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The rapid progress in gravitational wave astronomy has provided an opportunity for investigating the
presence of long-range scalar forces that exclusively manifest around astrophysical black holes. In this
paper, we explore a new possibility in this context, particularly in connection to the hypothesis that
astrophysical black holes might be horizonless ultracompact objects (UCOs). In the absence of horizons,
UCOs could feature unique interiors with extreme environments. This could help generate nontrivial scalar
profiles and significant scalar charges. For demonstration, we consider 2-2-holes in quadratic gravity as a
concrete example of UCOs. These objects can be formed by ordinary gases and closely resemble black
holes externally. However, they have distinct interiors characterized by high curvatures and substantial
redshift. In particular, the gases inside could reach extremely high temperatures or densities, making them
an ideal object for investigating the generation of scalar profiles by UCOs. Within a minimal model of the
scalar field, we find that this unique environment enables the generation of a substantial scalar charge for
astrophysical 2-2-holes, which is challenging for other stellar objects. The predicted scalar charge-to-mass
ratio of 2-2-holes remains nearly constant across a wide range of masses, offering different predictions for
gravitational wave observations compared to other mechanisms.
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I. INTRODUCTION

Light scalar fields are commonly predicted in theories
that go beyond the Standard Model (SM) of particle
physics, as well as in various extensions of general
relativity (GR). In some instances, these scalar fields could
potentially mediate additional long-range forces, thereby
violating the weak equivalence principle in GR. For
decades, extensive efforts have been made to search for
such long-range forces through laboratory experiments
[1–4] and astronomical observations of celestial objects
[5–9]. These investigations have yielded null search results,
thus imposing stringent constraints on the strength of
potential new forces across a broad range of distances,
spanning from the order of A.U. down to the micron scale
(see Refs. [10,11] for reviews).
The recent advancements in gravitational wave astro-

nomy have provided new avenues for investigating the
additional long-range forces. This is particularly important
to search for scalar forces that manifest exclusively in the
strong gravity regime. One generic mechanism underlying
this phenomenon is the variation in the expectation value of
the scalar field within compact objects compared to that in
the weak gravity regime. As a result, a nontrivial scalar
profile emerges in the strong gravity regime, leading to a

nonzero scalar charge for an external observer situated at a
far distance. Specific theoretical realizations of this concept
have been actively studied in literature. One realization
involves spontaneous scalarization in certain scalar-tensor
theories of modified gravity [12]. In this scenario, the
nonminimal coupling of the scalar field to matter or
spacetime curvature can lead to the formation of scalarized
neutron stars [12,13] or scalarized black holes [13–18],
depending on specific details (see Ref. [19] for a review and
further references on spontaneous scalarization). The sec-
ond case considers the influence of finite density effects
on QCD axions, which can give rise to scalarized neutron
stars [20,21]. Other mechanisms include violations of a
specific set of energy conditions [22–25] or the allowance
for a time-dependent scalar field [26–28]. From an obser-
vational standpoint, the cases predicting scalarized neutron
stars face stronger constraints due to precise electro-
magnetic observations of pulsar binaries and the recent
gravitational wave observation of neutron star binary
inspirals by the LIGO-Virgo-KAGRA (LVK) collaboration
[12,29–34]. Conversely, the increasing number of detected
binary black hole mergers by the LVK and further obser-
vations involving supermassive black holes would play a
crucial role in exploring nontrivial scalar profiles that
exclusively manifest around black holes.
In this paper, we propose a new possibility concerning

the sourcing of light scalar fields by astronomical black
holes, specifically if these black holes are horizonless
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ultracompact objects (UCOs). This hypothesis of UCOs
has recently garnered increased attention due to the
potential for direct mapping of the immediate vicinity
around black hole horizons through gravitational wave
observations and the potential significance of near-horizon
corrections in addressing associated theoretical challenges
(see Ref. [35] for a review on UCOs). An intriguing
candidate for UCOs is the 2-2-holes [36,37], representing
a new family of solutions in quadratic gravity that may
serve as the end point of gravitational collapse in the theory.
These objects closely resemble black hole in their exterior,
but possess a distinctive interior characterized by extremely
high curvatures and a significant redshift. Depending on the
specific models, the matter source residing within the deep
gravitational potential of 2-2-hole interiors can possess
an exceptionally high temperature or density [38–41].
This unique environment provides a promising opportunity
to generate nontrivial scalar profiles of astrophysical black
holes for a minimal model of the scalar field that features
standard kinetic terms, minimal gravitational coupling,
and is consistent with the necessary energy condition.
This enables us to probe physics at extremely high energy
levels that are typically inaccessible. Furthermore, it offers
an alternative perspective on the potential violation of the
no-scalar-hair theorems for astrophysical black holes
[42,43] (see Ref. [44] for a review on the no-scalar-hair
theorems). From an observational standpoint, the distinc-
tive scaling behavior of the novel 2-2-hole interior may
yield different phenomenological implications compared to
other mechanisms.
This paper is organized as follows. In Sec. II, we delve

into the influence of environmental effects on the scalar
potential for a minimal model, specifically focusing on
high temperature corrections and high density corrections.
In Sec. III, we investigate the nontrivial scalar profile for
stellar objects in the test field limit using the minimal
model. We start by examining ordinary stellar objects and
then shift our focus to 2-2-holes, exploring the implications
of their differing characteristics in this specific context. In
Sec. IV, we discuss the potential observational implications
for scalarized 2-2-holes through gravitational wave obser-
vations. We conclude in Sec. V. The Appendix discusses
the backreaction of the scalar field and the connection to
no-scalar-hair theorems.

II. SCALAR POTENTIAL WITH
ENVIRONMENTAL EFFECTS

In a dense and hot environment, the effective Lagrangian
for a real scalar ϕ with standard kinetic terms and minimal
gravitational coupling can be expressed as

Lϕ¼−
1

2
∂
μϕ∂μϕ−VðϕÞ; VðϕÞ¼V0ðϕÞþVTðϕÞþVρðϕÞ;

ð1Þ

where V0ðϕÞ denotes the scalar potential in the vacuum.
The environmental effects are captured by VTðϕÞ and
VρðϕÞ, which account for the finite temperature and density
corrections, respectively. These corrections are expected to
become significant within stellar objects, altering the
expected value of the scalar field and resulting in a
nontrivial scalar profile that can be observed from the
exterior of the stellar objects.
For illustrative purposes, we adopt a minimal model of

the scalar field ϕ in this paper, utilizing the commonly used
double-well potential,

V0ðϕÞ¼−
1

2
μ2ϕ2þ λ

4
ϕ4¼−

1

4
m2

ϕϕ
2þ m2

ϕ

8ϕ2
0

ϕ4; ð2Þ

where ϕ0 ¼
ffiffiffiffiffiffiffiffiffi
μ2=λ

p
> 0 and m2

ϕ ¼ 2μ2 denote the vacuum
expectation value (VEV) and the scalar mass.1 This form of
potential has also been encompassed in the improved no-
scalar-hair theorems from Bekenstein [43]. Therefore, this
minimal case is sufficient to demonstrate how the no-scalar-
hair theorems are violated in the context of not quite black
holes. Moreover, in addition to the self-interaction, we also
consider Yukawa coupling of ϕ to a Dirac fermion ψf, with

Lf ¼ ψ̄fði=∂ −mf;0Þψf − gϕfϕψ̄fψf: ð3Þ

The fermion mass in the vacuum is given by
mf ¼ mf;0 þ gϕfϕ0, where mf;0 denotes the bare mass.
As we will discuss in detail later, when finite temperature

or density corrections are significant, they can be effec-
tively approximated by either a linear correction term or a
quadratic correction term. The full potential can then be
generally parametrized as

VðϕÞ ≈ V0ðϕÞ þ Fϕþ 1

2
Gϕ2

≈ Fϕ −
1

4
ðm2

ϕ − 2GÞϕ2 þ m2
ϕ

8ϕ2
0

ϕ4; ð4Þ

where F and G represent the coefficients for linear and
quadratic terms, respectively. For convenience, they are
referred to as the F-term and G-term cases, respectively. In
the scalar field equation of motion (EOM), the linear term
introduces an effective force and the quadratic term leads to
corrections to the effective mass.
For an intuitive understanding, it is helpful to consider

the scalar field EOM as an equation that governs the time
evolution of a particle along a single spatial direction in
classical mechanics, where −VðϕÞ becomes the effective

1Here, the vacuum is chosen as the minimum at ϕ ¼ ϕ0 > 0.
In case the other minimum −ϕ0 is chosen, the subsequent
discussion for the F-term case would remain the same if we
flip the signs of F, gϕf , and δϕ accordingly.

XIMENG LI and JING REN PHYS. REV. D 109, 104061 (2024)

104061-2



potential for the particle. A nontrivial scalar profile can be
expected if a new maximum of −VðϕÞ higher than the one
at vacuum is developed in the stellar interior due to
environmental effects. In particular, the resulting scalar
profile corresponds to the particle starting to fall off slightly
away from the new maximum at the initial time and
stopping right at the vacuum at infinity due to friction.
Figure 1 provides a schematic illustration of the effective

potential for the particle. In the G-term case, a new
maximum of −VðϕÞ can be obtained at ϕ ¼ 0 if the
quadratic term flips the sign with G≳m2

ϕ=2. A nontrivial
scalar profile would then develop, with ϕ evolving from
some value slightly above zero to the VEV from the left. In
the F-term case, a new maximum, higher than that at the
VEV, develops at ϕ > ϕ0 and smoothly moves away from
ϕ0 for a negative F. This is in contrast to the other case,
where G has to exceed a certain threshold value to enable
the existence of the new maximum. A nontrivial scalar
profile develops for this case, with ϕ evolving from some
value slightly below the new maximum to the VEV from
the right. It is worth noting that in both scenarios, the scalar
field EOMs are nonlinear, thereby precluding their analysis
as eigenvalue problems. This contrasts with the analysis of
scalarized black holes within the context of quadratic
scalar-Gauss-Bonnet gravity in Ref. [13], where the
EOM is linear and a nontrivial scalar profile emerges only
for discrete values of the associated coupling parameter.
Next, we will derive the explicit forms of F and G

from the environmental effects. For the finite-temperature

effects, we consider one-loop corrections,

VTðϕ; TÞ ¼ IBðmϕðϕÞ; TÞ þ 4IFðmfðϕÞ; TÞ; ð5Þ

where the contribution from the bosonic and fermionic
degrees of freedom are given by [45]

IB;FðmiðϕÞ;TÞ

≡� T4

2π2

Z
∞

0

dyy2 ln

�
1∓ exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2þm2ðϕÞ

T2

r ��
; ð6Þ

where the þ (−) and − (þ) sign at the front (in the
integrand) are for bosons (fermions). miðϕÞ denotes the
field dependent mass, with m2

ϕðϕÞ ¼ − 1
2
m2

ϕ þ 3
2
m2

ϕϕ
2=ϕ2

0

and mfðϕÞ ¼ mf;0 þ gϕfϕ0. Note that we ignore the con-
tribution from the resummed thermal daisy loops for the
bosonic Matsubara zero modes in Eq. (5), i.e.
JBðmϕðϕÞ; Πϕ; TÞ ≡ 1

12π T½m3
ϕðϕÞ − ðm2

ϕðϕÞ þ ΠϕÞ3=2�,
where Πϕ ∝ T2 is the thermal mass [46,47]. In cases where
VT is non-negligible, i.e., in the high-temperature expan-
sion, we have confirmed that the contribution of JB is
significantly smaller than that of other terms.
Although the close form of VTðϕ; TÞ in Eq. (5) is absent,

there are good approximations at both high and low
temperature limits. In the high temperature limit, i.e.,
T ≫ miðϕÞ, we find [47]

