
Island of Reissner-Nordström anti–de Sitter black holes in the large D limit

Chen-Wei Tong ,* Dong-Hui Du ,† and Jia-Rui Sun ‡

School of Physics and Astronomy, Sun Yat-Sen University, Guangzhou 510275, China

(Received 16 June 2023; accepted 18 April 2024; published 16 May 2024)

We study the information paradox of Reissner-Nordström anti–de Sitter black holes in the large dimension
limit by using the island formula. The entanglement entropy of Hawking radiation is calculated both for the
nonextremal and the extremal cases, in which the boundary of the radiation region is close to the outer
horizon. For the nonextremal case, the entanglement entropy of Hawking radiation obeys the Page curve, i.e.,
the entanglement entropy of Hawking radiation increases with time and reaches saturation about twice
Bekenstein-Hawking entropy at the Page time. For the extremal case, the entanglement entropy of Hawking
radiation becomes ill defined in the absence of the island due to the appearance of the singularity at the origin
of the radial coordinate, while when the island exists, the entanglement entropy is found to be equal to the
Bekenstein-Hawking entropy. In addition, for the case where the boundary of the radiation region is close to
the horizon, there are some obvious constraints required by the existence of the island solution for both
nonextremal and extremal cases, which can be utilized to put constraints on the size of the black hole. These
results reveal new features of the semiclassical large D black holes from the island perspective.
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I. INTRODUCTION

In 1974, Hawking discovered that the black hole can emit
thermal radiation, which is called Hawking radiation [1].
In this way, the black hole has a temperature and can
evaporate. However, a consequent problem called the black
hole information paradox [2] is noticed during the black
hole evaporation in the semiclassical gravity: essentially, a
black hole formed by the collapse of the pure state becomes
the mixed state after thermal Hawking radiation. Obviously,
this process is not unitary evolution, which is in conflict
with the standard rules of quantum mechanics. To avoid the
information loss problem in the semiclassical gravity, Page
proposed that the evolution of the entanglement entropy
produced in the radiation process of the black hole should
satisfy the Page curve [3,4]. Therefore, the key point to
solve the black hole information loss problem is to
reproduce the Page curve in the semiclassical description.
Recently, significant progress has been made in the

study of the black hole information paradox in the light of
the AdS/CFT correspondence [5]. In Refs. [6–9], the
island formula was proposed to calculate the entanglement

entropy of Hawking radiation, which helped to reproduce
the Page curve in semiclassical gravity. This formula
comes from the holographic entanglement entropy (HEE)
formula [10,11] and its quantum version, i.e., the quantum
extremal surface [12,13]. It is worth noting that the island
formula can be derived through the gravitational path
integral formalism [14,15]. The island formula for the
entanglement entropy of Hawking radiation is given by

SðRÞ ¼ min fextfSgengg

¼ min

�
ext

�
Areað∂IÞ
4GN

þ SfinitematterðR ∪ IÞ
��

; ð1:1Þ

where I is the island and R is the radiation region outside the
black hole. Note that due to the short distance cutoff [16,17],
the entanglement entropy of matter has UV divergence,
which can be absorbed by renormalizing the Newton
constant GN [18]. Sgen is the generalized entropy composed
of two parts: the first area term is the contribution of
the island, and the second term is the finite part of the
entanglement entropy of the matter on the union of the
radiation region and the island. The entanglement island, or
simply called island, is a region in the black hole interior,
which is found to be a part of the entanglement wedge of the
Hawking radiation outside the black hole. The island
formula is expected to be applicable to different types of
black holes. So far, the island formula has been applied into
the (1þ 1)-dimensional gravitational models [19–34] and
also some higher-dimensional models [34–53]. In addition,
there were also studies on equivalent descriptions of the
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entanglement islands based on the anti–de Sitter/boundary
conformal field theory correspondence [54,55], see [56–65]
for examples.
In the present paper, we mainly consider the entanglement

island of D ¼ ðd þ 1Þ-dimensional Reissner-Nordström
anti–de Sitter (RN-AdSdþ1) black holes coupled to an
auxiliary thermal bath in the large D limit for both non-
extremal and extremal cases, in which the gravitational
theory shows interesting decoupling properties. For a large
D black hole, its near-horizon geometry will be driven into a
fixed point and its dynamics will decouple with that in the far
region, and the effective theory reduces to a two-dimensional
dilaton gravity. In addition, the gravitational perturbations
will go into the hydrodynamic limit, which makes analytical
calculations for the equations of motion of the gravitational
perturbations available [66–73]. Thus, large D black holes
provide a good platform for studying the entanglement
island analytically. On the other hand, the properties of the
entanglement island for extremal black holes have not been
completely understood yet. Previous works attempted to use
the island formula to analyze the extremal black hole, but
their calculations were mainly based on taking the extremal
limit from the nonextremal case [40,42]. Subsequent studies
suggested that the nonextremal and extremal cases should
be analyzed separately based on their different Penrose
diagrams [41,43,74]. Moreover, although the Hawking
temperature of a extremal black hole is zero, its
Bekenstein-Hawking area entropy is nonzero, which also
has been verified from counting microstates of solitons for
extremal black holes in string theory [75] and calculating
the microscopic entropy of the conformal field theory (CFT)
holographically dual to the extremal black hole [76]. Now,
for the large D RN-AdSdþ1 black hole, it has been shown
that it contains new dual CFT description in the (near)
extremal limit. Therefore, it would be interesting to further
study the entanglement island of the large D RN-AdSdþ1

black hole, which will give deeper understanding of the
microscopic entropy and entanglement property of the
extremal black holes.
This paper is organized as follows. In Sec. II, we will

briefly review RN-AdSdþ1 black holes in the large D limit,
both for the nonextremal and extremal cases. In Sec. III,
we review the formulas to calculate the entanglement
entropy of matter. In Secs. IV and V, we mainly study the
entanglement entropy of Hawking radiation for the non-
extremal and extremal cases by using the island formula. In
Sec. VI, we discuss the constraints in the presence of the
island in more detail. In Sec. VII, the Page curve and Page
time are discussed. Finally, conclusions and discussion are
given in Sec. VIII.

