2019).

[33] S. Wang and Z.-C. Zhao, Tests of CPT invariance in
gravitational waves with LIGO-Virgo catalog GWTC-1,
Eur. Phys. J. C 80, 1032 (2020).

[34] Y.-F. Wang, S. M. Brown, L. Shao, and W. Zhao, Tests of
gravitational-wave birefringence with the open gravita-
tional-wave catalog, Phys. Rev. D 106, 084005 (2022).

[35] F. Bombacigno, F. Moretti, S. Boudet, and G.J. Olmo,
Landau damping for gravitational waves in parity-violating
theories, J. Cosmol. Astropart. Phys. 02 (2023) 009.

[36] Z.-C. Zhao, Z. Cao, and S. Wang, Search for the birefrin-
gence of gravitational waves with the third observing run of
advanced LIGO-Virgo, Astrophys. J. 930, 139 (2022).

[37] L. Jenks, L. Choi, M. Lagos, and N. Yunes, Parametrized
parity violation in gravitational wave propagation, Phys.
Rev. D 108, 044023 (2023).

[38] A. Lue, L.-M. Wang, and M. Kamionkowski, Cosmological
signature of new parity violating interactions, Phys. Rev.
Lett. 83, 1506 (1999).

[39] S. Alexander and N. Yunes, Chern-Simons modified general
relativity, Phys. Rep. 480, 1 (2009).

[40] S. Kawai and J. Kim, Gauss—Bonnet Chern—Simons gravi-
tational wave leptogenesis, Phys. Lett. B 789, 145 (2019).

[41] F. Bajardi, D. Vernieri, and S. Capozziello, Exact solutions
in higher-dimensional Lovelock and AdSs Chern-Simons
gravity, J. Cosmol. Astropart. Phys. 11 (2021) 057.

[42] F. Sulantay, M. Lagos, and M. Bafiados, Chiral gravitational
waves in Palatini-Chern-Simons gravity, Phys. Rev. D 107,
104025 (2023).

[43] S. Boudet, F. Bombacigno, F. Moretti, and G.J. Olmo,
Torsional birefringence in metric-affine Chern-Simons grav-
ity: Gravitational waves in late-time cosmology, J. Cosmol.
Astropart. Phys. 01 (2023) 026.

[44] M. B. Green, J. H. Schwarz, and E. Witten, Superstring
Theory. Vol. 2: Loop Amplitudes, Anomalies and Phenom-
enology (Cambridge University Press, New York, 1988).

[45] M. Crisostomi, K. Noui, C. Charmousis, and D. Langlois,
Beyond Lovelock gravity: Higher derivative metric theories,
Phys. Rev. D 97, 044034 (2018).

[46] W. Zhao, T. Zhu, J. Qiao, and A. Wang, Waveform of
gravitational waves in the general parity-violating gravities,
Phys. Rev. D 101, 024002 (2020).

[47] J. Beltran Jiménez, L. Heisenberg, and T. Koivisto, Coinci-
dent general relativity, Phys. Rev. D 98, 044048 (2018).

[48] A. Conroy and T. Koivisto, Parity-violating gravity and
GW170817 in non-Riemannian cosmology, J. Cosmol.
Astropart. Phys. 12 (2019) 016.

[49] S. Capozziello and R. D’Agostino, Model-independent
reconstruction of f(Q) non-metric gravity, Phys. Lett. B
832, 137229 (2022).

[50] P. Horava, Quantum gravity at a Lifshitz point, Phys. Rev. D
79, 084008 (2009).

[51] T. Zhu, W. Zhao, Y. Huang, A. Wang, and Q. Wu, Effects of
parity violation on non-Gaussianity of primordial gravita-
tional waves in Horava-Lifshitz gravity, Phys. Rev. D 88,
063508 (2013).

[52] N. Yunes and F. Pretorius, Fundamental theoretical bias in
gravitational wave astrophysics and the parameterized post-
Einsteinian framework, Phys. Rev. D 80, 122003 (2009).

