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The weak-field limit of Einstein-Cartan (EC) relativity is studied. The equations of EC theory are
rewritten such that they formally resemble those of Einstein general relativity (EGR); this allows ideas from
post-Newtonian theory to be imported without essential change. The equations of motion are then written
both at first post-Newtonian (1PN) order and at 1.5PN order. EC theory’s 1PN equations of motion are found
to be those of a micropolar/Cosserat elastic medium, along with a decoupled evolution equation for
nonclassical, spin-related fields. It seems that a necessary condition for these results to hold is that one
chooses the nonclassical fields to scale with the speed of light in a certain empirically reasonable way.
Finally, the 1.5PN equations give greater insight into the coupling between energy-momentum and spin
within slowly moving, weakly gravitating matter. Specifically, the weakly relativistic modifications to
Cosserat theory involve a gravitational torque and an augmentation of the gravitational force due to a
dynamic mass moment density with an accompanying dynamic mass moment density flux, and new forms
of linear momentum density captured by a dynamic mass density flux and a dynamic momentum density.
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I. INTRODUCTION

The theory of general relativity (GR) with spin and
torsion was initially proposed by Cartan [1–3]. This
Einstein-Cartan (EC) theory of GR (also known as U4

theory and Einstein-Cartan-Sciama-Kibble relativity) was
rediscovered in the 1960s by Kibble [4] and Sciama [5,6],
summarized by Hehl et al. [7], and remains a viable theory
of relativity [8,9]. There has been recent interest in
EC theory because it can avoid the big bang singularity
[e.g., [10,11] ]. As [7] discusses, EC theory is a natural
generalization of general relativity to media where the
quantum mechanical spin of matter is relevant.
In classical continuum mechanics, a medium that sup-

ports spin is referred to as a Cosserat micropolar medium,
in reference to the Cosserat brothers [12–14] who inspired
Cartan’s work on torsion and spin. The Cosserat equations
are discussed by Truesdell and Toupin [15], and more
modern descriptions of the theory are presented by
Malvern [16] and Nowacki [17]; the latter also discusses
the physical properties of micropolar media. Maugin and
Metrikine [18] provide a full overview of both Cosserat
theory and its generalizations, with Maugin [19] providing
a useful conceptual introduction.

Continuum mechanics is a coarse-grained theory of the
atom-scale interactions occurring within matter. As dis-
cussed by [19], if one assumes that the traction exerted on a
facet cut in the solid depends only on the local unit normal,
then Cauchy’s theorem holds, and one may write the
internal body forces as the divergence of a tensor: the
Cauchy stress. If, in addition, there are no applied couples
in both volume and surface–meaning essentially that one
can assume that the particles of the medium interact by
central forces–then the Cauchy stress is symmetric. Such a
medium is described by the well-known equations of
motion

∂tρþ∇jðρvjÞ ¼ 0; ð1Þ

∂tðρviÞ þ∇jðρvivj − σi
jÞ ¼ fi; ð2Þ

where ρ is the mass density, vi the material velocity, σij the
Cauchy stress, and fi some external body force per unit
mass. Given a constitutive theory relating the Cauchy
stress to the deformation of the medium, these equations
may be solved for the motion of the medium.
But on a small enough scale the forces between particles

are not central, with spin-spin interactions between atoms
being perhaps the most obvious example. This motivates
the Cosserat brothers’ more general coarse-grained theory,
where material points are considered to be defined not just
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by their mass density, but also by a spin density. Within
that theory the Cauchy stress is no longer required to be
symmetric, and the equations above are augmented by the
new equation

