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Recent gravitational wave detections from black hole mergers have underscored the critical role black
hole perturbation theory and the Teukolsky equation play in understanding the behavior of black holes. The
separable nature of the Teukolsky equation has long been leveraged to study the vacuum linear Teukolsky
equation; however, as theory and measurements advance, solving the sourced Teukolsky equation is
becoming a frontier of research. In particular, second-order calculations, such as in quasinormal mode and
self-force problems, have extended sources. This paper presents a novel method for analytically separating
the Teukolsky equation’s source, aimed to improve efficiency. Separating the source is a nontrivial problem
due to the angular and radial mixing of generic quantities in Kerr spacetime. We provide a proof-of-concept
demonstration of our method and show that it is accurate, separating the Teukolsky source produced by the
stress-energy tensor of an ideal gas cloud surrounding a Kerr black hole. The detailed application of our
method is provided in an accompanyingMathematica notebook. Our approach opens up a new avenue for
accurate black hole perturbation theory calculations with sources in both the time and frequency domain.
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I. INTRODUCTION

Since the first detection of gravitational waves from
a black hole binary [1] in 2015, gravitational wave
astronomy has been a rapidly growing field. The current
catalog of binary detections [2] is centered on binaries
where the two compact objects have a similar mass.
However, recently, the LIGO/Virgo/KAGRA collaboration
detected a binary with mass-ratio of ε ¼ μ

M ∼ 0.04 [3],
where M and μ are the masses of the primary and the
secondary binary component, respectively. Gravitational
astronomy is now not confined to the comparable mass
regime; the so-called intermediate-mass-ratio inspirals
(IMRIs, with mass ratio 10−2 ≳ ε≳ 10−4) are increasingly
more detectable [4,5]. Additionally, millihertz frequency
gravitational waves will be detectable with space-based
gravitational wave interferometers, sensitive to lower mass
ratios than ground-based detectors. In the 2030s, three
space-based gravitational wave interferometer missions are
planned: LISA [6], TianQin [7], and Taiji [8]. Extreme-
mass-ratio inspirals (EMRIs, 10−5 ≳ ε≳ 10−8) are a key
target for these missions [9].

Numerical relativity (NR) [10] has had great success in
accurately modeling comparable mass binaries. Progress is
being made to extend the catalog of NR waveforms into the
IMRI regime [11,12]. Synergies with black hole perturbation
theory can also improve efficiency [13,14]. However, these
are challenging tasks due to the disparate length scales of
such systems. In the EMRI regime, it is unrealistic to expect
such methods to be capable of filling the parameter space of
initial conditions in the LISA mission time frame.
Alternatively, black hole perturbation theory provides

an ideal method for approximating the binary spacetime
in the small mass-ratio limit. The evolution of the binary
can be modeled using the self-force approach [15]. In
Refs. [16–18], a two-timescale approximation [19,20] was
implemented for a self-force evolution of a binary, includ-
ing (the dissipative) second-perturbative-order self-force.
This model was limited to a binary of two Schwarzschild
black holes in a quasicircular inspiral. The waveforms were
produced for a range of mass ratios and showed outstanding
agreement with NR (before the inner-most stable circular
orbit), even in the ε ∼ 1

10
regime. These results show that

self-force waveforms have incredible potential for gravi-
tational wave science. Crucially, the dissipative piece of the
second-order self-force is a necessary contribution for high
accuracy waveforms. There is also growing interest in
second-order quasinormal mode calculations [21–29].
The recent second-order self-force results are limited to a

Schwarzschild background black hole, whereas the primary
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black hole of astrophysical EMRIs is expected to have
a significant spin (a ∼ 0.9M). Adding the linear in-spin
contributions perturbatively [30,31] is straightforward.
However, including the full nonlinear spin of the primary
object is one of the outstanding problems in second-order
self-force. Working nonlinearly in spin involves the back-
ground spacetime being a Kerr black hole [32]. The Kerr
metric [32], in Boyer-Lindquist coordinates [33], is

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2 þ Σdθ2

þ
�
r2 þ a2 þ 2Ma2r sin½θ�

Σ

�
sin2½θ�dϕ2

−
4Marsin2½θ�

Σ
dtdϕ; ð1Þ

whereM is the black hole mass, a is the angular momentum
per unit mass, Σ¼ r2þa2cos2½θ�, and Δ ¼ r2 − 2Mrþ a2.
Kerr spacetime is stationary and axially symmetric, but not
spherically symmetric; hence, there is radial (r) and polar
angle (θ) mixing in the metric from (1). This lack of
symmetry makes the linearized Einstein field equations
generally nonseparable in Kerr; attempting to reduce
the linearized Einstein field equations, a coupled set of
partial differential equation (PDEs), to a coupled set of
ordinary differential equations (ODEs) by separation
of variables seems fruitless. However, a separable field
equation does exist, the Teukolsky equation [34,35].
Solving the sourced Teukolsky equation separably requires
separating the angular and radial dependency in the source.
In this paper, we produce a formalism for analytically
separating general sources of the Teukolsky equation. Our
method will be applied to produce accurate second-order
self-force and quasinormal mode calculations in follow-up
papers. We expect our method will provide key efficiency
savings in the second-order self-force problem, where a
substantial amount of mode coupling is present.
Before presenting our formalism, we briefly introduce

black hole perturbation theory and the separability of the
Teukolsky equation in the remainder of this section. In
Sec. II, we present our method for decomposing the source
(for a summary, see Fig. 3). In Sec. III, we apply our
method to a toy example to show it accurately decomposes
sources. Finally, in Sec. IV, we make our concluding
remarks.

A. Black hole perturbation theory and separability

Black hole perturbation theory involves solving the
Einstein field equations perturbatively around a back-
ground black hole spacetime. We write Einstein field
equations in natural units as

Gab½gcd� ¼ 8πTab; ð2Þ

where Gab is the Einstein tensor, gab is the metric,1 and Tab
is the stress-energy tensor. The metric and stress-energy
tensor are expanded in orders of the small parameter ε,

gab ¼ gð0Þab þ εhð1Þab þ ε2hð2Þab þ � � � þ εnhðnÞab þ…; ð3Þ

Tab ¼ Tð0Þ
ab þ εTð1Þ

ab þ ε2Tð2Þ
ab þ � � � þ εnTðnÞ

ab þ…: ð4Þ

We take gð0Þab , the background metric, to be the Kerr metric.

Therefore, Tð0Þ
ab ¼ 0, as Kerr is a vacuum solution. Under

the expansions in Eqs. (3) and (4), the Einstein field
equation, Eq. (2), can be expressed as a hierarchical set
of linear field equations in ascending order of ε [17,36],

δGab

h
hð1Þab

i
¼ 8πTð1Þ

ab ; ð5Þ

δGab

h
hð2Þab

i
¼ 8πTð2Þ

ab − δ2Gab

h
hð1Þab ; h

ð1Þ
ab

i
; ð6Þ

δGab

h
hð3Þab

i
¼ … ð7Þ

where δGab is the linearized Einstein operator and δ2Gab is
the quadratic Einstein operator [36].
The abundant symmetry of Schwarzschild space-

time makes the linearized Einstein operator, δGab,
separable [37,38]. However, the linearized Einstein oper-
ator in Kerr spacetime is generally nonseparable. It is,
therefore, remarkable that separable field equations exist,
the Teukolsky equations [34,35],

Oψ ð1Þ
0 ¼ S0T

ð1Þ
ab ; O0ψ ð1Þ

4 ¼ S4T
ð1Þ
ab ; ð8Þ

where ψ ð1Þ
0 ¼ T 0h

ð1Þ
ab , ψ

ð1Þ
4 ¼ T 4h

ð1Þ
ab , and T 0, T 4, S0, S4,

O, and O0 are second-order differential operators, see
Ref. [39].
It is not immediately obvious that Eq. (8) is separable

and relates to Kerr spacetime being Petrov type-D [40]
and a vacuum solution.2 To show Eq. (8) is separable, one
can choose a tetrad and convert to master Teukolsky
equation form [34,35,39]. In the Kinnersley tetrad [42],
the master Teukolsky equations are

Ôþ2

h
ψ ð1Þ
0

i
¼ −ΣS0

h
8πTð1Þ

ab

i
; ð9Þ

Ô−2

h
ζ4ψ ð1Þ

4

i
¼ −Σζ4S4

h
8πTð1Þ

ab

i
; ð10Þ

1The indices on the metric in Eq. (2) indicate that the metric is
a rank two tensor, rather than being free indices in the equation
(such as those on the Einstein operator and stress-energy tensor).
Throughout this work, indices that appear on tensors inside
square brackets are there for labeling purposes only.