[53] N. Cornish, L. Sampson, N. Yunes, and F. Pretorius,
Gravitational wave tests of general relativity with the

104062-18


https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1103/PhysRevD.99.103524
https://doi.org/10.1142/S0218271819300167
https://doi.org/10.1142/S0218271819300167
https://doi.org/10.1103/PhysRevD.101.103505
https://doi.org/10.1088/1361-6382/ac8af2
https://doi.org/10.1088/1361-6382/ac8af2
https://doi.org/10.1007/BF00760427
https://doi.org/10.1007/BF00760427
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1103/PhysRevD.75.084031
https://doi.org/10.1103/PhysRevLett.99.111301
https://doi.org/10.1103/PhysRevLett.99.111301
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1016/j.physletb.2022.137475
https://doi.org/10.1016/j.physletb.2022.137475
https://doi.org/10.1007/s10714-023-03092-w
https://doi.org/10.1007/s10714-023-03092-w
https://doi.org/10.1016/j.dark.2023.101346
https://doi.org/10.1016/j.dark.2023.101346
https://doi.org/10.1103/PhysRevD.85.024041
https://doi.org/10.1103/PhysRevD.99.104062
https://doi.org/10.1088/1475-7516/2021/11/048
https://doi.org/10.1088/1475-7516/2021/11/048
https://doi.org/10.1103/PhysRevD.107.124015
https://doi.org/10.1103/PhysRevD.107.124015
https://doi.org/10.1016/j.physletb.2016.04.040
https://doi.org/10.1016/j.physletb.2016.04.040
https://doi.org/10.1103/PhysRevD.98.124018
https://doi.org/10.1103/PhysRevLett.123.191101
https://doi.org/10.1140/epjc/s10052-020-08628-x
https://doi.org/10.1103/PhysRevD.106.084005
https://doi.org/10.1088/1475-7516/2023/02/009
https://doi.org/10.3847/1538-4357/ac62d3
https://doi.org/10.1103/PhysRevD.108.044023
https://doi.org/10.1103/PhysRevD.108.044023
https://doi.org/10.1103/PhysRevLett.83.1506
https://doi.org/10.1103/PhysRevLett.83.1506
https://doi.org/10.1016/j.physrep.2009.07.002
https://doi.org/10.1016/j.physletb.2018.12.019
https://doi.org/10.1088/1475-7516/2021/11/057
https://doi.org/10.1103/PhysRevD.107.104025
https://doi.org/10.1103/PhysRevD.107.104025
https://doi.org/10.1088/1475-7516/2023/01/026
https://doi.org/10.1088/1475-7516/2023/01/026
https://doi.org/10.1103/PhysRevD.97.044034
https://doi.org/10.1103/PhysRevD.101.024002
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.1088/1475-7516/2019/12/016
https://doi.org/10.1088/1475-7516/2019/12/016
https://doi.org/10.1016/j.physletb.2022.137229
https://doi.org/10.1016/j.physletb.2022.137229
https://doi.org/10.1103/PhysRevD.79.084008
https://doi.org/10.1103/PhysRevD.79.084008
https://doi.org/10.1103/PhysRevD.88.063508
https://doi.org/10.1103/PhysRevD.88.063508
https://doi.org/10.1103/PhysRevD.80.122003

PARITY VIOLATION IN GRAVITATIONAL WAVES AND ...

PHYS. REV. D 109, 104062 (2024)

parameterized post-Einsteinian framework, Phys. Rev. D
84, 062003 (2011).

[54] C. Huwyler, A. Klein, and P. Jetzer, Testing general
relativity with LISA including spin precession and higher
harmonics in the waveform, Phys. Rev. D 86, 084028
(2012).

[55] N. Loutrel, P. Pani, and N. Yunes, Parametrized post-
Einsteinian framework for precessing binaries, Phys. Rev.
D 107, 044046 (2023).

[56] W. Zhao, T. Liu, L. Wen, T. Zhu, A. Wang, Q. Hu, and C.
Zhou, Model-independent test of the parity symmetry of
gravity with gravitational waves, Eur. Phys. J. C 80, 630
(2020).

[57] Y.-F. Wang, R. Niu, T. Zhu, and W. Zhao, Gravitational
wave implications for the parity symmetry of gravity in the
high energy region, Astrophys. J. 908, 58 (2021).

[58] M. Okounkova, W.M. Farr, M. Isi, and L.C. Stein,
Constraining gravitational wave amplitude birefringence
and Chern-Simons gravity with GWTC-2, Phys. Rev. D
106, 044067 (2022).

[59] M. Maggiore et al., Science case for the Einstein Telescope,
J. Cosmol. Astropart. Phys. 03 (2020) 050.

[60] M. Branchesi et al., Science with the Einstein Telescope: A
comparison of different designs, J. Cosmol. Astropart. Phys.
07 (2023) 068.

[61] D. Reitze et al., Cosmic Explorer: The U.S. contribution to
gravitational-wave astronomy beyond LIGO, Bull. Am.
Astron. Soc. 51, 035 (2019).

[62] M. Evans et al., A horizon study for Cosmic Explorer:
Science, observatories, and community, arXiv:2109
.09882.

[63] R.-G. Cai and T. Yang, Estimating cosmological para-
meters by the simulated data of gravitational waves
from the Einstein Telescope, Phys. Rev. D 95, 044024
(2017).