VTðϕ; TÞ ¼ V0ðϕÞ −
π2

90
T4 þ 1

24
m2

ϕðϕÞT2 −
1

12π
m3

ϕðϕÞT þOðm4
ϕðϕÞÞ −

7π2

180
T4 þ 1

12
m2

fðϕÞT2 þOðm4
fðϕÞÞ

≈
1

6
gϕfT2mf;0ϕ −

1

4
m2

ϕ

�
1 −

T2

4ϕ2
0

−
g2ϕfT

2

3m2
ϕ

�
ϕ2 þ � � � : ð7Þ

FIG. 1. Schematic illustration of two different ways for obtaining a nontrivial scalar profile with environmental effects. In both panels,
the red and blue curves represent the potential with and without the environmental corrections. The open circle denotes the boundary
value of ϕ at r ¼ 0, and the vertical dashed line represents the VEV that ϕ asymptotically approaches at spatial infinity. Left: the G-term
case (quadratic correction) with G ≳m2

ϕ=2, where the scalar field moves to ϕ0 from the left. Right: the F-term case (linear correction)
with F < 0, where the scalar field moves to ϕ0 from the right.
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In the last line, we keep the field-dependent terms only at
the leading order of the high temperature expansion. The
corresponding F and G in Eq. (4) are then given by

FT ¼ 1

6
gϕfT2mf;0; GT ¼ 1

8

m2
ϕ

ϕ2
0

T2 þ 1

6
g2ϕfT

2: ð8Þ

Note that FT is linear in gϕf, whereas the contribution inGT

is quadratic in the coupling. In the low temperature limit,
i.e., T ≪ miðϕÞ, the finite-temperature corrections are
exponentially suppressed and have negligible effects.

Next, we consider the finite density effects by assuming
zero temperature. If the cold Fermi gas of ψf is part of the
matter source for the stellar object, the Yukawa coupling
term in Eq. (3) gives rise to the finite-density correction,

VρðϕÞ ¼ gϕf

Z
hψ̄fψfidϕ; ð9Þ

where hψ̄fψfi denotes the field dependent number density
of the Fermi gas, with

hψ̄fψfi ¼
2

ð2πÞ3
Z

kF

0

d3p
mfðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
fðϕÞ

q

¼ 1

2π2
mfðϕÞ

�
kF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

fðϕÞ þ k2F
q

−m2
fðϕÞtanh−1

kFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

fðϕÞ þ k2F
q

�

≈

8<
:

1
2π2

k2FmfðϕÞ þOðm3
fÞ; kF ≳mfðϕÞ

1
3π2

k3F þOðk4FÞ; kF ≲mfðϕÞ;
ð10Þ

where kF denotes the Fermi momentum at zero temper-
ature. In the last line, we consider the high and low density
limits to simplify the discussion. In the high density limit,
i.e., kF ≫ mfðϕÞ, we obtain VρðϕÞ ≈ 1

2π2
k2Fgϕfðmf;0 þ

1
2
gϕfϕÞϕ at the leading order. In this case, the correspond-

ing F and G are given by

Fρ≈
1

2π2
k2Fgϕfmf;0; Gρ≈

1

2π2
k2Fg

2
ϕf ðhigh kFÞ: ð11Þ

In the low density limit, i.e., kF ≪ mfðϕÞ, we obtain
VρðϕÞ ≈ 1

3π2
gϕfk3Fϕ at the leading order. Consequently,

only the effective force term is present, resulting in

Fρ ≈
1

3π2
gϕfk3F ¼ gϕfnf; ðlow kFÞ; ð12Þ

where nf denotes the number densities of fermions.

III. NONTRIVIAL SCALAR PROFILES FOR
STELLAR OBJECTS

In this paper, we focus on the test field limit for the scalar
and ignore its backreaction on the background spacetime
(see the Appendix for a more detailed discussion of the
backreaction of the scalar field). Additionally, we confine
our discussion to a static, spherically symmetric and
asymptotically flat spacetime, characterized by the follow-
ing line element:

ds2 ¼ −BðrÞdt2 þ AðrÞdr2 þ r2dθ2 þ r2 sin2 θdφ2: ð13Þ

The equation of motion (EOM) for the test field, i.e. Klein-
Gordon equation in the curved spacetime, is then given by

d2ϕ
dr2

þ
�
2

r
þ ∂rB

2B
−
∂rA
2A

�
dϕ
dr

− A
∂VðϕÞ
∂ϕ

¼ 0: ð14Þ

Here, VðϕÞ represents the full scalar potential in Eq. (4)
with finite temperature or density corrections, and T and kF
in Eqs. (8), (11), and (12) denote the proper temperature
and Fermi momentum in the local inertia frame of the
curved background. The scalar profile has to satisfy the
appropriate boundary conditions at the origin and infinity,
specifically dϕ=drjr¼0 ¼ 0 and ϕðr → ∞Þ ¼ 0.
In the following discussion, we compute the scalar

profiles in ordinary stellar objects with hot and dense
environments, as well as a candidate of not quite black
holes with extremely high temperature and density in their
high-curvature interior. The distinct behavior of metric
functions and the matter sources in their interiors yield
quite different predictions for the scalar charge. However,
in the test field limit, the exteriors for all of these cases are
well approximated by the vacuum solution. Therefore, let
us first simplify the scalar field EOM at the exterior before
discussing the interior for different cases.
It is useful to express the EOM in terms of dimensionless

quantities. Specifically, we can rewrite the scalar field and
metric as functions of the dimensionless radius r̄ ¼ r=R,
where R is the radius of the object. The exterior spacetime
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can be then described by the rescaled metric below for any
value of the total mass M:

B̄ðr̄Þ≡ BðrÞ ≈ 1 −
C
r̄

Āðr̄Þ≡ AðrÞ ≈
�
1 −

C
r̄

�
−1
; ð15Þ

where C≡ rH=R≲ 1 represents the dimensionless com-
pactness, with rH ¼ 2Ml2

Pl being the horizon radius and
lPl being the Planck length. We can further normalize the
scalar field by the VEV ϕ0 and define the rescaled scalar
field φ≡ ϕ=ϕ0. Then, with VðϕÞ ¼ V0ðϕÞ in Eq. (14), the
scalar field EOM at the exterior is simplified as

d2φ
dr̄2

þ
�
2

r̄
þ∂r̄B̄

2B̄
−
∂r̄Ā
2Ā

�
dφ
dr̄

− Āðr̄Þ
�
−
1

2
η2φþ1

2
η2φ3

�
¼0;

ð16Þ
where η≡mϕR. At large distances, the metrics approach
unity and the scalar field approaches the VEV. The equation
in this limit then simplifies as ∂2r̄δφþ 2

r̄ ∂r̄δφ − 1
2
η2δφ ¼ 0,

where δφðr̄Þ≡ φðr̄Þ − 1 denotes the difference in the
normalized field values with the VEV. The solution takes
the Yukawa form with

δφðr̄Þ ≈ 1

4πr̄
Q
ϕ0R

e−ηr̄; ð17Þ

where η≲ 1 ensures the mediation of a long-range force at
the exterior. The scalar charge Q can be obtained by
matching Eq. (17) to the numerical solutions at a suffi-
ciently large distance. To compare the strength of the scalar
force to that of gravity, it is useful to define a dimensionless
scalar charge-to-mass ratio as follows:

γ ¼ Qffiffiffiffiffiffiffiffiffiffiffi
4πl2

Pl

p
M

: ð18Þ

A. Ordinary stellar objects

For illustrative purposes, we consider the Sun (as a
typical main sequence star), white dwarfs (WDs), and
neutron stars (NSs) as examples of ordinary stellar objects
that are either hot or dense. We approximate these objects
as constant density stars as a good leading-order approxi-
mation to the more realistic solutions. The properties of
these stellar objects are summarized in Table I.
The interior metrics of a constant density star at r̄≲ 1

can be solved exactly, with the rescaled counterparts as
follows:

B̄ðr̄Þ¼1

4
ð3

ffiffiffiffiffiffiffiffiffiffiffi
1−C

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−Cr̄2

p
Þ2; Āðr̄Þ¼ð1−Cr̄2Þ−1:

ð19Þ

Referring to Table I, we find that the compactness C is
approximately 0.3, 10−3, and 10−5 for NSs, WDs, and the
Sun, respectively. By substituting the approximated form of
VðϕÞ from Eq. (4) into Eq. (14), the EOM for the rescaled
scalar field in the interior, i.e., r̄ ≤ 1, is simplified as

d2φ
dr̄2

þ
�
2

r̄
þ ∂r̄B̄

2B̄
−
∂r̄Ā
2Ā

�
dφ
dr̄

− Āðr̄Þ
�
F̄ þ

�
Ḡ −

1

2
η2
�
φþ 1

2
η2φ3

�
¼ 0; ð20Þ

where F̄ ¼ FR2=ϕ0 and Ḡ ¼ GR2 denote the correspond-
ing dimensionless quantities. This equation can be directly
matched to the exterior EOM given in Eq. (16) at r̄ ¼ 1.
For a stellar object with a specific value of F̄ or Ḡ, the

nontrivial scalar profile can be numerically solved using the
shooting method. By imposing the boundary condition
dφ=dr̄jr̄¼0 ¼ 0 at the origin, the scalar field value at the
origin, i.e., δφ0 ≡ φðr̄ ¼ 0Þ − 1, can be determined by
requiring the solution to decay asymptotically at infinity,
i.e., φðr̄ → ∞Þ ¼ 0. This also determines the field value at
the boundary, i.e., δφ1 ≡ φðr̄ ¼ 1Þ − 1, as a function of Ḡ
or F̄. For later discussion, we define the deviation of the
rescaled scalar field from the VEV as follows:

δφðr̄Þ≡ φðr̄Þ − 1: ð21Þ

Since the radius R of ordinary stellar objects is much
larger than rH, the scalar charge can be obtained by
matching the weak gravity expansion in Eq. (17) with the
numerical solution at r̄ ¼ 1. This yields Q ≈ 4πδφ1ϕ0R,
and the value of the scalar charge-to-mass ratio γ is
determined from Eq. (18), i.e.,

γ ≈ 4
ffiffiffi
π

p
C−1δφ1

ϕ0

mpl
; ð22Þ

which relies on the properties of the scalar field as well as
the stellar objects.

TABLE I. Physical properties of representative stellar objects
[48–50].M is the total stellar mass in the unit of solar massM⊙. R
is the radius. T denotes the average temperature. nN and ne
denote the average number densities of nucleons and electrons,
which are comparable in magnitude due to the charge neutrality
condition. For NSs, T denotes the highest temperature reached in
a newly formed NS or a binary merger of NSs.