II. REVIEW OF THE RN-AdSd + 1 BLACK HOLE

In this section, we review the RN-AdSdþ1 black hole and
its metric in the large D limit [68]. Based on the previous

results, we rewrite the metric for the nonextremal and
extremal cases in the Kruskal coordinates.
The action of (dþ 1)-dimensional Einstein-Maxwell

theory has the form

I ¼ 1

16πGN

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
Rþ dðd − 1Þ

L2
−
L2

g2s
FμνFμν

�
;

ð2:1Þ

whereGN is the Newton constant, R is the Ricci scalar, L is
the curvature radius of the asymptotically AdSdþ1 space-
time, and gs is the dimensionless coupling constant of the
U(1) gauge field. The equations of motion can be found as

Rμν −
1

2
gμνR −

dðd − 1Þ
2L2

gμν ¼
L2

2g2s
ð4FμλFν

λ − gμνFαβFαβÞ

∂μð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 0; ð2:2Þ

which admits the following RN-AdSdþ1 black hole
solution:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
d−1;

A ¼ μ

�
1 −

rd−2þ
rd−2

�
dt; ð2:3Þ

with

fðrÞ ¼ 1 −
M
rd−2

þ Q2

r2d−4
þ r2

L2
;

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d − 1

2ðd − 2Þ
gsQ
Lrd−2þ

s
; ð2:4Þ

where rþ is the radius of the outer horizon, μ is the
chemical potential, and M and Q are the mass and charge
of the RN-AdSdþ1 black hole.

A. The nonextremal large D RN-AdSd + 1 black hole

The dual CFT description of the large D RN-AdSdþ1

black hole has been studied in [68]. To analyze the large D
RN-AdSdþ1 black hole, defining ρ≡ rd−2

M and M ≡ rd−2o ,
and taking the large dimension limit d → ∞ together with
the near-horizon limit r − rþ ≪ rþ, the metric (2.3)
becomes

ds2 ¼ −fðρÞdt2 þ r2

ðd − 2Þ2ρ2fðρÞ dρ
2 þ r2oρ

2
d−2dΩ2

d−1;

A ¼ μ

�
1 −

ρþ
ρ

�
dt; ð2:5Þ

where
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fðρÞ ¼ 1 −
1

ρ
þ Q2

M2

1

ρ2
þ r2oρ

2
d−2

L2

≃ 1 −
1

ρ
þ Q2

M2

1

ρ2
þ r2o
L2

: ð2:6Þ

Note that in order to obtain Eq. (2.5) we have used ρ
2

d−2 ≃ 1
(for finite ρ) once for d → ∞, but we still keep the exact
form of ρ

2
d−2 that appears in the spherical term of the metric.1

The inner and outer horizon radius of large D RN-AdSdþ1

black holes are

ρ� ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4kQ2

M2

q
2k

; k ¼ 1þ r2o
L2

: ð2:7Þ

Thus, the metric (2.5) can be rewritten as

ds2 ¼ −
kðρ − ρþÞðρ − ρ−Þ

ρ2
dt2

þ
�
kðρ − ρþÞðρ − ρ−Þ

�
d − 2

ro

�
2
�

−1
dρ2

þ r2oρ
2

d−2dΩ2
d−1: ð2:8Þ

The temperature and entropy associated with the outer
horizon are, respectively,

T ¼
�
d− 2

ro

�
kðρþ − ρ−Þ

4πρþ
; SBH ¼ Ωd−1rd−1o ρþ

4GN
; ð2:9Þ

where Ωd−1 ¼ 2πd=2=Γðd=2Þ is the volume of the unit
sphere Sd−1. In addition, the tortoise coordinate is

ρ� ¼
Z

ρ roρdρ
ðd − 2Þkðρ − ρþÞðρ − ρ−Þ

¼ 1

2κþ
logðρ − ρþÞ þ

1

2κ−
logðρ − ρ−Þ; ð2:10Þ

where κ� ¼ ðd−2ro
Þðkðρþ−ρ−Þ

2ρ�
Þ are the surface gravity on the

inner and outer horizons, respectively. Then the Kruskal
coordinates are

U ¼ −e−κþðt−ρ�Þ; V ¼ eκþðtþρ�Þ: ð2:11Þ

Finally, we can rewrite the metric (2.8) in terms of the
Kruskal coordinates as

ds2 ¼ −g2ðρÞdUdV þ r2oρ
2

d−2dΩ2
d−1; ð2:12Þ

where

g2ðρÞ ¼ kðρ − ρþÞðρ − ρ−Þ
ρ2

1

κ2þ
e−2κþρ� : ð2:13Þ

B. The extremal large D RN-AdSd + 1 black hole

The extremal condition isM2 ¼ 4kQ2 ¼ r2d−4o , in which
the outer horizon coincides with the inner horizon
(i.e., ρþ ¼ ρ− ¼ 1

2k ≡ ρh). Then the metric (2.8) reduces to

ds2 ¼ −
kðρ − ρhÞ2

ρ2
dt2 þ

�
kðρ − ρhÞ2

�
d − 2

ro

�
2
�

−1
dρ2

þ r2oρ
2

d−2dΩ2
d−1; ð2:14Þ

the tortoise coordinate now is

ρ� ¼
Z

ρ roρdρ
ðd − 2Þkðρ − ρhÞ2

¼ ro
ðd − 2Þk

�
−

ρh
ρ − ρh

þ logðρ − ρhÞ
�
; ð2:15Þ

and the corresponding Kruskal coordinates are

U ¼ −e−κðt−ρ�Þ; V ¼ eκðtþρ�Þ; ð2:16Þ

where we have still adopted the form of the Kruskal
coordinates defined in Eq. (2.11). Note that, in the extremal
case, the surface gravity κþ ¼ κ− ≡ κ becomes zero, so we
assume that the limit κ → 0 to approach the final result of
the extremal case. Now, the metric (2.14) in terms of the
Kruskal coordinates becomes

ds2 ¼ −w2ðρÞdUdV þ r2odΩ2
d−1; ð2:17Þ

where

w2ðρÞ ¼ kðρ − ρhÞ2
ρ2

1

κ2
e−2κρ� ; ð2:18Þ

and the area entropy of the large D extremal RN-AdSdþ1

black hole is

SBH ¼ Ωd−1rd−1o ρh
4GN

: ð2:19Þ

III. FORMULAS OF THE ENTANGLEMENT
ENTROPY OF MATTER FIELDS

In this section, in order to calculate the entanglement
entropy of the radiation in any ðdþ 1Þ ≥ 4-dimensional

