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The recent advancements in black hole imaging have opened a new era of probing horizon-scale physics
with electromagnetic radiation. However, a feature of the observed images, a bright ring encircling a
relatively dark region, has not sufficiently proved the existence of event horizons. It thus requires extreme
care when studying the possibility of using such image features to examine quantum effects that may
change the classical picture of black holes slightly or drastically. In this work, we investigate the image of a
horizonless compact object, whose interior metric satisfies the 4D semiclassical Einstein equation
nonperturbatively for the Planck constant, and whose entropy agrees with the Bekenstein-Hawking
formula. Although the absence of an event horizon allows light rays to pass through the dense interior, the
extremely strong redshift significantly darkens the image, making it almost identical to the classical black
hole image. In particular, if there is light emission a bit inside the surface of the object, the intensity around
the inner shadow is slightly enhanced, which could be a future observable prediction to characterize the
object. We also find through a phenomenological parameter that the image is further darkened due to
interactions inside. Thus, the image is consistent with current observations, and the object could be a
candidate for black holes in quantum theory.
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I. INTRODUCTION

One prediction in general relativity (GR) is the gravi-
tational lensing effects—i.e., light rays are bent when
passing around a massive object—which are important
in the contexts of gravitational physics [1], astrophysics
[2,3], and cosmology [4]. In particular, the lensing effects
around a black hole are so strong that the images of a black
hole illuminated by its surrounding light emission are very
different from those of usual massive objects. More
explicitly, the photon trajectories can be extremely curved,
such that the light rays can orbit the black hole multiple
times, or even infinite times, when propagating near it. The
infinitely lensed photons correspond to a set of unstable
spherical photon orbits around the black hole. The observed
black hole image is thus characterized by a bright ring that
consists of the intensity of lensed photons on top of the
foreground direct emission [5]. On the other hand, the
photons entering the event horizon cannot be accessed from
outside. Therefore, the bright ring on the image plane
would encircle a dark region that corresponds to photon
trajectories terminating at the horizon. A bright ring
encircling a region with central brightness depression—
i.e., the shadow—is an important feature of the images of a
black hole in (classical) GR [1,6–8]. The recent progress in
imaging supermassive black holes [9,10] achieved by the

Event Horizon Telescope Collaborations has confirmed
such a feature.
The lensing scenario discussed above is for classical

black holes. It is well known that GR still has its own
issues—e.g., the existence of singularities, incompatibility
with quantum theories, etc.—whose resolution may require
quantum gravitational corrections. In particular, one unre-
solved puzzle of the quantum nature of black holes is the
information paradox [11], which indicates that the identity
of black holes consistent with quantum theory is still
unknown. Essentially, the problem is related to the presence
of horizons [12,13], and therefore, the possibility that large
quantum corrections may appear at the horizon scale and
even avoid the formation of a horizon [14–19] should be
seriously considered. It thus becomes crucial to investigate
whether one can probe these horizon-scale quantum effects
via the shadow images of these quantum-corrected black
holes [20–25].
Theoretically, a horizonless compact object can also

generate a ringlike structure in its image as long as it is
sufficiently compact such that unstable photon orbits exist.
The most distinctive feature when there is no event horizon
is that some light rays may be reflected at the surface of the
compact object, or may propagate through its interior (see
Ref. [26] for a review about testing horizonless compact
objects via observations). If these photons pick up addi-
tional intensities during their propagation and reach the
observer, they may contribute extra rings inside the major
bright ring on the image, hence enhancing the central
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brightness. Such features have been identified in the models
of wormholes [27–39], boson stars [40–42], gravastars
[43], fluid stars [44], fuzzballs [45], and naked singularities
[46–53]. Improving future dynamic range—which, roughly
speaking, quantifies the level of difference between the
brightest and dimmest image features—may help to dis-
tinguish such horizonless compact objects from a black
hole covered by a horizon [54].
However, when the photons are allowed to enter the

object, some subtle effects inside have to be carefully
considered. These include the strong redshifts that can
retard the photon propagation as seen by a distant observer,
as well as possible interactions between light rays and
the internal quantum structure of the object. Intuitively, the
combination of these two factors will effectively block the
photons propagating inside the object, hence suppressing
the intensity of the inner rings, and resembling more the
classical black hole images. Modeling the internal inter-
actions and their associated darkening effects is challenging
and is often model dependent. Recently, an effective
approach to darkening images was proposed in the con-
struction of the images of fuzzballs [55] and compact
topological solitons [56]. It was shown that the shadow
images of these horizonless compact objects can be almost
indistinguishable from classical black hole images.
Gravitational redshifts, on the other hand, can darken images
in a more model-independent manner because gravity is
determined by a given energy-momentum distribution,
independent of the details of the microscopic components.
Therefore, the presence of extremely strong redshift should
darken the images of a horizonless compact object in a way
that does not depend much on the details of its internal
interactions. In this paper,wewill examine howgeneric such
a darkening process is and how much the darkened images
mimic the images of a classical black hole.
One way to find a candidate of black holes in quantum

theory is to identify the most compact object formed in the
time evolution of a collapsing matter according to the 4D
semiclassical Einstein equations [18,57–62]

Gμν ¼ 8πGhψ jTμνjψi: ð1:1Þ

This is the self-consistent equation in a mean-field approxi-
mation of quantum gravity, where gravity is described by a
classical metric gμν, and matter is represented by quantum
operators [63,64]. In this framework, a macroscopic object is
described as a collection ofmany excited quanta in an excited
state jψi. In Refs. [18,57–62], by solving Eq. (1.1) self-
consistently, a 4D spherically symmetric spacetime region
was obtained as the configuration formed in the collapse of a
spherical matter, where the backreaction of particles created
during the collapse was considered. It represents a compact
object with an outer surface Rout located just outside the
Schwarzschild radius a0ð≫lp ≡

ffiffiffiffiffiffiffi
ℏG

p Þ instead of a horizon,
and it evaporates due to Hawking-like radiation in the

timescale Δt ∼ a30=l
2
p. For a generic collapse, a dense

structure with an exponentially large redshift and near-
Planckian curvatures is formed around the surface, while
the structure in deeper regions depends on the details of the
initial distribution of the collapsing matter [58]. For an
adiabatic formation in a heat bath at Hawking temperature,
the dense structure continues inward (except for a small
center part) to form a radially uniform dense configuration,
which can be considered the most thermodynamically
typical [57,62]. In this paper, we focus on the uniform dense
configuration and dub it the quantum horizonless compact
object (QHCO). In addition, one can evaluate the thermo-
dynamic entropy of the interior by a thermodynamic
method [58,65] and a statistical-mechanical one [61], to
reproduce the Bekenstein-Hawking formula [66,67].1 It was
later found [68] that the QHCO is the entropy-maximized
configuration that saturates the entropy bounds proposed by
Bekenstein [69] and Bousso [70]. Thus, QHCO has some
properties that a black hole should have in quantum theory
and could be a candidate for a quantum black hole.
We would like to emphasize again that the QHCO model

satisfies self-consistently the semiclassical Einstein equa-
tions (1.1) with many matter fields.2 The high curvature
inside induces quantum fluctuations of quanta, generating a
large tangential pressure hTθ