2Reference [41] showed the Teukolsky equations of general
vacuum Petrov type-D spacetimes are separable.
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where Ôs is the spin s master Teukolsky operator and

ζ ≔ r − ia cos½θ�: ð11Þ

The separability ansatz relies on the time dependence of the

Teukolsky master variable, ψ ð1Þ
0 or ζ4ψ ð1Þ

4 , being expressed
as proportional to e−iωt (where ω may be complex), for
example, working in the frequency domain. The spin s
master Teukolsky operator can then be expressed as

Ôs ¼ Rs þ Θs; ð12Þ

where [39], in Boyer-Lindquist coordinates,

Rs ¼
�
Δ−s d

dr

�
Δsþ1

d
dr

�
þ K2 − 2isðr −MÞK

Δ

þ 4isωr − sλlm

�
; ð13Þ

where K ≔ ðr2 þ a2Þω − am, and

Θs ¼
�
d
dχ

�
ð1 − χ2Þ d

dχ

�
þ a2ω2χ2 −

ðm þ sχÞ
1 − χ2

− 2asωχ þ sþ A

�
; ð14Þ

where χ ≔ cos½θ� and A ≔ sλlm þ 2amω − a2ω2 (and
the eigenvalues sλlm depend on aω). The eigenfunctions
of Θs are spin-weighted spheroidal harmonics3 [34,35],
sSlm½θ;ϕ; aω�; that is,

Θs½sSlm� ¼ 0: ð15Þ

More generally, the Teukolsky equation can be shown to
be separable in any principle-null direction aligned tetrad
in Kerr without using coordinates [39,43]. The Teukolsky
equation can be written as

ζζ̄O ¼ R −S; ð16Þ

where R and S are operators that commute; hence, the
equation is separable.
Research has largely focused on solving the first-order

vacuum Teukolsky equation [44–46] or point-particle
source problem [15,39]. Hence, previous research has
generally not required efficient separation of the right-hand
side of the Teukolsky equation into modes of the separable
Teukolsky equation. As calculations move to second order,
sources are unavoidable. The second-order Teukolsky
equation comes in two forms, the Campanelli-Lousto

second-order Teukolsky equation [47] and the reduced-
second-order Teukolsky equation [36,48]. Both equations
are sourced by the stress-energy perturbations and a
quadratic operator acting on the first-order metric pertur-
bation. For example, the reduced second-order Teukolsky
equation takes the form

O
h
ψ ð2Þ
0L

i
¼ S0

h
8πTð2Þ

ab − δ2Gab

h
hð1Þab ; h

ð1Þ
ab

ii
; ð17Þ

O0
h
ψ ð2Þ
4L

i
¼ S4

h
8πTð2Þ

ab − δ2Gab

h
hð1Þab ; h

ð1Þ
ab

ii
; ð18Þ

where ψ ð2Þ
0L ¼ T 0½hð2Þab �, ψ ð2Þ

4L ¼ T 4½hð2Þab �. Note that ψ ð2Þ
0L

and ψ ð2Þ
4L are the linear in hð2Þab part of the full second-order

Weyl scalars,

ψ ð2Þ
0 ¼ ψ ð2Þ

0L þ ψ ð2Þ
0Q; ð19Þ

ψ ð2Þ
4 ¼ ψ ð2Þ

4L þ ψ ð2Þ
4Q; ð20Þ

where ψ ð2Þ
0Q ¼ δ2ψ0½hð1Þab ; h

ð1Þ
ab � and ψ ð2Þ

4Q ¼ δ2ψ4½hð1Þab ; h
ð1Þ
ab �

are the quadratic in hð1Þab parts of ψ ð2Þ
0 and ψ ð2Þ

4 respectively
[36,47]; the operators δ2ψ0 and δ2ψ4 are given in Ref. [49].

The δ2Gab½hð1Þab ; h
ð1Þ
ab � parts of Eqs. (17) and (18) make the

source noncompact, extending from the horizon of the
primary to future null infinity.
We need a precise definition for separating the source

of the Teukolsky equation. Take the master Teukolsky
equation with a generic source f½t; r; θ;ϕ�,

Ôs½ψ � ¼ f; ð21Þ

for the spin-smaster Teukolsky variable ψ . In order to solve
the equation separably, ψ and f must be expressed in a
mode decomposition form:

ψ ½t; r; θ;ϕ� ¼
X∞
l¼jsj

Xl

m¼−l
ψlm½r�e−iωtsSlm½θ;ϕ�; ð22Þ

f½t; r; θ;ϕ� ¼
X∞
l¼jsj

Xl

m¼−l
flm½r�e−iωtsSlm½θ;ϕ�: ð23Þ

Then, Eq. (21) reduces to

Rs½ψlm� ¼ flm; ð24Þ

for each l and m.
As spin-weighted spheroidal-harmonics are an ortho-

normal set [50] of eigenvectors on S2, one can separate the
source of the Teukolsky equation of spin weight s using

3In the limit aω → 0 the spin-weighted spheroidal harmonics
reduce to spin-weighted spherical harmonics.
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flm½r�e−iωt ¼
I

sS�lmf½t; r; θ;ϕ�dΩ; ð25Þ

where sS�lm is the bi-orthogonal dual [51] of the spin-
weighted spheroidal harmonic which simplifies to the
complex conjugate when ω is real. flm½t; r� in Eq. (25)
will then satisfy Eq. (23). As spin-weighted spheroidal
harmonics generally have no known closed form, integrat-
ing Eq. (25) is challenging. One could integrate numeri-
cally, but f½t; r; θ;ϕ� is not generally separable in the radial
and polar angle coordinates. Therefore, the integral will
need to be computed numerically at each radial point on a
grid for each l and m mode. This method has been used to
separate the source of the Teukolsky equation in Ref. [29]
for a quadratic quasinormal mode calculation. However, the
inefficiency of the numerical integrals may be problematic
for self-force calculations where multiple modes must be
calculated, and second-order calculations must fill a four-
dimensional parameter space of initial data to create the
waveform templates for LISA data analysis.
Alternatively, one could avoid separating the source of

the Teukolsky equation by solving the Teukolsky equation
in PDE form [52,53]. However, numerical methods for
solving PDEs convert the PDE into a system of ODEs.
Hence, it is likely that leveraging the separability of the
Teukolsky equation will develop the most efficient algo-
rithm for separating the Teukolsky equation into ODEs.

II. DECOMPOSING GENERAL FUNCTIONS
IN KERR SPACETIME

Our formalism is designed to separate general sources in
Kerr into the sum of the product of radial functions and
spin-weighted spheroidal harmonics. Essentially, we sep-
arate the radial and polar angle dependency4 and express
the angular dependence in terms of spin-weighted sphe-
roidal harmonics.
An immediate simplification we can make is reexpand-

ing the spheroidal harmonics into spin-weighted spherical
harmonics. Spin-weighted spherical harmonics are an
easier basis of functions to work with because they are
closed-form and have simple spin-weight raising and
lowering operators associated with them [54].5 Leavers
method [56] is the most accurate method of expressing
spin-weighted spheroidal harmonics but does not expand
them in terms of spin-weighted spherical harmonics
directly. Press and Teukolsky [57] were the first to expand
spin-weighted spheroidal harmonics into spin-weighted
spherical harmonics. Reference [58] then found a more
efficient method, which has been implemented in the Black

Hole Perturbation Toolkit [59]. The expansion in terms of
spherical harmonics converges to Leaver’s method solu-
tions and is invertible. But, to work with either expansion,
one must truncate at a finite order. Hence, for the remainder
of this paper, we assume any inputs that are generally
expressed in terms of spin-weighted spheroidal harmonics
can be reexpanded in terms of spin-weighted spherical
harmonics. Similarly, it is sufficient to express the source
in terms of spin-weighted spherical harmonics as we can
reexpand it in terms of spin-weighted spheroidal harmon-
ics. That is, we can simplify our goal to expressing the
source as

f½t; r; θ;ϕ� ¼
X∞
l¼jsj

Xl
m¼−l

f̂lm½r�e−iωtsYlm½θ;ϕ�; ð26Þ

where sYlm½θ;ϕ� are the spin-weighted spherical
harmonics.
The rest of this section is dedicated to expressing the

source of the Teukolsky equation in the form of Eq. (26).
To simplify this task, we use the Newman-Penrose [60],
Geroch-Held-Penrose (GHP) [61], and Held [62] formal-
isms. We also find there is a preferred tetrad and coordinate
scheme to express the source in Eq. (26) form. In such a
tetrad and coordinates, almost all the Kerr background
quantities are naturally expressed as single spin-weighted
spherical harmonics, and all angular derivatives become
spin-weight raising/lowering operators. One problematic
background quantity is unavoidable, ρ (and ρ̄), where

ρ ¼ −
1

ζ
¼ −1

ðr − ia cos½θ�Þ : ð27Þ

As the radial and angular dependence appears on the
denominator, ρ does not naturally separate into a radial
and angular function. In Sec. II F, we separate the radial and
angular dependence in Eq. (27) using a Fourier expansion.
Combining these methods, we produce a complete formal-
ism for expressing the source as a convergent sum of spin-
weighted spherical harmonics [Eq. (26)].