1Note that in the sphere radius roρ
1

d−2 we are retaining an
apparent term ρ

1
d−2 since it provides a contribution whenever the

area element rd−1o ρ
d−1
d−2 ≃ rd−1o ρ is involved [71]. Essentially, this

detail is crucial when we use Eq. (3.5) to calculate the entangle-
ment entropy. As you can see from Eq. (4.8), if we omit this term
ρ

1
d−2, the location of the island cannot be determined.
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curved spacetime through the island formula (1.1), we will
take some assumptions and adopt some limits to calculate
the entanglement entropy of free massless matter fields in
higher-dimensional spacetime [34,51]:

(i) If the distance between region A and region B is
larger than the correlation length of the massive
modes in the Kaluza-Klein tower of the spherical
part, the Hawking radiation is assumed to be de-
scribed by the two-dimensional s-wave modes (with
the zero angular momentum) and influence from the
higher angular momentum modes can be ignored.
Then the finite part of the entanglement entropy of
massless matter fields is approximated by the mutual
information of the two-dimensional massless fields
as [34]

Sfinitematter ¼ −IðA∶BÞ ¼ c
3
logdðA;BÞ; ð3:1Þ

where c is the central charge, and dðA;BÞ is the
distance between the boundaries of region A and
region B in flat spacetime. More specifically, in two-
dimensional conformally flat spacetime, the metric
can be written in terms of the Kruskal coordinates as

ds2 ¼ −Ω2dUdV; ð3:2Þ

where Ω is the conformal factor. Under a Weyl
transformation, the distance dðA; BÞ between two
points in conformally flat spacetime can be written as
[25,34,47]

dðA;BÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩðAÞΩðBÞ½UðBÞ−UðAÞ�½VðAÞ−VðBÞ�

p
:

ð3:3Þ

Therefore, the finite part of the entanglement entropy
of matter fields is given by

Sfinitematter ¼
c
6
logΩðAÞΩðBÞ½UðBÞ

−UðAÞ�½VðAÞ − VðBÞ�: ð3:4Þ

As the U, V parts of metrics (2.12) and (2.17) are
conformally flat, so the entropy formula in Eq. (3.4)
is applicable.

(ii) If the distance L between region A and region B is
sufficiently small, then the finite part of the entan-
glement entropy of massless matter fields can be
evaluated by [34,77,78]

Sfinitematter ¼ −IðA∶BÞ ¼ −κdþ1c
Area
Ld−1 ; ð3:5Þ

where c is the central charge and κdþ1 is a dimen-
sionally dependent constant. Note that this formula
is only valid for the flat spacetime. We expect the
above formula can also be applied in curved space-
time as long as we require that the length scale of the
curvature is much larger than the distance L.

IV. THE ENTANGLEMENT ENTROPY
IN NONEXTREMAL LARGE D RN-AdSd + 1

BLACK HOLE

In this section, we will calculate the entanglement entropy
of radiation in the nonextremal large D RN-AdSdþ1 black
hole. Before discussing the island rule, we first give a
specific description to the model we studied. In order to
investigate the evaporation process of black holes in AdS
spacetime, we expect to couple a bath at the asymptotically
AdS boundary of the black hole. Here, we couple two flat
thermal bath systems that have no gravitational effect at the
boundary of the RN-AdSdþ1 black hole and make it trans-
parent [46,79]. For the thermal bath, suppose that the bath is
in thermal equilibrium with the black hole. The Penrose
diagram of whole spacetime (RN-AdSdþ1 þ bath) is shown
in Fig. 1.
Furthermore, it is worth noting that we choose the

boundary of radiation region b� near horizon, which is
crucial in our later calculation of the entanglement entropy
of Hawking radiation. As we can see, due to the special
features of largeD geometry near the horizon, the metric of
the large D RN − AdSdþ1 black hole behaves like in
asymptotically flat spacetime [66,71]. Then a natural setup
is to choose the boundary of the radiation region b� that is
to be near the horizon, which is similar to the previous
models [34,51]. To explain this, we can focus on the black
hole solution fðrÞ; the horizon radius rþ is satisfied with
fðrþÞ ¼ 0 and rþ < ro. At large D,

rþ ≃ ro

0
BB@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4kQ2

M2

q
2k

1
CCA

1
d−2

≃ r0

�
1 −

1

d
ln

�
1þ r20

L2

�
þOðd−2Þ

�
; ð4:1Þ

when taking d → ∞, rþ → ro. It implies that the gravi-
tational effect of the black hole quickly disappears outside
horizon r > ro in the large D limit. In fact, there is a small
region around the horizon on the r=d scale where the
gravitational effect of the black hole is still appreciable,
more precisely, within the region

r − ro ≲ ro
d
þOðd−2Þ; ð4:2Þ
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i.e., ρ ¼ ðror Þd−2 ¼ Oðd0Þ. Thus, the gravitational influence
of the black hole is mainly concentrated in the near horizon
and vanishes in the far zone2 in the large D limit.
Therefore, it allows us to choose the boundary of the
radiation region b� to be near the horizon as in asymp-
totically flat spacetime. So, we are able to calculate the
entanglement entropy in large D RN − AdSdþ1 black hole
spacetime by using the formulas (3.4) and (3.5) as in the
following sections.