θi [61] that supports the
configuration against the strong self-gravity.3 Although
the model obeys the semiclassical description, it non-
trivially represents a nonperturbative solution in ℏ in the
sense that the curvatures and the metric itself cannot exist in
the limit ℏ → 0. Indeed, it belongs to a branch in the
solution space of Eq. (1.1) different from those that include
classical black hole metrics [62,73].
Of course, the semiclassical description naturally breaks

down when the energy scales become Planckian. In
the QHCO model, as a result of the balance between the
pressure and gravity, the excited quanta spread over the
whole interior (except for the central region), rather than
concentrating near the center. Hence, the curvatures remain
finite ∼1=nl2p, which are nonperturbative in ℏ but still in the
semiclassical regime if the number of degrees of freedom n
in the theory is large but finite4: n ¼ Oð1Þ ≫ 1. On the
other hand, the small central region has only a small energy
∼mp ≡

ffiffiffiffiffiffiffiffiffi
ℏ=G

p
and is not excited enough to be described

semiclassically. Therefore, its complete description would

1Here, the strong self-gravity plays an essential role in
changing the entropy from the volume law to the area law [65].

2Indeed, one can use a technique based on the properties of the
interior metric, evaluate the renormalized energy-momentum
tensor hψ jTμνjψi for, say, many massless scalar fields, and equate
it to Gμν, to solve Eq. (1.1) self-consistently [61]. As a result, the
relation (2.6) is obtained.

3This is precisely why QHCOs can evade the Buchdahl
limit [71] and reach extreme compactness, similar to the case
of very anisotropic stars [72].

4Here, Oð1Þ means Oða00Þ for a0 ≫ lp.
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require a self-consistent quantum theory of gravity.
However, since it has only a small energy, it should not
involve a drastic nature of quantum gravity, and it is natural
to assume that the central region of size ∼

ffiffiffi
n

p
lp can be

approximately described by a flat spacetime [61,65,68,73].
As a consequence, no singularity exists in the whole space.
The main theme of this paper is to investigate the images

of QHCOs neglecting the time evolution of the evaporation.
As we will show later, light rays are allowed to propagate
through the interiors of QHCOs due to the absence of the
event horizon. If these light rays can reach the observer,
they can generate additional bright rings inside the major
ring on the images. However, in reality, these light rays will
take an extremely long time during their passage in the
dense configuration due to the exponentially strong red-
shift. The delays of these light rays then effectively darken
the observed images, such that the darkened images
become almost indistinguishable from those of classical
black holes. We expect this feature to be insensitive to the
details of possible internal interactions. In fact, the QHCO
metric incorporates the internal interaction effects through a
phenomenological parameter η (see Sec. II), and we show
that the image becomes closer to that of a classical black
hole for stronger interactions. These render the QHCO a
perfect model for black hole mimickers. In addition, we
find that a tiny feature of the QHCO image, which is more
pronounced for larger n, will appear if light sources exist
just inside the QHCO surface. This prediction is indepen-
dent of the details of the emission profile, as long as the
inner part of the surface is lit up. Therefore, such a feature
may be a test bed for near-horizon quantum effects with
future improvements in observational techniques—e.g.,
substantially high dynamic range.
This paper is organized as follows: In Sec. II, we review

the QHCO spacetime more explicitly, including the metric
and some properties of QHCOs. In Sec. III, we investigate
the photon geodesics of QHCO spacetimes. Considering a
QHCO surrounded by an optically and geometrically thin
accretion disk, we investigate the “ideal” QHCO images in
Sec. IV, assuming that the light rays propagating through
QHCOs can reach the observer, no matter how long they
may take inside QHCOs as seen by the observer. Then, in
Sec. V, we generate a set of more realistic QHCO images by
including the darkening effects caused by the strong
redshifts inside QHCOs. We discuss how the images
may differ from, or mimic, the images of a classical
Schwarzschild black hole. Finally, in Sec. VI, we conclude
the paper by summarizing the results obtained and discus-
sing their implications to fundamental aspects of quantum
gravity.

II. QUANTUM HORIZONLESS
COMPACT OBJECT

As mentioned in the Introduction, the QHCO has an
outer surface at r ¼ Rout. Inside the surface, a collection of

highly excited quanta forms a dense configuration with
large curvatures and exponentially strong redshifts. On the
other hand, the small central core is approximated by a flat
space, whose size Rcore is comparable to the size of a
quantum bit, ∼

ffiffiffi
n

p
lp. Therefore, these surfaces separate

three different spacetime regions, as shown in Fig. 1.
More explicitly, the QHCO spacetime can be described

by the following spherically symmetric and static metric
[18,57,58,60–62,65,68]:

ds2 ¼ −AiðriÞdt2i þ BiðriÞdr2i þ r2i dΩ2
2; ð2:1Þ

where the subscripts i ¼ 1, 2, and 3 label the quantities in
the exterior region, the dense configuration, and the central
core, respectively.5

The spacetime outside the surface Rout is approximately
described by the Schwarzschild metric6:

A1ðr1Þ ¼
1

B1ðr1Þ
¼ 1 −

a0
r1

: ð2:2Þ

The dense configuration is expressed as

A2ðr2Þ ¼
2σ

r22
exp

�
r22
2ση

þ C

�
; B2ðr2Þ ¼

r22
2σ

; ð2:3Þ

where the constant C will be fixed below. There are two
parameters ðσ; ηÞ. Physically, σ ¼ Oðnl2pÞ represents the
intensity of Hawking-like radiation [18,57]. On the other
hand, the parameter η is a dimensionless constant satisfying

1 ≤ η < 2; ð2:4Þ

FIG. 1. The configuration of the QHCO model. It consists of
three regions and has inner and outer surfaces. The excited quanta
inside are supported by the large quantum pressure hTθ

θi against
the self-gravity so that they distribute uniformly in the radial
direction.

5Note that, for convenience, the radial coordinates in each re-
gion are written as ri, but they all belong to the same coordinate r.