Sun WDs NSs

M (M⊙) 1 0.5–1.4 1.4–2.5
R (km) 7 × 105 104 10–15
T (keV) ∼0.1 ∼10−2 ≲105

nN;e (MeV3) ∼10−5 ∼10−3 ∼106
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Now, we will discuss the environment effects inside
ordinary stellar objects for various cases. Let us first
consider the finite temperature effects induced by the
self-interaction of the scalar field. Referring to Table I,
we observe that the scalar mass allowing for a long-range
force (η≲ 1) for the three stellar objects is significantly
smaller than the average temperature T. Therefore, we can
consider the high temperature limit, where the corrections
manifest as the G term in Eq. (8). Its dimensionless
counterpart is given by

ḠT ¼ η2

8

T2

ϕ2
0

: ð23Þ

As demonstrated in Fig. 1 and explained below Eq. (4), a
change in sign for the quadratic term, i.e., ḠT ≳ η2=2, is
required to ensure a nontrivial scalar profile for this case.
This sets an upper bound on ϕ0, given by ϕ0 ≲ 2T. Once
this condition is met, we can solve for the scalar profile for
a given value of ḠT , where there is a one-to-one mapping
between ḠT and the negative field values of δφ0 and δφ1.
The left panel of Fig. 2 shows the rescaled scalar profiles

for several benchmark values of the dimensionless coef-
ficient ḠT , as obtained from numerical solutions. The field
value exhibits mild variation within the stellar objects and
follows a 1=r decay outside, before the onset of mass
suppression. The right panel shows jδφ0j and jδφ1j as
functions of ḠT . As illustrated in the inset, a nontrivial
scalar profile exists only when the corrections surpass a
certain threshold, namely ḠT ≳ 0.1 for this case. This is
similar to that observed for the QCD axion within neutron
stars [20], where the exact threshold value varies depending
on the shape of scalar potential. Above the threshold, the
magnitude of jδφ0j increases linearly with ḠT for small ḠT

and approaches unity in the limit of large ḠT , correspond-
ing to the boundary value moving asymptotically to the
new maximum of −VðϕÞ at ϕ ¼ 0. The magnitude of jδφ1j

remains slightly smaller than that of jδφ0j, with their
difference diminishing as ḠT increases.
Figure 3 presents the contours of the scalar charge-to-

mass ratio jγj given in Eq. (22) for the Sun in the plane of
scalar mass and the VEV. The absolute value of γ is
strongly suppressed, with jγj≲ 10−19, due to the upper
bound on ϕ0 set by T. Similar results are obtained for WDs
and NSs, indicating that the finite temperature effects with
only the scalar self-interaction are completely negligible.
Next, we consider the Yukawa couplings of the scalar

field to either electrons or nucleons. Because of the strong
constraints on these couplings, the scalar field couples
weakly to the SM fermions and makes a negligible
contribution to their mass. Referring to Table I, we find
that all three examples fall within the low temperature or
density limits, i.e., me;mN ≫ T or mN ≫ n1=3N . Therefore,
the dominant corrections come from the finite density
effects, characterized by the F term in Eq. (12). Its
dimensionless counterpart is given by

0.01 0.10 1 10 100

0.001

0.010

0.100

1

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 2. Finite temperature effects induced by the scalar self-interaction in ordinary stellar objects. Left: the rescaled scalar profile
δφðr̄Þ as a function of the rescaled radius r̄ ¼ r=R for several benchmark values of the dimensionless coefficient ḠT . Right: the rescaled
scalar field values jδφ0j and jδφ1j as functions of ḠT , when the condition ḠT ≳ η2=2 is satisfied.

FIG. 3. Contours of the scalar charge-to-mass ratio jγj for the
Sun on the scalar massmϕ and VEV ϕ0 plane. The horizontal line
denotes the upper bound ϕ0 ≲ 2T. The vertical line denotes the
condition of a long-range force, i.e., η≲ 1.

XIMENG LI and JING REN PHYS. REV. D 109, 104061 (2024)

104061-6



F̄ρ ¼ gϕf
nfR2

ϕ0

: ð24Þ

As shown in Fig. 1 and explained below Eq. (4), a
nontrivial scalar profile can be found when F̄ρ is negative,
i.e. gϕf < 0, with the corresponding δφ0 and δφ1 being
positive.
The left panel of Fig. 4 shows the rescaled scalar profiles

for several benchmark values of the dimensionless F̄ρ. The
right panel presents the numerical solutions for δφ0 and δφ1

as functions of jF̄ρj. Unlike the G-term case, we note the
absence of a threshold required for the existence of non-
trivial scalar profiles, as demonstrated in the inset.
Moreover, both δφ0 and δφ1 continue to increase as jF̄ρj
becomes large. This is due to the new maximum of −VðϕÞ,
as shown in Fig. 1, which consistently shifts to larger values
with increasing jF̄ρj, theoretically allowing for a larger
value of the scalar charge. The ratio δφ1=δφ1 has a smaller
value compared to the G-term case, and it decreases slowly
as jF̄ρj increases.
Figure 5 displays the contours of γ for WDs in the plane

of scalar VEVand the Yukawa couplings to either electrons
or nucleons. Because ne and nN are of the same magnitude
due to charge neutrality, we assume ne ≈ nN here, and the
results for gϕe and gϕN are the same. When ϕ0 is sufficiently
large, jF̄ρj is small, and δφ0 increases linearly with its
magnitude. Thus, the contour of γ becomes independent of
ϕ0, with γ ∼ 2

ffiffiffi
π

p
C−1gϕfnfR2=mpl. However, for small ϕ0

and large jF̄ρj, the increase in δφ0 with jF̄ρj becomes
slower, leading to a growth in γ as ϕ0 increases. Among the
two cases considered, a larger γ can be obtained if the scalar
field couples to electrons, due to the weaker limits on gϕe.
Specifically, we obtain γ ≲ 10−12 for this case, which is
considerably larger than the value obtained from the finite
temperature effects. The value of γ is smaller for either the
Sun or NSs due to their smaller density or smaller size of
the objects.

Therefore, in the case of the minimal model of the scalar
field considered in Sec. II, the environmental effects found
in typical ordinary stellar objects are unable to generate a
significant scalar charge. Specifically, considering the
various constraints, the maximum achievable absolute
value of the scalar charge-to-mass ratio γ cannot exceed
10−12, which naturally evades the stringent constraints from
the fifth-force searches in laboratories or in astronomical
observations. To probe the light scalar field for the minimal
model, it is therefore necessary to explore more extreme
environments, as we will discuss in the following
subsection.

B. Not quite black holes: 2-2-holes

An intriguing candidate for UCOs is 2-2-holes [36,37],
which represent a novel class of solutions of the classical
action described below:

FIG. 4. Finite density effects induced by the Yukawa couplings to the SM fermions in ordinary stellar objects. Left: the rescaled scalar
profile δφðr̄Þ as a function of the rescaled radius r̄ for several benchmark values of the dimensionless coefficient F̄ρ. Right: the rescaled
scalar field values δφ0 and δφ1 as functions of jF̄ρj.

FIG. 5. Contours of the scalar charge-to-mass ratio γ for the
WDs on the scalar field VEV ϕ0 and the Yukawa coupling gϕf
(f ¼ e, N) plane. The blue and red vertical lines denote upper
limits on gϕN [51] and gϕe [52], respectively.
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SCQG ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðm2
PlR − αCμναβCμναβ þ βR2Þ;

ð25Þ

where R is the Ricci scalar and Cμνρσ is the Weyl tensor.
Here, mPl denotes the Planck mass and α, β ≳ 1 are
dimensionless couplings associated with the quadratic
curvature terms. Instead of being viewed as a truncation
of the effective field theory for gravity at low energy,
Eq. (25) is considered a classical approximation of the
renormalizable and asymptotically free quantum quadratic
gravity [53]. Specifically, it is dominated by the quadratic
curvature terms at high energy, while reducing to GR at low
energy. This framework allows for the description of
solutions encompassing both low and high curvature
regimes [37].
The existence of 2-2-holes critically depends on the

Weyl term CμνρσCμνρσ. In the presence of a compact matter
source, such as a photon gas or cold Fermi gas, it has been
found that horizonless 2-2-hole solutions exist with an
arbitrary mass M above the minimal value Mmin ∼m2

Plλ2
[39,40]. Here, the parameter λ2 ∼

ffiffiffi
α

p
lPl represents the

Compton wavelength of the new spin-2 mode associated
with the Weyl term.2 In quadratic gravity, 2-2-holes appear
to be a more general class of solutions than black hole
solutions. Therefore, it is highly likely that 2-2-holes serve
as the end points of gravitational collapse in this
theory [37].
A typical 2-2-hole with a mass M ≫ Mmin displays

distinctive behaviors [39,40], as illustrated in Fig. 6.
Beyond the would-be horizon at rH, the matter density

becomes negligible, and the 2-2-hole metrics closely
resemble those of a black hole with the same mass, i.e.,

AðrÞ ≈ 1

BðrÞ ≈
�
1 −

rH
r

�
−1
; ð26Þ

due to the dominance of the Einstein term. There exists a
narrow transition region at r ∼ rH, where the metric
functions begin to significantly deviate from the black
hole solutions at a small distance just outside rH. In this
region, the quadratic curvature terms in Eq. (25) start to
compete with the Einstein term, making the derivation of an
analytical solution challenging. At r≲ rH, the quadratic
curvature terms become dominant, leading to an extremely
high curvature region in the interior. As the distance r
decreases, the metrics AðrÞ and BðrÞ approach zero
following a r2 dependence, indicating the presence of a
timelike singularity at the origin. In the small r region, the
metric functions can be closely approximated by series
expansion, with [39]

AðrÞ≈a2r2
�
1þ4

ffiffiffiffiffiffiffiffiffiffiffiffi
a2m2

Pl

q
r2þ27

2
a2m2

Plr
4þOðr6Þ

�
;

BðrÞ≈b2r2
�
1þ3

ffiffiffiffiffiffiffiffiffiffiffiffi
a2m2

Pl

q
r2þ15

2
a2m2

Plr
4þOðr6Þ

�
; ð27Þ

where a2 has a one-to-one mapping to the mass M, and b2
is determined by the normalization of BðrÞ at spatial
infinity.
A small value of BðrÞ in the interior also indicates a deep

gravitational potential. By applying the momentum con-
servation law to the stress tensor, the gases satisfy the
generalized versions of Tolman’s law, namely T2ðrÞBðrÞ
and ðk2FðrÞ þm2

fÞBðrÞ remain constants for the photon gas
and cold Fermi gas, respectively [39,40]. Consequently, as

FIG. 6. Properties of 2-2-holes sourced by a photon gas or cold Fermi gas. Left: the metric A (red) and B (blue) as functions of the
rescaled radius r̄ ¼ r=rH . The black dotted lines denote the Schwarzchild solution. Right: the proper temperature T for the photon gas
(red) and the proper Fermi momentum kF for the cold Fermi gas with mass mfðλ2lPlÞ1=2 ¼ 1 (blue) as functions of r̄. The vertical gray
line denotes the radius rF where kF drops quickly to zero. In both panels, the dashed and solid lines denote solutions with rH=λ2 ≈ 10
and 100, respectively.