∂tθij þ∇kðθijvk − λij
kÞ ¼ −ðσij − σjiÞ þΨij; ð3Þ

where the antisymmetric tensor θij gives the local spin
density that is sourced by the material couple stress λij

k

and whose evolution is forced both by an external torque
Ψij and by the asymmetry of the Cauchy stress. Again, after
imposing suitable constitutive theory on λij

k one could
solve these equations for both the motion and the spin
density.
The respective motivations for Cosserat continuum

mechanics and EC theory are in some sense the same:
if one considers small enough scales, the spin of matter
must impart some further structure into the coarse-grained
theories describing bulk matter. Thus, classical continuum
mechanics is “promoted” to Cosserat theory, and torsion-
less Einstein general relativity (EGR) to torsionful EC
theory. Moreover, just as there are myriad extensions of
EGR, continuum mechanics may also be augmented in
several ways (see, e.g., [18]).
Can the analogy be extended further? The equations of

classical continuum mechanics are well known to be
derivable as the weak-field limit of EGR (see, e.g., [20].
Is the same true of Cosserat theory and EC theory? This
paper aims to show that, subject to certain assumptions
about the spin and energy-momentum tensors, the equations
of Cosserat theory may indeed be derived as the weak-field
limit of Einstein-Cartan relativity. An additional aim is to
study the coupling between energy-momentum and spin for
slowly moving, weakly self-gravitating matter; to that end,
we also derive equations of motion in a limit where the
fields are a little less weak.
We begin in Sec. II by reviewing EC theory, discussing

in particular how it may be rewritten without approxima-
tion to resemble EGR rather closely. Then in Sec. III we
discuss the structure of EC theory’s energy-momentum
and spin tensors and postulate a particular post-Newtonian
scaling for some of their components. The weak-field
equations of the theory are derived in Sec. IV; since we aim
to derive the kinematic equations given just above, we
impose no particular constitutive relation. In Sec. V we
present the “slightly less weak field” equations, before
discussing our results in Sec. VI.

II. OVERVIEW/REVIEW
OF EINSTEIN-CARTAN GRAVITY

EC theory describes a spacetime containing both energy-
momentum—represented by the asymmetric tensor Tμν—
and spin Mμν

σ . For that reason, EC theory has a richer
geometrical structure than EGR.

A. Geometry

The spacetime of EC theory is a four-dimensional
Riemannian manifold endowed with a metric tensor gμν
and a metric-compatible affine connection Γσ

μν. In contrast
to EGR, the connection need not be symmetric in its lower
indices; its asymmetry is measured by the torsion tensor,
which we define as

Sμνσ ¼ Γσ
μν − Γσ

νμ ¼ −Sνμσ: ð4Þ

To make closer contact with EGR, we may write the
connection as

Γσ
μν ¼ Γ̂σ

μν þ Kμν
σ; ð5Þ

where

Γ̂σ
μν ¼

1

2
gσβð∂μgβν þ ∂νgμβ − ∂βgμνÞ ¼ Γ̂σ

νμ ð6Þ

are the standard Christoffel symbols, and

Kμνσ ¼ 1

2
ðSμνσ þ Sσμν þ SσνμÞ ¼ −Kμσν ð7Þ

is the contortion tensor. Note that K’s antisymmetry is on
its second and third indices and that its first two indices
need to have no particular symmetry. Expressions involving
permutations of indices as in Eq. (7) will arise several
times, so we define the shorthand

Ãμνσ ¼ Aμνσ þ Aσμν þ Aσνμ; ð8Þ

for an arbitrary rank-3 tensor Aμνσ. Finally, for later
reference, we define a third measure of torsion: the
modified torsion tensor ([7], Eq. 2.3; also referred to as
the Palatini torsion tensor)

Cμν
σ ¼ Sμνσ þ Sαμαδνσ − Sαναδμσ ¼ −Cνμ

σ: ð9Þ

From the connection (5) we may define the covariant
derivative ∇, which acts on tensors according to

∇σAμ
ν ¼ ∂σAμ

ν þ Γν
σαAμ

α − Γα
σμAα

ν: ð10Þ

Two other useful derivatives are the modified covariant
derivative ∇̆,

∇̆σAμ
ν ¼ ∇σAμ

ν þ SσααAμ
ν; ð11Þ

and the metric covariant derivative ∇̂,
∇̂σAμ

ν ¼ ∂σAμ
ν þ Γ̂ν

σαAμ
α − Γ̂α

σμAα
ν: ð12Þ
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The Riemann or curvature tensor1 is defined in terms of
the connection coefficients (5) as