A. Spin-weighted spherical harmonics

The spin-weighted spherical harmonics were defined
in Ref. [54], and we follow their conventions up to a minus
sign in the definition of the spin raising and lowering
operators (similarly to Ref. [38]),

ð̂ ¼ ðsin½θ�Þ−sð∂θ þ i csc½θ�∂ϕÞðsin½θ�Þs
¼ ∂θ þ i csc½θ�∂ϕ − s cot½θ�; ð28Þ

ð̂0 ¼ ðsin½θ�Þ−sð∂θ − i csc½θ�∂ϕÞðsin½θ�Þs
¼ ∂θ − i csc½θ�∂ϕ − s cot½θ�; ð29Þ

4Separating the time and azimuthal angle dependencies is
trivial due to the symmetries of Kerr spacetime.

5Spin-weight raising and lowering operators for the spin-
weighted spheroidal harmonics have been derived [55] but as an
expansion in orders of aω.
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when acting on a spin-s weighted quantity. One can define
the spin-s spherical harmonics from the scalar harmonics,

sYlm ≔

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffi
ðl−jsjÞ!
ðlþjsjÞ!

q
ð−1Þsð̂sYlm; 0 ≤ s ≤ l;ffiffiffiffiffiffiffiffiffiffiffi

ðl−jsjÞ!
ðlþjsjÞ!

q
ð̂0jsjYlm; −l ≤ s ≤ 0:

ð30Þ

The following relations then hold [54],

ð̂sYl;m ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

p
sþ1Yl;m; ð31Þ

ð̂0sYl;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

p
s−1Yl;m; ð32Þ

ð̂0ð̂sYl;m ¼ −ðl − sÞðlþ sþ 1ÞsYl;m; ð33Þ

sȲl;m ¼ ð−1Þsþm
−sYl;−m: ð34Þ

The product of two spin-weighted spherical harmonics
can be expressed as the sum of spin-weighted spherical
harmonics,

s1Yl1;m1 s2
Yl2;m2

¼
X∞

l1¼s1;m1

X∞
l2¼s2;m2

Cl;m;s
l1;m1;s1;l2;m2;s2 s

Yl;m: ð35Þ

where Cl;m;s
l1;m1;s1;l2;m2;s2

is equivalent to a surface integral,

Cl;m;s
l1;m1;s1;l2;m2;s2

¼
I
s
Ȳl;ms1Yl1;m1

s2Yl2;m2
: ð36Þ

As spin-weighted spherical harmonics are related to
Wigner-D matrices, Eq. (36) can be evaluated algebraically
using 3j symbols [38,63,64],

Clms
l0m0s0l00m00s00 ¼ ð−1Þmþs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2l00 þ 1Þ

4π

r

×

�
l l0 l00

s −s0 −s00

��
l l0 l00

−m m0 m00

�
: ð37Þ

B. The Newman-Penrose formalism

The Newman-Penrose (NP) formalism [60] utilizes a
basis of four null vectors, called a tetrad, to express
curvature quantities. The NP basis vectors are labeled

ea½a� ≔
n
ea½1�; e

a
½2�; e

a
½3�; e

a
½4�
o
≔ fla; na; ma; m̄ag; ð38Þ

where indices in square brackets are tetrad indices. The
vectors la and na are real, and ma is complex. Overbars
denote a complex conjugation. Conventionally, for a
positive metric signature, the orthonormal relationship of
the tetrad takes the form

lana ¼ −1; mam̄a ¼ 1: ð39Þ

As the tetrad is orthonormal, following Eq. (39), the metric
can be expressed as [60]

gab ¼ −2lðanbÞ þ 2mðam̄bÞ: ð40Þ

The NP formalism uses Ricci rotation coefficients to
express the connection [65],

γ½c�½a�½b� ¼ ek½c�e½a�k;ie
i
½b�: ð41Þ

There are 24 independent components of Ricci rotation
coefficients. In the NP formalism, the components are
expressed as 12 complex scalars, known as spin coefficients:

κ ¼ −γ½3�½1�½1�; τ ¼ −γ½3�½1�½2�; σ ¼ −γ½3�½1�½3�;

ρ ¼ −γ½3�½1�½4�; π ¼ −γ½2�½4�½1�; ν ¼ −γ½2�½4�½2�;

μ ¼ −γ½2�½4�½3�; λ ¼ −γ½2�½4�½4�;

ϵ ¼ −
γ½2�½1�½1� þ γ½3�½4�½1�

2
; γ ¼ −

γ½2�½1�½2� þ γ½3�½4�½2�
2

;

β ¼ −
γ½2�½1�½3� þ γ½3�½4�½3�

2
; α ¼ −

γ½2�½1�½4� þ γ½3�½4�½4�
2

: ð42Þ

In vacuum spacetimes, the Ricci curvature is zero.
The Weyl tensor contains the vacuum curvature. In the
NP formalism, the ten degrees of freedom of the Weyl
tensor are expressed using five complex scalars, known as
Weyl scalars:

ψ0 ¼ C½1�½3�½1�½3�; ð43Þ

ψ1 ¼ C½1�½3�½1�½2�; ð44Þ

ψ2 ¼ C½1�½3�½4�½2�; ð45Þ

ψ3 ¼ C½1�½2�½4�½2�; ð46Þ

ψ4 ¼ C½2�½4�½2�½4�: ð47Þ

Kerr spacetime has two principal null vectors (two pairs
of principal null vectors which coincide) [40,66]. That is,
Kerr is Petrov type D. A tetrad can be chosen such that la

and na are tangent to the principal null directions and
four of the Weyl scalars and four spin coefficients then
vanish [66,67],

ψ0 ¼ 0; ψ1 ¼ 0; ψ3 ¼ 0; ψ4 ¼ 0; ð48Þ

κ ¼ 0; λ ¼ 0; ν ¼ 0; σ ¼ 0: ð49Þ

These simplifications were used to help derive the
Teukolsky equation [35].
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The covariant derivative is also expressed using tetrad
components in the NP formalism:

Dη ≔ ηj½1� ≔ la∇aη; Δη ≔ ηj½2� ≔ na∇aη;

δη ≔ ηj½3� ≔ ma∇aη; δ̄η ≔ ηj½4� ≔ m̄a∇aη: ð50Þ

C. The GHP formalism

The GHP formalism builds on the NP formalism, helping
to represent the symmetry in principal null direction
aligned tetrads in Petrov type D spacetimes (such as the
Kinnersley [42], Carter [68], and Hartle-Hawking [69]
tetrads). While constraining la and na to point in the same
direction, two tetrad rotation degrees of freedom remain
unconstrained. These freedoms can be associated with
spin and boost transformations and are isomorphic to the
group of multiplication by a complex number, ϑ [70].
To express the weight of a GHP quantity f we use the
notation f ≗ fp; qg, meaning that under a spin and boost
transformation

f ⟶ ϑpϑ̄qf ⇔ f ≗ fp; qg: ð51Þ

p and q are known as GHP weights that can be equated to
the spin [s ¼ 1

2
ðp − qÞ] and boost [b ¼ 1

2
ðpþ qÞ] weights.

Products of two tensors with weights a, b and c, d produces
a tensor of weight aþ c, bþ d. On the other hand, the
addition of two quantities can only be performed if they are
of the same weight.
The ½b; s� weights of the tetrad vectors are [1, 0], ½−1; 0�,

[0, 1], and ½0;−1� for la, na, ma, and m̄a respectively.
Similarly, the fp; qg weights of the tetrad vectors are
f1; 1g, f−1;−1g, f1;−1g, and f−1; 1g respectively.
In Petrov type-D principle null direction aligned tetrads,

there is a freedom to interchange la and na. GHP introduced
a prime operation to represent the interchange la → na,
na → la, ma → m̄a, and m̄a → ma. The prime operation
affects the GHP weights accordingly, f0 ≗ f−p;−qg.
Complex conjugation also affects the GHP weights:
f̄ ≗ fq; pg.
In the GHP formalism, half of the NP spin coefficients

are relabeled using the prime operation notation,6

κ0 ≔ −ν; σ0 ≔ −λ; ρ0 ≔ −μ;

τ0 ≔ −π; β0 ≔ −α; ϵ0 ≔ −γ: ð52Þ

The GHP weights of the spin coefficients (and their primes)
follow directly from the weights of the tetrad vectors [using
Eq. (42)]7; that is,

κ≗f3;1g; σ≗f3;−1g; ρ≗f1;1g; τ≗f1;−1g: ð53Þ
The spin coefficients ϵ, ϵ0, β, and β0 do not have well-
defined weights. Similarly, the NP derivative operators do
not have well-defined weights. GHP found by combining
these poorly defined weight quantities, one can produce
derivative operators with well-defined weights,

Þη ¼ ðD − pϵ − qϵ̄Þη; Þ0η ¼ ðΔþ pϵ0 þ qϵ̄0Þη;
ðη ¼ ðδ − pβ þ qβ̄0Þη; ð0η ¼ ðδ̄þ pβ0 − qβ̄Þη; ð54Þ
where η ≗ fp; qg. Equations (54) respectively have boost
and spin weights of [1, 0], ½−1; 0�, [0, 1], and ½0;−1� and
GHP weights of f1; 1g, f−1;−1g, f1;−1g, and f−1; 1g,
plus the weights of η.
Two clear advantages of the GHP formalism are that the

equations are more condensed than in NP form, and they
offer a straightforward consistency check by checking that
the weights of an equation are consistent.
We will also make use of the GHP commutation

relations [61] [with Eqs. (48) and (49) imposed],

Þ0Þη ¼ ÞÞ0η − ηðpðψ2 þ ττ0Þ þ qðτ̄0τ̄ − ψ̄2ÞÞ
− ðτ̄ − τ0Þðη − ðτ − τ̄0Þð0η; ð55Þ
ðÞη ¼ Þðη − qηρ̄τ̄0 þ τ̄0Þη − ρ̄ðη; ð56Þ
ðÞ0η ¼ Þ0ðηþ pρ0τ þ τÞ0η − ρ0ðη: ð57Þ

We apply the commutation relations, Eqs. (55)–(57)
(and their complex conjugates) to commute all ð and ð0
derivatives to the right, and all Þ0 derivatives to the right
of Þ. This simplifies equations, and this ordering will place
all spin-raising and lowering operators to the right of radial
derivatives in Sec. II E 1.