6In this metric, for simplicity, we neglect a small backreaction
from vacuum polarization [63]. Its possibly large effect near the
Schwarzschild radius is considered in the interior metric (2.3).
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which comes from the positivity of pressures and the
causality of the interior matter [61]. Microscopically, η
depends on internal interactions in the sense that η ¼ 1
corresponds to radial lightlike propagation without scatter-
ing, while η ≠ 1 has the effects of interactions [57]. This is
reflected in the fact that a larger η leads to a smaller radial
pressure hTr

rðrÞi, as one can see from the energy-
momentum tensor:

h−Tt
tðrÞi ¼

1

8πGr2
; hTr

rðrÞi ¼
2 − η

η
h−Tt

tðrÞi;

hTθ
θðrÞi ¼

1

16πGση2
; ð2:5Þ

which are the leading-order expressions for r ≫ lp when
applying the metric (2.3) to Eq. (1.1). Note that the
tangential pressure is near Planckian—i.e., hTθ

θðrÞi ∼
1=Gnl2p [from Eq. (2.6)]—and one cannot take the classical
limit ℏ → 0. As a result, the dominant energy condition is
violated, and the interior is locally anisotropic.
The parameters ðσ; ηÞ can be determined by solving

Eq. (1.1) self-consistently for a given theory satisfying the
condition (2.4) [61] (see also footnote 2). In particular, we
have a relation

σ ¼ fnl2p
η2

; ð2:6Þ

where f is a numerical coefficient. As a result, the intensity
σ of the Hawking-like radiation is proportional to the
number n of the degrees of freedom in the theory.
Now, we fix the constant C by using Israel’s junction

condition [74]—that is, the continuity of the metric
functions A1ðr1Þ and A2ðr2Þ at the surface Rout:

eC ¼ R2
out

2σ

�
1 −

a0
Rout

�
exp

�
−
R2
out

2ση

�
: ð2:7Þ

Therefore, the metric function A2ðr2Þ can be written as

A2ðr2Þ ¼
�
1 −

a0
Rout

�
R2
out

r22
exp

�
r22 − R2

out

2ση

�
: ð2:8Þ

This exponentially large redshift, −gtt ∼ exp½−ðR2
out − r22Þ=

2ση�, freezes almost entirely the local time at a deep point
r ≪ Rout as seen by a distant observer within the timescale7

Δt < eR
2
out=σ . However, such a long timescale should not be

physical, since the typical timescale of black holes is at
most the evaporation timescale ∼a30=nl2p. Such a hierarchy

in different timescales will provide a natural mechanism to
darken the images, as we will show in Sec. V.
At this point, the relation between Rout and a0 remains

undetermined. It is determined by the continuity of the
proper acceleration

αðrÞ≡ ∂r ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttðrÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffi
grrðrÞ

p ð2:9Þ

at the surface8 Rout: α1ðRoutÞ ¼ α2ðRoutÞ [65]. This gives
the following algebraic relation:

a20Routση
2 − 2ðRout − a0ÞðR2

out − 2ησÞ2 ¼ 0: ð2:10Þ

Solving this, one can obtain the analytic expression of
a0 ¼ a0ðRoutÞ as

a0 ¼ a0ðRoutÞ ¼
−W2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W4 þ 2R2

outW2ση2
p

Routση
2

; ð2:11Þ

with W ≡ R2
out − 2ησ. For σ ≪ R2

out, one can expand
Eq. (2.11) and obtain the approximated relation [65]

Rout ≈ a0 þ
ση2

2a0
: ð2:12Þ

It is convenient for the following analysis to consider,
instead of σ, another dimensionless parameter,

k≡ ση2

a20
: ð2:13Þ

From the relation (2.6), we have k ∼ nl2p=a20. The parameter
k can roughly quantify the difference in size between the
QHCO surface and a0 because, from Eq. (2.12), we get
Rout=a0 − 1 ≈ k=2when k ≪ 1. We here discuss the typical
value of k. For a QHCO about 10 times the solar mass, we
have a0 ∼ 3 × 104m, and thus we obtain k ∼ 10−79n, where
we use lp ∼ 10−35m. If we assume the Standard Model at
the near-Planckian scale, the number of degrees of freedom
in the theory is n ∼ 102. Then, we get k ∼ 10−77, which is
extremely small.
From this estimate, one might think that the quantum

effects are just too small to generate any significant
horizon-scale effects. However, this is not the case, because
the interior structure is essentially independent of the total
energy a0=2G; the proper length between a0 and Rout is
estimated from Eqs. (2.3), (2.4), (2.6), and (2.12) asffiffiffiffiffiffiffi
gð2Þrr

q
ση2

2a0
∼

ffiffiffi
n

p
lp, and the scale of the interior curvatures

7This is different from the model of Refs. [75,76], in which the
redshift inside the object remains moderate, even if the object can
also be arbitrarily compact.

8This is required from a thermodynamic equilibrium condition
at Hawking temperature [65], and it is consistent with Israel’s
junction condition [74].
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is ∼1=nl2p as a result of nonperturbative quantum effects
like the large pressure hTθ

θi ∼ 1=Gnl2p. In the following
sections, to demonstrate the phenomenological effects of k
in a straightforward manner, the analysis will be performed
using a modestly large value of k. Therefore, for the rest of
this paper, we will use the exact expression given by
Eq. (2.11) whenever we calculate the QHCO surface Rout.
Finally, the central small region of size ∼

ffiffiffi
n

p
lp is flat,

and the inner surface can be chosen at, say [61,68],

Rcore ¼
ffiffiffiffiffi
2σ

p
: ð2:14Þ

More explicitly, after connecting to the metric (2.3) in
which A2ðr2Þ is given by Eq. (2.8), the metric of the central
core region is given by

A3ðr3Þ ¼
�
1 −

a0
Rout

�
R2
out

2σ
exp

�
2σ − R2

out

2ση

�
¼ const;

B3ðr3Þ ¼ 1; ð2:15Þ
which can be seen to be flat by redefining the time coordinate.

III. PHOTON TRAJECTORIES

To construct the QHCO image, we first investigate how
light rays propagate in the QHCO spacetime. Because there
is no event horizon, light rays that enter the QHCO surface
Rout can in principle escape to the exterior again. The
construction of the images has to take into account those
light ray trajectories as well. The photon trajectories outside
the QHCO surface are completely determined by the
geodesic equations of the Schwarzschild spacetime, which
have been well understood. In this section, therefore, we
will mainly focus on the photon geodesics that can enter the
surface of QHCO.
The whole spacetime is static and spherically symmetric.

Therefore, one can define two constants of motion for a
geodesic xμðλÞ in each spacetime region:

Aiṫi ¼ Ei; r2i φ̇i ¼ Li; ð3:1Þ
where the dot represents a derivative with respect to the
affine parameter λi, and the constants of motion Ei and Li
are the energy and the angular momentum of the geodesic.
For the equatorial motion θ ¼ π=2, the null constraint
condition gμνẋμẋν ¼ 0 gives

−Aiṫ2i þ Biṙ2i þ r2i φ̇
2
i ¼ 0; ð3:2Þ

which, using Eq. (3.1), can be rewritten as

AiBiṙ2i þ
AiL2

i

r2i
¼ E2

i : ð3:3Þ

Since we focus on the photon trajectories that may cross
the two surfaces, we have to take into account the boundary

conditions of the photon 4-momenta at the surfaces. Here,
considering thegeometry near a timelike hypersurfaceΣ, one
can introduce a Gaussian normal coordinate system [43]

ds2 ¼ dñ2 − α�ðñ; τÞ2dτ2 þ r�ðñ; τÞ2dΩ2
2; ð3:4Þ

where the subscripts � denote the opposite sides of Σ, the
surface corresponds to ñ ¼ 0, α is normalized such that
α�ð0; τÞ ¼ 1, and the areal radius of Σ is represented by
r�ð0; τÞ. Now, applying this coordinate system (3.4) to the
QHCO surface, the continuity of the dτ2 and the dΩ2