Rμνα
σ ¼ ∂μΓσ

να − ∂νΓσ
μα þ Γσ

μβΓ
β
να − Γσ

νβΓ
β
μα: ð13Þ

Unlike in EGR, in EC theory we do not have the symmetry
Rμνασ ¼ Rασμν. Nevertheless, the curvature tensor is still
antisymmetric in both its first and its last two indices:

Rμνασ ¼ −Rνμασ; ð14aÞ

Rμνασ ¼ −Rμνσα: ð14bÞ

As noted by [7], even in the presence of torsion the Ricci
tensor Rμν therefore remains the only “essential contrac-
tion” of the Riemann tensor:

Rμν ¼ Rσμν
σ

¼ ∂σΓσ
μν − ∂μΓσ

σν þ Γσ
σβΓ

β
μν − Γσ

μβΓ
β
σν: ð15Þ

Defining the Ricci scalar by

R ¼ Rμνgμν; ð16Þ

we may then write the Einstein tensor as

Gμν ¼ Rμν −
1

2
Rgμν: ð17Þ

It is a distinguishing feature of EC theory that the Ricci and
Einstein tensors are no longer symmetric.
Just like the connection (5), the Ricci and Einstein

tensors may both be written as the sum of two terms: a
metric part having no algebraic dependence on torsion, and
a nonmetric part that does have such a dependence and that
vanishes in torsion’s absence. Therefore, we express the
Ricci tensor (15) in the form

Rμν ¼ R̂μν þ R̊μν; ð18Þ

with the metric part given by

R̂μν ¼ ∂σΓ̂σ
μν − ∂μΓ̂σ

σν þ Γ̂σ
σβΓ̂

β
μν − Γ̂σ

μβΓ̂
β
σν; ð19Þ

and the part associated with torsion determined by

R̊μν ¼ ∇σKμν
σ −∇μKσν

σ − SμσαKαν
σ

þ Kμβ
σKσν

β − Kσβ
σKμν

β: ð20Þ

If we then define a symmetric second-rank tensor2

SμνðCÞ ¼ Kα
αμKβ

βν − Kαμ
βKβν

α

−
1

2
gμνðKα

ασKβ
β
σ þ Kαβ

σKσ
αβÞ ð21Þ

that depends onC quadratically (cf., [22], Eq. 32), and if we
also recall the shorthand defined in Eq. (8), then it follows
that the Einstein tensor (17) may be expressed as

Gμν ¼ Ĝμν þ G̊μν; ð22Þ

with the familiar metric part

Ĝμν ¼ R̂μν −
1

2
R̂gμν; ð23Þ

and the torsionful part

G̊μν ¼
1

2
∇̆σC̃μν

σ −SμνðCÞ: ð24Þ

B. Field equations

The EC field equations may be obtained by considering
the action (see, e.g., [7,23,24])

I ¼
Z

ðLG þ LMÞ
ffiffiffiffiffiffi
−g

p
d4x; ð25Þ

where g denotes the determinant of the metric tensor gμν.
The Lagrangian density of the gravitational field is defined
in terms of the Ricci scalar (16) by

LG ¼ 1

2κ
R; ð26Þ

where the constant κ is determined in terms of Newton’s
gravitational constant G and the speed of light in vacuum c
by κ ¼ 8πG=c4. The Lagrangian density of matter is
denoted by LM. Both Lagrangian densities are considered
to be functions of the metric tensor gμν and—depending on
algebraic convenience—the torsion Sμνσ or the contortion
Kμν

σ [7].
Variation of the matter Lagrangian density with respect

to the metric yields the metric stress-energy tensor

T̂μν ¼ −2ffiffiffiffiffiffi−gp ∂ðLM
ffiffiffiffiffiffi−gp Þ

∂gμν
¼ T̂νμ; ð27Þ

while variation of the matter Lagrangian density with
respect to contortion yields the spin tensor

1We use the definition of Hehl et al. [7] for the Riemann tensor,
which has the same placement of indices as Wald [21] but
opposite sign.