D. The Held(-Kinnersley) formalism

The Held formalism builds on the GHP formalism,
producing an algorithmic integration technique for a
section of the GHP equations (the Ricci and Bianchi
identities in GHP form). The Held integration method
has recently been applied to solve black hole perturbation
theory problems [48,70,71]. Here, we review the main
aspects of the Held formalism and clarify its restriction to
the Kinnersly tetrad [42]. In Boyer-Lindquist coordinates,
the Kinnersley tetrad is

la ¼ 1

Δ
fr2 þ a2;Δ; 0; ag; ð58Þ

na ¼ 1

2Σ
fr2 þ a2;−Δ; 0; ag; ð59Þ

ma ¼ 1ffiffiffi
2

p
ζ̄

�
ia sin½θ�; 0; 1; i

sin½θ�
�
; ð60Þ

6For example, using Eq. (42), κ0 ¼ −γ½4�½2�½2� ¼ −ν where we
have used the identity γ½c�½a�½b� ¼ −γ½c�½b�½a�.

7For example, κ ¼ −mklk;ili ≗ f3; 1g, as ma ≗ f1;−1g and
la ≗ f1; 1g.
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m̄a ¼ 1ffiffiffi
2

p
ζ

�
−ia sin½θ�; 0; 1; −i

sin½θ�
�
: ð61Þ

I also comment on the advantages of the Held formalism
and when the integration technique can be used.
The Held formalism leverages the Ricci identities (called

“Field equations” in [62]), Bianchi identities, and commu-
tation relations to build a set of equations for derivatives
of background Kerr quantities. For example, in a vacuum
Petrov type-D spacetime, the R½1�½3�½1�½4� Ricci identity [66]
gives

Þρ ¼ ρ2: ð62Þ

Equation (62) can be interpreted as the integral of Þρ. Using
this identity to solve differential equations involving ρ and
Þ is known as Held integration [62]. For example, one may
solve the complex ordinary differential equation,

ÞA½ρ� ¼ B∘ρ3; ð63Þ

where A½ρ� is an unknown function of ρ and B∘ is a function
independent of ρ (ÞB∘ ¼ 0, all variables labeled with
∘ superscripts share this property and will be referred to
as Held scalars8). Using Eq. (62) one can find the solution,

A½ρ� ¼ B∘ρ2
2

þ C∘; ð64Þ

where C∘ is any function independent of ρ.
However, Held integration does not apply to general

GHP equations. When an alternative derivative operator
(such as Þ0, ð, or ð0) acts on an unknown variable in a
differential equation, the Held method of integration is not
helpful. For example,

ðD½ρ� ¼ E∘ρ3; ð65Þ

cannot be solved using Held integration. Within these
limitations, the Held integration method is useful
for solving certain problems in black hole perturbation
theory [48,70,71].
To apply Held integration to more generic equations

than Eq. (63), such as when GHP derivatives act on spin
coefficients, the Held formalism extracts the ρ dependency
out of such quantities. Held began by modifying the
derivative operators of GHP. The Held derivative operators
are Þ, Þ̃0, ð̃, and ð̃0. The new operators are defined as [48,70]

Þ̃0 ¼Þ0− τ̄ð−τð0 þττ̄

�
p
ρ̄
þq
ρ

�
þ1

2

�
qΨ̄2

ρ̄
þpΨ2

ρ

�
; ð66Þ

ð̃ ¼ 1

ρ̄
ðþ qτ

ρ
; ð67Þ

ð̃0 ¼ 1

ρ
ð0 þ pτ̄

ρ̄
; ð68Þ

with GHP weights f−1;−1g, f0;−2g, and f−2; 0g respec-
tively. These derivative operators were chosen to satisfy
the following commutation relations [62],

½Þ; Þ̃0�η∘ ¼ ½Þ; ð̃�η∘ ¼ ½Þ; ð̃0�η∘ ¼ 0; ð69Þ

where the ∘ superscript notation denotes a quantity that is
annihilated by Þ [42]. Equation (69) can be interpreted as
Þ̃0, ð̃, and ð̃0 containing no explicit ρ dependency.9

To begin extracting the ρ dependency in the spin
coefficients in Kerr, Held used a relation for τ taken from
Ref. [42],

τ ¼ ρρ̄τ∘; ð70Þ

with τ∘ ≗ f−1;−3g. Equation (70) only holds in the
Kinnersley tetrad as the analysis in Ref. [42] uses

ϵ ¼ 0: ð71Þ

Hence, the Held formalism is in the Kinnersley tetrad. This
claim can be tested by inputting Carter tetrad quantities for

ρ ¼ − 1
ζ

ffiffiffiffi
Δ
2Σ

q
and τ ¼ − ia sin½θ�

ζ
ffiffiffiffi
2Σ

p into Eq. (70). This would

give τ∘ ¼ −ia sin½θ� ζ̄ffiffiffi
Δ

p which is not annihilated by Þ.
Therefore, the Held formalism is not applicable in the
Carter tetrad.10 As the Held formalism is specific to the
Kinnersley tetrad, it is less flexible than the GHP formalism
and does not respect the symmetries of Kerr spacetime to
the same extent.
To extract the ρ dependency from the other spin

coefficients, Held integrated various Ricci identities,
Bianchi identities, and commutation relations [62], finding

8While quantities labeled with a superscript ∘ are commonly
known as Held scalars, the notation was originally introduced by
Kinnersley [42].

9Held integration is still limited to equations where only Þ
acts on the unknown quantity, whether using Held operators
or GHP operators; like Eq. (65), ð̃D½ρ� ¼ E∘ρ3 cannot be solved
for D½ρ� using Held integration.

10The Held formalism being specific to the Kinnersley tetrad is
not made clear in Ref. [62]. In fact, Eq. (5.24) of Ref. [62] tries to
use the tetrad degrees of freedom despite the tetrad being fixed.
Commonly, the Held formalism in modern literature [48,70,71]
only involves the analysis before Eq. (5.24) in Ref. [62], so it is
consistent. We propose the name “Held-Kinnersley” formalism to
make clear the applicability of the formalism and give credit to
Kinnersley for the work which Held built upon.
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τ0 ¼ −ρ2τ̄∘; ð72Þ

ψ2 ¼ Ψ∘ρ3; ð73Þ

ρ0 ¼ ρ0∘ρ̄ − 1

2
Ψ∘ρ2 −

�
ð0τ̄∘ þ 1

2
Ψ∘

�
ρρ̄ − τ∘τ̄∘ρ2ρ̄; ð74Þ

which defines the Held scalars Ψ∘ ≗ f−3;−3g and
ρ0∘ ≗ f−2;−2g.
There is an additional Held scalar that can be derived

from the spin coefficient ρ,

Ω∘ ≔ 1

ρ̄
−
1

ρ
; ð75Þ

with Ω∘ ≗ f−1;−1g.
At this point, we will deviate from the conventional

Held formalism notation. Due to the Held formalism being
in the Kinnersley tetrad, we can express the Held quantities
in a coordinated form. In Boyer-Lindquist coordinates
(ft; r; θ;ϕg) [48,70],

τ∘ ¼ −
ia sin½θ�ffiffiffi

2
p ; ρ0∘ ¼ −1=2; ð76Þ

Ω∘ ¼ −2ia cos½θ�; Ψ∘ ¼ M: ð77Þ

Clearly, ρ0∘ and Ψ∘ are coordinate invariant. In the follow-
ing, we replace ρ0∘ and Ψ∘ with −1=2 and M respectively.
Note, this relabeling does not have a well-defined spin
and boost weight, but this does not affect the form of Held
equations because ÞΨ∘ ¼ Þ̃0Ψ∘ ¼ ð̃Ψ∘ ¼ ð̃0Ψ∘ ¼ Þρ0∘ ¼
Þ̃0ρ0∘ ¼ ð̃ρ0∘ ¼ ð̃0ρ0∘ ¼ 0 (from the Ricci and Bianchi
identities [62]).
Held used the remaining Ricci and Bianchi identities

(and commutation relations) to derive simplifications for
the Held derivatives acting on the Kerr-Held scalars,