[64] E. Belgacem, Y. Dirian, S. Foffa, and M. Maggiore,
Gravitational-wave luminosity distance in modified gravity
theories, Phys. Rev. D 97, 104066 (2018).

[65] A. Nishizawa and S. Arai, Generalized framework for
testing gravity with gravitational-wave propagation. III.
Future prospect, Phys. Rev. D 99, 104038 (2019).

[66] R. D’Agostino and R.C. Nunes, Probing observational
bounds on scalar-tensor theories from standard sirens, Phys.
Rev. D 100, 044041 (2019).

[67] A. Bonilla, R. D’Agostino, R. C. Nunes, and J. C.N. de
Araujo, Forecasts on the speed of gravitational waves at
high z, J. Cosmol. Astropart. Phys. 03 (2020) 015.

[68] M. Kalomenopoulos, S. Khochfar, J. Gair, and S. Arai,
Mapping the inhomogeneous Universe with standard sirens:
degeneracy between inhomogeneity and modified gravity
theories, Mon. Not. R. Astron. Soc. 503, 3179 (2021).

[69] S. Mukherjee, B. D. Wandelt, and J. Silk, Testing the general
theory of relativity using gravitational wave propagation
from dark standard sirens, Mon. Not. R. Astron. Soc. 502,
1136 (2021).

[70] T. Baker and I. Harrison, Constraining scalar-tensor
modified gravity with gravitational waves and large scale
structure surveys, J. Cosmol. Astropart. Phys. 01 (2021)
068.

[71] G. Tasinato, A. Garoffolo, D. Bertacca, and S. Matarrese,
Gravitational-wave cosmological distances in scalar-tensor
theories of gravity, J. Cosmol. Astropart. Phys. 06 (2021)
050.

[72] A. Allahyari, R. C. Nunes, and D. F. Mota, No slip gravity in
light of LISA standard sirens, Mon. Not. R. Astron. Soc.
514, 1274 (2022).

[73] M. Califano, I. de Martino, D. Vernieri, and S. Capozziello,
Constraining ACDM cosmological parameters with Ein-
stein Telescope mock data, Mon. Not. R. Astron. Soc. 518,
3372 (2023).

[74] R. D’Agostino and R.C. Nunes, Forecasting con-
straints on deviations from general relativity in f(Q)
gravity with standard sirens, Phys. Rev. D 106, 124053
(2022).

[75] M. Califano, I. de Martino, D. Vernieri, and S. Capozziello,
Exploiting the Einstein Telescope to solve the Hubble
tension, Phys. Rev. D 107, 123519 (2023).

[76] R. D’Agostino, M. Califano, N. Menadeo, and D. Vernieri,
Role of spatial curvature in the primordial gravi-
tational wave power spectrum, Phys. Rev. D 108, 043538
(2023).

[77] N. Yunes, R. O’Shaughnessy, B. J. Owen, and S. Alexander,
Testing gravitational parity violation with coincident gravi-
tational waves and short gamma-ray bursts, Phys. Rev. D 82,
064017 (2010).

[78] B. S. Sathyaprakash and B. F. Schutz, Physics, astrophysics
and cosmology with gravitational waves, Living Rev.
Relativity 12, 2 (2009).

[79] T. Damour, A. Gopakumar, and B.R. Iyer, Phasing of
gravitational waves from inspiralling eccentric binaries,
Phys. Rev. D 70, 064028 (2004).

[80] R. Jackiw and S.Y. Pi, Chern-Simons modification of
general relativity, Phys. Rev. D 68, 104012 (2003).

[81] S. Alexander and J. Martin, Birefringent gravitational waves
and the consistency check of inflation, Phys. Rev. D 71,
063526 (2005).

[82] J.M. Nester and H.-J. Yo, Symmetric teleparallel general
relativity, Chin. J. Phys. (Taipei) 37, 113 (1999).

[83] T. Zhu, Q. Wu, A. Wang, and F.-W. Shu, U(1) symmetry and
elimination of spin-O gravitons in Horava-Lifshitz gravity
without the projectability condition, Phys. Rev. D 84,
101502 (2011).

[84] T. Zhu, E.-W. Shu, Q. Wu, and A. Wang, General covariant
Horava-Lifshitz gravity without projectability condition and
its applications to cosmology, Phys. Rev. D 85, 044053
(2012).

[85] N. Muttoni, D. Laghi, N. Tamanini, S. Marsat, and D.
Izquierdo-Villalba, Dark siren cosmology with binary black
holes in the era of third-generation gravitational wave
detectors, Phys. Rev. D 108, 043543 (2023).