2For later convenience we take the argument of the left-hand
side to be Cμν

σ even while we write the right-hand side in terms
of Kμσν.
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Mσ
νμ ¼ −2ffiffiffiffiffiffi−gp ∂ðLM

ffiffiffiffiffiffi−gp Þ
∂Kμν

σ ¼ −Mν
σ
μ: ð28Þ

These may be combined to give the canonical stress-energy
tensor (see, e.g., [7], Eq. 3.8)

Tμν ¼ T̂μν þ 1

2
∇̆σ
eMμνσ: ð29Þ

Like the Ricci and Einstein tensors, Tμν is not symmetric in
EC theory.
Variation of the EC action (25) now yields the field

equations [7]

Gμν ¼ κTμν; ð30aÞ

Cμν
σ ¼ κMμν

σ: ð30bÞ

It is noteworthy that, while the Einstein field equation (30a)
(EFE) is a partial differential equation, the spin field
Eq. (30b) is an algebraic identity. This means that spin
vanishes if and only if torsion does too.

C. Dynamic equations

The conservation laws for energy-momentum and spin
are found by Noether’s theorem (see, e.g. [7]) to be

∇̆νTμ
ν ¼ 1

2
Mσα

νRμν
σα þ SμανTν

α; ð31aÞ

∇̆σMμν
σ ¼ Tμν − Tνμ: ð31bÞ

Note that it is the canonical stress-energy Tμν that appears
here, not its metric cousin T̂μν. These identities are the
“dynamic equations” of EC theory (see, e.g., [25,26]). As
discussed by [25], they are automatically compatible with
the contracted Bianchi identities as long as the field
equations (30) are fulfilled. Thus, similarly to EGR, EC
theory possesses “automatic conservation of the source”
(see, e.g., [27]).

D. “Effective” equations of EC theory

In the absence of spin, as in EGR [28], the spin field
equation (30b) forces torsion to vanish and the canonical
and metric stress-energy tensors to coincide. The field and
dynamic equations thus reduce to

Ĝμν ¼ κTμν ð32Þ

and

∇̂νTμ
ν ¼ 0 ð33Þ

with

Tμν ¼ Tνμ: ð34Þ

In the absence of torsion, the stress-energy tensor is
symmetric.
But even in the presence of spin, the equations of EC

theory may be rewritten without approximation so as to
resemble those of EGR rather closely [7]. To see this we
may use the decomposition of the Einstein tensor into
metric- and nonmetric parts [Eqs. (23) and (24)] and the
trivial identities

C̃ðμνÞσ ¼ CσðμνÞ; ð35Þ

C̃½μν�σ ¼ Cμν
σ: ð36Þ

If we then split the EFE (30a) into symmetric and
antisymmetric parts, we find that

Ĝμν þ
1

2
∇̆σCσðμνÞ −SμνðCÞ ¼ κTðμνÞ; ð37aÞ

1

2
∇̆σCμν

σ ¼ κT ½μν�: ð37bÞ

Now we use the spin-field equation (30b) to substitute spin
for torsion everywhere (including within ∇̆σ):

Ĝμν ¼ κTðμνÞ −
1

2
κ∇̆σMσðμνÞ þ κ2SμνðMÞ; ð38aÞ

∇̆σMμν
σ ¼ 2T ½μν�: ð38bÞ

The second of these equations is a redundant repetition of
the conservation law for spin (31b).
Finally, define the symmetric effective energy–momen-

tum tensor

Θμν ¼ TðμνÞ −
1

2
∇̆σMσðμνÞ þ κSμνðMÞ; ð39Þ

which may alternatively be written as

Θμν ¼ T̂μν þ κSμνðMÞ; ð40Þ

using Eqs. (29) and (30b). We will generally use the first
alternative because this paper’s focus is on the (weak-field)
kinematics of the physically meaningful matter fields of the
canonical stress-energy tensor. In any case, the sym-
metrized effective EFE (38a) thus takes the familiar form

Ĝμν ¼ κΘμν: ð41Þ

The metric Einstein tensor is conserved by the metric
covariant derivative, and therefore so is Θμν:
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∇̂νΘμν ¼ 0: ð42Þ

[Presumably, this conservation law follows from algebraic
manipulation of the field equations (30) and the dynamic
equations (31), but it seems more straightforward just to
appeal to Ĝμν’s properties.]
In summary, the effective equations of EC theory are

Ĝμν ¼ κΘμν; ð43Þ

∇̂νΘμν ¼ 0; ð44Þ

∇̆σMμν
σ ¼ 2T ½μν�; ð45Þ

with all instances of torsion within ∇̆σ understood to have
been replaced by spin using Eq. (30b). The first two of these
equations are algebraically identical to standard EGR, albeit
with a differently defined stress-energy tensor. However,
they do not obviously decouple from the spin conservation
equation, so the similarity is just formal.