Þ̃0ρ ¼ −
ρ2

2
−
ρ2M
2

ðρþ ρ̄Þ − ρ3ρ̄τ∘; ð78Þ

ð̃ρ ¼ ρ2τ∘; ð̃0ρ ¼ −ρ2τ̄∘; ð79Þ

Þ̃0τ∘ ¼ 0; ð̃τ∘ ¼ 0; ð̃0τ∘ ¼ 1

2
Ω̄∘; ð80Þ

Þ̃0Ω∘ ¼ 0; ð̃Ω∘ ¼ 2τ∘; ð̃0Ω∘ ¼ −2τ̄∘: ð81Þ

1. Held derivatives and spin-raising/lowering operators

A further convenience of the Held formalism is that ð̃
and ð̃0 relate to the spin-raising and lowering operators of
the spin-weighted spherical harmonics. Next, we comment
on how this relationship is not unique to the Held
formalism and how the Kinnersley tetrad is one of a select

class of tetrads where the GHP derivatives ð and ð0 relate to
the spin-raising and lowering operators.
In the Kinnersley tetrad, it is not challenging to extract

the spin-raising and lowering operators from the GHP
derivatives ð and ð0 [Eq. (54)] when expressed in coor-
dinate form. First, express the GHP derivatives ð and ð0 in
NP form using Eq. (54). From Eq. (54), we see the relevant
NP quantities are δ, β, α, and their complex conjugates.
In the Kinnersley tetrad and Boyer-Lindquist coordinates,
Eqs. (58)–(61) give

δ ¼ 1ffiffiffi
2

p
ζ̄

�
ia sin½θ�∂t þ ∂θ þ

i
sin½θ� ∂ϕ

�
; ð82Þ

β ¼ cot½θ�
2

ffiffiffi
2

p
ζ̄
; −α ¼ β0 ¼ cot½θ�

2
ffiffiffi
2

p
ζ
−
ia sin½θ�ffiffiffi

2
p

ζ2
: ð83Þ

Noting the common factor of 1ffiffi
2

p
ζ̄
in Eqs. (82) and (83),

and using Eq. (54), it is straightforward to show the GHP ð
relates to the spin-raising operator ð̂,

ð ¼ 1ffiffiffi
2

p
ζ̄
ð̂þ ia sin½θ�∂uffiffiffi

2
p

ζ̄
þ iq sin½θ�ffiffiffi

2
p

ζ̄2
: ð84Þ

The Kinnersley tetrad is not the only tetrad where GHP ð
and ð0 relate to spin-raising and lowering operators. This
can be seen by examining the class III tetrad rotations [66]
(under which the direction of the vectors la and na are
unchanged and, therefore, remain aligned with the principle
null directions),

la→A−1la; na→Ana; ma→eiθma; m̄a→e−iθm̄a;

ð85Þ

where A and θ are real functions. The relevant spin
coefficients [see Eq. (54)] transform as [66],

β → eiθβ þ 1

2
ieiθδθ −

1

2
A−1eiθδA; ð86Þ

β0 → e−iθβ0 −
1

2
ie−iθδ̄θ þ 1

2
A−1e−iθδ̄A; ð87Þ

Take a tetrad related to the Kinnersley tetrad where θ and A
satisfy δθ ¼ δA ¼ 0; then β, β̄0, andma are only rescaled by
a factor of eiθ, so the relation of the GHP derivatives ð and
ð0 to the spin raising and lowering operators remains trivial.
The Hartle-Hawking tetrad [69,72] is one such example,

where A ¼ 2ðr2þa2Þ
Δ and θ ¼ 0. However, this condition does

not hold for all tetrads, such as the Carter tetrad. To

transform from the Kinnersley to the Carter tetrad A ¼
ffiffiffiffi
2Σ
Δ

q
and θ ¼ −i ln½ ζ̄ffiffiffi

Σ
p �. Hence,

ANDREW SPIERS PHYS. REV. D 109, 104059 (2024)

104059-8



ma
C ¼ 1ffiffiffiffiffiffi

2Σ
p

�
ia sin½θ�; 0; 1; i

sin½θ�
�

ð88Þ

and the relevant spin coefficients in the Carter tetrad are

βC ¼ β0C ¼ −
i
ζ

aþ ir cos½θ�
2 sin½θ� ffiffiffiffiffiffi

2Σ
p : ð89Þ

Examining Eq. (88) and (89), in the Carter tetrad, the cot½θ�
terms in β and β0 do not have the same coefficient as the θ
derivative in δ. Hence the cot½θ� terms are not eliminated by
the conversion to a spin-raising operator. Also, the a

sin½θ�
terms in Eq. (89) will remain after expressing the θ
derivatives in terms of raising and lowering operators.
cot½θ� and 1

sin½θ� are singular at the poles, and when expressed
as a sum of spin-weighted spherical harmonics, the sum
does not converge. Therefore, there are preferred tetrads for
expressing Kerr quantities such that they are smooth on the
2-sphere: the Kinnersley tetrad and tetrads related to the
Kinnersley tetrad by Eq. (85) with δθ ¼ δA ¼ 0.
While the Kinnersley tetrad in Boyer-Lindquist coor-

dinates avoids singularities in ð and ð0, we can see from
Eqs. (54) and (58) that Þ contains 1

Δ terms. These terms are
singular at the horizons as Δ ¼ 0 for

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ð90Þ

the outer and inner horizons, respectively. To avoid
singularities at the horizon and make Þ and Þ0 as simple
as possible, we work in Kerr-Newman coordinates [48].
The outgoing Kerr-Newman coordinates, fu; r; θ;ϕ�g, are
related to Boyer-Lindquist coordinates as follows [48,73],

u ¼ t − r� ¼ t − r −
r2þ þ a2

rþ − r−
ln
�
r − rþ
rþ

�

þ r2− þ a2

rþ − r−
ln

�
r − r−
r−

�
; ð91Þ

ϕ� ¼ ϕ −
a

rþ − r−
ln

�
r − rþ
r − r−

�
; ð92Þ

In these coordinates [48,70],

la ¼ f0; 1; 0; 0g; ð93Þ

na ¼ 1

Σ

�
r2 þ a2;−

Δ
2
; 0; a

�
; ð94Þ

ma ¼ 1ffiffiffi
2

p
ζ̄

�
ia sin½θ�; 0; 1; i

sin½θ�
�
; ð95Þ

m̄a ¼ 1ffiffiffi
2

p
ζ

�
−ia sin½θ�; 0; 1; −i

sin½θ�
�
: ð96Þ

Using Eqs. (71) and (93),

Þ ¼ ∂r: ð97Þ

When acting on Held scalars [70]

Þ̃0 ¼ ∂u: ð98Þ

When Þ̃0 acts on a quantity which is not a Held scalar (i.e.,
not annihilated by Þ), its coordinate form is more compli-
cated and dependent on the quantities spin and boost
weight (which we address in Sec. II E).
The null vectors ma and m̄a in Eq. (95) and (96) take the

same form as in Boyer-Lindquist coordinates (as do the
spin coefficients as they are scalars which depend on only r
and θ). The Held derivatives ð̃ and ð̃0 then relate similarly to
the spin-raising and lowering operators,

ð̃ ¼ −1ffiffiffi
2

p
�
∂θ þ i csc½θ�∂ϕ� þ ia sin½θ�∂u −

1

2
ðp− qÞ cot½θ�

�

¼ −1ffiffiffi
2

p ð̂−
ia sin½θ�∂uffiffiffi

2
p ; ð99Þ

ð̃0 ¼ −1ffiffiffi
2

p
�
∂θ − i csc½θ�∂ϕ� − ia sin½θ�∂u þ

1

2
ðp− qÞ cot½θ�

�

¼ −1ffiffiffi
2

p ð̂0 þ ia sin½θ�∂uffiffiffi
2

p ; ð100Þ

with the subtlety that the spin raising and lowering
operators now act on sYlm½θ;ϕ�� rather than sYlm½θ;ϕ�.
The ∂u derivatives are trivial as the background is time
independent and we assume the perturbations have a
time dependency proportional to e−iωt (converting the
time coordinate dependence is straightforward, e−iωt ¼
e−iωðuþr�Þ). Equations (99) and (100) are similar to
Chandrasekhar’s operators −sLω

†; þsLω up to a trivial
normalization [66].