A. Without island

There are two points b� corresponding to the bounda-
ries of radiation regions on left wedge R− and right
wedge Rþ [see Fig. 1(a)]. Here bþ ¼ ðtb; ρbÞ and b− ¼
ð−tb þ iβ=2; ρbÞ, respectively. Note that, for the case
without island, it can be inferred from the island formula
that the entanglement entropy of Hawking radiation only
receives the contribution from the matter fields. If the
distance between the boundaries of R− and Rþ is large, the
entanglement entropy of Hawking radiation can be
approximated by formula (3.4)

SR ¼ SfinitematterðRÞ ¼ −IðRþ∶ R−Þ ¼
c
3
log dðbþ; d−Þ; ð4:3Þ

then calculating in the Kruskal coordinates (2.12),
we have

SR ¼ c
6
log½g2ðbÞððUðb−Þ−UðbþÞÞðVðbþÞ−Vðb−ÞÞÞ�

¼ c
6
log

�
4
kðρ− ρþÞðρ− ρ−Þ

ρ2
1

κ2þ
e−4κþρ�ðbÞcosh2ðκþtbÞ

�
:

ð4:4Þ

At late time, we assume that tb ≫ ρb > ρþ, thus

SR ≃
c
3
κþtb ¼

d − 2

ro

kðρþ − ρ−Þ
6ρþ

tb: ð4:5Þ

We can see that the entanglement entropy of the radiation
increases linearly with time at late time and becomes
larger than the Bekenstein-Hawking entropy. This clearly
does not satisfy the unitary, which requires the entangle-
ment entropy to follow the Page curve. However, this
problem will be solved once we introduce the contribution
of the island after the Page time.

B. With island

Now we consider the contribution of the island to the
entanglement entropy of Hawking radiation. We will focus
on the situation where the inner boundary of the radiation
region is near the outer horizon, characterized by
ρb − ρþ ≪ ρþ. We set the boundaries of the island as
aþ ¼ ðta; ρaÞ and a− ¼ ð−ta þ iβ=2; ρaÞ, respectively [see
Fig. 1(b)]. Here we will apply the formula (3.5) to
calculate the entanglement entropy of matter fields, as
we have set the boundary of the island to be outside and
near the outer horizon, namely, ρa − ρþ < ρb − ρþ ≪ ρþ.
By formula (3.5), we have

(a) (b)

FIG. 1. The Penrose diagram of the nonextremal RN-AdSdþ1 black hole coupled to two auxiliary thermal baths. The black part and red
triangle represent the black hole and the auxiliary at spacetime, respectively. (a) R� are the radiation regions on the right and left wedges,
and b� are the boundaries of the radiation region R�. (b) The boundaries of the island are supposed at a�, and the inner boundaries of the
radiation regions correspond to b�.

2The definition of two distinct regions in the geometry: near-
horizon region: r − ro ≪ ro, i.e., ln ρ ≪ d, and far region:
r − ro ≫

ro
d , i.e., ln ρ ≫ 1.
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SfinitematterðR ∪ IÞ ¼ −2IðRþ∶ IÞ ¼ −2κdþ1c
Area
Ld−1 ; ð4:6Þ

and the geodesic distance between the boundary of region
I and that of region R is [34]

L¼
Z

ρb

ρa

ro
d− 2

dρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðρ− ρþÞðρ− ρ−Þ

p
≃ 2

ro
d− 2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðρþ − ρ−Þ

p ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρb − ρþ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρa − ρþ

p Þ: ð4:7Þ

Thus, the generalized entropy is

Sgen ¼ 2
Areað∂IÞ
4GN

− 2κdþ1c
Areað∂RÞ
Ld−1

¼ Ωd−1ðMρaÞd−1d−2

2GN
− 2κdþ1c

Ωd−1ðMρbÞd−1d−2

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρb − ρþ

p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρa − ρþ

p Þd−1

×
ðkðρþ − ρ−ÞÞd−12

2d−1

�
d− 2

ro

�
d−1

: ð4:8Þ

The factor 2 is due to the double contributions from the
left and right wedges. For convenience, we define new

variables x≡
ffiffiffiffiffiffiffiffiffiffi
ρa−ρþ
ρþ

q
and y≡

ffiffiffiffiffiffiffiffiffiffi
ρb−ρþ
ρþ

q
, thus x < y ≪ 1

because of ρa − ρþ < ρb − ρþ ≪ ρþ. Then Eq. (4.8)
becomes

Sgen ¼
Ωd−1ðMρaÞd−1d−2

2GN
− 2κdþ1c

Ωd−1ðMρbÞd−1d−2	
1 − x

y



d−1

×
ðkðρþ − ρ−ÞÞd−12
ρ
d−1
2þ yd−12d−1

�
d − 2

ro

�
d−1

: ð4:9Þ

According to the island formula, the entanglement entropy
is given by the minimal value among all extremal solutions
of the generalized entropy. Note that the expression of the
generalized entropy by using formula (3.5) does not
explicitly include time. We just take the derivative with
respect to position ρa and solve the following equation:

∂Sgen
∂ρa

¼ d − 1

d − 2

Ωd−1M
d−1
d−2ρa

1
d−2

2GN
− ðd − 1Þκdþ1c

Ωd−1ðMρbÞd−1d−2	
1 − x

y



d
xyρþ

×
ðkðρþ − ρ−ÞÞd−12
ρ

d−1
2þ yd−12d−1

�
d − 2

ro

�
d−1

¼ 0; ð4:10Þ

which gives

x
y

�
1 −

x
y

�
d
¼ GNκdþ1c

ðkðρþ − ρ−ÞÞd−12 ðd − 2Þd
ρ

d−1
2þ ydþ12d−2rd−1o

: ð4:11Þ

1. The existence of general island solution

Now let us study the general island solution of Eq. (4.11);
we will show that the existence of the island solution
requires some constraints on the large D RN-AdSdþ1 black
hole. Similar observations in Schwarzschild black hole
spacetime have been noticed in Refs. [38,44,45,51]. By
defining new variables as

u≡ x
y
∈ ð0;1Þ

and λ≡ ρ
d−1
2þ ydþ12d−2rd−1o

cκdþ1GNðkðρþ− ρ−ÞÞd−12 ðd− 2Þdðdþ 1Þ ; ð4:12Þ

where x < y ≪ 1, Eq. (4.11) becomes

uð1 − uÞd ¼ 1

ðdþ 1Þλ : ð4:13Þ

Note there exists a local maximum value of function FðuÞ,
that is,

FðumÞ ¼
dd

ðdþ 1Þdþ1
at um ¼ 1

dþ 1
: ð4:14Þ

Function FðuÞ ¼ uð1 − uÞd monotonically increases with u
in the interval ð0; umÞ and monotonically decreases in the
interval ½um; 1Þ (see Fig. 2). Obviously, there exists an island
solution to Eq. (4.13) only if 1