III. ANATOMY OF THE STRESS-ENERGY
AND SPIN TENSORS

Before deriving the equations of weak-field EC theory,
we should study the structure of the stress-energy and spin
tensors more closely. We use an index 0 to denote the time
coordinate x0 ¼ ct and lowercase roman indices to denote
three spatial coordinates fxig. The speed of light c is
introduced as a scaling parameter that enables us to keep
track of and order various terms in powers of c. The
structure of the scale is set by the rest energy, T00 ¼ ρc2.
We assume that in an instantaneously comoving Lorentz

frame (ICLF) the energy-momentum tensor takes the form

ðTμνÞ ¼
�
T00 T0j

Ti0 Tij

�
≡
�
c2ρ qj

pi −σij

�
: ð46Þ

We have included a nonzero ICLF momentum-density pi

and mass-flux qi, as well as dropping the EGR requirement
that σij be symmetric. We may derive the corresponding
expression for slowly moving matter by Lorentz-boosting
with a small velocity vi, where kvk ≪ c. Defining

Σij ¼ σij − ρvivj; ð47Þ

the stress-energy tensor takes the generic form

ðTμνÞ ¼
�

c2ρ cρvj þ qj

cρvi þ pi −Σij þ ðpivj þ viqjÞ=c

�
; ð48Þ

where we have included the leading-order term in each
entry, as well as the term one power of c lower.
We have chosen pi and qi to carry one less factor of c

than ρvi. This scaling seems empirically reasonable. At low
enough velocities, an object’s linear momentum is derived
solely from its rest mass and velocity. But pi and qi

represent contributions from spacetime itself, so they must
enter at subleading order as in Eq. (48).
As for the spin tensor, we take its ICLF components to be

ðMμν0Þ ¼
�

0 M0j0

Mi00 Mij0

�
≡
�

0 −cμj

cμi cθij

�
; ð49Þ

ðMμνkÞ ¼
�

0 M0jk

Mi0k Mijk

�
≡
�

0 πjk

−πik −λijk

�
: ð50Þ

Again, we have scaled the nonclassical fields μi and πik to
ensure that nonclassical effects cannot enter at leading
order. Lorentz-boosting once again with the small velocity
vi, and defining [cf. Eq. (47)]

Πij ¼ πij − μivj; ð51Þ

Λijk ¼ λijk − θijvk; ð52Þ

the spin tensor takes the generic leading-order form

ðMμν0Þ ¼
�

0 −cμj

cμi cθij

�
; ð53Þ

and

ðMμνkÞ ¼
�

0 Πjk

−Πik −Λijk

�
: ð54Þ

One may show that, as in Eq. (48), nonclassical effects
correct θij and Λijk only at subleading order in c.
Thus, the physical parameters of EC theory are seen to

include the mass density ρ, the dynamic mass density flux
cqi, the dynamic momentum density cpi, the material stress
tensor σij, the dynamic mass moment density cμi, the
particle spin tensor θij, the dynamic mass moment density
flux cπij, and the material couple stress tensor λijk. The
justification for this nomenclature will be motivated later in
Sec. IV C. From a classical continuum mechanics perspec-
tive, new terms in the stress-energy tensor are the dynamic
mass density flux cqi and the dynamic momentum density
cpi, while the new spin terms involve the dynamic mass
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moment density cμi and the dynamic mass moment density
flux cπij. The theory’s physical parameters are summarized
in Table I.