2 terms
gives

A1ðRoutÞṫ21 ¼ A2ðRoutÞṫ22; r21φ̇
2
1 ¼ r22φ̇

2
2; ð3:5Þ

respectively, with r1 ¼ r2 ¼ Rout. A similar procedure
applies to the core surface at r2 ¼ r3 ¼ Rcore. Because the
metric functionsAi and ri are continuous at the two surfaces,
one eventually obtains

ṫ1 ¼ ṫ2 ¼ ṫ3; φ̇1 ¼ φ̇2 ¼ φ̇3: ð3:6Þ

Combining Eqs. (3.1) and (3.6), one gets

E1 ¼ E2 ¼ E3; L1 ¼ L2 ¼ L3: ð3:7Þ

Therefore, the energy and angular momentum are conserved
along the geodesic in thewhole space, and thenwe can freely
drop the subscripts i for these constants of motion.
Then, evaluating Eq. (3.3) at the surfaces Rout and Rcore

with the conservation laws (3.7) and the continuity of Ai
and ri, one gets the following relations:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B1ðRoutÞ

p
ṙ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2ðRoutÞ

p
ṙ2 ð3:8Þ

and

ṙ2 ¼ ṙ3; ð3:9Þ

where we have explicitly used B2 ¼ B3 at the core sur-
face Rcore.
With the relation of the 4-momenta in different space-

time regions, we define the following unified variables:

Exterior Schwarzschild∶ r ¼ r1 and λ ¼ λ1;

Dense region∶ r ¼ r2 and λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B1ðRoutÞ
B2ðRoutÞ

s
λ2;

Central flat core∶ r ¼ r3 and λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B1ðRoutÞ
B2ðRoutÞ

s
λ3:

ð3:10Þ
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The constraint equation (3.3) can be written as

CiðrÞ
L2

�
dr
dλ

�
2

þ VðrÞ ¼ 1

b2
; ð3:11Þ

where

C1ðrÞ ¼ 1; C2ðrÞ ¼
B1ðRoutÞ
B2ðRoutÞ

A2ðrÞB2ðrÞ;

C3ðrÞ ¼
B1ðRoutÞ
B2ðRoutÞ

A3ðrÞ; ð3:12Þ

b≡ L=E is the impact parameter of photon trajectories, and
the effective potential VðrÞ reads

Vðr ≥ RoutÞ ¼
A1ðrÞ
r2

;

VðRcore ≤ r < RoutÞ ¼
A2ðrÞ
r2

;

Vðr < RcoreÞ ¼
A3ðrÞ
r2

: ð3:13Þ

In Fig. 2, we show the effective potential VðrÞ with the
parameters η ¼ 1 and k ¼ 1=10 as an illustration. The
vertical dashed lines indicate the outer surface Rout (right)
and the core surface Rcore (left). Outside Rout, the effective
potential is given by the Schwarzschild one and has a peak
at rp ¼ 3a0=2. This peak corresponds to the photon sphere,
on which photons can undergo unstable circular motions.
The photon sphere and its vicinity are characterized by
highly lensed photon trajectories, as we have discussed in
the Introduction. Inside the outer surface, the effective
potential has a local minimum at rmin ¼ 2

ffiffiffiffiffi
ση

p
, which can

be obtained by solving ∂rVðrÞ ¼ 0 inside Rout.
9 After

crossing the minimum, the effective potential increases
as one moves inward, forming a centrifugal barrier inside
the central flat core.
The expression of Eq. (3.11) is particularly useful in

identifying the radial turning point for each photon tra-
jectory. The turning point rtp of a trajectory with
impact parameter b can be calculated simply by solving
VðrtpÞ ¼ 1=b2. According to Fig. 2, photon trajectories
with b2 > 1=VðrpÞ have turning points outside the unstable
photon sphere rp, and hence do not enter the QHCO. These
trajectories are illustrated by the red line in Fig. 2. On the
other hand, photon trajectories with b2 < 1=VðrpÞ, which
are illustrated by the blue line, enter the object, go all the
way down into the central core, reach the turning point
inside the core, and then radially return. Note that this is the
motion as seen in terms of the affine parameter λ.
Consider now the photons that enter the outer surface

Rout (called infalling photons). Whether all of them can
further reach the central core depends on the choices of the
parameters ðk; ηÞ (in Fig. 2, the parameters are chosen so
that this is the case). Essentially, if one wants some infalling
photons to return within the dense region, the effective
potential at the unstable photon sphere, rp, has to be lower
than that at the core surface Rcore: VðrpÞ < VðRcoreÞ. In
Fig. 3, we show such a region of the parameter space
(shaded region). Therefore, in the shaded region, there exist
photons that enter the dense region but not the central core.
Equivalently, in the unshaded region, as long as photons
enter Rout, they always have radial turning points inside the
central core. Particularly, in the parameter region of
physical interest—i.e., 1 ≤ η < 2 and k ≪ 1—all the pho-
tons that enter the QHCO pierce the central flat core and

FIG. 3. The parameter space (shaded) in which there exist
infalling photon trajectories that do not reach the central core. The
two black lines indicate η ¼ 1 and η ¼ 2.

FIG. 2. The effective potential (3.13), VðrÞ, with k ¼ 1=10 and
η ¼ 1. The two vertical dashed lines correspond to the outer
surface Rout (right) and the core surface Rcore (left). Photon
trajectories with large impact parameters (red) acquire turning
points at r ¼ rtp outside the photon sphere rp. On the other hand,
trajectories with small impact parameters (blue) enter the QHCO
and have turning points at r ¼ rtp inside.

9The minimum of the effective potential could correspond to a
stable photon sphere, which may lead to instability issues [77–80],
although trajectories around r ¼ rmin are not physically relevant in
a timescaleΔt ∼ a30=σ due to the large redshift, as will be discussed
in Sec. V.
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come back to the outside (as seen in terms of the affine
parameter).
Let us plot the photon trajectories, which can be done

by integrating the equations of motion (3.1) and (3.11).
Since they are all planar motions, one can demonstrate
the trajectories in Cartesian coordinates: ðX; YÞ ¼
ðr cosφ; r sinφÞ=a0. The results are shown in Fig. 4, where
we fix η ¼ 1 and consider two different QHCOmodels, one
with k ¼ 1=20 (upper) and the other with k ¼ 1=100
(lower). In this figure, all trajectories are connected to
an observer who is located at ðXo; YoÞ ¼ ð100; 0Þ. The
dashed circle represents the unstable photon sphere, which
has radius rp ¼ 3a0=2. The outer and inner solid circles
stand for the outer and core surfaces, respectively. The red
and blue curves correspond to the trajectories that have
radial turning points rtp outside and inside the QHCO,
respectively. As we have mentioned, the photon trajectories
that have impact parameters smaller than that of the
unstable photon sphere can all enter the central core region.