ðdþ1Þλ < FðumÞ. Therefore, in
the large D limit, we obtain

λ >
�
1þ 1

d

�
d
→ e: ð4:15Þ

As shown in Fig. 3, if the constraint λ > e is satisfied, there
would exist two solutions u1 and u2 (0 < u1 < um <
u2 < 1). The local minimum and maximum values of the
generalized entropy are located at u ¼ u1 and u ¼ u2,

FIG. 2. The schematic diagram of function FðuÞ in the interval
u∈ ð0; 1Þ. A local maximum value of function FðuÞ is located at
um. There are two solutions u1 and u2 when FðumÞ >
1=½ðdþ 1Þλ�. The island solution is just u1.
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respectively. Thus, the island solution is exactly given by
u ¼ u1. When λ ¼ e, points u1 coincide with u2 at um, the
generalized entropy Sgen will monotonically decrease with u
in the interval (0, 1). Thus, there would be no local
minimum value of Sgen and no nontrivial island solution
can be found, similar to the case λ < e. Physically speaking,
the existence of the island puts a constraint on the large
dimensional RN-AdSdþ1 black hole. As according to the
island formula, we need to make sure of the existence of
the island in order to save the unitarity in our case, and this
makes the constraint (4.15) meaningful.

2. Two specific analytical island solutions

Note that we cannot give an analytical expression of
the island solution for the general case x < y ≪ 1. In this
section, we will give two analytical island solutions for the
special cases x ≪ y=d and x ∼ y=d in the large D limit.
First, we consider a more special case satisfying x ≪

y=d with d → ∞. Starting with Eq. (4.10), ð1 − x
yÞ−d can be

expanded as

�
1 −

x
y

�
−d

≃ 1þ d
x
y
þO

��
d
x
y

�
2
�
: ð4:16Þ

This allows us to ignore the higher-order terms of Eq. (4.16)
in the large D limit for the special case x ≪ y=d. Note that,
in the finite dimension case, the condition x ≪ y would be
enough to drop the higher-order terms of Eq. (4.16).
However, in the large dimension case, the condition x ≪
y is not enough and we need to further assume x ≪ y=d.
Substituting Eq. (4.16) into Eq. (4.10) and omitting the
higher-order terms, we find an island solution as

x¼ y
ydþ1rd−1o 2d−2

ðd−2Þdκdþ1cGN

	
ρþ

kðρþ−ρ−Þ

d−1

2 − d
¼ y
ðdþ 1Þλ− d

; ð4:17Þ

which is a special island solution that is valid for x ≪ y=d
with d → ∞.
Now we try to give another special analytical solution in

the large D limit. We assume d x
y ¼ η ∼Oð1Þ, so that

limd→∞ ð1 − η
dÞd ¼ e−η. Then from Eq. (4.13), we get

−ηe−η ¼ −
1

λ
: ð4:18Þ

The solution of the above equation can be expressed as the
LambertW function (or the product logarithmic function). It
can be seen in Fig. 4 that there are two real number solutions
η1 ¼ −Wð− 1

λÞ and η2 ¼ −W−1ð− 1
λÞ, where − 1

λ ∈ ð− 1
e ; 0Þ.

The island solution is just given by η1 ¼ −Wð− 1
λÞ, that is,

x ¼ y
d
η1 ¼ −

y
d
W

�
−
1

λ

�
; ð4:19Þ

which is a special island solution that is valid for x ∼ y=d
with d → ∞.

(a) (b)

FIG. 3. The entropy curve of Sgen with u. (a) When λ > e, the generalized entropy Sgen reaches its local minimum and local maximum
at u1 and u2, respectively. (b) If λ ≤ e, there would be no solutions.

FIG. 4. The schematic diagram of the function fðηÞ ¼ −ηe−η.
There are two solutions η1 and η2 of Eq. (4.18). The island
solution is just η1.
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3. The entanglement entropy with island

In previous sections, we have confirmed the existence of
the island solution for the general case x < y ≪ 1. Now let
us evaluate the entanglement entropy of Hawking radiation
when the island exists. For the special case with x ≪ y=d
and d → ∞, we note that the solution (4.17) should satisfy
the constraint λ ≫ 1. Thus,

x ¼ y
ðdþ 1Þλ − d

≃
y

ðdþ 1Þλ : ð4:20Þ

Then by plugging the solution (4.20) back into the
formula (4.9), the entanglement entropy in this special
case is given by

SR ≃
Ωd−1ðMρþÞd−1d−2

2GN
− κdþ1c

Ωd−1ðMρþÞd−1d−2

yd−1

×
ðkðρþ − ρ−ÞÞd−12

ρ
d−1
2þ 2d−2

�
d − 2

ro

�
d−1

�
1þ ðd − 1Þ x

y

�

≃ 2SBH

�
1 −

2y2

ðdþ 1Þðd − 2Þλ
�
≃ 2SBH; ð4:21Þ

where we used λ ≫ 1 and y=d ≪ y ≪ 1. Therefore, for this
special case, the entanglement entropy of Hawking radi-
ation SR is approximately equal to 2SBH.
For another special case with d x

y ¼ η ∼Oð1Þ, from
Eqs. (4.18) and (4.19) we have the following expression:

�
1 −

x
y

�
d−1

≃ e−η1 ¼ 1

λη1
: ð4:22Þ

Substituting Eq. (4.9) into Eq. (4.22), we obtain

SR ≃ 2SBH

�
1 −

2y2

d2λ
1

ð1 − x
yÞd−1

�

≃ 2SBH

�
1 −

2y2

d2
η1

�
≃ 2SBH; ð4:23Þ

where we have used the solution η1 ∼Oð1Þ and
y=d ≪ y ≪ 1, Therefore, we obtained the entanglement
entropy of Hawking radiation which is approximately equal
to 2SBH for two special cases.
Moreover, it can be shown that, for the general case

x < y ≪ 1, one still has SR ≃ 2SBH, since from Eq. (4.9),
we have

SR ≃ 2SBH

�
1 −

2y2

ðdþ 1Þðd − 2Þλ
�
1 −

x
y

�
1−d

�
< 2SBH:

ð4:24Þ

For the general case x < y ≪ 1, the island solution satisfies
x=y ¼ u1 < um ¼ 1=ðdþ 1Þ under the constraint λ > e.
Then we have

SR > 2SBH

�
1 −

2y2

ðdþ 1Þðd − 2Þλ
�
1 −

1

dþ 1

�
1−d

�

¼ 2SBH

�
1 −

2y2e
ðdþ 1Þðd − 2Þλ

�
≃ 2SBH: ð4:25Þ

Thus, we obtain SR ≃ 2SBH for the general case
x < y ≪ 1. The leading term is given by double
Bekenstein-Hawking entropy, which comes from the boun-
dary area term of the island. The subleading term has been
ignored, which reflects the contribution from the quantum
effects of matter fields.