2The Weyl term brings in the problematic spin-2 ghost with
mass m2 ¼ 1=λ2 in the classical theory. However, the fate of the
ghost remains under debate at the quantum level. See Ref. [54] for
a review on quadratic gravity and references therein.
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one approaches the origin of the 2-2-hole, the gas would
exhibit either high temperature or density, attributed to the
decreasing BðrÞ. This creates an extreme environment
capable of sourcing weakly coupled scalar fields and
may provide access to new physics that would otherwise
remain inaccessible. Specifically, the photon gas and cold
Fermi gas exhibit similar behavior in the deep interior,
characterized by exceptionally high temperature or Fermi
momentum, with TðrÞ; kFðrÞ ∝ 1=r. The difference
becomes evident at larger radii. The Fermi momentum
kF rapidly decreases to zero within the interior at rF, when
it becomes comparable to the mass mf. In contrast, the
temperature T for the photon gas extends to the would-be
horizon and decreases significantly only in the exterior.
In investigating the nontrivial scalar profile created by

astrophysical 2-2-holes, where rH is significantly larger
than λ2, it is advantageous to make certain approximations
to the numerical 2-2-hole solutions. As the mass M
increases, a 2-2-hole progressively resembles a black hole
from the exterior. Consequently, it is a reasonable approxi-
mation to utilize the EOM in Eq. (16) for the exterior, along
with Eq. (15) and R ≈ rH. On the other hand, the metrics
and matter properties in the interior exhibit a novel scaling
behavior withM (or rH) due to the dominance of quadratic
curvature terms, particularly in the limit of M ≫ Mmin.
Specifically, at the leading order of high curvature expan-
sion, the solutions can be fully characterized by the
following dimensionless quantities [39,40], which are
functions of the rescaled radius r̄ ¼ r=rH,

Āðr̄Þ¼AðrÞr
2
H

λ22
; B̄ðr̄Þ¼BðrÞr

2
H

λ22
;

T̄ðr̄Þ¼TðrÞ
ffiffiffiffiffiffiffiffiffiffi
λ2lPl

p
; k̄Fðr̄Þ¼kFðrÞ

ffiffiffiffiffiffiffiffiffiffi
λ2lPl

p
: ð28Þ

A simplified scalar EOM for the normalized field φðrÞ in
the 2-2-hole interior is then obtained by substituting the full
potential VðϕÞ from Eq. (4) and the scaling behavior from
Eq. (28) into Eq. (14),

d2φ
dr̄2

þ
�
2

r̄
þ ∂r̄B̄

2B̄
−
∂r̄Ā
2Ā

�
dφ
dr̄

− Āðr̄Þ
�
F̄ þ

�
Ḡ −

1

2
ζ2
�
φþ 1

2
ζ2φ3

�
¼ 0; ð29Þ

where F̄ ¼ Fλ22=ϕ0, Ḡ ¼ Gλ22, and ζ ≡mϕλ2 ≲ η. In con-
trast to ordinary stellar objects, the dimensionless quantities
in the 2-2-hole interior scale with the intrinsic length scale
λ2 of quadratic gravity, rather than the physical size of the
object. This leads to distinct predictions regarding the
scalar charge, as we will explore below.
Another point we would like to highlight for solving

scalar profiles for 2-2-holes is the appropriate choice of
boundary condition for the scalar field at the origin. This
point is characterized by a timelike curvature singularity, in

contrast to the regular spacetime associated with ordinary
stellar objects. Although the singularity at the origin might
lead to geodesic incompleteness, it does not necessarily
indicate a genuine physical ambiguity. More explicitly,
from the perspective of relativistic classical field theories,
the field dynamics on a singular and so-called inextendible
spacetime can be defined by adopting the mathe-
matical framework proposed by Wald [55]. Intuitively, this
approach involves disregarding solutions with diverging
energy as r approaches the origin. If among the two linearly
independent solutions, φ1ðr̄Þ and φ2ðr̄Þ, a unique solution
remains, the classical wave equation is considered well
defined, and the singularity introduces no ambiguity. For
more comprehensive details, please refer to Sec. III C in
Ref. [37]. This scenario is indeed applicable to 2-2-holes.
With AðrÞ; BðrÞ ∝ r2 in the small r limit, we find φ1ðr̄Þ ∝
r̄0 and φ2ðr̄Þ ∝ r̄−1. Only φ1ðr̄Þ has finite energy, thus
necessitating a Neumann boundary condition for the scalar
field at the origin. That is, dφ1ðr̄Þ=dr̄jr̄¼0 ¼ 0.
As M increases, the boundaries of both the interior and

exterior scaling regions shift toward rH. This results in a
transition region with a decreasing radial size but more
significant spatial variations. Obtaining the exact solution
of the transition region is challenging due to the limitations
of numerical accuracy. Therefore, for our numerical
study of the scalar profiles in this work, we choose to
disregard the contribution from the narrow transition region
around rH. Instead, we directly match the rescaled EOM in
Eq. (29) for the interior to that in Eq. (16) for the exterior at
r̄ ∼ 1. From our numerical solutions with rH=λ2 ≲Oð100Þ,
we have verified that the contribution from the transition
region is indeed negligible for our order of magnitude
estimation of the scalar charges of 2-2-holes. Under this
approximation, the rescaled scalar profile φðr̄Þ becomes
independent of the 2-2-hole size. The scalar charge is again
obtained by matching the numerical solution to the weak
gravity expansion in Eq. (17) at some r̄0 ≫ 1. This yields
the scalar charge Q ≈ πδφ1ϕ0rH, and the scalar charge-to-
mass ratio

γ ≈
ffiffiffi
π

p
C−1δφ1

ϕ0

mPl
: ð30Þ

In comparison to Eq. (22), where the weak gravity
expansion is applicable at the surface of ordinary stellar
objects, the magnitude of γ for 2-2-holes is suppressed by
approximately a factor of 4 due to the significant redshift
around rH.
Note that the approximated value of γ in Eq. (30) is

independent of M, making it universal for 2-2-holes of all
masses M ≫ Mmin. This is in contrast to the behavior
observed in ordinary stellar objects discussed in Sec. III A,
as well as in cases of spontaneous scalarization in scalar-
tensor theories. In the latter, it has been argued that smaller
black holes will be more strongly charged due to their
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larger curvature near the horizon [56]. If we take into
account the contribution from the transition region, we may
expect a γ with a mild dependence on M. Moreover, while
the gas profiles are influenced by the particle mass, the
scalar charges of 2-2-holes exhibit very little dependence
on the mass, indicating that the scalar properties are
primarily determined by the high curvature region in deep
interior.
Now, let us consider several examples to illustrate the

environmental effects within the framework of 2-2-holes.
We first examine the finite temperature effects arising from
scalar self-interaction. For a 2-2-hole sourced by a photon
gas, the temperature grows large in the interior for
decreasing r. Consequently, we can take the high temper-
ature limit and the corrections take the form of a GT term.
The corresponding dimensionless counterpart can be
expressed as

ḠTðr̄Þ ¼
1

8

m2
ϕ

ϕ2
0

T2ðrÞλ22 ¼
λ̄2
8

m2
ϕ

ϕ2
0

T̄2ðr̄Þ≡ GTT̄2ðrÞ; ð31Þ

where T̄ðr̄Þ is the rescaled proper temperature as shown in
Fig. 6, and GT ≡ λ̄2m2

ϕ=ð8ϕ2
0Þ represents the r-independent

dimensionless coefficient. The condition for the sign flip of

the quadratic term is given by ϕ0 ≲ T̄ðr̄ÞmPl=
ffiffiffiffiffi
λ̄2

p
. As T̄ðr̄Þ

continues to increase for smaller values of r̄, for any given
value of ϕ0, there will always be a radius below which this
condition is satisfied. This implies that, unlike ordinary
stellar objects where the magnitude of T is limited within
the stars, this condition can be easily fulfilled within the
interior of 2-2-holes.
In the regime where ḠTðr̄Þ ≫ ζ2=2, there is a one-to-one

mapping between GT and δφ0 (δφ1) for the numerical
solutions. The left panel of Fig. 7 shows the rescaled scalar
profiles for several benchmark values of the dimensionless
GT . The right panel illustrates the behavior of jδφ0j
and jδφ1j as functions of GT . Despite the differences in

the r̄-dependent terms, such as Āðr̄Þ and T̄ðr̄Þ, the
general behavior of the scalar profiles for 2-2-holes in
Fig. 7 is similar to that for ordinary stellar objects shown
in Fig. 2. However, due to the scaling behavior transition in
2-2-holes, jδφðr̄Þj experiences a more pronounced
drop around r̄ ∼ 1, resulting in a greater suppression of
jδφ1j compared to jδφ0j for 2-2-holes. Also, the threshold
value of GT required for the existence of a nontrivial
scalar profile is different, namely GT ≳ 1 for the same
model.
The contours of γ in Fig. 8 exhibit a similar shape as that

in Fig. 3. The difference in magnitude between the two

cases is determined by the ratio GT=ḠT ≈
ffiffiffiffiffi
λ̄2

p
=ðTRÞ2,

which reflects their different scaling behaviors. For 2-2-
holes, the radial size of the interior shrinks to the order of λ2
due to high curvature effects, limiting the temperature and

radius product to
ffiffiffiffiffi
λ̄2

p
, which is significantly smaller than

FIG. 7. Finite temperature effects induced by the scalar self-interaction for 2-2-holes. Left: the rescaled scalar profile jδφj as a function
of the rescaled radial coordinate r̄ ¼ r=rH for several benchmark values of the dimensionless coefficient GT . Right: rescaled scalar field
values jδφ0j and jδφ1j as functions of GT .

FIG. 8. Contours of the scalar charge-to-mass ratio jγj on the
plane of the scalar VEV ϕ0 and the combination λ̄2mϕ. The
vertical line denotes the upper bound due to the requirement λ2 ≲
rH and η≲ 1 for primordial 2-2-holes with M ≈ 10−10M⊙.
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the product TR ∼ 1017 for the Sun. Furthermore, with λ2 ≲
rH and η≲ 1, there is an upper bound on the horizontal

axis, specifically
ffiffiffiffiffi
λ̄2

p
mϕ ≲

ffiffiffiffiffi
λ̄2

p
=rH ≲ 109 eV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M⊙=M

p
.

As a result, the magnitude of γ for astrophysical 2-2-holes
with M ≳M⊙ is even more strongly suppressed compared
to the Sun. However, for primordial 2-2-holes with
M ≪ M⊙, a larger jγj can be achieved due to the increasing
allowed range of mϕ, corresponding to a larger self-
interaction coupling.
Now let us consider the case with Yukawa coupling to

fermions. Unlike ordinary stellar objects, we are not
restricted to the SM fermions. In the high-temperature or
high-density environment within the interior of 2-2-holes,
beyond the SM heavy fermions could exist due to either
primordial production in the early universe and subsequent
evolution, or production resulting from high-energy
particle collisions in the interior. These fermions would
then play a significant role in sourcing the scalar field. By
taking the high temperature or density limit, specifically
T ≫ mf or kF ≫ mf, we find that both effects are encoded
by the F term. From Eqs. (8) and (11), we find the
dimensionless counterparts as

F̄Tðr̄Þ ¼
gϕf
6

mf;0

ϕ0

λ̄2T̄2ðr̄Þ≡ F TT̄2ðr̄Þ

F̄ρðr̄Þ ¼
gϕf
2π2

mf;0

ϕ0

λ̄2k̄2Fðr̄Þ≡ F ρk̄2Fðr̄Þ; ð32Þ

where F ρ ¼ 3F T=π2 ¼ gϕfmf;0λ̄2=ð2π2ϕ0Þ represent the
dimensionless coefficients.
Figure 9 illustrates the numerical results for this case.