In addition, unlike the case of classical black holes, in
which photons entering the event horizon never escape, the
infalling photons in the QHCO model can escape and may
be observed. When illuminated by the emission from a thin
disk of light sources discussed in Sec. IV (green lines),
these infalling photons may pierce through the emission
both before entering and after leaving QHCOs, as dem-
onstrated by the highlighted blue trajectories in Fig. 4.
These additional piercings may give rise to extra intensity
on the images. We will discuss in more detail the images of
QHCO models in Sec. IV.
We here introduce two additional crucial quantities

relevant to constructing the images of QHCOs in the
following sections: the elapsed coordinate time Δtec asso-
ciated with a trajectory during its propagation, and the
strongest redshift Q experienced along the geodesic. The
consideration of the elapsed coordinate time Δtec is more
physical compared with the analysis in terms of the affine
parameter, because the latter does not include redshift
effects properly. The strong redshift inside QHCOs, on the
other hand, is quantified by Q.
The elapsed coordinate time Δtec along a photon

propagation can be formally expressed as

Δtec ¼
Z

λfinal

λinitial

ṫdλ; ð3:14Þ

where the final value of the affine parameter λfinal corre-
sponds to the moment when the photon reaches the observer
ðXo; YoÞ. The initial point for the trajectory,10 on the other
hand, is assumed to be at r ¼ 100a0. The results are shown
in Fig. 5(a). For photons entering the outer surfaceRout,Δtec
is extremely large due to the exponentially large redshift in
the interior metric (2.3). In particular, for a more realistic
case where k ≪ 1, Δtec is dominated by the propagation in
the dense region and can be calculated through the metric
(2.3) approximately as

ln
Δtec
a0

≈ ln
ðΔtecÞjregion 2

a0
≈

η

4k

⇒ Δtec ∼ a0ea
2
0
=nl2p : ð3:15Þ

This indicates that at the leading order, the elapsed coor-
dinate time for infalling photons is exponentially large and
independent of the impact parameter b.
The exponential time dilation given in Eq. (3.15) is

due to the strong redshift experienced by the photons
inside QHCOs. We can quantify the strength of red-
shifts of trajectories by computing the strongest
redshift Q experienced along the geodesic—i.e., Q≡
minx½log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gttðxÞ=gttðxoÞ

p �, where xo ¼ ðXo; YoÞ is the
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FIG. 4. Photon trajectories parametrized by the affine parameter
in the QHCOs with η ¼ 1, k ¼ 1=20 (upper) and k ¼ 1=100
(lower). The observer is located at ðXo; YoÞ ¼ ð100; 0Þ. The
dashed circle represents the unstable photon sphere rp. The outer
surface Rout and the core surface Rcore are shown by the two black
solid circles. The green lines correspond to the thin disk of light
sources (see Sec. IV). Two specific infalling trajectories are
highlighted by the thick blue curves.

10The exact initial point is not relevant, because the elapsed
time is dominated by the propagation inside QHCOs.
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position of the observer. The results are shown in Fig. 5(b).
Similarly to Eq. (3.15), the strongest redshift experienced
by photons entering QHCOs is also independent of b. This
is because the strongest redshift appears at r ¼ ffiffiffiffiffiffiffiffi

2ση
p

,
which can be derived by solving ∂rgttðrÞ ¼ 0 in the metric
(2.3), and this is outside the central core Rcore ¼

ffiffiffiffiffi
2σ

p
as

long as η ≥ 1. As we have mentioned, all the trajectories
entering the QHCOs with ðk; ηÞ in Fig. 5 reach the central
core. Therefore, they all pass through the strongest redshift
point during their propagation and share the same Q.
We note here that a similar extreme time dilation

experienced by photon trajectories has also been discovered
in other models of horizonless compact objects, such as
fuzzballs [55] and topological solitons [56]. In those
models, the compact objects consist of a collection of
different microstructures that can be motivated by string
theory. In those models, the compact objects are no longer
spherically symmetric. Furthermore, the Liouville integra-
bility for geodesic dynamics is generically lost. Therefore,
in those models, the extreme time dilation happens due to
the combination of strong redshifts and the chaotic behav-
iors of trajectories when propagating through the interior.
However, in the QHCO models considered here, the
trajectories are not chaotic due to the spacetime symmetry,
and the extreme time dilation appears due to the property of
the strong redshifts of the interior metric (2.3).

IV. IDEAL QHCO IMAGES

As discussed above, the absence of the event horizon for
the QHCO model allows the existence of photons that have
traveled through QHCOs before being observed. It is then
interesting to understand how these photons may affect, in
principle, the images of QHCOs as seen by a distant
observer. In this section, we study a very idealized scenario
in which such penetrating photons reach the observer no
matter how strongly they are redshifted inside QHCOs.

Then, we show such “ideal” images of QHCOs, which
have different image features from those of classical
Schwarzschild black holes, although they are not physical
in the sense that the effect of a physical timescale is not
considered here (see Sec. V).
As a simple model of light sources, we consider a

geometrically and optically thin accretion disk and con-
struct the intensity profiles of observed photons and the
associated images of QHCOs. As the materials on the disk
gradually spiral inward due to their interactions with
gravity and friction, their temperature increases with the
emission of electromagnetic radiation. Therefore, the
accretion disk can be treated as a disk-shaped light source
around the object. The assumption that the disk is optically
thin means that the emitted photons are not absorbed when
they pierce through the disk again after emission. This
allows each photon trajectory to effectively collect addi-
tional intensity when crossing the disk several times and
consequently form higher-order rings on top of the direct
emission in the images. Note that the assumption of a
geometrically and optically thin disk significantly simpli-
fies the construction of images, while it can already capture
the main image features of a compact object surrounded by
accreting matter [5].
Moreover, it is commonly presumed that the inclination

angle between the line of sight of observers and the axis of
the disk is small in the observation of M87*. This is
inferred from the observational orientation of the jets [81].
Therefore, for simplicity, we assume a face-on orientation
of the observer with respect to the disk—i.e., the line of
sight of the observer is perpendicular to the disk surface.
Taking the configuration shown in Fig. 4 as an explicit
demonstration in which the observer is located at
ðXo; YoÞ ¼ ð100; 0Þ, the disk is then on the X ¼ 0 plane
(green lines).
Let us construct the formula of the observed intensity Io

based on the above assumptions. First, because there is no

0 1 2 3 4
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1×104

5×104

b/a0

Δtec
a0

0 1 2 3 4
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–3

–2

–1

0

b/a0

Q

FIG. 5. (a) The elapsed coordinate time Δtec and (b) the strongest redshift Q≡minx½log10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gttðxÞ=gttðxoÞ

p � experienced along the
geodesic. We fix η ¼ 1, and vary the values of k ¼ 1=20 (red), 1=30 (blue), and 1=40 (black). The vertical jumps correspond to the
impact parameter of the unstable photon sphere.
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absorption, the specific intensities Iνe and Iνo with frequen-
cies νe and νo in the emission frame and the observer’s
reference frame are related generically via [82]

Iνe
ν3e

¼ Iνo
ν3o

: ð4:1Þ

For an asymptotic observer, the photon frequencies at
the two frames are related through the redshift factor as
νo=νe¼

ffiffiffiffiffiffiffiffijgttj
p

, which in particular means dνo=νo¼dνe=νe.
Second, for simplicity, we assume that the specific intensity
of the disk in the emission frame is monochromatic and
only depends on the radial coordinate r—i.e.,