IV. WEAK-FIELD EQUATIONS

A. Preliminaries

We now seek leading-order weak-field approximations
to Eqs. (43)–(45), that is, to write down the equations of
motion at first post-Newtonian order. A post-Newtonian
(PN) expansion combines two formal perturbation expan-
sions: one in powers of c and another in powers of G (see,
e.g. [20]). PN theory may systematically be pushed to high
order, but since here we only seek equations accurate to first
(1-PN) order, it is not necessary to do so systematically.
Rather, it will be sufficient just to carry out traditional,
linearized gravity theory (see, e.g., [20], Sec. V.5), drop-
ping terms higher thanOðGÞ and solving the effective EFE
(43) to leading order in c in each of Θ00, Θ0j, and Θij. This
approach’s consistency with formal PN theory follows from
comments on p. 307 of [20].
For weak gravitational fields, e.g., [21,27,29,30], we

express the metric tensor as

gμν ¼ ημν þ hμν; ð55Þ

where ημν is the standard Minkowski metric with signature
ð−þþþÞ, and hμν ¼ hνμ denote small perturbations in the
metric. The linearized metric Einstein tensor is (see, e.g.,
[29], Eq. 7.7)

Ĝμν ¼
1

2
ð∂σ∂νhσμ þ ∂σ∂μhσν − ∂μ∂νh

−□hμν − ημν∂λ∂ρhλσ þ ημν□hÞ; ð56Þ

where □ denotes the d’Alembertian hμν∂μ∂ν, and the
linearized Christoffel symbols are

Γ̂σ
μν ¼

1

2
ησβð∂μhβν þ ∂νhμβ − ∂βhμνÞ: ð57Þ

As discussed in Appendix A, hμν scales like c−2 at most.
The Christoffel symbols inherit this scaling, and sinceMμνσ

scales like c at most [Eqs. (53) and (54)] it follows that any
product of Christoffel symbols and spin is of order c−1.
This will simplify the upcoming algebra.

B. Reduction to linearized EGR

To leading order in G, one may write the effective
energy-momentum tensor (39) as

Θμν ¼ TðμνÞ −
1

2
∇̂σMσðμνÞ; ð58Þ

dropping ∇̆’s torsionful parts and SðMÞ. Additionally, the
lowest leading order in TðμνÞ is ΣðijÞ ∼Oðc0Þ. Therefore, we
may disregard the Oðc−1Þ spin-Christoffel cross terms to
leave

Θμν ¼ TðμνÞ −
1

2
∂σMσðμνÞ: ð59Þ

Applying analogous reasoning to the spin conservation
equation (45) reduces it to

∂σMμν
σ ¼ 2T ½μν�; ð60Þ

having noted in particular that T ½μν� ∼Oðc0Þ.
Thus our weak-field approximation to Eqs. (43)–(45)

reduces to two decoupled problems. On the one hand we
have the spin conservation equation (60) which has no
algebraic dependence on the metric. On the other we have a
standard problem of linearized EGR,

Ĝμν ¼ κΘμν; ð61Þ

∇̂νΘμν ¼ 0; ð62Þ

with effective stress (59) given explicitly by

ðΘμνÞ ¼
 

c2ρ cðρvj − 1
2
∂kθ

kjÞ
cðρvi − 1

2
∂kθ

kiÞ ∂kΛkðijÞ − ΣðijÞ

!
ð63Þ

to leading order.
This decoupling simplifies the process of gauge-fixing.

Linearized EGR’s well-known invariance under the trans-
formations

hμν → hμν þ 2∂ðμξνÞ ð64Þ

for arbitrary ξμðxÞ is not generally preserved within
linearized torsionful theories. Analogous transformations

TABLE I. Summary of the physical parameters encountered in
the weak-field limit of EC theory. The top set of parameters is
familiar from classical continuum mechanics with spin, whereas
the bottom set of parameters represents relativistic phenomena.