E. Half-Held-Kinnersley formalism

Here, we are not interested in the Held formalism for its
integration method. Rather, we are interested in how it
separates quantities into an explicitly ρ-dependent piece
and a ρ-independent piece and converts θ derivatives into
spin-raising and lowering spherical harmonic operators.11

We shall maintain these properties while making a small

11These properties are not exclusive to the Held formalism.
One could work in the NP formalism in the Kinnersley tetrad and
extract the explicit ρ dependence and spin-raising and lowering
spherical harmonic operators. However, such an approach would
effectively be the same as the Held formalism, so we choose to
follow the Held formalism as closely as is practical. Plus, the
Held formalism involves in-built simplifications that derive from
the Ricci identities.
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deviation from the conventions of Held, producing a half-
Held-Kinnersley formalism. The half-Held-Kinnersley for-
malism is defined as identical to the Held formalism except
for the Þ̃0 operator is replaced with the GHP operator Þ0.
Our motivation for preferring Þ0 is that expressing Þ̃0 in
coordinate form is not straightforward and requires replac-
ing Þ̃0 with Þ0 using Eq. (66) anyway. Our formalism
maintains the advantageous Held ð̃ and ð̃0 derivatives,
which are spin-raising and lowering operators of the spin-
weighted spherical harmonics up to time derivatives. As Þ
and Þ̃0 do not contain θ derivatives, all θ derivatives also
appear as spin-raising and lowering operators in the half-
Held-Kinnersley formalism.
The relations for Þ0 acting on Held quantities can be

derived from the Ricci and Bianchi identities:

Þ0ρ ¼ −
ρ

2
ðMð2ρ2 þ ρρ̄þ ρ̄2Þ

þ 2ð−ρρ0∘ þ ρ2ρ̄τ∘τ̄∘ þ ρ̄3τ∘τ̄∘; ð101Þ

Þ0Ω∘ ¼ 1

2ρρ̄
ððρ − ρ̄ÞðMðρ2 þ ρ̄2Þ

þ 2ðρ3 þ 2ρ2ρ̄þ 2ρρ̄2 þ ρ̄3Þτ∘τ̄∘Þ; ð102Þ

Þ0τ∘ ¼ 1

2ρ̄
ðτ∘ðρ̄2ð−4ρ0∘ þ 3Mρ̄Þ þ 4ρ3ρ̄τ∘τ̄∘

þ 2ρρ̄ðρ0∘ −Ω∘ρ0∘ρ̄þ ρ̄2τ∘τ̄∘Þ
þ ρ2ðρ0∘ð2 − 2Ω∘ρ̄Þ þ ρ̄ðM þ 2ρ̄τ∘τ̄∘ÞÞÞÞ; ð103Þ

Þ0M ¼ 3M
2

ðMðρ2 þ ρ̄2Þ þ 2ð−ρ0∘ρ̄þ ρðρ0∘ − Ω∘ρ0∘ρ̄Þ
þ ρ3τ∘τ̄∘ þ ρ2ρ̄τ∘τ̄∘ÞÞ; ð104Þ

Þ0ρ0∘ ¼ ρ0∘
2ðρ̄þ Ω∘ρρ̄Þ ðMð3ρ̄3 þ ρ2ρ̄ð1 − 3Ω∘ρ̄Þ

þ ρ3ð4 − 2Ω∘ρ̄Þ þ ρρ̄2ð−4þ 3Ω∘ρ̄ÞÞ
þ 2ρðΩ∘ρ0∘ρ̄ðρ̄ − ρþ Ω∘ρρ̄Þ þ τ∘τ̄∘ðρ3 −Ωρ3ρ̄

þ ρð−1þ Ω∘ρÞρ̄2 þ 4ð1þΩ∘ρÞρ̄3ÞÞÞ: ð105Þ

Equation (105) appears to be problematic as the denom-
inator ðρ̄þ Ω∘ρρ̄Þ introduces mixing between the angular
and radial coordinates. However, by partially introducing
coordinates using Eqs. (27), (76) and (77), it simplifies to

Þ0ρ0∘¼−ρρ̄
2

ð2rþa2ðρþ ρ̄Þþr2ðρþ ρ̄Þ−2Mð1þrðρþ ρ̄ÞÞÞ:
ð106Þ

1. Converting to coordinates

To convert expressions in the half-Held-Kinnersley
formalism into Kerr-Newmann coordinates (fu;r;θ;ϕ�g),
we first express the derivatives Þ and Þ0 in NP form. From
Eq. (54) we see this reintroduces the derivatives D and Δ,
and the spin-coefficients ϵ and ϵ0. In the Kinnersley tetrad,
in Kerr-Newman coordinates,

ϵ ¼ 0; ð107Þ

ϵ0 ¼ ρρ̄

2
ðr −M þ ða2 − 2Mrþ r2ÞρÞ; ð108Þ

D ¼ ∂r; ð109Þ

Δ¼ρρ̄

�
ðr2þa2Þ∂u−

ðr2−2Mrþa2Þ
2

∂rþa∂ϕ�

�
: ð110Þ

After substituting in Eqs. (76) and (77),12 the resulting
coordinate expression presents all the ρ and ρ̄ dependence
explicitly.13

2. Mode decomposition

We assume the inputs (A) are expressed as a convergent
sum of spin-weighted spherical harmonics with coefficients
that can depend on r, ρ, and ρ̄:

A ¼
X∞
l¼jsj

Xl
m¼−l

Alm½r; ρ; ρ̄�sYlm½θ;ϕ��eiωu; ð111Þ

where Alm½r; ρ; ρ̄� are polynomials with positive and finite
powers of ρ and ρ̄; that is, Alm½r; ρ; ρ̄� ¼ ρA1;0

lm ½r� þ
ρ̄A0;1

lm ½r� þ ρρ̄A1;1
lm ½r� þ � � � þ ρiρ̄jAi;j

lm½r� for some finite i
and j. Note that ϕ� derivatives, like time derivatives, are
trivial as sYlm ∼ eimϕ� ; that is,

∂ϕ�A ¼ imA: ð112Þ

While we can use Eqs. (76) and (77) to express the Held
scalars in coordinate form, for a mode decomposition, it is
more useful to express them in terms of spin-weighted
spherical harmonics,

τ∘ ¼ −
ffiffiffiffiffiffi
4π

3

r
a1Y10; τ̄∘ ¼ −

ffiffiffiffiffiffi
4π

3

r
a−1Y10;

Ω∘ ¼ −4i
ffiffiffi
π

3

r
a0Y10; ð113Þ

12Equations (76) and (77) are identical in Kerr-Newman coor-
dinates as in BL coordinates as they are scalars which only depend
on r and θ.

13One may encounter ∂iρ. For i ¼ fu; r;ϕ�g terms, it is trivial
to show ∂rρ ¼ ρ2, ∂uρ ¼ ∂ϕ�ρ ¼ 0, and similarly for ρ̄.
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where we have used

Z½θ� ¼
X∞
l¼s;0

cl;0;ssYl;0; ð114Þ

with

cl;0;s ¼
I
s
Ȳl;0Z½θ�: ð115Þ

The resulting source expression will have products of
many spin-weighted spherical harmonics. To combine the
spin-weighted spherical harmonics, we use Eq. (35). The
resulting expression for the source will be of the form

f½t;r;θ;ϕ�¼
X∞
l¼jsj

Xl
m¼−l

f̃lm½r;ρ; ρ̄�e−iωtsYlm½θ;ϕ��; ð116Þ

where f̃lm½r; ρ; ρ̄� is a polynomial with positive and finite
powers of ρ and ρ̄; that is, f̃lm½r; ρ; ρ̄� ¼ ρf̃1;0lm ½r� þ
ρ̄f̃0;1lm ½r� þ ρρ̄f̃1;1lm ½r� þ � � � þ ρiρ̄jf̃i;jlm½r� for some finite i
and j. Next, we must express ρ and ρ̄ in terms of spin-
weighted spherical harmonics.

F. ρ expansion

So far, our method does not completely express quantities
separably as factors where ρ and ρ̄ are present; see Eq. (27).
The mixing between the radial and polar angle coordinate in
the denominator of Eq. (27) makes separating the r and θ
dependency nontrivial. In this subsection, we show the r
and θ dependency in ρiρ̄k (for any positive integer i and k)
can be separated using a Fourier expansion.14

As Eq. (27) is a trigonometric function, a Fourier
expansion seems like a natural approach. Equation (27)
is periodic in θ (ρ½r; θ� ¼ ρ½r; θ þ 2nπ� for any r and θ,
where n is an integer). Also, Eq. (27) is complex and
nonsingular for r ≥ r− (where r− is the radius of the inner
horizon). To assess the real and imaginary behavior of
Eq. (27), one can write

ρ ¼ −ðrþ ia cos½θ�Þ
Σ

; ð117Þ

as

1

Σ
¼ ρρ̄ ¼ 1

ðr2 þ a2 cos2½θ�Þ : ð118Þ

All factors of ρiρ̄k for i ≠ k can also be written in a manner
where the denominator is real: for i ≥ k,

ρiρ̄k ¼ ð−ðrþ ia cos½θ�ÞÞi−k
Σi ; ð119Þ

and for k ≤ i,

ρiρ̄k ¼ ð−ðr − ia cos½θ�ÞÞk−i
Σk : ð120Þ

This form is useful as the Fourier expansion of the
numerators in Eqs. (117), (119), and (120) are trivial.
Hence, only the Fourier expansion of the denominator,
which is real, is required.
A common denominator factor of Σ is desirable to

minimize the number of Fourier expansions required.
Using Eq. (117), we can express Eq. (116) as

f½t; r; θ;ϕ� ¼ 1

Σi

X∞
l¼jsj

Xl
m¼−l

f̆lm½r�e−iωtsYlm½θ;ϕ��; ð121Þ

for some i, which has collected all of the factors of ρ and ρ̄
outside of the sum in the form of 1

Σi. Therefore, we require
only one Fourier expansion, that of 1

Σi. For example, take the
function

f ¼ A∘ρþ B∘ρ3ρ̄2 þ C∘ρ̄4: ð122Þ

To extract the same ρρ̄ dependency, we note that the highest
power of either ρ or ρ̄ is ρ̄4. Hence, we write this function as

f ¼ ρ4ρ̄4
�

A∘
ρ3ρ̄4

þ B∘
ρρ̄2

þ C∘
ρ4

�
: ð123Þ

Using Eq. (27) to replace the inverse powers of ρ and ρ̄
gives

f ¼ 1

Σ4
ð−ðr − ia cos½θ�Þ3ðrþ ia cos½θ�Þ4A∘

− ðr − ia cos½θ�Þðrþ ia cos½θ�Þ2B∘

þ ðr − ia cos½θ�Þ4C∘Þ: ð124Þ

We can use cos½θ� ¼
ffiffiffiffi
4π
3

q
0Y10 and Eqs. (35) and (37) to

combine the angular dependence with that in A∘, B∘, and
C∘, allowing us to express f in the form of Eq. (121).

