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In this study, we first establish that gravity models incorporating matter-related terms, such as fðLmÞ,
fðgμνTμνÞ, and fðTμνTμνÞ, into the usual matter Lagrangian density Lm, are equivalent to general relativity
(GR) with nonminimal matter interactions. Through the redefinition Lm þ f → Ltot

m , these models are
exactly GR, yet the usual material field Tμν and its accompanying partner, namely, the modification

field Tmod
μν , engage in nonminimal interactions. Specifically, ∇μTμν ¼ −Qν ¼ −∇μTmod

μν , where Qν is the
interaction kernel that governs the rate of energy transfer. Our focus narrows on the specific model of
fðTμνTμνÞ, known as energy-momentum squared gravity (EMSG), where the usual material field Tμν is

accompanied by an energy-momentum squared field (EMSF), Temsf
μν , along with a sui generis nonminimal

interaction between them. We demonstrate that a particular Temsf
μν can be introduced by removing ∂

2Lm
∂gμν∂gσϵ

(the new term emerging in models that incorporate scalars formed from Tμν), thanks to the freedom in
determining the interaction kernel, but this approach compromises the Lagrangian formulation of EMSG.
Additionally, we address the ambiguities regarding the perfect fluid stemming from this new term. We
show the proper way of calculating this term for a perfect fluid, revealing that it is indeed nonzero, contrary
to common assumption in the literature. Finally, we reexamine cosmological models within the realm of
EMSG, offering new insights into the applicability and interpretation of our findings in EMSG and similar
theoretical frameworks.

DOI: 10.1103/PhysRevD.109.104055

I. INTRODUCTION

Einstein’s general theory of relativity (GR) is in agree-
ment with all the local tests to a precision of 10−5 [1],
whereas the standard model of cosmology based on GR,
lambda cold dark matter (ΛCDM), suffers from a number
of theoretical problems relevant to the cosmological con-
stant Λ [2–4] as well as tensions between the observational

constraints obtained from different datasets [5–11]. One
main issue is the lack of explanation of cosmic dark sector,
which consists of almost 95% of the total energy budget of
the present-day Universe, without invoking of some new
material stresses such as the scalar field. Also, the most
statistically significant tension is in the estimation of the
present-day value of the Hubble parameter H0; i.e., the
value measured from the cosmic microwave background
(CMB) data by the Planck Collaboration [12] is in about
5.0σ tension with the model-independent local value
reported by SH0ES Collaboration [13]. Obviously, any
modified theory of gravity that aims to bring resolutions to
the issues in GR should not spoil the successful explan-
ations of the Solar System phenomena such as the
deflection of light, Shapiro time delay [14,15], and the
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perihelion shift of Mercury [16–19], but manifests itself at
cosmological scales (e.g., in the late Universe relevant to
the current accelerated expansion or in the early Universe
relevant to inflation, spatial anisotropy domination, initial
singularity) and in the strong field regime (e.g., near/inside
compact astrophysical objects, such as neutron stars and
black holes).
Even though the vast majority of the modifications to GR

focus on generalizing the gravitational Lagrangian density
away from the linear function of scalar curvature
[R ¼ gμνRμν with Rμν being the Ricci curvature tensor,
responsible for the Einstein tensor, Gμν, in Einstein’s field
equations (EFE) [20–27] ] in the Einstein-Hilbert (EH)
action, a new avenue has been recently opened with
modifying the introduction of the material source in the
usual EH action. Such matter-type modified theories of
gravity are constructed by either generalizing the matter
Lagrangian density away from the linear function of Lm,
viz., extending it to fðLmÞ [28], or adding some
analytic function of a scalar formed from the usual
energy-momentum tensor (EMT), Tμν, of material stresses
such as fðgμνTμνÞ [29] and fðTμνTμνÞ [30–33] into the EH
action of GR. The first derivative of Tμν with respect to the
inverse metric tensor, gμν, and particularly, the second

metric derivative ofLm, viz.,
∂
2Lm

∂gμν∂gσϵ, is a new term emerging
in modified theories that contain a scalar formed from the
usual EMT in their actions [29–36]. The absence of this
term in earlier theories had required it to be handled
carefully; however, it has been assumed to be zero for
perfect fluids in the literature to date without referring to a
concrete explanation. Interestingly, the process of taking a
closer look at the calculation of this term in the context of
a particular theory dubbed energy-momentum squared
gravity (EMSG) [30–33] has directed us to the fact that
all the theories modifying the introduction of the material
source in the usual EH action by adding only matter-related
terms to Lm, in fact, cannot be considered as new theories
of gravity but are minimal/nonminimal interaction models
in the framework of GR. In other words, in this type of
modifications, one basically deals with interacting two-
field model correspondence in which the usual field, viz.,
Tμν, is accompanied by the partner field, Tmod

μν , which is
determined by the model under consideration. The inter-
action between the usual field and its partner can be rarely
minimal, if combination of modification form and fluid
type satisfy the local conservation, e.g., quadratic EMSG
with dust. Or, generally both Tμν and Tmod

μν violate the local
conservation law due to nonminimal interaction between
the usual field and its partner and we can treat these models
as the nonminimal interaction models in the framework
of GR. The matter-type modifications work properly at the

level of field equations, where the term ∂
2Lm

∂gμν∂gσϵ is assumed as
zero, which turns out to be a freedom that gives rise to a
particular form of nonminimal interaction. However, we

realize that these field equations are not actually derived
from the actions they are considered to be derived when
the second metric derivative of Lm is not included in the
interaction. Namely, contrary to the postulation that has
been employed in the literature, as we will show in this
paper, this term is not zero in general, but vanishes in
particular cases (e.g., for canonical scalar fields) only [37],
and thereby we are obliged to compromise the action/
Lagrangian formulation of matter-type modifications that
omit this term and confine ourselves to the field equations
arising from these modifications.1 We would like to
mention that one might utilize the correct expression for
the second metric derivative of Lm for perfect fluid, and
in this way, derive the field equations in their full form
starting from the actions proposed in studies on matter-type
modifications to date. In the presence of a barotropic
perfect fluid, the proper calculation of this term requires
employing the equation of state (EoS) and sound speed
(viz., c2s ) of the fluid, which we elaborate on in Sec. III B.
Nevertheless, the resulting model is still equivalent to a
nonminimal interaction in GR, yet has a viable Lagrangian
description.
The EMSG theory was constructed by adding the term

fðTμνTμνÞ, envisaged as a correction, to the standard matter
Lagrangian density, Lm, in the EH action. Therefore, as we
switch to the framework of nonminimally interacting two-
field model, the usual material field, Tμν, described by Lm

is accompanied by a new material field, Temsf
μν , which we

call energy-momentum squared field (EMSF) described by
an arbitrary function of the scalar TμνTμν formed solely
from the usual field itself. Both material fields violate the
local energy-momentum conservation law due to the non-
minimal nature of the interaction between them, but in total
behave like a single conserved material field (i.e., T tot

μν)
having a vanishing divergence, which reveals that the
theory under consideration is indeed GR. In the following,
we mention some recent studies of EMSG supporting our
arguments and comment on them from the EMSF inter-
action perspective. For instance, it has been shown in
Ref. [40] that the interaction model in the presence of
energy-momentum powered field (EMPF), a specific form
of EMSF described by the choice of the function
fðTμνTμνÞ ¼ αðTμνTμνÞη with α and η being constants,
leads to the gravitational potential form, postparametrized
Newtonian parameters, and geodesics for the test particles
of GR. The parameter α determines the amount of EMSF

1This case is not limited to the EH action only; generalizations
like fðR; TÞ, fðR; TμνTμνÞ [see Refs. [23,24] for fðRÞ theories],
teleparallel gravity theories, viz. fðT Þ, fðQÞ [T , Q are torsion
and nonmetricity, respectively, see Refs. [38,39] for this class of
theories] unified with the aforementioned modifications, and
models comprising nonminimal matter-curvature couplings such
as fðRμνTμνÞ [34,35] and fðGμνTμνÞ [36] also suffer from the
same problem relating to the actions/Lagrangians that describe
them.
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with respect to the usual field and its dimension depends on
the power, η.2 As expected, for a proper analysis, the slow
motion condition is required to be described by making use
of the matter variables of T tot

μν in which the interaction is
embedded since it combines the usual material field with its
accompanying EMSF. However, the only difference is that
for GR in the presence of minimally interacting material
fields, we simply have the relationMast ¼ M, which means
the mass of an astrophysical object inferred from astro-
nomical observations (from planetary orbits, deflection of
light, etc.) is equal to the actual physical mass whereas
in GR with the EMPF interaction, we have Mast ¼
M þMempf , that is, the same astrophysical mass corre-
sponds to the sum of the physical mass and the contribution
due to EMPF. As we take into consideration the fact that
Mempf ¼ Mempfðα; η;MÞ, it is possible to infer not only
Mast alone from astronomical observations, but M and
Mempf separately if there is any information about the
model parameters (α, η) or M from other independent
phenomena such as cosmological observations and the
structure of the astrophysical object. Moreover, in
Ref. [41], considering the neutron stars as a deflector
and knowing the density of this compact astrophysical
object, the motion of light in the weak field limit of
quadratic EMSF, corresponding to the η ¼ 1 case of
EMPF, has been studied. It has been shown that the overall
behavior of the light curves in this model matches those of
GR with minimal interaction. Furthermore, the gravita-
tional radiation properties of the quadratic EMSF as well as
of scale-independent EMSF (the case η ¼ 1