ρ Mass density
vi Particle velocity
σij Material stress tensor
θij Particle spin tensor
λijk Material couple stress tensor

cqi Dynamic mass density flux
cpi Dynamic momentum density
cμi Dynamic mass moment density
cπij Dynamic mass moment density flux
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do exist within such theories, but they tend to take a much
more complicated form (see, e.g., [31,32]). In this con-
nection, we remark that Battista and De Falco [22] chose a
specific constitutive relation for the spin (that of the
Weyssenhof fluid) to be able to treat the modified EFEs
using the “standard” gauge-freedom of Eq. (64) in their
study of gravitational waves with arbitrarily large torsion.
Within this paper we may make full use of the freedom
represented by Eq. (64) because the weak-field approxi-
mation means that the spin does not see the metric.
In fact, given the existence of extensive literature on

linearized EGR, at this point the problem is essentially
solved. In Eq. (63) we have Θ00 to Oðc2Þ, Θi0 to OðcÞ, and
Θij to Oð1Þ. As shown in [20] (Secs. 5.5.7 and 7.3.2), this
is sufficient to write down the 1PN equations of energy-
momentum conservation. All that is different from EGR
is the form of the energy-momentum tensor, with the
3-momentum and 3-stress each possessing spin-related
corrections. For those interested in our choice of gauge, we
have included a full solution of Eqs. (61) and (62) in
Appendix A, but one can equally proceed straight to
Sec. IV C.

C. Weak-field limit of the dynamic equations

From [20] (Eqs. 7.55–7.58) we find that 1PN conserva-
tion of Θμν gives both standard conservation of mass,

∂tρþ ∂kðρvkÞ ¼ 0; ð65Þ

and a form of 3-momentum conservation,

∂t

�
ρvi −

1

2
∂kθ

ki

�
þ ∂jð∂kΛkðijÞ − ΣðijÞÞ ¼ −ρ∂iV: ð66Þ

The field V is the standard Newtonian potential satisfying

∇2V ¼ 4πGρ: ð67Þ

We find the equations of the spin degrees of freedom by
taking the ði; 0Þ and ði; jÞ parts of Eq. (60). This gives

∂tμ
i − ∂kΠik ¼ pi − qi ð68Þ

and

∂tθ
ij − ∂kΛijk ¼ −2Σ½ij�: ð69Þ

The leading balance is at Oðc0Þ in both cases, so the
connection does indeed not contribute.
The last step is to use the equation for θij to bring the

equation for ρvi into a more familiar form. We rewrite
Eq. (66) as

∂tðρviÞ − ∂jΣðijÞ ¼ −ρ∂iV þ ∂k

�
1

2
∂tθ

ki − ∂jΛkðijÞ
�
; ð70Þ

then substitute Eq. (69) into the right-hand side of Eq. (70).
Given that ∂j∂kΛkji vanishes identically, it follows that

∂tðρviÞ − ∂jΣ
j
i ¼ −ρ∂iV: ð71Þ

In summary, using definitions (47), (51), and (52), the
1PN equations of Einstein-Cartan relativity are

∂tρþ ∂kðρvkÞ ¼ 0; ð72aÞ

∂tðρviÞ − ∂jðσij − ρvivjÞ ¼ −ρ∂iV; ð72bÞ

∇2V ¼ 4πGρ; ð72cÞ

∂tθij − ∂kðλijk − θijvkÞ ¼ −ðσij − σjiÞ; ð72dÞ

∂tμi − ∂jðπij − μivjÞ ¼ pi − qi: ð72eÞ

Note that the only Christoffel symbols required for this
result were

Γ̂i
00 ¼ c−2∂iV þOðc−3Þ; ð73Þ

while we only needed to calculate the Newtonian part of the
metric:

ds2 ¼ ð−1þ 2c−2VÞc2dt2 þ ð1 − 2c−2VÞδijdxidxj: ð74Þ

In the first three of Eqs. (72) we see “classical” self-
gravitating continuummechanics, albeit with a stress tensor
that need not be symmetric. Moreover, our solution of the
EFEs has produced in Eq. (72b) a body force that is
specifically gravitational [cf. Eq. (2)]. The fourth equation
adds Cosserat-style spin degrees of freedom that couple
algebraically to the classical degrees of freedom through vi.
Note that this equation is driven by the asymmetry of the
stress tensor alone, with the external torqueΨij vanishing at
this order [cf. Eq. (3)]. Finally, we find an evolution
equation involving the wholly nonclassical fields μi, πij,
pi, and qi. It is this equation that motivates our earlier
nomenclature: cμi a “mass moment density” and cπij the
corresponding flux. Equation (72e) also couples algebrai-
cally to the classical degrees of freedom through vi,
although if μi, πij, pi, and qi are zero initially then they
remain so and (72e) is irrelevant.