V. THE ENTANGLEMENT ENTROPY IN
EXTREMAL LARGE D RN-AdSd + 1 BLACK HOLE

In this section, we consider the extremal large D
RN-AdSdþ1 black hole. In the same way, we attach an
auxiliary bath to the AdS boundary of the extremal large D
RN-AdSdþ1 black hole. In Refs. [41,43], the authors argued
that one cannot calculate the entanglement entropy of the
extremal black hole by taking the extremal limit from the
entanglement entropy of the nonextremal black hole,
because the Penrose diagram of the extremal black hole
is not a continuous limit of the nonextremal case, one
should start from the extremal setup. We will start from the
Penrose diagram of the extremal black hole to calculate the
entanglement entropy in the extremal large D RN-AdSdþ1

black hole.

A. Without island

As showed in Fig. 5(a), the Cauchy surface including
bþ ¼ ðtb; ρbÞ touches the singularity at b0 ¼ ðtb; 0Þ. By
using Eq. (3.4), the entanglement entropy of Hawking
radiation is given by

SR ¼ lim
κ→0

c
3
log dðbþ; b0Þ

¼ lim
κ→0

c
6
log½wðρbÞwð0ÞðUðb0Þ

−UðbþÞÞðVðbþÞ − Vðb0ÞÞÞ�
¼ c

12
log ½fð0ÞfðρbÞðρ�ðρbÞ − ρ�ð0ÞÞ2�; ð5:1Þ

where ρ� is defined in Sec. II B, and fðρÞ ¼ kðρ − ρhÞ2=ρ2.
We can find that fð0Þ is singular for the extremal large
dimensional RN-AdSdþ1 black hole and the entanglement
entropy is divergent at ρ ¼ 0. This means that we cannot
give a well-behaved entanglement entropy of Hawking
radiation for the extremal case. This problem also was
noticed in Refs. [41,43,52]. However, we can still give the
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entanglement entropy of Hawking radiation when the
island exists in the extremal case.

B. With island

In the presence of the island, we set the boundary of the
island as aþ ¼ ðta; ρaÞ. Similarly, we consider the situation
where ρb − ρh ≪ ρh. We assume that the boundary of the
island is outside and near the horizon, thus ρa − ρh <
ρb − ρh ≪ ρh [see Fig. 5(b)]; we still use the formula (3.5)
for analysis. Before calculating the entanglement entropy,
let us first give the geodesic distance between aþ and bþ,

L¼
Z

ρb

ρa

ro
d− 2

dρ

k
1
2ðρ− ρhÞ

¼ ro
k
1
2ðd− 2Þ log

�
ρb− ρh
ρa− ρh

�
: ð5:2Þ

By using Eq. (3.5), the generalized entropy is

Sgen ¼
Ωd−1ðMρaÞd−1d−2

4GN
− κdþ1c

Ωd−1ðMρbÞd−1d−2

Ld−1

¼ Ωd−1ðMρaÞd−1d−2

4GN
− κdþ1c

Ωd−1ðMρbÞd−1d−2�
log

�
ρb−ρh
ρa−ρh

��
d−1

×
k
d−1
2 ðd − 2Þd−1

rd−1o
: ð5:3Þ

We still adopt the definitions x≡
ffiffiffiffiffiffiffiffiffiffi
ρa−ρþ
ρþ

q
and y≡

ffiffiffiffiffiffiffiffiffiffi
ρb−ρþ
ρþ

q
,

thus x < y ≪ 1. The generalized entropy becomes

Sgen ¼
Ωd−1ðMρaÞd−1d−2

4GN
− κdþ1c

Ωd−1ðMρbÞd−1d−2

ðlog y2

x2Þ
d−1

k
d−1
2 ðd− 2Þd−1

rd−1o
:

ð5:4Þ

Then from the equation ∂Sgen
∂ρa

¼ 0, we obtain

x2

y2

�
log

y2

x2

�
d

¼ 4κdþ1cGN
ðd − 2Þdkd−1

2

rd−1o y2
: ð5:5Þ

Defining z≡ x2=y2 ∈ ð0; 1Þ, the above equation becomes

z

�
log

1

z

�
d
¼ 4κdþ1cGN

ðd − 2Þdkd−1
2

rd−1o y2
≡ F0: ð5:6Þ

The function FðzÞ ¼ zðlog z−1Þd monotonically increases
with z in the interval (0, zm) and monotonically decreases
with z in the interval (zm, 1); the local maximum value of
function FðzÞ is located at zm (see Fig. 6), that is,

FðzmÞ ¼
dd

ed
at zm ¼ e−d: ð5:7Þ

Therefore, the existence of the island solution of Eq. (5.6)
requires the constraint

dd

ed
> F0: ð5:8Þ

(a) (b)

FIG. 5. The Penrose diagram of the extremal RN-AdSdþ1 black hole coupled to an auxiliary thermal bath. The black part and red
triangle represent the black hole and the auxiliary at spacetime, respectively. (a) bþ is the boundary surface of the radiation region Rþ
and b0 is the singularity with ρ ¼ 0. (b) The island region extends from ρ ¼ 0 to ρ ¼ ρa.
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If the constraint is satisfied, there exist two solutions z1 and
z2 (z1 < zm < z2). The generalized entropy Sgen reaches its
local minimum and local maximum at z1 and z2, respec-
tively, thus the island solution is given by z1. If the
constraint (5.8) is violated, there would be no nontrivial
island solution in this case. This constraint obtained in the
extremal case is different from the constraint (4.15) in the
nonextremal case.
We have shown the existence of the island solution for

x < y ≪ 1 in the extremal case, which requires the con-
straint (5.8), though we do not give the exact expression of
the island solution in this case. Now we consider the
corresponding entanglement entropy of the Hawking radi-
ation. Note that the island solution satisfies x2=y2 ¼ z1 <
zm ¼ e−d; by plugging the solution back to Eq. (5.4), we can
get the entanglement entropy