1. Fourier series

A Fourier series expresses periodic functions using the
orthogonality of the trigonometric functions sin½nθ� and
cos½nθ�. Truncated to order k, over an interval of 2π, the
Fourier series of a function A½θ� can be expressed as

F½A½θ�; k� ¼ a0
2
þ
Xk
n¼1

an cos½nθ� þ
Xk
n¼1

bn sin½nθ�; ð125Þ
14Alternatively, one can separate the dependency using a two-

point Taylor series [74–76]; however, we found the Fourier series
approximation more accurate.

ANALYTICALLY SEPARATING THE SOURCE … PHYS. REV. D 109, 104059 (2024)

104059-11



where

a0 ¼
1

π

Z
π

−π
A½θ�dθ; ð126Þ

an ¼
1

π

Z
π

−π
A½θ� cos½nθ�dθ; ð127Þ

bn ¼
1

π

Z
π

−π
A½θ� sin½nθ�dθ: ð128Þ

The quantity 1
Σi is an even periodic function over ½−π; π�;

hence, bn ¼ 0. Also, as Σi is a function of only even powers
of cos½θ�, a2nþ1 ¼ 0 for any positive integer n. Note that 1

Σi

is not singular in the domain r∈ ½rþ;∞Þ so we expect our
Fourier series to converge.
We now assess the accuracy of a truncated Fourier

series. For example, take the expansion of Σ−6 to order
k ¼ 8,

F½Σ−6; 8� ¼ 1

256r11ða2 þ r2Þ11=2 ðða
2 þ 2r2Þð63a8 þ 224a6r2 þ 352a4r4 þ 256a2r6 þ 128r8Þ

− 6a2ð21a8 þ 112a6r2 þ 240a4r4 þ 256a2r6 þ 128r8Þ cos½2θ� þ 42a4ða2 þ 2r2Þð3a4 þ 8a2r2 þ 8r4Þ cos½4θ�
− 14a6ð9a4 þ 32a2r2 þ 32r4Þ cos½6θ� þ 126a8ða2 þ 2r2Þ cos½8θ�Þ; ð129Þ

calculated using Mathematica [77]. Equation (129) accu-
rately approximates Σ−6, as can be seen in Fig. 1. For
a ¼ 0.9, r ¼ 1.43M, and k ¼ 8, the error is < 0.5%.
For larger r, the approximation becomes more accurate
(similarly to the blue line in Fig. 2). The most inaccurate
region is for small r and near the poles. For a ¼ 0.9, the
outer black hole horizon is rþ ≈ 1.436M [Eq. (90)]. For
higher values of a, the truncated Fourier series is less
accurate near the horizon.15 Considering the accuracy
requirements of LISA and current estimates on the spins
of supermassive black holes, the expansion used in Fig. 1 is
probably sufficient.
To achieve arbitrarily high accuracy, one can increase the

number of terms in the Fourier expansion, k. However,
when attempting to approximate Σn with a Fourier series
with k ≥ 2n, errors can occur for large r if sufficiently high
precision is not used, as shown in Fig. 2. We examine the
simplest example, Σ−1, to understand why large errors are
encountered when using low precision. The Fourier series
of Σ−1 with k ¼ 2 is

F½Σ−1;2�¼a2−2ða2þ2rðr−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þr2

p
ÞÞcos½2θ�

ra2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þr2

p : ð130Þ

Naively, the Fourier series appears to scale as ∼r0 for
large r, whereas 1

Σ ∼ r−2. However, r −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2

p
→ 0 for

large r, so this contribution is suppressed, so the Fourier
series scales as r−2, as expected. However, resolving
the suppression of such terms numerically requires

FIG. 1. Top: the function Σ−6 is plotted in blue (for a ¼ 0.9 and
r ¼ rþ ≈ 1.436M), and the Fourier expansion [for k ¼ 8, see
Eq. (125)] is over-plotted as a dashed yellow line. Bottom: the
fractional disagreement between the two plots is shown. There is
less than 0.5% error, and the error decreases for increasing radius
(see Fig. 2).

15This is due to the horizon radius approaching r ¼ 1M as
a → 1; therefore the −ia cos½θ� part in the denominator of
Eq. (27) will have a similar magnitude to r; 1

Σ observes similar
behavior. That is, the angular dependence becomes more sig-
nificant. Hence, an accurate approximation requires truncating
the series at a higher order in k in Eq. (125).
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high precision. With insufficient precision, an error ∝ r2

is incurred.
In practice, using such high precision will slow calcu-

lations down. Nonetheless, for EMRI models for LISA
data analysis, the accuracy requirements are likely suffi-
ciently modest that Fourier expansions with k < 2i can be
used; that is, high precision evaluation will likely not be
required.

G. Combining the spin-weighted
spherical harmonics

Finally, we can replace the ρiρ̄i ¼ Σ−i factor in Eq. (121)
with the Fourier expansion truncated to some finite order.
To convert the trigonometric quantities in the Fourier series
with spin-weighted spherical harmonics, we can use
Eqs. (114) and (115). By again using Eqs. (35) and (37),
we can combine the spin-weighted spherical harmonics to
express the source as

f½t; r; θ;ϕ� ¼
X∞
l¼jsj

Xl
m¼−l

f̂lm½r�e−iωtsYlm½θ;ϕ��: ð131Þ

To solve the separable master Teukolsky equation, Eq. (24),
we need to express the source as a spin-weighted spheroidal
expansion rather than a spin-weighted spherical harmonic
expansion. Using the inversion of the spin-weighted
spherical harmonic expansion of the spin-weighted sphe-
roidal harmonics [58,59], one can reexpand Eq. (131) in
terms of spin-weighted spheroidal harmonics,

f½t; r; θ;ϕ� ¼
X∞
l¼jsj

Xl
m¼−l

flm½r�e−iωtsSlm½θ;ϕ��: ð132Þ

This completes our formalism as we have separated the
source into the spin-weighted spheroidal harmonic modes
of the Teukolsky equation. The radial Teukolsky equa-
tion (24) can now be solved with flm½r� in (132). Our
formalism is summarized in Fig. 3.

III. EXAMPLE: FIRST-ORDER TEUKOLSKY
EQUATION WITH AN EXTENDED SOURCE

In this section, we present a toy-model application of our
method to show that it provides a high-accuracy expression
of the source of the Teukolsky equation. The Supplemental
Material [78] provides the implementation of this example
for reference. This notebook was built upon other publicly
available notebooks [49,79].
While the initial motivation for our method is separating

the source of the second-order Teukolsky equation, it also
applies to the more straightforward case of the first-order
Teukolsky equation. For our toy model, we will apply
our formalism to an extended source of the first-order
Teukolsky equation Eq. (8). This is a sufficient example
for applying our formalism because the second-order
Teukolsky equations (Eqs. (17) and (18), or the
Campanelli-Lousto form [47]) are similar to the first order
equation: the sources involve operators which depend on
background Kerr quantities and the inputs can be expanded
in terms of spin-weighted spherical harmonics. In upcom-
ing papers, we will apply our formalism to the second-order
self-force and quasinormal mode problems.
The source of the spin −2 first-order Teukolsky

equation is

f½t; r; θ;ϕ� ¼ S4½Tab�

¼ 1

2
ðð0 − τ̄ − 4τ0ÞððÞ0 − 2ρ̄0ÞTnm̄ − ðð0 − τ̄ÞTnnÞ

þ 1

2
ðÞ0 − ρ̄0 − 4ρ0Þððð0 − 2τ̄ÞTnm̄

− ðÞ0 − ρ̄0ÞTnnÞ: ð133Þ

For our example, we take Eq. (133) as our source and will
express it in the form of Eq. (131). Following Fig. 3,
we will expand the stress-energy tensor in terms of spin-
weighted spherical harmonics, similarly to Eq. (111). We
also express Eq. (133) in our half-Held-Kinnersley formal-
ism as outlined in Sec. II E; please see the Supplemental
Material [78] for the step-by-step application and the
resulting formulas.
We require a stress-energy tensor with an extended

radial profile. The stress-energy tensor of a perfect
fluid is

FIG. 2. The fractional error, j Σ−6

F½Σ−6;k¼12� − 1j, for different
digits of precision used (black line is 8, red line is 32, and blue
line is 128 digits of precision), for a ¼ 0.9 and θ ¼ π