2
in EMPF) have

been investigated using the post-Newtonian approximation
in Refs. [42,43]. It has been shown that in the case of
binary systems as the source of gravitational waves, these
interaction models only change the gravitational wave
amplitude and not the wave polarizations, at least up
to the post-Newtonian order considered in these studies.
However, these effects on the wave amplitude do not mean
departure from GR since they can be absorbed in the chirp
mass definition of binaries.
A number of works in various contexts from cosmology

to astrophysics demonstrate that EMSF interaction mani-
fests itself at both high energy densities (viz., in the early
Universe and inside the compact objects) and low energy
densities (viz., in the late Universe) [30–33,44–62]. Here,
we outline several promising features and capabilities from
a cosmological perspective: The usual EMT violates the
local conservation in general [32,33], and it is possible to
drive late time acceleration from the usual cosmological
sources without invoking a cosmological constant Λ [32].
A source with constant inertial mass density arises in the
interaction with energy-momentum log field (EMLF)

described by fðTμνTμνÞ ¼ α ln ðλTμνTμνÞ with λ being a
constant, and accordingly, it provides us with screening of
Λ in the past by altering the contribution of dust to the
Friedmann equation [47]; dust interacting with its accom-
panying quadratic EMSF is able to screen the shear scalar
(viz., the contribution of the expansion anisotropy to the
average expansion rate of the Universe), and thereby can
lead to exactly the same Friedmann equation of the
standard ΛCDM model even in the presence of anisotropic
expansion [57]. Also, EMSF interaction alters the cosmic
history of the Universe by affecting the past or far future
depending on the chosen model [31,44,48]. On the astro-
physical side, we expect that some distinguishing devia-
tions can be achieved from the physical systems which have
charge distribution. For instance, in Ref. [31], the charged
black hole solution of the interaction with quadratic
EMSF has been derived and is different from the standard
Reissner-Nordström spacetime metric. Also, EMSF does
not lead to a nonsingular electric field for a point charge.
In Ref. [49], the axial perturbations of the charged black
holes have been studied for the nonminimal EMSF inter-
action. Unlike the minimal interaction, the correspondence
between the eikonal quasinormal modes and the photon
rings of the black holes is broken [49,58] and this violation
can be an important tool to test interaction models (kernels)
via the upcoming gravitational wave observations.3 Besides
all these, following the interaction perspective first declared
in the current study, Ref. [63] has explored the implications
of quadratic EMSF in the presence of additional relativistic
relics and showcased the model’s potential to accommodate
deviations from standard cosmology and the Standard
Model of particle physics via the most stringent cosmo-
logical bounds on α.
This paper consists of three main parts: In Sec. II, we first

demonstrate why the models that modify the usual EH
action by adding only matter-related terms do not give rise
to new theories of gravity, but instead correspond to GR
with nonminimal interactions; we extensively discuss this
new interpretation of such models, known as matter-type
modified theories of gravity, and present its applications
and implications by analyzing a case study: EMSG. In
Sec. III, to lay the groundwork for subsequent calculations
and interpretations, we revisit the derivation of the first
metric derivatives of the matter Lagrangian densities of a
perfect fluid, Lm ¼ p and Lm ¼ −ρ, from thermodynam-
ics, and hence, how its usual EMT and equations of motion
are obtained via the variational method in GR. Then, we
present the proper way of calculating the second metric
derivatives of both matter Lagrangian densities. In Sec. IV,
we reconsider the cosmological models in the framework of

2Depending on the sign of the parameter α, ghost/gradient
instabilities may arise. For further details on this phenomenon,
see, e.g., Ref. [37].

3For Maxwell field, in studies [31,49,58], authors include the
second metric variation of the matter Lagrangian density in their
models whereas in the current study, we give a common recipe for
EMSF by removing this term also for material fields other than
perfect fluid, even if it exists.
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EMSG from the perspective of EMSF interaction. Finally,
we conclude in the last section. To assist readers in
navigating the paper, a flow scheme of the study is provided
in Fig. 1 in the Appendix.

II. MATTER-TYPE MODIFICATIONS
AS NONMINIMAL INTERACTIONS

IN GENERAL RELATIVITY

The EFE of GR, Gμν ¼ κTμν, is derived from the EH
action expressed by

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ Sm; ð1Þ

where κ ¼ 8πG (G being the Newton’s constant), g is the
determinant of the metric tensor gμν, viz., g ¼ detðgμνÞ, and
R ¼ gμνRμν is the scalar curvature with Rμν being the Ricci
curvature tensor. The variation of the curvature part of this
action with respect to the inverse metric gμν gives rise to the
Einstein tensor, Gμν ¼ Rμν − 1

2
Rgμν. The matter part of the

action is defined as

Sm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm; ð2Þ

where Lm is the matter Lagrangian density describing the
material field. Thereby, in order to reach the EFE, the EMT
of any material field is defined as

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð3Þ

We will now investigate matter-type modifications to GR
from a different point of view. The usual action of matter-
type modified theories are described by

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ
RþfðLm;gμνTμν;TμνTμνÞþLm

�
; ð4Þ

where f can be any analytic function of material-related
scalars:Lm [28], gμνTμν [29] and TμνTμν [30–33]. However,
since the definition given in Eq. (3) is arranged in such a
way that Tμν emerges on the right-hand side of EFE, the
matter part of the action can be redefined as

Ltot
m ¼ Lm þ f; ð5Þ

and imitating the definition stated in Eq. (3) gives rise to the
total EMT as follows:

T tot
μν ¼ −

2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
Ltot
m Þ

δgμν
: ð6Þ

Here T tot
μν ¼ Tμν þ Tmod

μν where Tμν is the usual material
field defined by Lm and Tmod

μν is the accompanying material

field defined by the function f which characterizes the
modification. We emphasize that by changing the matter
field portion of GR, i.e., Sm ⟶ Stot

m or Lm ⟶ Ltot
m , like

the modification imposed in the matter-type modified
theories [see Eq. (5)], the variational method indicates that
the EMT is modified, and this new EMT is indeed
conserved, ∇μT

μν
tot ¼ 0. However, due to the extra term f,

the equations of motion of the fluid in the GR are not
satisfied anymore. In the following, utilizing the twice
contracted Bianchi identity at the level of field equations,
we point out this fact again.
On the other hand, we recall that in the presence of two

or more material stresses, the EFE of GR can be written as
Gμν ¼ κT tot

μν , where T tot
μν denotes the sum of the EMTs of

different material fields. Regarding the matter-type mod-
ifications, we realize that the actions of these models
are indeed the usual EH action, and hence, Tμν and Tmod

μν

behave like two nonminimally interacting material fields4

coupled to the spacetime in accordance with GR since the
field equations of these models can be recast as

Gμν ¼ κTμν þ κTmod
μν ; ð7Þ

which along with the twice contracted Bianchi identity
implies the conservation of the total EMT, i.e., ∇μT tot

μν ¼ 0.
Therefore, we have

∇μðTμν þ Tmod
μν Þ ¼ 0; ð8Þ

but not necessarily ∇μTμν ¼ 0 and ∇μTmod
μν ¼ 0. In other

words, from Eq. (8), a possible nonminimal interaction
between these two EMTs can be expressed as follows:

∇μTμν ¼ −Qν and ∇μTmod
μν ¼ Qν; ð9Þ

where the four-vector Qν is the interaction kernel that
governs the rate of energy transfer. We point out that GR
does not impose any condition on the interaction kernelQν.
Namely, taking Qν ¼ 0 (minimal interaction) in the usual
fashion is in fact one of the possible freedoms, and it is
this choice that leads to the conservation of each EMT
individually. However, in matter-type modifications, the

4At this point, it should be noted that the modification field is
determined by only the terms belonging to the usual material field
via the function f, and hence, we can not regard them as two
independent material fields. Namely, one first introduces Tμν and
then defines Tmod

μν over it so that both are subject to a single set of
initial conditions. In this study, we opt to interpret the situation
as nonminimal matter interaction between the usual field and
its accompanying partner field. However, since Tmod

μν does not
introduce an extra degree of freedom in the field-theoretical sense,
it could either correspond to self-interacting models of the usual
field or be considered as a modification of the usual EMT. Which
of these interpretations better describes it will be determined in due
course by the research community working on these models.
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interaction kernel, Qν, is determined by a general analytic
function of the matter Lagrangian density fðLmÞ [28] or of
scalars constructed from the usual material field, Tμν, such
as fðgμνTμνÞ [29] and fðTμνTμνÞ [30–33]. In the following
section, we will elaborate on this new interpretation of such
models, called matter-type modified theories of gravity, by
analyzing a case study: energy-momentum squared gravity
(EMSG) described by fðTμνTμνÞ.