SR ¼ Ωd−1ðMρaÞd−1d−2

4GN
− κdþ1c

Ωd−1ðMρbÞd−1d−2

ðlog y2

x2Þ
d−1

k
d−1
2 ðd − 2Þd−1

rd−1o

>
Ωd−1ðMρaÞd−1d−2

4GN
− κdþ1c

Ωd−1ðMρbÞd−1d−2

dd−1
k
d−1
2 ðd − 2Þd−1

rd−1o

> SBH

�
1 − 4κdþ1cGN

k
d−1
2 ðd − 2Þd−1
dd−1rd−1o

�

> SBH

�
1 −

y2

ed

�
≃ SBH; ð5:9Þ

where y ≪ 1. We have utilized the following relation from
the constraint (5.8), i.e.,

4κdþ1cGN
k
d−1
2 ðd − 2Þd−1
dd−1rd−1o

<
d · y2

edðd − 2Þ <
y2

ed
: ð5:10Þ

At the same time, we have SR < SBH, so the value of SR is
approximately equal to SBH.
In summary, we find that the entanglement entropy is

equal to Bekenstein-Hawking entropy for the extremal

case. This result is the same as in Refs. [41,43], in which
the authors consider the situation where the boundary of
the radiation region is far from the horizon. While we focus
on the situation where the boundary of the radiation region
is taken to be near the horizon in large dimensional
RN-AdSdþ1 black holes, we mainly calculate the entan-
glement entropy with the island by using the formula (3.5).

VI. THE CONSTRAINTS IN THE PRESENCE
OF ISLAND

In Secs. IV and V, we have studied the island in
nonextremal and extremal largeD RN-AdSdþ1 black holes.
In order to ensure the existence of the island to save the
unitarity in our cases, the constraints (4.15) and (5.8)
should be satisfied. In this section, we would like to analyze
these constraints on the large D RN-AdSdþ1 black hole in
more detail.
In the nonextremal case, the constraint (4.15) should be

satisfied, i.e.,

λ ¼ ρ
d−1
2þ ydþ12d−2rd−1o

cκdþ1ld−1
p ðkðρþ − ρ−ÞÞd−12 ðd − 2Þdðdþ 1Þ > e; ð6:1Þ

where GN ¼ ld−1
p . Taking the large D limit and utilizing

the approximation κdþ1 ¼ Γ½d−1
2
�=ð2dþ3πðd−1Þ=2Þ [77] in

large dimensions, we have

ro
l2
pT

>
d2

8y2
≫

d2

8
; ð6:2Þ

where T is the Hawking temperature. Equation (6.2) is a
more general constraint that provides the limitation on the
black hole size ro and temperature T, but note that the
constraint (6.2) holds when y ≪ 1. Moreover, if one sets
charge Q ¼ 0 and k ¼ 1, the temperature changes to

T ¼ d − 2

4πro
: ð6:3Þ

We can find that the constraint (6.2) can be written
as ro=lp ≫ d3=2=

ffiffiffiffiffiffiffiffiffiffi
32πe

p
, which is the constraint of

Schwarzschild black hole in large D limit [51].
In the extremal case, the constraint (5.8) should be

satisfied, equivalently,

dd

ed
> 4κdþ1cGN

ðd − 2Þdkd−1
2

rd−1o y2
≡ χκdþ1ld−1

p
ðd − 2Þdkd−1

2

rd−1o
;

ð6:4Þ

where χ ≡ 4c=y2. In the large D limit, we have

FIG. 6. The schematic diagram of function FðzÞ in the interval
z∈ ð0; 1Þ. The maximal value FðzmÞ is located at zm. There are
two solutions z1 and z2 when FðzmÞ > F0, and the island solution
is given by z1.
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χκdþ1ld−1
p

ðd − 2Þdkd−1
2

rd−1o
≃ χ

d
3d
2 ld

pk
d
2

8
d
2π

d
2e

d
2rdo

: ð6:5Þ

Then by reorganizing Eq. (6.4), we obtain

r2o
l2
p
>

ek
8π

χ
2
dd ≃

e
8π

�
1þ r2o

L2

�
d; ð6:6Þ

where we have used χ
2
d → 1 when d → ∞ (as we take a

finite y even it is small). To find a constraint on ro, we write
the above inequality as�

8π

el2
pd

−
1

L2

�
r2o − 1 > 0; ð6:7Þ

which reproduces a quadratic inequality of variable ro.
Note that this inequality further requires

8π

el2
pd

>
1

L2
; ð6:8Þ

which puts a constraint on the value of the AdS radius L,
and ro should satisfy the following relation:

ro
lp

>
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

8π
ed −

l2p
L2

q >

ffiffiffiffiffiffi
e
8π

r
d

1
2: ð6:9Þ

This indicates that there is a universal lower bound on the
radius of the large D extremal RN-AdSdþ1 black hole.
In short, we find new constraints on the large D

RN-AdSdþ1 black hole in the presence of the island.
Similar results have been found in Schwarzschild black
holes in Refs. [51,80]. In Ref. [80], the authors provided a
constraint, i.e., ro=lp ≳ d3=2, on the size of Schwarzschild
black holes through the large D analysis. Instead, in
Ref. [51] the authors also provided a constraint by the
existence of the island, i.e., ro=lp ≫ d3=2=

ffiffiffiffiffiffiffiffiffiffi
32πe

p
for the

large dimensional Schwarzschild black hole. In the present
paper, we focused on finding new constraints in the large D
limit RN-AdSdþ1 black hole. Indeed, we find constraints
(4.15) for the nonextremal case and constraint (5.8) for the
extremal case, which leads to the constraints on the size of
the largeD RN-AdSdþ1 black hole, i.e., Eqs. (6.2) and (6.9),
respectively. It is interesting to note that the constraint on ro
for the extremal case is scaling as d1=2, which is very
different from that in Schwarzschild black holes [51,80].