Iνe ¼ IeðrÞδðνe − ν�Þ: ð4:2Þ

As mentioned above, because there is no absorption, for a
trajectory C reaching the observer, the observed intensity Io
has all the contributions IðkÞνo from the photons emitted
at each point rk where the trajectory C pierces the disk
plane—i.e., the X ¼ 0 plane in Fig. 4. Thus, the formula of
the observed intensity Io for C is given by

Io ¼
X
k∈ C

Z
dνoI

ðkÞ
νo

¼
X
k∈ C

Z
dνðkÞe

�
νo

νðkÞe

�
4

IðkÞ
νðkÞe

¼
X
k∈ C

ð−gttðrkÞÞ2IeðrkÞ ð4:3Þ

upon a redefinition of the normalization factor chosen to be

the peak value of Io. Here, ν
ðkÞ
e represents the frequency in the

emission frame of photons emitted at rk; at the second line,

the relations (4.1) and dνo=νo ¼ dνðkÞe =νðkÞe are applied to
each k; and at the last line, the specific intensity (4.2) is used

for each k together with the relation νo=ν
ðkÞ
e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gttðrkÞ
p

.
Since each photon trajectory C can be labeled by its

impact parameter b, the observed intensity is a function of
b—i.e., Io ¼ IoðbÞ. Furthermore, it should be emphasized
that when calculating the observed intensity of the photon
trajectories that enter QHCOs in the idealized scenario, we
will record all the piercings at rk of the trajectory through
the disk, including those before entering QHCOs as well as
those possibly inside QHCOs. The intensity collected by
these additional piercings on the ideal images may give rise
to image features that can be used to distinguish them from
a classical black hole image, as we will demonstrate later.
Regarding the emission profile IeðrÞ on the disk, we

employ the Gralla-Lupsasca-Marrone (GLM) emission
model [83], whose intensity profile takes the following
form:

Ieðr; γ; μ; σ̃Þ ¼
exp

n
− 1

2

h
γ þ arcsinh

�
r−μ
σ̃

�i
2
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − μÞ2 þ σ̃2

p : ð4:4Þ

The free parameters ðγ; μ; σ̃Þ are constants that control the
overall shape of the intensity profile. The parameter γ
controls the rate of decay of the intensity toward r → ∞.
The parameter μ horizontally shifts the intensity profile and
can be used to adjust the location of the intensity peak. The
parameter σ̃ is used to adjust the dilation of the profile. In
this paper, we consider three different profiles (see Fig. 6):
(1) GLM1 profile with ðγ; μ; σ̃Þ ¼ ð−3=2; 0; a0=4Þ: The

intensity profile has a peak slightly outside the origin
r≳ 0, then it decays to zero toward r → ∞.

(2) GLM2 profile with ðγ; μ; σ̃Þ ¼ ð−2; 17a0=6; a0=4Þ:
The profile has a peak roughly at the innermost
stable circular orbit (ISCO) of the Schwarzschild
black hole 3a0. Below the ISCO, the intensity
quickly drops to zero. Also, the intensity decays
to zero toward radial infinity.

(3) GLM3 profile with ðγ; μ; σ̃Þ ¼ ð0; 0; a0Þ: The inten-
sity monotonically decays outward, with its peak
located at the origin.

We would like to mention that when applying the GLM1
and GLM3 profiles to the disk surrounding a classical black
hole, the emission extends down to the event horizon. On
the other hand, the GLM2 profile may be more astrophysi-
cally realistic, based on the assumption that the thin disk is
composed of a collection of stable circular (Keplerian)
orbits of massive particles. In this case, the emission profile
naturally drops inside the ISCO, upon which circular obits
become radially unstable. Such a feature of the emission
profile is clearly captured by the GLM2 model.
In addition, when constructing the ideal QHCO images,

we will collect the intensity of the piercings down to the
origin r ¼ 0. This is based on the implicit assumption that
the emission inside QHCOs maintains its disk-shaped
structure. Naively, whether such a disk emission exists
inside QHCOs should depend on how the accreting
materials are captured inside during the formation process
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FIG. 6. The emission profiles IeðrÞ of GLM1, GLM2, and
GLM3 considered in this work. Note that the photon sphere
corresponds to rp=a0 ¼ 3=2.

IMAGING A SEMICLASSICAL HORIZONLESS COMPACT … PHYS. REV. D 109, 104058 (2024)

104058-9



of the QHCO and how they interact with the micro-
structures of the QHCO. However, the intensity collected
deep in the QHCOs is significantly suppressed due to the
strong redshifts at the emission frame [see the redshift
factor in Eq. (4.3)]. Therefore, the intensities contributed by
such deep internal piercings can be neglected as compared
with those collected from the piercings around and outside
QHCOs. Consequently, relaxing the assumptions on the
inner edge of the disk emission has only subdominant
effects on the ideal QHCO images.
Now, we are ready to plot the observed intensity Io and

construct the corresponding ideal QHCO images. We first
solve the equations of motion (3.1) and (3.11) to obtain the
trajectories, from which we identify rk for each of them; we
apply the intensity formula (4.3) with the GLMmodel (4.4)
and obtain the intensity IoðbÞ; and then we “rotate” it
around the origin because of the spherical symmetry to get
the images. The results are given by Figs. 7 and 8 for the
GLM1 and GLM2 emission profiles, respectively.11 Here,

the upper and lower panels represent, respectively, the
observed intensities IoðbÞ and the images for the classical
black hole and the QHCOs.
First, let us look at the top panel of each figure. The black

curve shows the observed intensity Io for the classical
Schwarzschild black hole with the same mass as the
QHCOs, and the red and blue curves represent those for
the QHCOs with k ¼ 1=20 and k ¼ 1=30, respectively,12

where we fix η ¼ 1. Here, the vertical dashed line indicates
the impact parameter for the photon sphere, called the
critical curve on the image plane. The wide-spreading
smooth lump in Io comes from the direct emission, which
corresponds to the trajectories that only cross the light-
source disk once, and its shape highly depends on the
emission profiles IeðrÞ. On the other hand, narrower
peaked profiles (called higher-order images) exist around
the critical curve due to the contribution from the trajecto-
ries that rotate around the object many times and cross the
disk more than once.
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FIG. 7. The upper panel shows the observed intensity IoðbÞ of
the classical Schwarzschild black hole (black) and QHCOs with
ðk; ηÞ ¼ ð1=20; 1Þ (red) and ðk; ηÞ ¼ ð1=30; 1Þ (blue dashed)
surrounded by a thin disk with the GLM1 emission profile. In
the lower panel, we show the corresponding images of a classical
Schwarzschild black hole (left) and the QHCO with ðk; ηÞ ¼
ð1=20; 1Þ (right). Here we consider an idealized scenario in which
the photons passing through QHCOs can reach the observer no
matter how long their elapsed time Δtec is.