The scalar field again experiences a more pronounced
decrease at r̄ ∼ 1 as in Fig. 7, due to the special feature of
2-2-holes. The difference between cold Fermi gas and
photon gas around r̄ close to 1 has a small impact on the
profile. Similar to Fig. 4, we observe that δφ0 and δφ1 are
linear in the magnitude jF T;ρj for small values and continue

to increase with jF T;ρj for large values. The ratio δφ1=δφ0

is approximately half of that in Fig. 4, related to the notable
decrease in the scalar profile at r̄ ∼ 1.
The contour of γ in Fig. 10 shows a mild dependence on

ϕ0 and becomes completely independent of ϕ0 in the limit
of small jF T;ρj, with γ ≈ 0.01jgϕfjmf;0λ̄2=mPl. To achieve a
value of γ on the order of 1, the combination jgϕfjmf;0λ̄2
needs to reach 1022 GeV. Considering that jgϕfj≲ 1, this
implies λ̄2 ≳ 1012ð1010 GeV=mf;0Þ. Namely, for mf;0 ∼
1013 GeV and jgϕfj ∼ 10−3, a value of γ ∼ 1 can be
achieved with λ̄2 ≳ 1012, corresponding to a minimum
2-2-hole mass of Mmin ≳ 107 g.3

In comparison to the case with only self-interaction, the
scalar mass is not directly involved in determining the
scalar charge. Furthermore, the presence of a potentially
large mass for the new heavy fermion and the absence of
experimental constraints on gϕf allow for more freedom in
achieving a large scalar charge, which compensates for the
small radial size of the 2-2-hole interior. Thus, astrophysi-
cal 2-2-holes (M ≳M⊙) with nontrivial scalar profiles
could indeed have observational effects on ongoing and
planned gravitational wave experiments. It is important to
note that the above estimate assumes that the heavy fermion
constitutes all of the gas sourcing the 2-2-holes, while in
reality the source should also include the SM fermions.
Given the wide range of allowed parameter space shown in
Fig. 9, it is evident that even a small fraction of heavy
fermions is sufficient to achieve a significant charge.
Therefore, the potential existence of 2-2-holes opens up

a new possibility for generating nontrivial light scalar
profiles in the strong gravity regime. The deep gravitational
potential within the interior of these holes leads to
extremely high temperatures or densities of the gas,

FIG. 9. Finite temperature and density effects induced by the Yukawa couplings to fermions for 2-2-holes. Left: the rescaled scalar
profile jδφj as a function of r̄≡ r=rH for several benchmark values of the dimensionless coefficient jF ρj. Right: rescaled scalar field
values δφ0 and δφ1 as functions of jF T;ρj.

3For reference, when considering λ̄2 ∼ 1012 and
mf;0 ∼ 1013 GeV, we observe mfðλ2lPlÞ1=2 ∼ 1, corresponding
exactly to the benchmark value in Fig. 6.
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resulting in a significantly modified scalar potential.
However, the high curvature effects in the interior cause
a reduction in the effective radial size of the object, leading
to an additional suppression of the scalar charge compared
to cases in GR. By combining these two effects, we find
that a magnitude of γ ∼ 1 can be universally achieved for
2-2-holes of all masses M ≫ Mmin if the scalar field
couples to some new heavy fermions, taking advantage
of the exceptionally hot and dense environment provided
by their interiors.

IV. GRAVITATIONAL WAVE OBSERVATIONS OF
SCALARIZED 2-2-HOLES

The possibility that astrophysical 2-2-holes could have a
significant scalar charge in the minimal model raises an
interesting question about the observational consequences
of scalarized 2-2-holes. As our exploration in this paper is
limited to the test field limit, we are unable to study
constraints arising from changes in the background space-
time due to the backreaction of the scalar profile.
Nevertheless, we anticipate that the electromagnetic obser-
vations of Sgr A� from Event Horizon Telescope have the
potential to exclude the presence of scalar charge with a
charge-to-mass ratio γ2 ≲Oð0.1Þ, as indicated by studies in
various scenarios in Ref. [57]. Thus, our subsequent
discussion will focus on probing binary systems involving
either one or two scalarized 2-2-holes with a smaller γ using
gravitational wave observations. Additionally, we only
consider the inspiral stage, where the two objects are far
apart, i.e., r ≫ rH. In this regime, the potential back-
reaction from the scalar field is also negligible.
Below, we will first discuss the inspiral dynamics of the

binary system with scalar charges, and then briefly explore
potential observations for specific cases in the scenario
where all astrophysical black holes are 2-2-holes. For
demonstration purposes, we consider observational effects
for two types of systems: the stellar-mass binaries and

extreme mass-ratio inspirals (EMRIs), which involve
supermassive 2-2-holes at the center of galaxies. It is
important to note that the difference in the M dependence
of the scalar charge for 2-2-holes, compared to scalarized
black holes in scalar-tensor theories, has significant impli-
cations for observations.
The presence of scalar charges within a binary system is

anticipated to generate additional scalar forces or scalar
radiations. For simplicity, we focus on the inspiral stage
with a radius much larger than the innermost stable circular
orbit (ISCO) at rISCO ≈ 3rH, where the dynamics can be
adequately described at the leading-order Newtonian
approximation. In the center of mass frame, the dynamics
can be described as a one-body problem with the total
mass M ¼ M1 þM2, the reduced mass μ ¼ M1M2=M,
and the relative coordinate r ¼ r1 − r2, where the reduced
mass is related to the mass ratio q ¼ M2=M1 by
μ=M ¼ q=ð1þ qÞ2. Here, we focus on circular orbits,
and the kinetic variables of interest are the orbital radius
r ¼ jrj and the orbital frequency Ω. For relatively small
scalar charge γ ≲Oð0.1Þ and large distance r≳ rISCO, it
suffices to consider quasicircular orbits with slowly varying
r, namely, when Ω̇ ≪ Ω2. The total energy of the system is
then given by the sum of the kinetic energy and potential
energy from gravity and scalar force, i.e.,

Eorb¼
1

2
μr2Ω2þVorb; Vorb¼−

l2
PlMμ

r
ð1þγ1γ2e−mϕrÞ:

ð33Þ

The orbital frequency Ω is related to r by the modified
Kepler relation, which is given by dVorb=dr ¼ μrΩ2,
namely,

Ω2 ¼ l2
PlM
r3

½1þ e−mϕrγ1γ2ð1þmϕrÞ�: ð34Þ

In the massless limit, i.e., mϕr ≪ 1, the modified Kepler
relation becomes Ω2 ≈ l2

PlMð1þ γ1γ2Þ=r3, and the total
energy deduces to the simple form Eorb ≈ −l2

PlMμð1þ
γ1γ2Þ=ð2rÞ. It is then easy to verify that the assumption of
quasicircular orbits remains good for γi ≲Oð0.1Þ and
r≳ rISCO.

4

Apart from gravitational waves radiation, the binary
system of scalarized objects can also emit scalar radiations
when Ω≳mϕ. As the scalar radiation starts from dipole
radiation, we consider the spherical harmonic expansion up
to the quadrupole order, i.e., l ¼ 2. The orbital evolution
can be then approximately determined by

FIG. 10. Contours of the scalar charge-to-mass ratio γ on the
plane of the scalar VEV ϕ0 and the combination jgϕfjmf;0λ̄2.

4The condition Ω̇ ≪ Ω2 requires that 6
ffiffi
2

p
5
ðr=rHÞ−5=2

ð1þγ1γ2Þ3=2ð1þ 1
12
γ1γ2Þ≪1. Considering that r ≳ rISCO ¼ 3rH ,

this implies that γ1γ2 ≪ 2.8. Thus, the assumption of quasicir-
cular orbits is valid for γi ≲Oð0.1Þ.

XIMENG LI and JING REN PHYS. REV. D 109, 104061 (2024)

104061-12



dEorb

dt
¼ −PGW − Pðl¼1Þ

SR − Pðl¼2Þ
SR ; ð35Þ

with the radiated powers [58,59]

PGW¼32

5
l2
Plμ

2r4Ω6;

Pðl¼1Þ
SR ¼ 1

12π

ðQ1M2−Q2M1Þ2
M2

r2Ω4

�
1−

m2
ϕ

Ω2

�3=2

;

Pðl¼2Þ
SR ¼ 4

15π

ðQ1M2
2þQ2M2

1Þ2
M4

r4Ω6

�
1−

m2
ϕ

4Ω2

�5=2

: ð36Þ

To further simplify the evolution equations, it is useful to
consider two concrete cases:

(i) Case A: a binary consisting of two scalarized
2-2-holes with approximately equal scalar charge-
to-mass ratios, i.e., γ1 ¼ γ2 ≡ γ;

(ii) Case B: a binary consisting of one scalarized 2-2-
hole with nonzero γ and one ordinary stellar object
with negligible scalar charge.

For case A, the scalar dipole moment vanishes, and rescaled
evolution equations are simplified as

Ēorb ¼
1

2
r̄2Ω̄2 −

1

2r̄
ð1þ γ2e−ηr̄Þ;

dĒorb

dt̄
¼ −

16

5
r̄4Ω̄6 −

8

15
γ2r̄4Ω̄6

�
1 −

η2

4Ω̄2

�5
2

; ð37Þ

where r̄ ¼ r=rH, Ω̄ ¼ ΩrH, and Ēorb ¼ Eorb=μ,
t̄ ¼ ðt=rHÞðμ=MÞ. Note that t̄ is defined slightly differently
here in order to incorporate the μ or q dependence.
This illustrates that variations in q only affect the rate
of evolution. The modified Kepler relation becomes
Ω̄2 ¼ ð1þ e−ηr̄γ2ð1þ ηr̄ÞÞ=ð2r̄3Þ. In such systems, the
scalar charge generates an additional Yukawa force as well
as an additional quadruple radiation. These effects are both
proportional to γ2. For case B, there is no additional scalar
force, and the leading order corrections come from the
scalar dipole radiation. The rescaled evolution equations
then become

Ēorb ¼
1

2
r̄2Ω̄2 −

1

2r̄
;

dĒorb

dt̄
¼ −

16

5
r̄4Ω̄6 −

1

6
γ2r̄2Ω̄4

�
1 −

η2

Ω̄2

�3
2

; ð38Þ

with the standard Kepler relation Ω̄2 ¼ 1=ð2r̄3Þ.
To solve for the orbital evolution, we first determine

Ω̄ðr̄Þ using the modified Kepler relation. We then solve for
r̄ðt̄Þ by substituting Ω̄ðr̄Þ into Eqs. (37) and (38). In general,
the scalar corrections are considered negligible at suffi-
ciently large distances, where ηr̄ ≫ 1 or η ≫ Ω̄, and the
evolution can be described approximately by GR. On the

other hand, at sufficiently close distances, the zero mass
limit applies. To retain the explicit dependence on η, the
orbital evolution must be solved numerically.
Analytical solutions can be obtained in the zero mass

limit, i.e., ηr̄ ≪ 1. For case A, we find dΩ̄=dt̄ ≈
6ð1þ γ2Þ23ð1þ 1

6
γ2ÞΩ̄11

3 from Eq. (37), where the factors
1þ γ2 and 1þ 1

6
γ2 represent the corrections from the scalar

force and scalar radiation, respectively. Directly integrating
out this expression from t̄ ¼ 0, we obtain

Ω̄ðt̄Þ ≈
�
Ω̄−8

3

0 − 16ð1þ γ2Þ23
�
1þ γ2

6

�
t̄
�−3=8

; ð39Þ

where Ω̄0 ¼ Ω̄ðt̄ ¼ 0Þ. For case B, we find dΩ̄=dt̄ ≈
6Ω̄11

3 þ 1
2
γ2Ω̄3 from Eq. (38), where the Ω̄3 term represents

the dipole contribution. Because of its different Ω̄ depend-
ence, Ω̄ðt̄Þ can only be solved implicitly. Below, we present
the result in terms of a small γ expansion,

t̄ðΩ̄Þ ≈ 1

16
ðΩ̄−8

3

0 − Ω̄−8
3Þ − 1

240
γ2ðΩ̄−10

3

0 − Ω̄−10
3 Þ þOðγ4Þ:

ð40Þ

In general, starting from some initial value, the frequency
gradually increases with time and then quickly increases as
it approaches the ISCO. The evolution becomes faster with
larger γ2.
Next, let us consider observations for specific systems.