VII. PAGE CURVE AND PAGE TIME

In this section, we would like to estimate the Page
time. For the nonextremal case with x < y ≪ 1, the
entanglement entropy SR without island is given by
Eq. (4.5), which grows linearly with t at late time; whereas
the entanglement entropy SR with island is given by

Eq. (4.25), approximatively as SR ≃ 2SBH. This helps us
reproduce the Page curve of the nonextremal large dimen-
sional eternal RN-AdSdþ1 black hole (see Fig. 7). So the
Page time in this case is given by

tPage ≃
6SBH
cκþ

¼ 3SBH
πcT

; ð7:1Þ

where T is the Hawking temperature of the nonextremal
large D RN-AdSdþ1 black hole.
For the extremal case with x < y ≪ 1, although we have

analyzed the Penrose diagram with island and give its
entanglement entropy as SR ≃ SBH, the entanglement
entropy SR without island is ill defined. This is mainly
because fðρÞ is ill defined at the singularity b0 ¼ ðtb; 0Þ.
Therefore, we cannot provide the Page time for the
extremal black hole.
In summary, for the nonextremal large D RN-AdSdþ1

black hole, by combining Eqs. (4.5) and (4.21), we get the
Page curve of the entanglement entropy of Hawking
radiation. Before the Page time, the entanglement entropy
increases approximately linearly with time, and there is no
island. After the Page time, the island appears and its
boundary is near the horizon, thus the entanglement entropy
becomes approximately twice the Bekenstein-Hawking
entropy. The Page time is obtained in nonextremal case,
which is the same as the result in the Reissner-Nordström
black hole in four dimensions [39]. Whereas, for the

FIG. 7. The Page curve for the nonextremal large dimensional
eternal RN-AdSdþ1 black hole. For the eternal black hole, the
entanglement entropy of Hawking radiation remains unchanged
and constrained by twice Bekenstein-Hawking entropy after the
Page time.

TABLE I. The summary of results for large dimensional
RN-AdSdþ1 black hole.

Black holes Without island With island Page time

Nonextremal case SR ≃ c
3
κþtb SR ≃ 2SBH tPage ≃

3SBH
πcT

Extremal case Ill defined SR ≃ SBH Ill defined
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extremal case, we cannot give a well-defined Page time
(see Table I).

VIII. CONCLUSION AND DISCUSSION

In this paper, we investigated the entanglement entropy
of the Hawking radiation in the nonextremal and extremal
cases of large D RN-AdSdþ1 black holes coupled to an
auxiliary bath at the boundary of the black hole via the
island formula. We mainly considered the situation in
which the boundary of the radiation region is close to
the outer horizon of the black hole.
For the nonextremal case, we showed the existence of the

general island solution, and we obtained two analytical
island solutions in special cases x ≪ y=d and x ∼ y=d with
d → ∞, i.e., Eqs. (4.17) and (4.19). Although we did not
give the analytical expression of the island solution for
general x < y ≪ 1, we found a constraint (4.15) that is
required by the existence of the island in this case. The
entanglement entropy of Hawking radiation has been
obtained for both cases with and without the island.
Meanwhile, the Page curve and Page time are also obtained
(see Fig. 7).
For the extremal case, we showed that the entanglement

entropy without island is ill defined. As shown in the
Penrose diagram [i.e., Fig. 5(a)], the region extends from the
boundary of the radiation region to the singularity ρ ¼ 0,
while the conformal factor [see Eq. (5.1)] is divergent at
ρ ¼ 0. It has been pointed out in Ref. [74] that, when taking
the extremal limit for nonextremal RN black holes, the black
hole geometry will divide into an extremal black hole and a
disconnected AdS2 part. While the microscopic entropy of
the extremal RN black hole as shown can be calculated from
its near-horizon geometry either from the RN/CFT corre-
spondence [81] or from the HEE perspective [82]. However,
the island formula will involve the black hole singularity
in the absence of island for the extremal case, which will
cause the semiclassical calculation to be invalid when the
left boundary reaches the singularity b0 [see Fig. 5(a)]. In
previous works, such as [41,43,52], the authors mainly
studied the case where the boundary radiation region is far
from the outer horizon and utilized the formula (3.4) for the
island phase. This differs from our analysis, as we mainly
used the formula (3.5) to calculate the entanglement entropy

with the island phase. We showed that the entanglement
entropy of Hawking radiation in the extremal case is
approximately equal to the Bekenstein-Hawking entropy
(SR ≃ SBH), which is consistent with the results in previous
studies [41,43,52]. However, since the entanglement
entropy without island is not yet clear in the extremal case,
therefore, the Page curve and Page time are also not well
defined in this case.
Moreover, we showed that the existence of the island will

put some constraints on the black holes (also see related
papers [38,44,45,51]). For largeD RN-AdSdþ1 black holes,
we found the constraints both for the nonextremal and
extremal cases, which are

ro
l2
pT

>
d2

8y2
≫

d2

8
ðfor nonextremal caseÞ; ð8:1Þ

ro
lp

>
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

8π
ed −
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L2

q >

ffiffiffiffiffiffi
e
8π

r
d

1
2

and
L
lp

>

ffiffiffiffiffiffi
e
8π

r
d

1
2 ðfor extremal caseÞ; ð8:2Þ

as required by the existence of island in the case y ≪ 1.
Now let us discuss some issues needed to be solved in

the future. First, we focused on studying the case of one
island in our paper. In general, the configuration of multiple
islands is allowed, and it can soften the turning point of the
Page curve at the Page time. Second, our calculation was
mainly based on the two-dimensional approximation for-
mula in Sec. III; a more general formula is needed to
calculate the entanglement entropy of matter in the high-
dimensional curved spacetime. Finally, the constraints we
obtained are only valid in the case of x < y ≪ 1. For more
general case y > 0, we do not yet know whether there is a
similar constraint, and it deserves to generalize the calcu-
lation of the entanglement entropy in high-dimensional
black holes for general case y > 0.
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