4
. The plots

show a clear dependence of the error on the number of digits of
precision used for large r. This problem does not occur for k < 2i
when approximating Σ−i.
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Tab ¼ ðϱþ pÞuaub þ pgabð0Þ; ð134Þ

where ϱ is the density, p is the pressure, and ua is the four-
velocity. To produce a simple example for applying our
method, we assume p ¼ 0 and

ϱ ¼ Pe−
Λ
r ; ð135Þ

where P andΛ are constants. Similarly, we assume the fluid
is stationary in the rest frame of the black hole,

ua ¼ f1; 0; 0; 0g: ð136Þ

e.g.,

FIG. 3. Summary of our method for separating the source of the Teukolsky equation.
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Using Eqs. (134), (136), (59), (61), and (1),

Tnn ¼
ϱΔ2

4Σ2
¼ ϱΔ2

4
ρρ̄; ð137Þ

Tnm̄ ¼ −ϱΔia sin½θ�
2

ffiffiffi
2

p
Σζ

¼ ϱΔia sin½θ�
2

ffiffiffi
2

p ρ2ρ̄; ð138Þ

Tm̄ m̄ ¼ −ϱa2 sin2½θ�
2ζ2

¼ −ϱa2 sin2½θ�
2

ρ2; ð139Þ

where we have explicitly expressed the ρ and ρ̄ content
in Eqs. (137)–(139). Using Eqs. (114) and (115), we can
decompose Eqs. (137)–(139) into spin-weighted spherical
harmonics,

Tnn ¼ ρρ̄
ffiffiffi
π

p ϱΔ2

2 0Y00; ð140Þ

Tnm̄ ¼ ρ2ρ̄

�
−i

ffiffiffi
π

3

r
ϱaΔ

�
−1
Y10; ð141Þ

Tm̄ m̄ ¼ ρ2
�
−2

ffiffiffiffiffiffi
2π

15

r
ϱa2

2

�
−2
Y20: ð142Þ

In general applications of our formalism, the components
of the stress-energy tensor will be expressed as a sum of
spherical harmonic modes, in the form of Eq. (111). For our
toy-model example, the simplicity of our stress-energy
tensor has resulted in the mode decomposition being that of
a single mode for each component [Eqs. (140)–(142)].
Inserting Eqs. (140)–(142) into the half-Held-Kinnersley

formalism version of Eq. (133) allows us to extract all the
ρ and ρ̄ factors, expressing the source in the form of
Eq. (116). The highest factor is ρ6ρ̄4. We can pull out a
common factor of ρ6ρ̄4 using Eq. (27) and combine the
spin-weighted spherical harmonics using Eqs. (35) and (37)
to express

f½t; r; θ;ϕ� ¼ ρ6ρ̄4
X∞
l¼jsj

Xl
m¼−l

f̆lm½r�−2Ylm½θ;ϕ��: ð143Þ

Note there is no e−iωt dependence, and the spin-weighted
spheroidal harmonics are equivalent to spin-weighted spheri-
cal harmonics because the source is stationary (ω ¼ 0).
To complete our decomposition method requires

expressing ρ6ρ̄4 in a separable form and combining it into
the mode summation. To do so, we can use the Fourier
expansion (with k ¼ 8) for Σ−6 in Eq. (129), as
ρ6ρ̄4 ¼ Σ−6ð−r − ia cos½θ�Þ2. The resulting expression,
after again applying Eqs. (35) and (37), is of the form

f½t; r; θ;ϕ� ¼
X∞
l¼jsj

Xl
m¼−l

f̂lm½r�−2Ylm½θ;ϕ��: ð144Þ

The explicit form of f̂lm½r� can be found in the
Supplemental Material [78].
In order to validate our expression for Eq. (143), we

compare it to the four-dimensional expression for the
source, Eq. (133). It is straightforward to calculate

f½t;r;θ;ϕ�

¼Pa2e−
r
Λπð2Λþ iacos½θ�þrÞða2þrð−2MþrÞÞ2sin2½θ�

2Λ2ðacos½θ�þ irÞ4ðiacos½θ�þrÞ3 ;

ð145Þ

due to the simplicity of the stress-energy tensor using
Eqs. (54) and (58)–(61) (see Ref. [39] for expressions of the

FIG. 4. Top: the source of the Teukolsky equation for a
stationary ideal gas cloud is plotted in black (calculated using
our decomposition method) and red (calculated explicitly) for
a ¼ 0.9, Λ ¼ 1, P ¼ 1, and r ¼ rþ ≈ 1.436M. The lines overlay
each other, showing our decomposition method is accurate.
Bottom: the fractional disagreement between the two plots is
shown; note the error is the same as Fig. 1, as expected.
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spin-coefficients in the Kinnersley tetrad). We compare our
four-dimensional source to the sum in Eq. (143) in Fig. 4
near the horizon (r ¼ rþ ≈ 1.436M). In the top plot, the
two datasets overlap each other. The bottom plot shows that
the error is less than 0.5% and takes the same form as the
error in Fig. 1, as expected.
One could decompose Eq. (145) into spin-weighted

spherical harmonics using Eq. (25) (with spin-weighted
spherical harmonics instead of spin-weighted spheroidal
harmonics). Solving Eq. (25) requires computing an integral
for each lm mode either analytically or numerically. For our
toy-model example, the integrals are very slow to compute
analytically; for second-order sources, which are much more
complicated functions of r and θ (see Ref. [38] and the
PERTURBATIONEQUATIONS package in Ref. [59] for examples
in Schwarzschild), analytical integration would be imprac-
tical. Calculating the integrals numerically requires comput-
ing an integral at each radial point on a grid, which is
inefficient. Our formalism decomposes the source into
modes without calculating integrals, so we expect it to
provide efficiency savings for second-order calculations
where the equations for the source are very long.
Near the horizon is the most inaccurate zone for our

decomposition. This can be seen in Fig. 5, which plots
the radial profile of the error for a ¼ 0.9 and θ ¼ 0.01.
Additional precision errors can be encountered near the
horizon if insufficient precision is used (less than 32 digits
of precision). This is due to the Kinnersley tetrad being
singular at the horizon. Hence, when expressing regular
quantities using the Kinnersley tetrad near the horizon,
cancellations of large numbers are required. This problem
could be avoided by using a regular tetrad near the horizon,
such as the Hartle-Hawking tetrad [69,72].

IV. CONCLUSION

In this paper, we produced a formalism for decomposing
the source of the Teukolsky equation into spin-weighted
spheroidal harmonics analytically. Our formalism leverages
the Held formalism’s [62] ability to extract the ρ and ρ̄
dependency in background Kerr quantities. The remaining
Kerr quantities exhibit a straightforward separation of
variables in the Kinnersley tetrad [42]. We then used a
truncated Fourier series to separate the angular and radial
dependency in ρ and ρ̄. An order k ¼ 8 Fourier series has a
less than 0.5% error for approximating Σ−6. This error
should be sufficiently small for second-order self-force
calculations, as the error rapidly decreases as one moves
away from the horizon, and second-order effects are small
compared to first-order effects. Additionally, the error can
be decreased by increasing the order of the expansion.
In Sec. III, we demonstrated our method with a toy

example: separating the source of the first-order Teukolsky
equation for a stress-energy tensor of a pressureless ideal
gas. The calculation is available in the Supplemental
Material [78], which explicitly goes through each step
of applying our formalism, as summarized in Fig. 3. The
calculations confirm the accuracy of our formalism, as we
show the error in our source is the same as the error in our
expansion for ρ and ρ̄, as expected.
There is an alternative method for separating the source

of the second-order Teukolsky equation. Using the ortho-
gonality of the spin-weighted spheroidal harmonics [50],
as used in Ref. [29] for a quadratic quasinormal mode
calculation. However, our method provides the efficiency
advantage of being analytic, avoiding the need to integrate
at each radial point on a grid. This efficiency saving may
be crucial for the more involved second-order self-force
calculations in Kerr.
Implementing our method for the first second-order self-

force calculations in Kerr is currently in progress. Our
formalism will also be used to help calculate second-order
(quadratic) quasinormal mode calculations in Kerr [21–29].
Additionally, the formalism could be applied to solve
Teukolsky equations in theories of gravity beyond general
relativity, which generally have extended sources [80–84].
This paper focuses on applying our method in the

frequency domain, but the formalism is also applicable
in the time domain. In the time domain, decomposing into
spin-weighted spherical harmonics reduces the 2þ 1 PDE
Teukolsky equation into a coupled set of 1þ 1 PDEs with
only nearest and next-to-nearest l-mode coupling [85–89].
Hence, our formalism could help produce the first second-
order self-force calculations in the time domain.
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