First, we focus on stellar-mass binaries with a total massM
ranging from Oð10M⊙Þ to Oð100M⊙Þ. Joint observations
of these binaries using both ground-based and space-based
detectors have been proposed as a powerful way to improve
the constraints on the scalar charges of black holes [60].
The key observable for such estimations is the coalescence
time tcoal, which represents the time it takes for the binary
to merge within the LIGO band from an initial Ω0 in the
millihertz band of space-based detectors. Assuming that the
binary can be observed with exceptional precision using
the latter, the merger time in the LIGO band can be
accurately predicted. This prediction can then be utilized
to constrain modifications of tcoal due to the scalar charges.
For systems involving scalarized 2-2-holes, in the

massless limit, the rescaled coalescence time t̄coal can be
estimated for the two cases by setting r̄ðt̄coalÞ ≈ 0 in
Eqs. (39) and (40). This yields

t̄coal ≈ t̄coal;GR

8<
:

ð1þ γ2Þ−2
3

�
1þ 1

6
γ2
�
−1
; Case A

1 − 1
15
γ2Ω̄−2

3

0 ; Case B;
ð41Þ

where t̄coal;GR ¼ 1
16
Ω̄−8=3

0 represents the prediction in GR.
In contrast to case A, the corrections for case B are
amplified by a factor of Ω̄−2=3

0 ≫ 1, due to the dominance
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of dipole radiation during the early inspiral stage. Figure 11
shows the coalescence time ratio as a function of scalar
mass parameter η. For case A, the results tend towards the
massless limit described in Eq. (41) when η ≪ 2Ω̄.
Conversely, they approach the GR limit when η ≫ 1=r̄0,
where both the force and radiation effects are suppressed.
In the intermediate region, the scalar force is effective from
the beginning, while the radiation only becomes significant
at a later time. Comparing the two effects, the scalar force
has a larger contribution. Similarly, in case B, we observe a
convergence towards the massless limit outlined in Eq. (41)
and the GR limit when η ≪ Ω̄ and η ≫ Ω̄, respectively. As
anticipated, for γ2 ≲Oð0.1Þ, we observe more pronounced
changes in case B compared to case A.
To provide a rough estimate, let us consider a

GW150914-like binary consisting of scalarized 2-2-holes.
This binary takes about five years to evolve from the LISA
band with a frequency of ∼0.01 Hz to LIGO band at
∼100 Hz. Assuming that tcoal can be predicted up to 10 sec
through observations from LISA [60], the constraint on the
scalar charge-to-mass ratio can be obtained by imposing the
condition tcoal − tcoal;GR ≲ 10 sec. The most stringent lim-
its are expected formϕ ≲ 10−15 eV from Fig. 11, where the
scalar is effectively massless during the evolution from
LISA to LIGO. Utilizing the expressions for tcoal in Eq. (41)
for the massless case, this condition yields a limit of γ2 ≲
10−8 for case A and γ2 ≲ 10−9 for case B, respectively. The
limit for case B is about 1 order better due to the enhanced
effect of scalar dipole radiation during the earlier inspiral
stage, where Ω̄−2=3

0 ≫ 1. However, it is important to
consider the presence of degeneracies among the waveform
parameters. Reference [60] demonstrates that the limit on
γ2 could be 1 order worse for the case of dipole radiation
due to these degeneracies. Additionally, recent findings
indicate that the prediction of tcoal may not be as accurate,
with an uncertainty of ∼3 hours [61]. This would further
deteriorate the limit on γ2 by 3 orders of magnitude.

A conservative estimate for the limit in case B would then
be γ2 ≲ 10−5. In case A, the degeneracy among waveform
parameters could be stronger, resulting in a significantly
worse bound for γ2. However, considering the possibility of
a mild dependence of γ2 on the mass M due to the
contribution from the transition region of 2-2-holes, the
cancellation of dipole radiation may not be exact in case A.
This can potentially aid in breaking the degeneracy.
Furthermore, the possibility of enhancing the sensitivity
by incorporating space-based detectors in the decihertz
band has also been explored [62].
As the second example, we consider EMRIs containing a

supermassive scalarized 2-2-holewithmass∼ð104–107ÞM⊙
and a stellar mass object. The latter could either be an
ordinary stellar object with negligible charge or a scalarized
2-2-hole. Because of the small mass ratio q, the system
undergoes a slow evolution in the millihertz band of space-
based detectors over a span of months to years. This allows
for the accumulation of small phase differences, making it
possible to detect small deviations from GR. Specifically,
under the adiabatic approximation, the gravitational wave
phase of the dominant mode during the inspiral stages,
which is twice the orbital phase, can be expressed approx-
imately as

ϕGWðtÞ ¼
Z

t

0

2Ωðt0Þdt0 ≈ 2

q

Z
Ω̄ðtÞ

Ω̄0

Ω̄0
�
dΩ̄0

dt̄0

�−1
dΩ̄0: ð42Þ

Auseful measure for estimating the effects of a scalar field is
the accumulated dephasing between the cases with and
without a scalar profile. This dephasing is determined as the
difference in the gravitational wave phase for a given Ω0

and t, i.e.,

ΔϕGWðtÞ ¼ ϕGW;GRðtÞ − ϕGWðtÞ; ð43Þ

FIG. 11. The coalescence time ratio as a function of η ¼ mϕrH for different values of scalar charge-to-mass ratio γ2. Left: case A,
where the two dashed vertical lines denote 2Ω̄0 and 1=r̄0 from left to right. Right: case B, where the dashed vertical lines denote Ω̄0. In
both panels, the initial frequency is set as Ω̄0 ¼ 2 × 10−4.
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where ϕGW;GRðtÞ ¼ 1
5q ½Ω̄−5=3

0 − Ω̄ðtÞ−5=3� denotes the GR
prediction.
In contrast to stellar mass-binaries, EMRIs evolve

extremely slow in the observational band. Hence, for the
majority of parameter space, we are either in the regime that
the suppression due to the mass is too strong or the regime
that the massless limit is good. To derive the most stringent
limits, we focus on the massless limit. By substituting
Eqs. (37) and (38) into Eqs. (42) and (43), we can obtain the
dephasing for the two cases under the small γ2 expansion:

ΔϕGWðtÞ ≈
8<
:

1
10

γ2

q ½Ω̄−5=3
0 − Ω̄ðtÞ−5=3�; Case A

1
84

γ2

q ½Ω̄−7=3
0 − Ω̄ðtÞ−7=3�; Case B:

ð44Þ

Similarly, there is an additional factor of Ω̄−2=3
0 for case B

compared to case A. As the dephasing is proportional to γ2

in the small charge limit, we display in Fig. 12 the
numerical results of γ−2ΔϕGWðtÞ for EMRIs of different
massM and tcoal. For both cases, the dephasing grows more
rapidly with time for the smaller M case, as a larger cycle
number has been accumulated within the given timescale.
Case B shows a much stronger dependence onM due to the
additional Ω̄−2=3

0 factor. In terms of the tcoal dependence, the
dephasing at a given t is reduced for the EMRI with a
longer tcoal,or a smaller Ω0. This aligns with the leading
order expansion of Eq. (44) in the small t̄ limit, where
ΔϕGWðtÞ ∝ t̄−3=8coal t̄ for case A and ΔϕGWðtÞ ∝ t̄−1=8coal t̄ for
case B. The contrast between the two coalescence time
cases is more pronounced for EMRIs with a smaller M.
As for a rough estimate, let us consider an EMRI with

a supermassive scalarized 2-2-hole of M ∼ 106M⊙.
Assuming an average signal-to-noise ratio (SNR) of
detected events of approximately 30, a dephasing of
ΔϕGW ∼ 0.1 rad is considered to be detectable [63,64].
For an EMRI with tcoal ≈ 1 yr, corresponding to an
accumulation time of one year, the scalar charge would

be constrained to γ2 ≲ 10−7 for case A and γ2 ≲ 10−5 for
case B from Fig. 12. Additionally, the rapid spin of the
supermassive 2-2-hole, caused by accretion, is expected to
significantly increase the orbital frequency overall, leading
to a reduction in the dephasing as predicted in Eq. (44).
This results in worse constraints compared to the non-
spinning case, i.e., γ2 ≲ 6 × 10−7 for case A and γ2 ≲ 10−4

for case B. Finally, the sensitivity will be significantly
compromised due to degeneracies with other waveform
parameters. For case B with χ ∼ 0.9 and M ∼ 106M⊙, a
Fisher analysis has demonstrated that only γ2 ≲ 0.03 is
expected at the 1σ level after one year of observation on
LISA with SNR ∼ 150 [65].

V. SUMMARY

In this paper, we investigate a novel method for gen-
erating long-range scalar forces that exclusively manifest
around astrophysical black holes. If all observed black
holes are horizonless and ultracompact 2-2-holes, which
are potential end points of gravitational collapse in quad-
ratic gravity, the hot or dense gases inside these UCOs
allow for the generation of nontrivial scalar profiles with a
significant charge through environmental effects. This is in
contrast to other scenarios, where either nonminimal
coupling to gravity or violation of energy conditions are
required.
For demonstration purposes, in this work, we focus on a

minimal model of the scalar field with a double-well scalar
potential and Yukawa interaction with fermions. In Sec. II,
we investigate the effects of finite temperature and density
on the scalar potential. We find that these corrections can be
effectively described by either a linear term or a quadratic
term, as shown in Eq. (4). This leads to two mechanisms for
generating nontrivial scalar profiles, as demonstrated in
Fig. 1. In Sec. III, we further examine the nontrivial scalar
profile and the predicted scalar charge in the test field limit,
for the minimal model in both ordinary stellar objects and
2-2-holes. We observe that the scalar charge of typical

FIG. 12. The normalized dephasing γ−2Δϕ for an EMRI system with different total mass M and coalescence time tcoal. Left: case A,
with the secondary massM2 ≈ 10M⊙. Right: case B, with the secondary massM2 ≈ 1.4M⊙ as for a typical NS. In both panels, the solid
and dashed lines represent tcoal ≈ 1 yr and tcoal ≈ 4 yr, respectively.
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ordinary stellar objects is significantly suppressed in the
minimal model, making it difficult to probe using even the
high precision fifth-force measurements. In contrast, 2-2-
holes have the unique capability of sourcing light scalar
fields. The exceptionally high temperatures or densities of
the gases within their interior allow for the generation of a
significant scalar charge through environmental effects. As
depicted in Fig. 9, we demonstrate that a scalar-to-charge
mass ratio γ of order 1 can be readily achieved if a
considerable fraction of new heavy fermions within the
2-2-hole interior couple to the scalar field.
In Sec. IV, we investigate the gravitational wave obser-

vations of scalarized 2-2-holes in the test field limit. The
unique scaling of 2-2-holes results in their scalar charge
scaling linearly with their mass, yielding a nearly constant
value of γ across a wide range of masses. This is in contrast
to scalarized black holes in scalar-tensor theories, where
smaller black holes exhibit significantly larger charges
[56]. Consequently, a binary system consisting of two 2-2-
holes experiences an additional scalar force and emits
additional quadrupole scalar radiation, while a binary
involving one 2-2-hole and one ordinary stellar object is
primarily influenced by the dipole radiation. For the former
case, the value of γ can be effectively constrained through
multiband gravitational wave observations of stellar-mass
binaries of 2-2-holes. In the latter case, γ can be probed
through precise observations of EMRIs involving a super-
massive 2-2-hole with space-based detectors.
In this work, we investigate the nontrivial scalar

profile of 2-2-holes in the test field limit. As discussed
in more detail in the Appendix, the backreaction of the
scalar field might introduce more considerable effects in the
vacuum regime. Therefore, it would be intriguing to
explore the fully nonlinear solution of scalarized 2-2-holes.
Additionally, our current study has not accounted for the
contribution of the transition region around the would-be
horizon of 2-2-holes. Further research is warranted to
explore the role of this region, especially in the context
of the nonlinear solution, where an interplay between the
high curvature terms and scalar charge would be antici-
pated. Finally, the minimal model predicts a positive scalar
charge for 2-2-holes, whereas adopting a more complex
scalar potential could result in 2-2-holes with opposite
charges. This possibility could lead to a wider range of
observational implications for gravitational wave observa-
tions and warrants further investigation.
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APPENDIX: BACKREACTION OF SCALAR
FIELD AND NO-SCALAR-HAIR THEOREMS