A. Energy-momentum squared field (EMSF)

To investigate the interacting two-field models in GR,
one starts from the continuity equations for each field by
assuming an arbitrary interaction kernel between them in
the background. Contrarily, the interaction kernel due to
EMSG has a covariant formulation and is not completely
arbitrary, but determined by the usual material stresses via
the arbitrary function of the Lorentz scalar TμνTμν, viz.,
fðTμνTμνÞ. Since the matter fields usually couple only to
the metric tensor, we assume that Lm depends only on gμν

and not on its derivatives, use the relation δ
ffiffiffiffiffiffi−gp ¼

− 1
2

ffiffiffiffiffiffi−gp
gμνδgμν, and hence, obtain

Tμν ¼ Lmgμν − 2
∂Lm

∂gμν
; ð10Þ

valid for the Maxwell field and gauge fields in general, as
well as for scalar fields and perfect fluids—spinor fields
whose matter Lagrangian densities depend on also deriva-
tives of the metric need a different treatment, Einstein-Cartan
(-Sciama-Kibble) theory of gravity, by reformulating general
relativity in terms of tetrad fields, are thereby excluded in
the current study; see Ref. [64] for details. Note that this
assumption allows us to use the metric variations and metric
derivatives interchangeably. Inspired by the usual definition
of the EMT given in Eq. (3), in order to determine the form
of the EMSF, we begin with the following expression:

Tmod
μν ¼ −

2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
fÞ

δgμν
¼ fgμν − 2fT2θμν; ð11Þ

where

fT2 ≡ ∂f
∂ðTσϵTσϵÞ ; θμν ≡ δðTσϵTσϵÞ

δgμν
: ð12Þ

Consequently, substituting Eq. (11) into Eq. (7), the field
equations become

Gμν ¼ κTμν þ κðfgμν − 2fT2θμνÞ: ð13Þ

Therefore, in this model, the corresponding interaction
kernel defined in Eq. (9) has a particular form as

Qν ¼ ∇νf − 2θμν∇μfT2 − 2fT2∇μθμν; ð14Þ

due to the function f and the tensor θμν governing the
modification field, Tmod

μν . One can immediately notice that
even simple choices for the f function can lead to nontrivial
interaction kernels with covariant formulation.
Comparing to the common interacting two-fluid models

in the literature, we have 2 degrees of freedom in con-
structing the interaction kernel for the usual material
field and the modification field. For instance, in a two-
component perfect fluid in the Friedmann-Lemaitre-
Robertson-Walker (FLRW) universe, one has five
unknowns (ρ1; p1; ρ2; p2; a) and two Friedmann equations
with a being the scale factor. The remaining 3 degrees
of freedom correspond to the two equations of state that
characterize the fluids and the form of the interaction
between these fluids.5 Therefore, the presence of the
function f and the new tensor θμν in both Eqs. (11) and (14)
implies that the EoS of the second source described by Tmod

μν

and the interaction kernel are intertwined in this model.
Hence, employing only the function f to construct the form
of the interaction kernel, the missing EoS of the source
generated by Tmod

μν provides us with the freedom to adjust
the expression for θμν. So, we first determine the structure
of θμν that can be used in common in the presence of
material fields whose EMTs are calculated via Eq. (10), and
then render only the function f responsible for identifying
the different forms of the interaction.
From the definition given in Eq. (10), we find the

following expression for θμν in terms of the EMT and
the matter Lagrangian density of the usual material stress as
follows:

θμν ¼ Tσϵ δTσϵ

δgμν
þ Tσϵ

δTσϵ

δgμν

¼ −2Lm

�
Tμν −

1

2
gμνT

�
− TTμν

þ 2Tλ
μTνλ − 4Tσϵ ∂

2Lm

∂gμν∂gσϵ
; ð15Þ

where T ¼ gμνTμν is the trace of the EMT. We should
remark that the second variation of Lm with respect to the

5In the context of astrophysics, there are nine unknowns: the
rest-mass density, total energy density, and pressure of the fluid 1
(ρ01; ρ1; p1), those of the fluid 2 (ρ02; ρ2; p2), and three components
of uμ. Here, ρ0 stands for the rest-mass density of the fluid. One
has four equations from the conservation of EMT and one
equation from the conservation of rest-mass density. Hence,
4 degrees of freedom are the EoS of fluid 1, the EoS of fluid 2, the
form of the interaction in EMT conservation, and the form of the
interaction in rest-mass conservation. In scalar field case, equa-
tions of state are determined by two potentials V1ðϕ1Þ and
V2ðϕ2Þ corresponding to two scalar fields ϕ1 and ϕ2. However,
Maxwell field yields an anisotropic-pressure source with
px ¼ −py ¼ −pz, and in this case, the two-field model is not
compatible with the FLRW spacetime metric.
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inverse metric tensor emerges from the first variation of
Tμν, and is a new term that did not exist in the literature
before. Unfortunately, this last term in Eq. (15) has been
considered to be zero for perfect fluids without providing a
concrete proof in studies on EMSG [30–33] as well as on
other models that contain scalars formed from the usual
EMT like gμνTμν [29], RμνTμν [34,35] and GμνTμν [36].
However, if the matter Lagrangian density is chosen either
Lm ¼ p or Lm ¼ −ρ for the perfect fluid case, this term
includes the metric variations of both the energy density
and pressure, which exist separately so far in the literature,
cf. Eqs. (19) and (20) in Sec. III A. Here, we only state that
this term does not vanish in general and refer the reader
to Sec. III B in which we provide the detailed calculation.
On the other hand, while determining the interaction kernel,
we can omit this term and avoid these variations emerging
simultaneously thanks to the freedom we have. Therefore,
we define the EMSF from Eq. (11) as follows:

Temsf
μν ¼ f gμν − 2fT2θemsf

μν ; ð16Þ

but adhering to the convention in the literature remove the
second derivative of Lm from Eq. (15) and arrive at the
following new tensor for the EMSF:

θemsf
μν ¼ −2Lm

�
Tμν −

1

2
gμνT

�
− TTμν þ 2Tλ

μTνλ: ð17Þ

We note that compared to Eq. (15), Eq. (17) does not equal
to the metric variation of the Lorentz scalar TμνTμν any-
more, and hence, Temsf

μν does not correspond to the metric
variation of

ffiffiffiffiffiffi−gp
f in contrast to Tmod

μν given in Eq. (11). It is
obvious that the aforementioned freedom of being able to
remove the last term from Eq. (15) has prevented the
models studied in the literature to date from any incon-
sistencies since this term is said to be assumed as zero
though it is not indeed. Also, this choice allows us to
properly describe a dust fluid for the case Lm ¼ p in this
model because the proper calculation of the last term in
Eq. (15) generates a divergence when p ¼ 0, cf. Eq. (48)
for the relevant expression. Note that even though this term
is not problematic for other material stresses like scalar and
Maxwell fields,6 for consistency, the definition (16) should
be used for these fields as well.

Therefore, not only because of the freedom we have in
determining θμν, but also to avoid any diverging term in
this tensor, it is reasonable to omit the second metric
variation of Lm in accordance with the convention in the
literature. However, this choice comes at a price: Ltot

m ¼
Lm þ f is not the total matter Lagrangian density of the
model anymore when a term arising from the variation offfiffiffiffiffiffi−gp

f is omitted. This point indicates that by removing
the second derivative of Lm, the EMSF interaction is
not derived from a well-defined Lagrangian density any-
more, and thereby, we are obliged to compromise the
Lagrangian formulation of this interaction model. We will
momentarily set aside the discussion on nonminimal
matter interactions to address issues related to perfect
fluids. The proper calculations of the first and second
metric derivatives of the matter Lagrangian density for
perfect fluids, from a thermodynamic perspective, will be
demonstrated in the following section.

III. REVEALING AND FIXING THE AMBIGUITIES
ABOUT PERFECT FLUID

Perfect fluids (often used to model idealized distributions
of matter in settings ranging from compact astrophysical
objects to cosmology) are described by the EMT of the
form,

Tpf
μν ¼ ðρþ pÞuμuν þ pgμν; ð18Þ

where ρ > 0 and p are, respectively, the fluid’s energy
density and thermodynamic pressure measured by an
observer comoving with the fluid, uμ is the fluid’s four-
velocity satisfying the condition uμuμ ¼ −1, and accord-
ingly, uμ∇νuμ ¼ 0. It is noteworthy that any material field
whose EMT is of the above form, whether or not, it is
derived from a Lagrangian, is called a perfect fluid [65].
On the other hand, the definition of the matter Lagrangian
density that gives rise to the perfect fluid EMT through the
definition given in Eq. (10) is not unique; either Lm ¼ p or
Lm ¼ −ρ results in the same EMT, viz., Tμν that describes
perfect fluid matter distributions as given in Eq. (18).
For details and other possible choices for the Lagrangian
density of the perfect fluid, see Ref. [66] and the references
therein.