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

1.2

b/a0

I o
(b
)

GLM2

FIG. 8. The upper panel shows the observed intensity IoðbÞ of
the classical Schwarzschild black hole (black) and QHCOs with
ðk; ηÞ ¼ ð1=20; 1Þ (red) and ðk; ηÞ ¼ ð1=30; 1Þ (blue dashed)
surrounded by a thin disk with the GLM2 emission profile. In
the lower panel, we show the corresponding images of a classical
Schwarzschild black hole (left) and the QHCO with ðk; ηÞ ¼
ð1=20; 1Þ (right). Here we consider an idealized scenario in which
the photons passing through QHCOs can reach the observer no
matter how long their elapsed time Δtec is.

11The intensity profiles and the images of the GLM3 emission
are qualitatively very similar to those of GLM1. Therefore, we do
not show them here.

12Here, in the right part of the critical curve, the three curves
are almost identical and therefore appear to be just black.
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For the GLM1 model (see Figs. 6 and 7), light emission
exists around the photon sphere, and the higher-order
images pile up on top of the direct emission around the
critical curve. For the classical black hole, the black curve
in the plot IoðbÞ drops to zero at the inner shadow that
corresponds to the boundary between the bright part and
the central dark part in the lower-left image. The inner
shadow represents the direct emission from the horizon
[84], which only appears when emission at r ¼ a0 exists, as
in the GLM1model. For the QHCOs, on the other hand, the
red/blue curve in the plot IoðbÞ has additional peaks, which
originate from the trajectories that have crossed the disk
and collected some intensity before entering the QHCOs
(e.g., the thick blue curves highlighted in Fig. 4). Because
of these additional effects, the observer would see the
additional rings inside the bright outer one, as shown in the
lower-right panel, if he/she waited long enough.
Similarly, we can understand the results for the GLM2

model, which are shown in Fig. 8. In this case, there is no
light source around the photon sphere (Fig. 6). The black
curve in IoðbÞ still has a sharp higher-order image outside
the critical curve but becomes zero inside. For the QHCO
images, there are additional sharp rings inside the critical
curve, which are again generated by photons that have
crossed the disk before entering QHCOs.
According to Figs. 7 and 8, one interesting feature of the

ideal QHCO images is that the structure of the additional
intensities inside the critical curve is not sensitive to the
parameters ðk; ηÞ. This can be seen from the observed
intensity profiles of Figs. 7 and 8, in which the blue and the
red curves almost overlap. Does this mean that the inner
rings are always visible even if we keep reducing the value
of the quantum parameter k? To address this question, we
have to keep in mind that the images generated in this
section are based on the very idealized scenario in which
the photons passing through QHCOs can reach the observer
no matter how much they are redshifted. In the next section,
we will relax this assumption and generate a set of more
realistic QHCO images. We will show that, after taking into
account the strong redshifts inside QHCOs, the inner rings
are hardly observable.

V. PHYSICAL QHCO IMAGES

As mentioned just above, the images in Figs. 7 and 8
have been generated based on the idealized assumption that
the infalling photons can reach the observer no matter how
long their elapsed coordinate time Δtec (3.14) would be.
Such an idealized assumption certainly neglects the pos-
sible darkening effects that can be induced by the strong
redshifts inside QHCOs and the interaction between
photons and the QHCO constituents; indeed, the strong
redshifts can delay the propagation of photons, while such
interactions may even destroy photons. In this section, we
consider these effects and generate more physical images of
QHCOs—i.e., darkened QHCO images.

To be more concrete about the delays caused by the
redshift, we discuss the longest possible timescale for the
observation of black hole images. It should be either the age
of the Universe or the evaporation timescale of a black hole,
Δteva ∼ a30=nl

2
p [67]. For masses a0=2G larger than the

solar mass, the former is shorter than the latter. Noting that
QHCOs also evaporate in Δteva ∼ a30=σ [18,57],13 we can
considerΔteva and study the darkening effect here. Then, in
principle, one can observe only photon trajectories if their
elapsed coordinate time (3.14) is not longer than the
evaporation time:

Δtec ≲ Δteva: ð5:1Þ

As we have discussed in Sec. III, the elapsed coordinate
time of infalling photons is exponentially prolonged due to
the strong redshifts inside QHCOs [Fig. 5 and Eq. (3.15)].
As a consequence, the strong redshifts can largely delay the
arrival of these infalling photons, effectively darkening the
QHCO images inside the critical curve.
Regarding the internal interactions, it should be noted

that a complete consideration of the interaction between
internal photon trajectories and the QHCO structure would
require detailed analysis for the self-consistent backreac-
tion from the photons and interactions, which could modify
the interior metric (2.3) somehow. However, we note here
that the parameter η phenomenologically quantifies the
strength of possible interactions inside QHCOs, as dis-
cussed in Sec. II. In the following, we will consider the
effect of the internal interaction to be incorporated through
η, although it should be checked eventually whether this
treatment is self-consistent in the above sense.
Therefore, to construct the darkened QHCO images, we

will follow the argument that only the photons satisfying
the condition (5.1) can be observed on the images for
various values of η in the range of (2.4). Apparently,
implementing this can directly include the aforementioned
darkening effects caused by redshifts and internal inter-
actions. Note that a larger value of η stands for stronger
interactions. Thus, we can gather only the trajectories
satisfying the condition (5.1) to generate the darkened
QHCO images as in the right panel of Fig. 9. Here, the
upper-right panel is for the GLM1 profile and the lower-
right one is for the GLM2, where we fix η ¼ 1.
As shown in Fig. 9, basically, the darkened images are

very similar to the images of the classical Schwarzschild
black hole. This can be understood as follows: We first note
that the trajectories through the deep interior of the QHCO
generate the inner rings in Figs. 7 and 8, which are absent in
the image of the classical black hole. The elapsed time of
such trajectories is exponentially prolonged (as discussed in
Sec. III), which is much longer than Δteva, and they are cut
off in gathering the trajectories satisfying (5.1). Therefore,

13We assume here that QHCOs evaporate completely.
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the only photon trajectories that can contribute additionally
to the inner part of the darkened images are those that are
emitted at the shallow part of the QHCOs—i.e., from the
outer surface Rout to a depth of Δr ∼ σ=a0 at most, where
the strong redshift in the metric (2.3) has little effect. Such
photons are very few. As a result, the additional inner rings
in Figs. 7 and 8 disappear, and the darkened images in
Fig. 9 are very close to those of the classical cases.
Although it is impossible to distinguish these two sets of

images by the naked eye, some subtle differences will
appear when there are light emissions near the “would-be
horizon” at r ¼ a0—e.g., the GLM1 and GLM3 emission
models, since the photons emitted there may be observable.
Because the direct emission of the event horizon (or the
would-be horizon for QHCOs) corresponds to the inner
shadow in the images, we can expect that some subtle
differences between the darkened QHCO images and the
Schwarzschild images would appear near their inner
shadows, and they would originate from the photons
emitted in the near-surface region with width Δr ∼ σ=a0.
We demonstrate this expectation by the results in Fig. 10.