In the main text, we have ignored the backreaction of the
scalar field on the metric. This approximation is valid for
ordinary stars, where the scalar charge is significantly
suppressed and the weak gravity expansion is applicable
just outside of the stars. However, this assumption needs to
be carefully evaluated for UCOs such as 2-2-holes. On one
hand, they may possess a substantial charge, potentially
resulting in a non-negligible scalar charge-to-mass ratio γ
of approximately 1. On the other hand, it is known that the
test field approximation for the scalar field breaks down
near the horizon, regardless of how small the scalar charge
is [44]. In the Appendix, we will examine this approxi-
mation for 2-2-holes, which closely resemble black holes
just outside the would-be horizon at a small distance. We
will also discuss how the no-scalar-field theory is circum-
vented in this context.
For a static and spherically symmetric spacetime, with

the line element in Eq. (13), the proper energy density and
pressure are given by ρ ¼ −Tt

t ¼ −Ttt=B and
P ¼ Tr

r ¼ Trr=A, respectively. According to Noether’s
theorem, the energy-momentum tensor of the scalar field
is given by

Tϕ;μν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LÞ
δgμν

¼ ∂μϕ∂νϕ − gμν

�
1

2
gαβ∂αϕ∂βϕþ VðϕÞ

�
; ðA1Þ

where L ¼ Lϕ þ Lf. The proper energy density and
pressure for the scalar field are then expressed as

ρϕ¼
1

2AðrÞ
�
∂ϕ

∂r

�
2

þVðϕÞ¼
�

1

2Āðr̄Þ
�
∂φ

∂r̄

�
2

þ V̄ðφÞ
�
ϕ2
0

λ22

Pϕ¼
1

2AðrÞ
�
∂ϕ

∂r

�
2

−VðϕÞ¼
�

1

2Āðr̄Þ
�
∂φ

∂r̄

�
2

− V̄ðφÞ
�
ϕ2
0

λ22
:

ðA2Þ

In the last equality, we express the density and pressure as
functions of the rescaled quantities, where the rescaled
scalar potential V̄ðφÞ ¼ F̄φþ 1

4
ð2Ḡ − ζ2Þφ2 þ 1

8
ζ2φ4,

with F̄, Ḡ, and ζ defined below the EOM Eq. (29). This
naturally defines a rescaled proper energy density and
pressure as

ρ̄ϕ ¼ ρϕλ
2
2=ϕ

2
0; P̄ϕ ¼ Pϕλ

2
2=ϕ

2
0: ðA3Þ

To investigate the backreaction of the scalar field, let us
first consider the interior of the 2-2-hole, where the
approximation can be easily justified by comparing the
stress tensor of the scalar field and the matter source. Given
the similarity of the proper temperature of the photon gas
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and the proper Fermi momentum for the cold Fermi gas
deep inside 2-2-holes in Fig. 6, we use the cold Fermi gas
for demonstration here. At the leading order of high density
expansion, its proper energy density is given by

ρgas ¼
π2

30
N k4F ∼Oð10Þk̄4F

m2
Pl

λ22
; ðA4Þ

whereN denotes the number of particle species. In the case
of a non-negligible Yukawa coupling between the scalar
and the Fermi gas, a significant scalar charge of 2-2-holes
can be achieved. Considering the massless case for
simplicity, the scalar potential in the deep interior, i.e.,
at r ≪ rF where rF denotes the radius at which kF drops to
zeros as shown in Fig. 6, is given approximately by
V̄ðφÞ ≈ F ρk̄2Fðr̄Þφ. The ratio between the proper energy
density of the scalar field and the Fermi gas can then be
expressed as

ρϕ
ρgas

∼Oð0.1Þ × ϕ2
0

m2
Pl

ð∂r̄φÞ2 þ 2F ρĀðr̄Þk̄2Fðr̄Þφ
2Āðr̄Þk̄4F

: ðA5Þ

Around the origin, φ approaches a constant, and we
have Ā ∝ r̄2 and k̄F ∝ 1=r̄. This leads to the inequality
∂r̄φ ≪ Āðr̄Þk̄2Fðr̄Þφ ≪ Āðr̄Þk̄4Fðr̄Þ, indicating that the
proper energy density of the scalar field is dominated by
the potential energy due to environmental effects and
remains much smaller than that of the Fermi gas. As r
increases, the gas density ρgas quickly declines and drops
significantly at rF. The kinetic energy of the scalar then
starts to dominate and quickly surpasses ρgas.
Figure 13 displays the proper energy density ratio as a

function of r̄. For γ2 ¼ 0.1 and ϕ0 ¼ 0.1mPl, the contri-
bution of the scalar field is significantly smaller than that of
the Fermi gas at r < rF, and therefore its backreaction can

be safely ignored. It is important to note that for the chosen
benchmark values of γ2 and ϕ0, the magnitude of jF ρj
remains small, where δφ1 has a linear dependence as shown
in Fig. 9, and then the scalar charge γ2 is approximately
independent from ϕ0 in this regime. If we were to consider
a larger value of ϕ0, the corresponding jF ρj would be
smaller, while γ2 remains unchanged. Consequently, the
ratio ρϕ=ρgas would scale as ðϕ0=mPlÞ2, as given by
Eq. (A5). To ensure the scalar field contribution is
negligible in most of the region within r < rF, it is then
safe to consider ϕ0 not much larger than 0.1mPl.
Next, we will discuss the backreaction of the scalar

field to the vacuum solution, where the contribution from
the matter sources is negligible. This is applicable to the
regime at r≳ rF, where rF is approximately Oð0.1ÞrH,
depending on the specific value of the gas mass. In the
2-2-hole exterior (r≳ rH) where the metric is well approxi-
mated by the Schwarzschild metric, the solution of scalar
EOM in Eq. (16) in the massless limit is given by
φðr̄Þ ∝ lnð1 − 1=r̄Þ, which yields diverging ρϕ and Pϕ

when r̄ approaches 1. This indicates the breakdown of
the test field approximation near the horizon for GR black
holes [44]. For 2-2-holes, we would like to argue that this
may not pose a significant issue, despite the fact that we
have not yet obtained the full nonlinear solution with the
scalar profile due to numerical challenges.
Based on the numerical solutions of 2-2-holes without

scalar charge, we observe that the quadratic curvature terms
begin to dominate over the Einstein term just outside the
would-be horizon. On the other hand, a full nonlinear
solution to the Einstein equations for a massless scalar
field, which was established long ago by Fisher [66] and
independently by Janis, Newman, and Winicour [67],
exhibits a genuine curvature singularity at the modified
horizon when the scalar charge is nonzero. The modified
horizon radius depends on the scalar charge and is always
greater than the Schwarzschild radius. When considering
scalarized 2-2-holes with backreaction, we anticipate that
the exterior will be described by the aforementioned
nonlinear solution outside of its modified horizon.
Subsequently, the high curvature terms would take over
and produce a different solution for the interior, similar to
the zero charge case. As a result, the original curvature
singularity at the horizon will be replaced by a high
curvature interior, which approaches a timelike singularity
at the origin. The latter has been argued to be a benign
timelike singularity in the zero scalar charge case [37].
Finally, let us discuss the circumvention of the no-scalar-

hair theorems for 2-2-holes in the test field limit, following
the improved proof of Bekenstein in Ref. [43]. The proof is
based on a careful analysis of the pressure of the scalar field
(i.e., Tr

r in Ref. [43]) and its radial derivative by utilizing the
conservation law of scalar field (i.e., ∇μT

μr
ϕ ¼ 0) at r ≥ rH.

For comparison, we display in Fig. 14 the rescaled proper
energy density, the pressure, and its radial derivative.

FIG. 13. The proper energy density ratio of the scalar field and
the cold Fermi gas in the 2-2-hole interior at different γ2. Here, we
choose ϕ0 ¼ 0.1mpl for demonstration. For the γ2 ¼ 0.1, 0.01
and 0.001 cases, the dimensionless coefficient jF ρj ≈ 106, 23,
11, respectively.
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We can first focus on the exterior, i.e., r≳ rH, where
2-2-holes most closely resemble black holes. The main
distinction from Bekenstein’s argument is that Pϕ is positive
at r sufficiently near the horizon for 2-2-holes, while it is
negative for black holes. This difference can be attributed to a
boundary term ∝

ffiffiffiffi
B

p
Pϕ, which is zero at the horizon for

black holes assuming a finitePϕ, and becomes significant as
Pϕ goes large when approaching the would-be horizon of 2-
2-holes. Therefore, it is possible to have Pϕ > 0 and ∂rPϕ <
0 for all r≳ rH, without resulting in a contradiction with the
conservation law as in the case of black holes.
However, as we delve into the interior of the 2-2-hole, Pϕ

does become negative and ∂rPϕ turns positive at r < rF. At
first glance, the latter seems to contradict the conservation
law of the scalar field. However, it is important to
remember that the scalar field interacts with the matter
source in this regime, and thus the conservation law applies

only to their combination. As shown in Fig. 13, the stress
tensor of the scalar field is negligibly small compared to
that of the matter source for γ2 ≲Oð1Þ. Therefore, the
stress tensor of the matter source satisfies the conservation
law at the leading order, while the scalar field and small
perturbation of the matter source together obey the law at
the next-leading order. We have confirmed that ∇μT

μr
ϕ is

indeed nonzero at r≲ rF from the numerical solutions,5

and thus the derivation in Ref. [43] based on ∇μT
μr
ϕ ¼ 0

does not apply. This provides a concrete demonstration of
how the no-scalar-hair theorems can be avoided by UCOs
with a black hole-like exterior but a highly curved and
matter-enriched interior.
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and José A. Font, Spontaneous scalarization of charged
black holes, Phys. Rev. Lett. 121, 101102 (2018).

[17] Pedro V. P. Cunha, Carlos A. R. Herdeiro, and Eugen Radu,
Spontaneously scalarized Kerr black holes in extended
scalar-tensor–Gauss-Bonnet gravity, Phys. Rev. Lett. 123,
011101 (2019).

[18] Carlos A. R. Herdeiro, Eugen Radu, Hector O. Silva,
Thomas P. Sotiriou, and Nicolás Yunes, Spin-
induced scalarized black holes, Phys. Rev. Lett. 126,
011103 (2021).

[19] Daniela D. Doneva, Fethi M. Ramazanoğlu, Hector O.
Silva, Thomas P. Sotiriou, and Stoytcho S. Yazadjiev,
Spontaneous scalarization, Rev. Mod. Phys. 96, 015004
(2024).

[20] Anson Hook and Junwu Huang, Probing axions with
neutron star inspirals and other stellar processes, J. High
Energy Phys. 06 (2018) 036.

[21] Laura Sagunski, Jun Zhang, Matthew C. Johnson, Luis
Lehner, Mairi Sakellariadou, Steven L. Liebling, Carlos
Palenzuela, and David Neilsen, Neutron star mergers as a
probe of modifications of general relativity with finite-range
scalar forces, Phys. Rev. D 97, 064016 (2018).