A. The first metric derivative of the matter
Lagrangian density for perfect fluid

At this point, it can be easily seen that the energy density
and pressure depend on the metric tensor, and these
dependencies separately provide us with the perfect fluid
EMT (18) through the definition given in (10). In other
words, if we choose Lm ¼ p for the matter Lagrangian
density of the perfect fluid, the definition in Eq. (10) along
with the perfect fluid EMT given in Eq. (18) imply

6For the canonical scalar field ϕ described by Lc
ϕ ¼ X − V,

where X ¼ − 1
2
∇αϕ∇αϕ is the kinetic part and V ¼ VðϕÞ is the

potential part,
∂
2Lc

ϕ

∂gμν∂gσϵ ¼ 0 [49] whereas the noncanonical gener-
alization of the scalar field described byLnc

ϕ ¼ FðXÞ − V satisfies
∂
2Lnc

ϕ

∂gμν∂gσϵ ¼ 1
4
d2F
dX2 ∇μϕ∇νϕ∇σϕ∇ϵϕ with F being an arbitrary func-

tion of X. For the Maxwell field described by Lm ¼ − 1
4
FμνFμν,

we have ∂
2Lm

∂gμν∂gσϵ ¼ − 1
2
FσμFϵν where Fμν is the usual electromag-

netic field strength tensor [31].
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Lm ¼ p →
δp
δgμν

¼ −
1

2
ðρþ pÞuμuν: ð19Þ

On the other hand, for the choice of Lm ¼ −ρ to obtain the
same perfect fluid EMT (18), the definition (10) requires

Lm ¼ −ρ →
δρ

δgμν
¼ 1

2
ðρþ pÞðuμuν þ gμνÞ: ð20Þ

However, notice that what is done here is merely a
deduction in reverse order. In what follows, to indicate
assumptions behind each case, we shall obtain the perfect
fluid EMT from the matter Lagrangian densities Lm ¼ p
and Lm ¼ −ρ by making use of the first law of thermo-
dynamics. We will follow the procedure presented in
Refs. [66–68].

1. The matter Lagrangian density Lm = p

We let the EoS be given as p ¼ pðh; sÞ and the matter
Lagrangian density be defined as Lm ¼ p. Here, h ¼ ρþp

n
is the specific enthalpy with n being the particle number
density and s is the specific entropy, i.e., the entropy per
unit mass. Then, we have Sm ¼ R

d4x
ffiffiffiffiffiffi−gp

p for the action
of the perfect fluid, and taking its variation, we obtain

δSm ¼
Z

d4xðpδ ffiffiffiffiffiffi
−g

p þ ffiffiffiffiffiffi
−g

p
δpÞ: ð21Þ

In order to derive the variation of Sm, we need to know the
relation between p and the quantities h and s and obtain
their variations with respect to the metric. To do so,
following the standard method, we introduce the Taub
vector as vμ ¼ huμ. It should be noted that the Taub
vector is defined by five scalar velocity-potential fields
(ϕ; α; β; θ; s) that are independent of the metric tensor (see
Ref. [68] for the physical meaning of these potentials).
Namely, in the velocity-potential representation, the Taub
vector is expressed as

vμ ¼ ∂μϕþ α∂μβ þ θ∂μs: ð22Þ

According to this definition, one can obtain

h2 ¼ −gμνvμvν; ð23Þ

and take the variation of the above relation with respect to
the inverse metric gμν, and reach the following relation

2hδh ¼ −vμvνδgμν; ð24Þ

where we have used the fact that vμ does not depend on the
metric tensor. Substituting the definition of vμ back into the
above expression yields

δh
δgμν

¼ −
h
2
uμuν: ð25Þ

Furthermore, the first law of thermodynamics written as
dp ¼ n dh − n T ds [69] reveals that ∂p

∂h js ¼ n with T
being the temperature. Hence, applying the constraint
δs ¼ 0, we obtain δp ¼ − 1

2
nhuμuνδgμν, which corre-

sponds to the pressure variation given in Eq. (19).
Accordingly, the variation of the action of the perfect fluid
reduces to

δSm ¼
Z

d4x

�
−
1

2
p

ffiffiffiffiffiffi
−g

p
gμνδgμν −

1

2

ffiffiffiffiffiffi
−g

p
nhuμuνδgμν

�
;

ð26Þ

which can be rewritten as δSm ¼ − 1
2

ffiffiffiffiffiffi−gp R
d4xTpf

μνδgμν,

where Tpf
μν ¼ nhuμuν þ pgμν. This result then matches the

EMT of the perfect fluid given in Eq. (18).
We have shown that the variation of the action Sm ¼R
d4x

ffiffiffiffiffiffi−gp
p with respect to gμν provides us with the EMT

of the perfect fluid. However, this action can also be varied
with respect to other dynamical variables in order to obtain
the full equations of motion for the perfect fluid, and these
equations imply that the divergence of the perfect fluid
EMT vanishes. To begin with, we consider the variation of
the action with respect to ϕ as follows:

δSm ¼
Z

d4x
δð ffiffiffiffiffiffi−gp

pÞ
δϕ

δϕ; ð27Þ

which can be written as

δSm ¼
Z

d4x

�
∂ð ffiffiffiffiffiffi−gp

pÞ
∂ϕ

þ ∂μ

�
∂ð ffiffiffiffiffiffi−gp

pÞ
∂ð∂μϕÞ

��
δϕ: ð28Þ

We recall that ∂p
∂h js¼n, and according to Eqs. (22) and (23),

the first term in the above expression is zero since the
Taub vector depends on the derivative of ϕ but not ϕ itself.
Thus, using these, we obtain

δSm ¼
Z

d4x∂μ

� ffiffiffiffiffiffi
−g

p
n

∂h
∂ð∂μϕÞ

�
δϕ; ð29Þ

and Eq. (23) eventually implies7

∇μðnuμÞ ¼ 0: ð30Þ

On the other hand, varying the same action with respect
to θ yields

7The covariant derivative of a vector can be written in terms of
the partial derivative as ∇μVμ ¼ 1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp

VμÞ; see Eq. (3.34)
in Ref. [70].

EQUIVALENCE OF MATTER-TYPE MODIFIED GRAVITY … PHYS. REV. D 109, 104055 (2024)

104055-7



δSm ¼
Z

d4x
∂ð ffiffiffiffiffiffi−gp

pÞ
∂θ

δθ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
n
∂h
∂θ

δθ; ð31Þ

since vμ does not depend on the derivative of θ and using
Eq. (23) gives rise to

uμ∂μs ¼ 0: ð32Þ

The variations with respect to α, β, and s can be calculated
in the same manner and related equations of motion
correspondingly read

uμ∂μβ ¼ 0; uμ∂μα ¼ 0; and uμ∂μθ ¼ T : ð33Þ

As the final point, we would like to briefly discuss how
the conservation of the perfect fluid EMT is deduced from
the variational principle via the diffeomorphism invariance
of the action of GR [70–72]. Thanks to that the gravita-
tional and matter parts of the action can be isolated in GR,
the gravitational part being invariant under diffeomor-
phisms implies that so is the matter part. The variation
of the matter part of the action Sm½gμν;Ψi� under a diffeo-
morphism can be written as

δSm ¼
Z

d4x
δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

δgμν þ
Z

d4x
δð ffiffiffiffiffiffi−gp

LmÞ
δΨi δΨi;

ð34Þ

where Ψi is a set of matter fields. As the matter action
defined in Eq. (2) satisfies the equations of motion given
in Eqs. (30), (32), and (33) for Lm ¼ p, the second term

vanishes through δð ffiffiffiffi−gp
LmÞ

δΨi ¼ 0. Then, this condition leads
to the fact that the first term also vanishes. The infinitesimal
change in the metric is obtained from its Lie derivative
along ξμ as Lξgμν ¼ ∇μξν þ∇νξμ, where ξμ is the infini-
tesimal vector field generating the diffeomorphism.
Substituting this relation in Eq. (34), we have

Z
d4x

δð ffiffiffiffiffiffi−gp
LmÞ

δgμν
2∇μξν ¼ 0; ð35Þ

and then making use of the definition given in Eq. (3) and
applying Gauss’ theorem [73], we finally obtain

Z
d4x

ffiffiffiffiffiffi
−g

p
ξν∇μTpf

μν ¼ 0: ð36Þ

If this expression is demanded to hold for any arbitrary
vector field ξμ, it then implies ∇μTpf

μν ¼ 0, which is
the local conservation of the perfect fluid EMT when
Eqs. (30), (32), and (33) are the equations of motion under
consideration. Therefore, it is evident from Eq. (34) that
defining the perfect fluid EMT through Eq. (10) does not

require by alone its conservation, but the validity of the
aforementioned equations of motion must accompany it. In
other words, in matter-type modifications, the equations of
motion given in Eqs. (30), (32), and (33) also change with
the addition of extra terms coming from f part of the total
matter Lagrangian density, and hence, the intact part of
the EMT, Tpf

μν is not necessarily conserved.