The black curves show the observed intensity near the inner
shadow of the classical Schwarzschild black hole image.
The intensity drops to zero at b=a0 ¼ 1.434 (thin vertical
lines), which corresponds to the direct emission of the event
horizon. On the other hand, the colored curves represent the
intensities of the darkened QHCO images with different
values of ðk; ηÞ, showing that the darkened QHCO image is
slightly brighter than the Schwarzschild image near the
inner shadow. Here, the intensities of the direct emission

outside Rout overlap those of the Schwarzschild images.
Moving inward from Rout, the redshift factor jgttj of
QHCOs drops more slowly than those of classical black
holes. Therefore, the direct emission just inside Rout
appears slightly brighter near the inner shadow in the
darkened QHCO images.
In addition, one can see from Fig. 10 that increasing η

with k fixed reduces the excess intensity. This matches the
expectation that stronger internal interactions can further
darken the images. Also, one can find that increasing kwith
η fixed enhances the excess intensity, whose implication
will be discussed in Sec. VI.
Lastly, we can expect that such a tiny enhancement of the

observed intensity near the inner shadow shall be robust for
darkened QHCO images as long as there is emission at
r≲ Rout, since the enhancement is not so sensitive to the
details of the emission model, as shown by the two panels
of Fig. 10.
In summary, the darkened QHCO images can be almost

indistinguishable from the images of the classical
Schwarzschild black hole, albeit some tiny excess inten-
sities will appear near the inner shadow of the darkened
QHCO image. This is our prediction characterizing this
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FIG. 10. The observed intensities near the inner shadow of the
classical Schwarzschild black hole (black) and darkened QHCO
images with ðk; ηÞ ¼ ð1=20; 1Þ (red), ð1=20; 2Þ (pink), ð1=30; 1Þ
(dashed blue), and ð1=30; 2Þ (dashed cyan). The upper and the
lower panels correspond to the thin disk with the GLM1 and
GLM3 emission models, respectively. The QHCO images are
slightly brighter than the classical black hole ones. For a given k,
increasing η reduces the excess intensity, while increasing k with
η fixed enhances it.

FIG. 9. The images of the classical Schwarzschild black hole
(left) and the darkened images of QHCOs with k ¼ 1=20 and
η ¼ 1 (right). The upper and the lower panels correspond to the
GLM1 and GLM2 emission profiles, respectively.
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model, which may be observed in the future. Of course, if
there is no emission near the QHCO surface and the event
horizon (e.g., the GLM2 emission), the darkened images
would be completely the same as the Schwarzschild one, as
one can see from the lower panel of Fig. 9.

VI. CONCLUSIONS

The observed images of the supermassive black holes
recently released by the Event Horizon Telescope
Collaboration display the image feature with a bright ring
encircling a dark region. This image feature is consistent
with the image of a classical black hole covered by event
horizons in GR. However, such an image feature could also
appear for horizonless compact objects as long as they are
sufficiently compact. In particular, when the object is
illuminated by an optically thin accretion disk, a bright
ring that consists of higher-order images on top of the direct
emission of the disk naturally appears when a set of
unstable spherical photon orbits exist around the object.
On the other hand, the central brightness depression
emerges when there exist some mechanisms that can
effectively darken the images.
In the context of black hole imaging which explores the

true nature of black holes, we have analyzed the images of
the quantum horizonless compact object (QHCO) model
when illuminated by a geometrically and optically thin
accretion disk. The QHCO represents a collection of highly
excited quanta that forms a dense configuration, which can
be interpreted as the final state of the gravitational collapse
of matter according to the 4D semiclassical Einstein
equation. In particular, the parameters k and η are related
to the fundamental quantum properties near the Planck
scale—i.e., the number of degrees of freedom n and the
microscopic interaction.
The QHCO images contain the outermost bright ring,

which is common to the classical black hole images,
because of the existence of the photon sphere outside
the surface Rout. On the other hand, since the QHCO has no
event horizon, there exist light rays that would enter the
surface, propagate through the interior region, and then
escape to infinity if one waited a sufficiently long time. The
ideal images of QHCOs generated by including such
trajectories are given by Figs. 7 and 8, which contain extra
inner rings that are absent in the classical black hole
images. However, the exponentially strong redshift inside
QHCOs significantly delays the propagation of these
photons. Therefore, in a physically reasonable timescale
[see the condition (5.1)], the contributions from those
photons are removed, which then effectively darkens the
images. As a result, the physical QHCO images, given by
Fig. 9, become nearly indistinguishable from those of
classical black holes. We also find that, if the light source
extends slightly inside the outer surface Rout, the observed

intensity near the inner shadow will be slightly brighter
than those of classical black holes, as shown in Fig. 10.
With the future improvement of dynamic range [85],
looking for such excess intensity near inner shadows could
be a potential, albeit challenging, way to probe near-
horizon quantum physics.
Thus, the QHCO model predicts the images consistent

with current observations, together with the slightly differ-
ent features from those of the classical cases, and thus could
be a candidate for quantum black holes.
Let us now discuss the implications of the obtained

results to quantum gravity. First, we would like to stress
that, although we have focused mainly on the darkening
effects caused by the redshifts, another crucial darkening
mechanism—i.e., the interactions between infalling photons
and the microscopic structure of the QHCO—has also been
partially considered through the parameter η. Effectively, for
a fixed value of k, increasing η (from η ¼ 1 to η ¼ 2) can be
interpreted as includingmore interaction channels among the
microstates. We find in Fig. 10 that a larger η makes the
images closer to a classical black hole, which can be
understood as a darkening effect due to stronger interactions.
As pointed out in Refs. [58,68], the thermodynamic equi-
librium of the QHCO in the heat bath is rooted in the
interactions among internal quanta. A more detailed under-
standing of such internal interactions may require inves-
tigations of quantum gravitational effects, since the energy
scale inside theQHCO is close to the Planck scale,∼mp=

ffiffiffi
n

p
.

Also, increasing k enhances the excess intensity in
Fig. 10. Here, the relations (2.6) and (2.13) indicate that
the order of the magnitude of k is determined by the number
of degrees of freedom n in the theory, and the energy scale
mp=

ffiffiffi
n

p
coincides with the maximum energy scale for the

semiclassical approximation to hold [86]. Therefore, n
should be the number of degrees of freedom in a theory that
barely allows the semiclassical approximation and connects
to a quantum-gravitational description. Thus, these dis-
cussions imply that the highly accurate observations of the
intensity around the inner shadow in the future may probe
the nature of interactions and the number of degrees of
freedom in quantum gravity.
In addition to image features, the horizonless structure of

QHCOs may generate gravitational wave echoes following
the typical ringdown stages [87–89]. Also, because QHCO
models can be consistently generalized to dynamical
pictures when evaporation processes are taken into account
[18,60], it will be interesting to consider how the images
evolve in time during the evaporation, at least adiabatically,
in dynamical frameworks. Besides, in order to make the
models more astrophysically relevant, extending the
QHCO models to spinning cases is certainly an essential
direction of research. We plan to report these interesting
topics elsewhere in the future.
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