[86] G. Ashton et al., Bilby: A user-friendly Bayesian inference
library for gravitational-wave astronomy, Astrophys. J.
Suppl. Ser. 241, 27 (2019).

[87] I. M. Romero-Shaw et al., Bayesian inference for com-
pact binary coalescences with Bilby: Validation and
application to the first LIGO-Virgo gravitational-wave
transient catalogue, Mon. Not. R. Astron. Soc. 499, 3295
(2020).

104062-19


https://doi.org/10.1103/PhysRevD.84.062003
https://doi.org/10.1103/PhysRevD.84.062003
https://doi.org/10.1103/PhysRevD.86.084028
https://doi.org/10.1103/PhysRevD.86.084028
https://doi.org/10.1103/PhysRevD.107.044046
https://doi.org/10.1103/PhysRevD.107.044046
https://doi.org/10.1140/epjc/s10052-020-8211-4
https://doi.org/10.1140/epjc/s10052-020-8211-4
https://doi.org/10.3847/1538-4357/abd7a6
https://doi.org/10.1103/PhysRevD.106.044067
https://doi.org/10.1103/PhysRevD.106.044067
https://doi.org/10.1088/1475-7516/2020/03/050
https://doi.org/10.1088/1475-7516/2023/07/068
https://doi.org/10.1088/1475-7516/2023/07/068
https://arXiv.org/abs/2109.09882
https://arXiv.org/abs/2109.09882
https://doi.org/10.1103/PhysRevD.95.044024
https://doi.org/10.1103/PhysRevD.95.044024
https://doi.org/10.1103/PhysRevD.97.104066
https://doi.org/10.1103/PhysRevD.99.104038
https://doi.org/10.1103/PhysRevD.100.044041
https://doi.org/10.1103/PhysRevD.100.044041
https://doi.org/10.1088/1475-7516/2020/03/015
https://doi.org/10.1093/mnras/stab557
https://doi.org/10.1093/mnras/stab001
https://doi.org/10.1093/mnras/stab001
https://doi.org/10.1088/1475-7516/2021/01/068
https://doi.org/10.1088/1475-7516/2021/01/068
https://doi.org/10.1088/1475-7516/2021/06/050
https://doi.org/10.1088/1475-7516/2021/06/050
https://doi.org/10.1093/mnras/stac1445
https://doi.org/10.1093/mnras/stac1445
https://doi.org/10.1093/mnras/stac3230
https://doi.org/10.1093/mnras/stac3230
https://doi.org/10.1103/PhysRevD.106.124053
https://doi.org/10.1103/PhysRevD.106.124053
https://doi.org/10.1103/PhysRevD.107.123519
https://doi.org/10.1103/PhysRevD.108.043538
https://doi.org/10.1103/PhysRevD.108.043538
https://doi.org/10.1103/PhysRevD.82.064017
https://doi.org/10.1103/PhysRevD.82.064017
https://doi.org/10.12942/lrr-2009-2
https://doi.org/10.12942/lrr-2009-2
https://doi.org/10.1103/PhysRevD.70.064028
https://doi.org/10.1103/PhysRevD.68.104012
https://doi.org/10.1103/PhysRevD.71.063526
https://doi.org/10.1103/PhysRevD.71.063526
https://doi.org/10.1103/PhysRevD.84.101502
https://doi.org/10.1103/PhysRevD.84.101502
https://doi.org/10.1103/PhysRevD.85.044053
https://doi.org/10.1103/PhysRevD.85.044053
https://doi.org/10.1103/PhysRevD.108.043543
https://doi.org/10.3847/1538-4365/ab06fc
https://doi.org/10.3847/1538-4365/ab06fc
https://doi.org/10.1093/mnras/staa2850
https://doi.org/10.1093/mnras/staa2850

CALIFANO, D’AGOSTINO, and VERNIERI PHYS. REV. D 109, 104062 (2024)

[88] B.P. Abbott et al. (LIGO Scientific and Virgo Collabora- coherent inspiral template and spin-dependent quadrupolar
tions), Observation of gravitational waves from a binary corrections, Phys. Rev. D 108, 023021 (2023).
black hole merger, Phys. Rev. Lett. 116, 061102 (2016). [90] G. Ashton and C. Talbot, Bilby-MCcMC: An MCMC sampler
[89] M. Vaglio, C. Pacilio, A. Maselli, and P. Pani, Bayesian for gravitational-wave inference, Mon. Not. R. Astron. Soc.
parameter estimation on boson-star binary signals with a 507, 2037 (2021).

104062-20


https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevD.108.023021
https://doi.org/10.1093/mnras/stab2236
https://doi.org/10.1093/mnras/stab2236