2. The matter Lagrangian density Lm = − ρ

In this case, we let the EoS of the perfect fluid be given as
ρ ¼ ρðn; sÞ and the matter Lagrangian density be defined
as Lm ¼ −ρ. So, the action of the perfect fluid reads
Sm ¼ R

d4x
ffiffiffiffiffiffi−gp ð−ρÞ. In a similar fashion to the previous

section, to obtain δρ ¼ ∂ρ
∂n jsδnþ ∂ρ

∂s jnδs, we need to know
the variations of n and s, as well as the relation between ρ
and these quantities. We define the particle number flux
vector density nμ as nμ ¼ ffiffiffiffiffiffi−gp

nuμ implying

n2 ¼ gμνnμnν

g
: ð37Þ

Regarding the variations of n and s, we consider two
necessary constraints: (i) δnμ ¼ 0 and (ii) δs ¼ 0, see
Ref. [71] for details. To obtain the relation between ρ
and two independent quantities n and s, one can utilize the
first law of thermodynamics.
Now we employ the variational procedure. Varying

Eq. (37) with respect to the inverse metric gμν and applying
the assumption δnμ ¼ 0, we obtain

2nδn ¼ −nμnν
�
1

g
δgμν þ 1

g2
gμνδg

�
: ð38Þ

Next, making use of δg ¼ −ggσϵδgσϵ and substituting the
definition of nμ into the above expression give

δn
δgμν

¼ n
2
ðuμuν þ gμνÞ: ð39Þ

Using an alternative expression of the first law of thermo-
dynamics given as dρ ¼ hdnþ nT ds, we have ∂ρ

∂n js ¼ h

and ∂ρ
∂s jn ¼ nT . Therefore, after applying the constraints,

we obtain δρ ¼ 1
2
nhðuμuν þ gμνÞδgμν, which corresponds

to the energy density variation given in Eq. (20). Using this
along with δ

ffiffiffiffiffiffi−gp ¼ − 1
2

ffiffiffiffiffiffi−gp
gμνδgμν, finally we reach

δSm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ρgμνδgμν −

1

2
nhðuμuν þ gμνÞδgμν

�
:

ð40Þ

This expression can also be written as δSm ¼
− 1

2

ffiffiffiffiffiffi−gp R
d4xTpf

μνδgμν, where Tpf
μν¼nhuμuνþðnh−ρÞgμν

is equivalent to the EMT of the perfect fluid given in
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Eq. (18). We should also note that the above discussion
regarding the conservation of the perfect fluid EMT is also
valid for Lm ¼ −ρ case, which satisfies the same equations
of motion (30), (32), and (33).

B. The second metric derivative of the matter
Lagrangian density for perfect fluid

As mentioned before, in perfect fluid case, Eqs. (19)
and (20) reveal that taking their second metric derivative
brings the variations of energy density and pressure
together in the same expression. This is a situation that
has not been encountered until the attempts to modify the
matter Lagrangian density of EH action. One immediate
solution that comes to mind may be to use the variations
given in Eqs. (19) and (20) simultaneously. In general, this
is not physically acceptable since these two variations are
derived from different thermodynamic assumptions8 as
discussed in Secs. III A 1 and III A 2. In other words,
in the case of Lm ¼ pðh; sÞ, two independent variables
are h and s, and hence p and ρ are not independent and
determined from these two variables (h, s). Indeed at
constant entropy, the energy density is defined by

ρ ¼ h
∂p
∂h

				
s
− p: ð41Þ

Similarly, in the case of Lm ¼ −ρðn; sÞ, two independent
variables are n and s, and thereby, ρ and p are not
independent and determined from the two variables (n, s).
At constant entropy, the pressure is defined as

p ¼ n
∂ρ

∂n

				
s
− ρ: ð42Þ

In light of the above discussion, we can deduce that
in Lm ¼ p case, ρ is defined by p, i.e., ρ ¼ ρðpÞ and in
Lm ¼ −ρ case, p is defined by ρ, i.e., p ¼ pðρÞ as we
usually consider barotropic fluids in the context of cosmo-
logy and astrophysics. Therefore, the proper way of
calculating the second metric derivative of the matter
Lagrangian density is to make use of the EoS of the
corresponding fluid. Now, we will present this calculation
for both cases and discuss the possible consequences of it.

1. The choice of Lm = p

Although the second metric derivative of pressure can
be calculated directly from Eq. (19), to shed light on the
assumptions behind the calculation, let us take a step back
and begin with the results presented in Sec. III A 1. In that

section, we have obtained that δpðh;sÞ
δgμν ¼ − 1

2
h ∂p

∂h jsuμuν. We
should mention that to achieve this result, the constraint
δs ¼ 0 has been applied. Keeping these in mind, the second
metric derivative of the pressure can be written as

∂
2p

∂gμν∂gσϵ
¼ −

1

2

��
∂h
∂gμν

∂p
∂h

þ h
∂

∂gμν
∂p
∂h

�
uσuϵ

þ h
∂p
∂h

∂ðuσuϵÞ
∂gμν

�
: ð43Þ

Using Eq. (25), as well as the following relation:

∂ðuσuϵÞ
∂gμν

¼ uσuϵuμuν; ð44Þ

obtained from the normalization condition gσϵuσuϵ ¼ −1,
the first and third terms of Eq. (43) can be simplified
without any additional assumptions. Now, we need to
obtain the second term, and to do so, it is necessary to
reconsider the previously applied constraint, viz., the
conservation of the specific entropy during the variation,
δs ¼ 0. Regarding this, one can then deduce that

∂

∂gμν
∂p
∂h

¼ ∂
2p
∂h2

				
s

∂h
∂gμν

: ð45Þ

Hence, the next task is to find the term ∂
2p
∂h2 js. From Eq. (41),

it is straightforward to calculate that

∂
2p
∂h2

				
s
¼ 1

h
∂ρ

∂h

				
s
: ð46Þ

Inserting Eqs. (25), (44), and (46) into Eq. (43), and after
some simplification, we obtain

∂
2p

∂gμν∂gσϵ
¼ −

h
4

�
∂p
∂h

				
s
−
∂ρ

∂h

				
s

�
uμuνuσuϵ: ð47Þ

8In Ref. [74], these two variations are used at the same time to
find the expression ∂

2Lm
∂gμν∂gσϵ. However, this can only be done

through the new interpretation presented in the current paper, i.e.,
as a freedom in determining the form of interaction in non-
minimally interacting models. Having said that, without the
aforementioned interpretation there is a physical ambiguity in
their simultaneous use. To illustrate this, we add Eqs. (19)
and (20), and obtain

δðρþ pÞ
δgμν

¼ 1

2
ðρþ pÞgμν:

Multiplying both sides by − ffiffiffiffiffiffi−gp
, and then using the relation

δ
ffiffiffiffiffiffi−gp ¼ − 1

2

ffiffiffiffiffiffi−gp
gμνδgμν on the right-hand side lead to

δ lnðρþ pÞ ¼ −δ ln ffiffiffiffiffiffi
−g

p
⟶ ðρþ pÞ ffiffiffiffiffiffi

−g
p ¼ const:

This means that their simultaneous use corresponds to a fixed
EoS. Consequently, using these variations simultaneously in the
second derivative term is no more advantageous than removing
this term in point of that the Lagrangian formulation must still be
compromised.
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Eventually, considering the EoS ρ ¼ ρðpÞ which implies
∂ρ
∂h js ¼ ∂ρ

∂p js ∂p∂h js, one can find the second metric variation
of Lm ¼ p as

∂
2Lmð¼ pÞ
∂gμν∂gσϵ

¼ −
1

4

�
1 −

∂ρ

∂p

				
s

�
ðρþ pÞuμuνuσuϵ; ð48Þ

in which Eq. (41) is also substituted.
As seen, in the final result, the first derivative of ρ with

respect to p appears, which is indeed related to the
definition of the sound speed in the fluid, i.e., ∂p

∂ρ js ¼ c2s .
It is obvious that Eq. (48) diverges when we consider dust
(p ¼ 0 and c2s ¼ 0). Based on this point, it is not possible to
derive the field equations that are valid in the presence of
dust from Ltot

m ¼ pþ f when f is an arbitrary function of
gμνTμν or TμνTμν. Therefore, it turns out to be reasonable to
omit this second derivative term for the case Lm ¼ p.
Furthermore, one may interpret the omission of this term as
if it is taken to be zero. Regarding the above expression
given in Eq. (48), obviously, it vanishes when ∂ρ

∂p ¼ 1.
However, it is worth noting that this result is not carried to
other ρ and p terms in the full expression of θμν and only
valid in the expression (48) [see Eqs. (17) and (53)],
thereby, it does not mean that we fix the EoS of the usual
fluid. For this reason, it is more appropriate to regard this
choice as omitting the second metric derivative of Lm rather
than as setting it to zero. We take advantage of this choice
to present a well-defined interaction model that can
properly describe the beloved fluid, dust, in cosmology.
However, as mentioned earlier, this choice comes at the
price of compromising the Lagrangian formulation of the
interaction model. We should note that this issue arises not
only in GR with nonminimal interactions constructed from
the scalars gμνTμν and TμνTμν but also in extended fðRÞ,
teleparallel gravity theories by incorporating the same
scalars and in theories with matter-curvature couplings
like fðRμνTμνÞ [34,35], fðGμνTμνÞ [36]. Since these the-

ories also assume the term ∂
2Lm

∂gμν∂gσϵ emerging from the
variation of their actions as zero in the presence of perfect
fluid, they work properly only at the level of field
equations. We would like to add that another choice might
be making use of the variations in Eqs. (19) and (20)
simultaneously as is studied in Ref. [74] but the derivation
of the field equations from Ltot

m ¼ pþ f is still not valid.
In this case, using the variations simultaneously does not
have any physical implications other than determining the
form of the interaction, as in our choice to remove the
second metric derivative of Lm.