[22] Markus Heusler, A mass bound for spherically symmetric
black hole space-times, Classical Quantum Gravity 12, 779
(1995).

[23] Olaf Bechmann and Olaf Lechtenfeld, Exact black hole
solution with self-interacting scalar field, Classical Quan-
tum Gravity 12, 1473 (1995).

[24] Ulises Nucamendi and Marcelo Salgado, Scalar hairy black
holes and solitons in asymptotically flat space-times, Phys.
Rev. D 68, 044026 (2003).

[25] Xiao Yan Chew, Dong-han Yeom, and Jose Luis Blázquez-
Salcedo, Properties of scalar hairy black holes and scalarons
with asymmetric potential, Phys. Rev. D 108, 044020
(2023).

[26] Ted Jacobson, Primordial black hole evolution in tensor
scalar cosmology, Phys. Rev. Lett. 83, 2699 (1999).

[27] Juan Barranco, Argelia Bernal, Juan Carlos Degollado,
Alberto Diez-Tejedor, Miguel Megevand, Miguel
Alcubierre, Dario Nunez, and Olivier Sarbach, Are black
holes a serious threat to scalar field dark matter models?,
Phys. Rev. D 84, 083008 (2011).

[28] Carlos A. R. Herdeiro and Eugen Radu, Kerr black holes
with scalar hair, Phys. Rev. Lett. 112, 221101 (2014).

[29] Enrico Barausse, Carlos Palenzuela, Marcelo Ponce, and
Luis Lehner, Neutron-star mergers in scalar-tensor theories
of gravity, Phys. Rev. D 87, 081506 (2013).

[30] Masaru Shibata, Keisuke Taniguchi, Hirotada Okawa, and
Alessandra Buonanno, Coalescence of binary neutron stars
in a scalar-tensor theory of gravity, Phys. Rev. D 89, 084005
(2014).

[31] Lijing Shao, Noah Sennett, Alessandra Buonanno, Michael
Kramer, and Norbert Wex, Constraining nonperturbative
strong-field effects in scalar-tensor gravity by combining
pulsar timing and laser-interferometer gravitational-wave
detectors, Phys. Rev. X 7, 041025 (2017).

[32] Junjie Zhao, Lijing Shao, Zhoujian Cao, and Bo-Qiang Ma,
Reduced-order surrogate models for scalar-tensor gravity in
the strong field regime and applications to binary pulsars
and GW170817, Phys. Rev. D 100, 064034 (2019).

[33] Jun Zhang, Zhenwei Lyu, Junwu Huang, Matthew C.
Johnson, Laura Sagunski, Mairi Sakellariadou, and
Huan Yang, First constraints on nuclear coupling of
axionlike particles from the binary neutron star gravitational
wave event GW170817, Phys. Rev. Lett. 127, 161101
(2021).

[34] Hiroki Takeda, Shinji Tsujikawa, and Atsushi Nishizawa,
Gravitational-wave constraints on scalar-tensor gravity from
a neutron star and black-hole binary GW200115,
arXiv:2311.09281.

[35] Vitor Cardoso and Paolo Pani, Testing the nature of dark
compact objects: A status report, Living Rev. Relativity 22,
4 (2019).

[36] Bob Holdom, On the fate of singularities and horizons in
higher derivative gravity, Phys. Rev. D 66, 084010 (2002).

[37] Bob Holdom and Jing Ren, Not quite a black hole, Phys.
Rev. D 95, 084034 (2017).

[38] Bob Holdom, A ghost and a naked singularity; facing our
demons, in Scale Invariance in Particle Physics and
Cosmology (2019); arXiv:1905.08849.

[39] Jing Ren, Anatomy of a thermal black hole mimicker, Phys.
Rev. D 100, 124012 (2019).

[40] Ufuk Aydemir and Jing Ren, On thermodynamics of
compact objects, Classical Quantum Gravity 40, 185004
(2023).

[41] Bob Holdom, 2-2-holes simplified, Phys. Lett. B 830,
137142 (2022).

[42] J. D. Bekenstein, Transcendence of the law of baryon-
number conservation in black hole physics, Phys. Rev. Lett.
28, 452 (1972).

[43] J. D. Bekenstein, Novel “no-scalar-hair” theorem for black
holes, Phys. Rev. D 51, R6608 (1995).

[44] Carlos A. R. Herdeiro and Eugen Radu, Asymptotically flat
black holes with scalar hair: A review, Int. J. Mod. Phys. D
24, 1542014 (2015).

PROBING LIGHT SCALARS WITH NOT QUITE BLACK HOLES PHYS. REV. D 109, 104061 (2024)

104061-19

https://arXiv.org/abs/2309.13106
https://doi.org/10.1146/annurev.ns.41.120191.001413
https://doi.org/10.1146/annurev.ns.41.120191.001413
https://doi.org/10.1038/356207a0
https://doi.org/10.1103/PhysRevD.54.1474
https://doi.org/10.1103/PhysRevD.54.1474
https://doi.org/10.1103/PhysRevLett.120.131104
https://doi.org/10.1103/PhysRevLett.120.131104
https://doi.org/10.1103/PhysRevLett.111.111101
https://doi.org/10.1103/PhysRevLett.120.131103
https://doi.org/10.1103/PhysRevLett.120.131103
https://doi.org/10.1103/PhysRevLett.121.101102
https://doi.org/10.1103/PhysRevLett.123.011101
https://doi.org/10.1103/PhysRevLett.123.011101
https://doi.org/10.1103/PhysRevLett.126.011103
https://doi.org/10.1103/PhysRevLett.126.011103
https://doi.org/10.1103/RevModPhys.96.015004
https://doi.org/10.1103/RevModPhys.96.015004
https://doi.org/10.1007/JHEP06(2018)036
https://doi.org/10.1007/JHEP06(2018)036
https://doi.org/10.1103/PhysRevD.97.064016
https://doi.org/10.1088/0264-9381/12/3/015
https://doi.org/10.1088/0264-9381/12/3/015
https://doi.org/10.1088/0264-9381/12/6/013
https://doi.org/10.1088/0264-9381/12/6/013
https://doi.org/10.1103/PhysRevD.68.044026
https://doi.org/10.1103/PhysRevD.68.044026
https://doi.org/10.1103/PhysRevD.108.044020
https://doi.org/10.1103/PhysRevD.108.044020
https://doi.org/10.1103/PhysRevLett.83.2699
https://doi.org/10.1103/PhysRevD.84.083008
https://doi.org/10.1103/PhysRevLett.112.221101
https://doi.org/10.1103/PhysRevD.87.081506
https://doi.org/10.1103/PhysRevD.89.084005
https://doi.org/10.1103/PhysRevD.89.084005
https://doi.org/10.1103/PhysRevX.7.041025
https://doi.org/10.1103/PhysRevD.100.064034
https://doi.org/10.1103/PhysRevLett.127.161101
https://doi.org/10.1103/PhysRevLett.127.161101
https://arXiv.org/abs/2311.09281
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1103/PhysRevD.66.084010
https://doi.org/10.1103/PhysRevD.95.084034
https://doi.org/10.1103/PhysRevD.95.084034
https://arXiv.org/abs/1905.08849
https://doi.org/10.1103/PhysRevD.100.124012
https://doi.org/10.1103/PhysRevD.100.124012
https://doi.org/10.1088/1361-6382/acebaf
https://doi.org/10.1088/1361-6382/acebaf
https://doi.org/10.1016/j.physletb.2022.137142
https://doi.org/10.1016/j.physletb.2022.137142
https://doi.org/10.1103/PhysRevLett.28.452
https://doi.org/10.1103/PhysRevLett.28.452
https://doi.org/10.1103/PhysRevD.51.R6608
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.1142/S0218271815420146


[45] L. Dolan and R. Jackiw, Symmetry behavior at finite
temperature, Phys. Rev. D 9, 3320 (1974).

[46] M. E. Carrington, The effective potential at finite
temperature in the Standard Model, Phys. Rev. D 45,
2933 (1992).

[47] Peter Brockway Arnold and Olivier Espinosa, The effective
potential and first order phase transitions: Beyond leading-
order, Phys. Rev. D 47, 3546 (1993); 50, 6662(E) (1994).

[48] James M. Lattimer, Introduction to neutron stars, AIP Conf.
Proc. 1645, 61 (2015).

[49] Robert J. Siverd et al., KELT-1b: A strongly irradiated,
highly inflated, short period, 27 Jupiter-mass companion
transiting a mid-F star, Astrophys. J. 761, 123 (2012).

[50] Andrew W. Steiner, James M. Lattimer, and Edward F.
Brown, The neutron star mass-radius relation and the
equation of state of dense matter, Astrophys. J. Lett. 765,
L5 (2013).

[51] Tanmay Kumar Poddar, Subhendra Mohanty, and Soumya
Jana, Constraints on long range force from perihelion
precession of planets in a gauged Le − Lμ;τ scenario, Eur.
Phys. J. C 81, 286 (2021).

[52] Nicolás Viaux, Márcio Catelan, Peter B. Stetson, Georg
Raffelt, Javier Redondo, Aldo A. R. Valcarce, and Achim
Weiss, Neutrino and axion bounds from the globular cluster
M5 (NGC 5904), Phys. Rev. Lett. 111, 231301 (2013).

[53] K. S. Stelle, Renormalization of higher derivative quantum
gravity, Phys. Rev. D 16, 953 (1977).

[54] Alberto Salvio, Quadratic gravity, Front. Phys. 6, 77 (2018).
[55] Robert M. Wald, Dynamics in nonglobally hyperbolic, static

space-times, J. Math. Phys. (N.Y.) 21, 2802 (1980).
[56] Andrea Maselli, Nicola Franchini, Leonardo Gualtieri, and

Thomas P. Sotiriou, Detecting scalar fields with extreme
mass ratio inspirals, Phys. Rev. Lett. 125, 141101 (2020).

[57] Sunny Vagnozzi et al., Horizon-scale tests of gravity
theories and fundamental physics from the event horizon
telescope image of Sagittarius A, Classical Quantum Grav-
ity 40, 165007 (2023).

[58] Junwu Huang, Matthew C. Johnson, Laura Sagunski, Mairi
Sakellariadou, and Jun Zhang, Prospects for axion searches
with Advanced LIGO through binary mergers, Phys. Rev. D
99, 063013 (2019).

[59] Hoang Nhan Luu, Tao Liu, Jing Ren, Tom Broadhurst,
Ruizhi Yang, Jie-Shuang Wang, and Zhen Xie, Stochastic
wave dark matter with fermi-lat -ray pulsar timing array,
Astrophys. J. Lett. 963, L46 (2024).

[60] Enrico Barausse, Nicolás Yunes, and Katie Chamberlain,
Theory-agnostic constraints on black-hole dipole radiation
with multiband gravitational-wave astrophysics, Phys. Rev.
Lett. 116, 241104 (2016).

[61] Antoine Klein et al., The last three years: Multiband
gravitational-wave observations of stellar-mass binary black
holes, arXiv:2204.03423.

[62] Chang Liu, Lijing Shao, Junjie Zhao, and Yong Gao,
Multiband observation of LIGO/Virgo binary black
hole mergers in the gravitational-wave transient
catalog GWTC-1, Mon. Not. R. Astron. Soc. 496, 182
(2020).

[63] Lee Lindblom, Benjamin J. Owen, and Duncan A. Brown,
Model waveform accuracy standards for gravitational wave
data analysis, Phys. Rev. D 78, 124020 (2008).
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