2. The choice of Lm = − ρ

In the previous section, it is demonstrated that choosing
Lm ¼ p, there is a divergence in the inclusion of dust in
these models at the level of Lagrangian descriptions, which

is firmly resolved at the level of field equations. On the other
hand, there are other choices of Lm to define a perfect fluid.
Although they properly describe the perfect fluid, as dis-
cussed before, the other cases are less commonly used in the
literature compared to the well-known case Lm ¼ p. Now,
we focus our attention on the case Lm ¼ −ρ to investigate
whether there is a well-defined Lagrangian formulation for
the interaction models under consideration. Nevertheless,
we should emphasize that even with a well-defined matter
Lagrangian density, these models are not new theories, but
other forms of nonminimal interactions in GR.
In a similar manner to the previous calculation, we

begin with the result given in Sec. III A 2. The second
metric derivative of energy density is calculated from
δρðn;sÞ
δgμν ¼ 1

2
n ∂ρ

∂n jsðuμuν þ gμνÞ as follows:

∂
2ρ

∂gμν∂gσϵ
¼ n

4

��
∂ρ

∂n

				
s
þ n

∂
2ρ

∂n2

				
s

�
ðuμuν þ gμνÞðuσuϵ þ gσϵÞ

þ 2
∂ρ

∂n

				
s
ðuσuϵuμuν − gσμgϵνÞ

�
: ð49Þ

To simplify the above relation, we utilize Eqs. (39) and (44)
and the relation ∂gσϵ

∂gμν ¼ −gσμgϵν. The second derivative
term in Eq. (49) can be calculated easily after using the
expression (42), so as to obtain

n
∂
2ρ

∂n2

				
s
¼ ∂p

∂n

				
s
: ð50Þ

Finally, considering the EoS p ¼ pðρÞ which implies
∂p
∂n js ¼ ∂p

∂ρ js ∂ρ
∂n js and then substituting Eqs. (42) and (50),

we obtain the second metric derivative of Lm ¼ −ρ as

∂
2Lmð¼ −ρÞ
∂gμν∂gσε

¼ −
1

4
ðρþ pÞ

�
ð1þ ∂p

∂ρ
jsÞ

× ðuμuν þ gμνÞðuσuε þ gσεÞ

þ 2ðuσuεuμuν − gσμgενÞ
�
:

ð51Þ

Unlike the previous case, it can be seen that there is no
ill-defined term even in the presence of dust for the case
Lm ¼ −ρ. Therefore, we continue without removing the
second derivative of Lm ¼ −ρ. By doing so, we find

θpfμν ¼ pðρþ pÞ
�
1þ 3

∂p
∂ρ

�
ðuμuν þ gμνÞ; ð52Þ

after substituting Eqs. (18) and (51) into the definition (15).
Recall that in Sec. II, we discussed how matter-type

theories are equivalent to nonminimal interaction models in
GR. Focusing on the specific theory of EMSG, we derived
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the definition of the EMSF from this new perspective, under
the assumption that the matter Lagrangian density of the
usual field is independent of the derivatives of the metric
tensor. In the following sections, we will calculate the EMSF
and the corresponding field equations of the model for when
the usual field is a perfect fluid. We will then revisit the
cosmological models of EMSG to provide insights into how
our new findings can be applied and interpreted in various
contexts of EMSG and similar theories.

IV. RECONSIDERING EMSG COSMOLOGY
IN THE CONTEXT OF EMSF APPROACH

We proceed by considering perfect fluid as the usual
material field in EMSF interaction. In line with existing
literature, we choose Lm ¼ p, and by substituting Eq. (18)
into Eq. (17), we derive the following expression:

θemsf;pf
μν ¼ −ðρþ pÞðρþ 3pÞuμuν; ð53Þ

the usual expression used for the perfect fluid in the EMSG
models studied so far. Using Eq. (53) in Eq. (14), the
corresponding interaction kernel for the perfect fluid reads

Qν ¼ ∇νf þ 2ðρþ pÞðρþ 3pÞuμuν∇μfT2

þ 2fT2∇μ½ðρþ pÞðρþ 3pÞuμuν�: ð54Þ

From the definition given in Eq. (16) along with Eq. (53), in
the presence of perfect fluid as the usual material field, the
EMT of the accompanying EMSF has the following form:

Temsf
μν ¼ fgμν þ 2fT2ðρþ pÞðρþ 3pÞuμuν: ð55Þ

Also, by combining the contribution of the usual material
field with that of EMSF, from Eq. (6), we obtain

ρtot ¼ ρ − f þ 2fT2ðρþ pÞðρþ 3pÞ; ð56Þ

ptot ¼ pþ f: ð57Þ

Having established the proper definition of the EMSF
in alignment with the field equations found in existing
literature on EMSG, we will, in the next two sections, delve
into specific applications of the EMSF interaction model
within the realm of cosmology.

A. EMSF in the dark sector

In the framework of EMSF interaction, one can construct
models in which components, whose nature is not well
understood yet, like CDM and relativistic relics couple to
the spacetime under the influence of their interactions with
EMSF whereas well-known sources such as baryons and
photons couple to the curvature with their usual EMTs only.
Although it seems that these species interact among
themselves through EMSF, from one perspective, we can

interpret the contributions coming from this field/interac-
tion as a dark energy (DE) component. Depending on the
form of the interaction determined by f, these DE models
have effects on early and late times of the Universe, hence
may ameliorate the current tensions such as H0 tension
[6,9,13,75–78] and S8 tension [7,11,79] within the ΛCDM
model. In what follows, we will investigate this aspect of
the EMSF interaction by making use of different forms of
the f function.

1. Interacting dark energy (IDE) models

It is possible with EMSF to construct IDE models
[80,81] comprising DE nonminimally interacting with
dark matter (DM). These models have recently gained
an increased interest in addressing some cosmological
tensions, and moreover, in Ref. [82], model-independent
reconstruction of the IDE kernel has been performed. In
common phenomenological models, ν ¼ 0 component of
the interaction kernel (Q0) is in general assumed to be a
simple function of energy density ρ and of Hubble radius
H−1, and the corresponding Taylor expansion at the first
order can be written as Q0 ¼ 3Hðζ1ρc þ ζ2ρdeÞ, where ρc
and ρde are energy densities of CDM and DE, respectively,
with ζ1 and ζ2 being free parameters. On top of that, it is
later realized that these phenomenological models pri-
marily alleviate the H0 tension [83,84] (as well as solving
cosmic coincidence problem on the theoretical side
[80,81]), while S8 tension is usually exacerbated. Also,
they suffer from perturbation instability [85–87] and early
time instabilities that can be avoided by setting the EoS
parameter of DE to wde ≡ pde

ρde
¼ −0.9999 with pde being

pressure of it.
On the other hand, Eq. (14) shows that EMSF in the dark

sector may generate IDE models having extremely intricate
interaction forms even with the most straightforward
functions chosen for f. The analysis in Ref. [82] indicates
slightly oscillatory dynamics in the interaction kernel,
thereby, a sign change in the direction of the energy
transfer between DE and DM, and a possible transition
from ρde < 0 in early times to ρde > 0 at late times of the
Universe. Since such a nontrivial dynamics is difficult to
achieve via simple interaction kernels, it is apparent that the
EMSF in the dark sector in this sense deserves attention.
We consider the FLRW spacetime metric with flat

spacelike sections, ds2 ¼ −dt2 þ a2dr⃗2, where the scale
factor a ¼ aðtÞ is a function of cosmic time t only.
Assuming constant EoS parameters for barotropic perfect
fluids, viz., p

ρ ≡ w ¼ const, we consider that CDM (c)
interacts nonminimally with EMSF, whereas known
sources, viz., baryon (b) and radiation (r) have no EMSF
partners, then the field equations read

3H2 ¼ κ

�
ρr þ ρb þ ρc − f þ ρc

df
dρc

�
; ð58Þ
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−2Ḣ − 3H2 ¼ κ

�
1

3
ρr þ f

�
; ð59Þ

where H ¼ ȧ
a is the Hubble parameter and the overdot

denotes the derivative with respect to t. In these relations,
we can interpret the extra terms coming from the EMSF
as effective DE with the following energy density and
pressure:

ρde ¼ −f þ ρc
df
dρc

; pde ¼ f: ð60Þ

Hence, the EoS parameter of DE reads

wde ¼
�
−1þ d ln f

d ln ρc

�
−1
; ð61Þ

which implies that the model can generate a dynamical DE,
i.e., a DE that has an EoS parameter evolving with cosmic
time/redshift, depending on the choice for the function f.
However, if fðρcÞ is flat enough, viz., df

dρc
∼ 0, then

wde ∼ −1. The part of the EMT describing the dark sector
is conserved within itself, and the continuity equation reads
as follows:

ρ̇c

�
1þ ρc

d2f
dρ2c

�
þ 3Hρc

�
1þ df

dρc

�
¼ 0; ð62Þ

also, setting ν ¼ 0 in Eq. (54), the interaction kernel Q0

turns out to be9

Q0 ¼ ρc

�
ρ̇c

d2f
dρ2c

þ 3H
df
dρc

�
: ð63Þ

To demonstrate these points, we proceedwith EMPF [32,33],
the powered form of EMSF, described by

f ¼ αρ2ηc ; ð64Þ

in the presence of CDM. So, from Eq. (62), we obtain

ρ̇c½1þα2ηð2η−1Þρ2η−1c �þ3Hρcð1þα2ηρ2η−1c Þ¼0: ð65Þ

Thereby, the energy density and pressure of theDE are indeed
arisen from the interaction between CDM and its accom-
panying EMPF as follows:

ρde ¼ αð2η − 1Þρ2ηc and pde ¼ αρ2ηc ; ð66Þ

provided that η ≠ 1
2
, accordingly giving

wde ¼
1

2η − 1
¼ const; ð67Þ

where α is a free parameter that determines the amount of
EMPF with respect to CDM. Note that a value of η ¼ 0
corresponds to the ΛCDM model, while η ∼ 0 results in to a
wCDM-like model. However, the underlying physics is
entirely different in the sense that the accelerated expansion
of the Universe is virtually due to the nonminimal interaction
between theEMPFandCDM, rather than an isolated physical
DE source for the cases with η < 1=2, for which the EMPF
contribution to the Friedmann equation is effective at low
values of energy densities. Moreover, the energy densities
of the CDM and of EMPF are conserved together, namely,
CDM in general does not dilute as ρc ∝ a−3 as the Universe
expands, see Ref. [32] for details.
As can be seen, to achieve a dynamic DE model, it is

necessary to extend beyond the power-law form of the
EMSF interaction. For example, consider CDM interacting
with EMLF described by the following expression:

f ¼ α lnðλρ2cÞ; ð68Þ

with α and λ being constants, which gives rise to

ρde ¼ −α ln ðλρ2cÞ þ 2α; pde ¼ α ln ðλρ2cÞ: ð69Þ

If we choose λ ¼ expð−Λ=αÞρ−2c0 , the model inherently
incorporates a cosmological constant, Λ, in addition to its
dynamical component. In this model, ρc has an altered scale
factor dependency due to the nonconservation of the usual
EMT interacting nonminimally with the EMLF, and hence,
by crossing below zero at large redshifts, it can accom-
modate a mechanism for screening Λ at this epoch, in line
with suggestions for alleviating some of the cosmological
discrepancies that arise within the standard ΛCDM model.
See Ref. [47] for a detailed discussion of a slightly different
cosmological model in which baryons are also included in
the interaction and Ref. [48] for its dynamical analysis.
Note that the resulting DE here has a constant inertial

mass density, i.e., ρde þ pde ¼ 2α, which has been studied
in Ref. [89] under the name of simple-graduated DE as an
alternative to the usual cosmological constant having null
inertial mass density, viz., ρΛ þ pΛ ¼ 0. Its observational
analysis suggests that the inertial mass density of DE yields
slightly positive values, viz., Oð10−12Þ eV4, though con-
sistent with zero inertial mass density of the usual cosmo-
logical constant. This source has recently been of interest to
many as it can resemble Λ today, while leading to a future
singularity dubbed as the little sibling of the big rip (LSBR)

9In conventional models, the interaction terms are generally
of the forms Q0 ∝ γHρ1 þ ΓHρ2, Q0 ∝ γHρ1, and Q0 ∝ ΓHρ2,
with γ and Γ being arbitrary constants while the term ρ̇ is not
commonly used. In fact, it is seen with a straightforward rescaling
that ρ̇ gives rise to nothing but interaction kernels more generic
than the linear function of ρ [88].
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for ρde þ pde ¼ const < 0 or a finite future bounce for
ρde þ pde ¼ const > 0 [90–92].

2. EMSF acting as noncanonical scalar fields

In line with Ref. [46], yet without choosing f function,
we assume that relativistic relics (ν) described by w ¼ 1

3

interact nonminimally with EMSF, whereas usual sources,
viz., dust (d) and photons (γ) couple to the curvature with
their usual EMTs only. We also include a bare cosmological
constant, Λ, in the model. For the FLRW spacetime metric
stated above, the field equations of this model read

3H2 ¼ Λþ κ

�
ρd þ ργ þ ρν − f þ 2ρν

df
dρν

�
; ð70Þ

−2Ḣ − 3H2 ¼ −Λþ κ

�
1

3
ργ þ

1

3
ρν þ f

�
: ð71Þ

Following Ref. [46], we interpret along with Λ, the
contribution coming from the interaction of relativistic
species with their accompanying EMSF as an effective DE
component whose energy density and pressure are

ρde¼ρν−fþ2ρν
df
dρν

þΛ; pde¼
1

3
ρνþf−Λ; ð72Þ

and accordingly, the continuity equation for this sector
reads

ρ̇ν

�
1þ df

dρν
þ 2ρν

d2f
dρ2ν

�
þ 2Hρν

�
2þ 3

df
dρν

�
¼ 0: ð73Þ

Hence, setting ν ¼ 0 in Eq. (54), the corresponding
interaction kernel is turned out be

Q0 ¼ ρ̇ν
df
dρν

þ 2ρν

�
ρ̇ν

d2f
dρ2ν

þ 3H
df
dρν

�
: ð74Þ

A nontrivial coupling of the scalar field to the standard
model neutrinos has been proposed in Refs. [93,94] both
to resolve the H0 tension and to ameliorate the significant
fine-tuning problems of the standard early dark energy
(EDE) models, where a dark component effective around
the epoch of matter-radiation equality is considered as a
resolution to the H0 tension [95]. To apply this approach in
the current interaction model, in Ref. [46], the authors
consider the scale-independent EMSF with the choice of

f ¼ 2ffiffiffi
3

p αρν; ð75Þ

in the presence of only relativistic species. The energy
density and pressure of the DE composed of Λ and
relativistic species interacting with scale-independent EMSF
become

ρde¼
�
1þ 2αffiffiffi

3
p

�
ρνþΛ; pde¼

�
1

3
þ 2αffiffiffi

3
p

�
ρν−Λ; ð76Þ

which leads to a dynamical EoS parameter as

wde ¼
ð1
3
þ 2αffiffi

3
p Þρν − Λ

ð1þ 2αffiffi
3

p Þρν þ Λ
: ð77Þ

It is reminiscent of a canonical scalar field as wde ∼
ρν−Λ
ρνþΛ for

α ≫ 0 and, in general, of the one that has been obtained by
introducing a noncanonical scalar field [96] particularly
considered for unifying CDM and DE [97]. They have
noted in Ref. [46] that depending on whether the relativistic
species or the cosmological constant are dominant, the EoS
parameter given in Eq. (77) ranges respectively between the
following limits:

wde;ν ¼
1

3

�
1þ 4α

2αþ ffiffiffi
3

p
�

and wde;Λ ¼ −1: ð78Þ

Similar to EDE models, this specific interaction model
modifies the dynamics of the Universe around the matter-
radiation equality era, due to the altered redshift dependency

of relativistic relics as ρν ∝ a−4−
4α

2αþ ffiffi
3

p
, which is obtained

from Eq. (73).
Before closing this section, we should remark that in the

case of IDE models, we interpret the contributions arising
only from the EMSF as a DE component whereas in the
discussion of relativistic species, we, as in Ref. [46], also
include the contribution coming from the usual material
field together with EMSF in the DE. Besides the two
approaches presented in this study, there is also another
method exercised in the literature [47]: although a source in
the dark sector nonminimally interacts with its EMSF,
the authors of this work still assume that it behaves as in
minimal interaction, viz., ρ∝a−3ð1þwÞ and p¼wρ, thereby,
add the remaining terms in the altered evolution of the
energy density and pressure into those of the DE as well.

B. EMSF as Hoyle-type creation field

From another perspective, Temsf
μν is reminiscent of the

creation field tensor introduced by Hoyle [98] to modify
the EFE, viz.,

Cμν ¼ κTemsf
μν : ð79Þ

In this way, adhering to the perfect cosmological principle,
which states that the Universe is homogeneous and iso-
tropic in space as well as homogeneous in time [99], Hoyle
has achieved a steady-state model of the Universe in the
presence of dust whose energy density remains unchanged
in an expanding universe due to a continuous creation of
matter. The particular case C00 ¼ 0 gives rise to Hoyle’s
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steady-state universe model, namely, the time component
of EMSF contributing to the energy density equation is
arranged to vanish as follows:

C00 ¼ κTemsf
00 ¼ κfg00 − 2κfT2θ00 ¼ 0: ð80Þ

In the presence of the barotropic perfect fluid having
constant EoS parameter w, we obtain

f ¼ α0
�
TμνTμν

1þ 3w2

� 1þ3w2

2ð1þ3wÞð1þwÞ ¼ α0ρ
1þ3w2

ð1þ3wÞð1þwÞ; ð81Þ

for the function f. Note that here α0 is the integration
constant and related to the model parameter α with

α0 ¼ αð1þ 3w2Þ 1þ3w2

2ð1þ3wÞð1þwÞ. Also, the EMSF contribution
to the pressure equation is

Cii ¼ κTemsf
ii ¼ κfgii; ð82Þ

where i ¼ f1; 2; 3g denotes the spatial coordinates. Given
the spatially flat FLRW spacetime metric stated above, the
field equations therefore become

3H2 ¼ κρ; ð83Þ

−2Ḣ − 3H2 ¼ κwρþ κα0ρ
1þ3w2

ð1þ3wÞð1þwÞ: ð84Þ

As seen, the resulting source whose pressure has a linear
term in energy density accompanied by a nonlinear
function of it, and can be written as

ptot ¼ wρþ α0

ρ−
1þ3w2

ð1þ3wÞð1þwÞ
; ð85Þ

mimics the modified generalized Chaplygin gas (mGCG)
[100,101]. Yet the power of ρ is w dependent, as the
interaction of each fluid with the EMSF is governed by the
type of the fluid.
Note that dust (d) described by w ¼ 0 is indeed pressur-

eless but effectively gains pressure due to the interaction
with EMSF. Namely, in this model, dust satisfies the
following Friedmann equations,

3H2 ¼ κρd0a−3ð1þα0Þ; ð86Þ

−2Ḣ − 3H2 ¼ κα0ρd0a−3ð1þα0Þ: ð87Þ

Hence, it is reminiscent of a barotropic fluid with a constant
EoS parameter equal to α0. Hoyle’s original steady-state
universe model can be reproduced in the particular form
fðTμνTμνÞ ¼ α0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TμνTμν

p
, the scale-independent EMSF,

when α0 ¼ α ¼ −1, for which ρd ¼ const. However, differ-
ent from Hoyle’s model, one can also achieve steady-state
universe models in the presence of sources other than dust,
as shown in Ref. [102] for the scale-independent case.

V. REMARKS AND FUTURE PERSPECTIVES

In the gravity theories that incorporate a scalar formed
from the usual energy-momentum tensor (EMT) such as
gμνTμν [29], TμνTμν [30–33], RμνTμν [34,35], and GμνTμν

[36] in their actions, the second metric derivative of the

matter Lagrangian density, ∂
2Lm

∂gμν∂gσϵ arises as a new term,
which does not exist in the literature to date, at the level
of field equations. This term has been assumed to be zero
for perfect fluids in the works considering these types of
theories. A detailed investigation to provide a clear explan-
ation for the vanishing of this term has revealed the proper
meaning of a particular class of gravity models studied so
far. In this study, we have shown that gravity models such
as fðLmÞ [28], fðgμνTμνÞ [29], and fðTμνTμνÞ [30–33] that
modify the introduction of the material source in the usual
EH action by adding only matter-related terms, namely,
an arbitrary function of Lm or those of scalars constructed
from the usual EMT, Tμν, to the matter Lagrangian density
Lm cannot be considered as modified theories of gravity
but rather are equivalent to general relativity (GR) in the
presence of nonminimally interacting sources. Thereby,
assuming the second metric derivative of Lm as zero turns
out to be removing this term from the form of the
interaction as a freedom. In fact, we see that defining
the relation between the matter Lagrangian density and the
EMT in such a way that Tμν emerges on the right-hand side
of the EFE of GR does not leave us room to alter the form
in which the material fields appear in these equations.
With the redefinition of the matter Lagrangian density as
Lm þ f → Ltot

m , we remain within the framework of GR
while allowing for a nonminimal interaction between the
usual material field Tμν and its accompanying partner,
Tmod
μν , which is the modification field. At the level of field

equations, this nonminimal interaction can be expressed as
∇μTμν ¼ −Qν ¼ −∇μTmod

μν , where Qν is the interaction
kernel that governs the rate of energy transfer. Therefore,
the EoS of the fluid described by Tmod

μν and the form of the
interaction described by Qν are intertwined in this type of
models as both of them contain the function f and the
metric variation of the scalar (Lm, gμνTμν, TμνTμν) speci-
fying the model. To elaborate on the discussion, we have
focused on a particular type of these models known as the
energy-momentum squared gravity (EMSG) [30–33]. From
the interaction perspective, in this model, the usual field is
accompanied by energy-momentum squared field (EMSF),
Temsf
μν , determined from the arbitrary function fðTμνTμνÞ.

Then, we have given a brief discussion on the derivation of
the EMT of the perfect fluid from the matter Lagrangian
densities Lm ¼ p and Lm ¼ −ρ with ρ and p being the
energy density and pressure of that fluid, respectively.
We have explicitly stated under which assumptions the
metric derivatives of p and ρ are derived in order to be used
in the calculation of the perfect fluid EMT. Since these
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matter Lagrangian densities depend on not only the metric
tensor but also other dynamical variables, we have derived
all the related equations of motion satisfied in GR. It is clear
that the violation of the aforementioned equations of
motion due to the extra matter-related terms in the action
allows the violation of local conservation of the perfect
fluid EMT even if it is defined from the matter Lagrangian
density, Lm. We have also demonstrated the proper calcu-

lation of ∂
2Lm

∂gμν∂gσϵ where we utilize the sound speed, and
therefore, the EoS of the barotropic fluid. In the Lm ¼ p
case, this term diverges in the presence of dust so removing
it is a reasonable choice to be able to construct a completely
viable cosmological/astrophysical model. However, omit-
ting a term that arises from the variation of an action
obviously renders that action invalid. In other words,
gravity models such as fðgμνTμνÞ [29], fðTμνTμνÞ [30–33],
fðRμνTμνÞ [34,35], fðGμνTμνÞ [36] as well as their fðRÞ
[23,24] and teleparallel gravity [38,39] generalizations that
set this term to zero for the perfect fluid work properly only
at the level of field equations. Lastly, we have revisited
the cosmological models in EMSG from nonminimal
interaction perspective. We have investigated the possible
effects of the EMSF interaction in the dark sector. It is
possible to induce a dynamical DE component by con-
structing a model in which well-known sources such as
baryons and photons have no EMSF partners while sources
such as CDM and relativistic species nonminimally interact
with their accompanying EMSFs. We have also shown
that apart from giving rise to interacting DM-DE models,
EMSF is indeed a Hoyle-type creation field. In the scale-
independent form of EMSG described by fðTμνTμνÞ ¼
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TμνTμν

p
[46], when α ¼ −1, we recover the Hoyle’s

original steady-state universe model [102]. Furthermore,
the EMSF interaction extends the steady-state universe
model to fluids other than dust, yet with a nonarbitrary,
species-dependent parameter.
In this study, we have considered cosmological models

in which only a single fluid nonminimally interacts with
its accompanying EMSF while other fluids couple to the
spacetime with their usual EMTs only. In the presence of
more than one usual field, each field is accompanied by its
own EMSF partner avoiding cross terms of different usual
fields [46]. That is, in such a case, the field equations are

written in the following form: Gμν ¼
P

i T
ðiÞ
μν þ

P
i T

emsfðiÞ
μν

where a superscript (i) represents the ith material field. To
construct nonminimally interacting multifluid models, we
have more options even though we are still in GR such that
the usual material fields, say, (T1

μν; T2
μν) do not directly

interact with their accompanying EMSFs (Temsf1
μν ; Temsf2

μν )
but interact nonminimally with each other, while a non-
minimal interaction exits between the corresponding
EMSFs as well, and interestingly, the form of one inter-
action determines that of the other. For instance, the scale-
independent EMSF will exactly give the most common

interaction kernel adjusted by hands of Barrow and Clifton
in Ref. [103], and is in the form of ρ̇1 þ 3Hðw1 þ 1Þρ1 ¼
βHρ1 þ ζHρ2 and ρ̇2 þ 3Hðw2 þ 1Þρ2 ¼ −βHρ1 − ζHρ2,
where β and ζ are positive constants. Different than the
ad hoc choice of interaction, in this new interpretation of
matter-type theories, β and ζ are nonarbitrary, species(w)-
dependent constants, and interesting cosmological scenarios
arising from an additional set of solutions appear for some
specific values of α [88].

We would like to also add that although the ∂
2Lm

∂gμν∂gσϵ term
can be removed owing to a freedom in determining the
form of the new tensor θμν for EMSF, one can still
search for another form of interaction that is fully obtained
from the variation of the matter Lagrangian density
Ltot
m ¼ Lm þ fðTμνTμνÞ. For instance, in the choice of

Lm ¼ −ρ, one can have a well-defined Lagrangian formu-
lation for such models. Hence, the full field equations can
be properly derived from the matter Lagrangian density
Ltot
m ¼ −ρþ f, e.g., for the scalar TμνTμν, they are obtained

from Ltot
m ¼ −ρþ fðTμνTμνÞ. However, the resulting mod-

els are still equivalent to GR with other forms of non-
minimal interaction. Moreover, if we consider, as an
alternative to the EMSF interaction, another fðTμνTμνÞ
model with the new tensor found in Eq. (52), the corre-
sponding Friedmann equations read

3H2 ¼ κρ − κf; ð88Þ

−2Ḣ−3H2¼ κpþκf−2κfT2pðρþpÞ
�
1þ3

∂p
∂ρ

�
; ð89Þ

and we see that the energy density equation is contributed
by only the function f. Note that Hoyle’s steady-state
universe model cannot be achieved in this interaction, but it
is possible to construct IDE models.
Before closing the paper, we would like to mention that

we aim at highlighting the cosmological consequences of
the EMSF interaction model in the work presented here,
which can be seen as a phenomenological contribution to
exploring the scope of possibilities. On the other hand, one
may question the underlying microscopic physics of the
EMSF interaction; in particular, whether there is a way of
realizing such an interaction in the action within a particular
field theoretical model that leads to the EMT [104]. We
know that there is a relationship between the quadratic
EMSF described by the function fðTμνTμνÞ ∝ TμνTμν and
loop quantum gravity [105,106] as well as braneworld
scenarios [107,108], all of which add quadratic contribu-
tions of the material stresses’ energy density to the
Friedmann equation; hence, it would be interesting to look
for a potential origin of the general form of EMSF inter-
action in a theory of fundamental physics and see whether
such a relationship could be found.
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APPENDIX: THE SCHEME OF THE STUDY

Figure 1 outlines the structure of our study, ensuring that
each research question is addressed accordingly. It acts as a
blueprint for the research presented in the sections that follow.
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