V. SLIGHTLY STRONGER FIELDS

We gain further insight into the interplay of spin and
energy-momentum by writing Eqs. (43)–(45) accurate to
1.5PN order. It is easier to derive the 1.5PN equations than
one might imagine, because no extra work is required
regarding the EFEs: as shown in Appendix B, we still only
need the Newtonian potential V. Moreover, we can continue
to disregard the parts of Θμν that explicitly feature torsion
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because they come with four extra factors of c−1 and are
therefore suppressed at this PN order; Eq. (58) is thus still a
valid expression for the effective stress-energy tensor. All of
this means that nothing from Appendix A needs to be
changed here. To obtain the 1.5PN equations, we just need
to expand the dynamic equations (44), (45) one order higher
in c−1. This introduces no new concepts with respect to
Sec. IV, just more algebra; therefore we consign most of the
work to Appendix B while here we essentially just quote
and describe the resulting equations.
To 1.5PN order the spin tensor has components

M0i0 ¼ −cμi − θijvj þOðc−1Þ; ð75aÞ

Mij0 ¼ cθij þ 2μ½ivj� þOðc−1Þ; ð75bÞ

M0ij ¼ Πij − Λk
ijvk=cþOðc−2Þ; ð75cÞ

Mijk ¼ −Λijk þ 2v½iΠj�k=cþOðc−2Þ; ð75dÞ

while the (symmetrized) canonical energy-momentum
tensor is given by

T00 ¼ c2ρþOðc0Þ; ð76aÞ

Tð0jÞ ¼ cρvj þ 1

2
ðpj þ qjÞ þOðc−1Þ; ð76bÞ

TðijÞ ¼ −ΣðijÞ þ ðpþ qÞðivjÞ=cþOðc−2Þ: ð76cÞ

Appendix B then shows that the 1.5PN equations of motion
are [Eqs. (B5), (B6), (B11), and (B18)]

∂tρþ ∂jðρvj þ qj=cÞ ¼ 0; ð77aÞ

∂tðρvi þ pi=cÞ − ∂j½σij − ρvivj − ðpivj þ viqjÞ=c�
¼ −ρ∂iV − μj∂j∂iV=c; ð77bÞ

∇2V ¼ 4πGρ; ð77cÞ

∂t½θij þ ðμivj − μjviÞ=cÞ� − ∂kfλijk
− ½θij þ ðμivj − μjviÞ=cÞ�vk − ðviπjk − vjπikÞ=cg

¼ −ðσij − σjiÞ þ ½ðpi − qiÞvj − ðpj − qjÞvi�=c
− ðμi∂jV − μj∂iVÞ=c; ð77dÞ

∂tðμi þ θijvj=cÞ − ∂j½πij − μivj − ðλkij − θkivjÞvk=c�
¼ pi − qi − ðσij − σjiÞvj=c − θi

j
∂jV=c: ð77eÞ

We reiterate that the Newtonian potential V is the only extra
part of the metric required to derive these equations, just as
in Sec. IV C. Even upon the inclusion of Oðc−3Þ torsion,
we do not require any off-diagonal metric components. For
our purposes, the connection may be taken to be

Γi
00 ¼ c−2∂iV þ 4πGc−3μi; ð78aÞ

Γ0
0i ¼ c−2∂iV ¼ Γ0

i0; ð78bÞ

Γi
0j ¼ −4πGc−3θij ¼ Γi

j0; ð78cÞ

Γk
ij ¼ 4πGc−3ðμiδjk − μkδijÞ; ð78dÞ

with Γσ
j0 ¼ Γσ

0j.
Notice how differently pi and qi behave in Eq. (77). In

Eq. (77b) the former combines with ρvi to form the “spin-
corrected 3-momentum,” whilst in Eq. (77a) ρvi combines
with the latter to give the “spin-corrected mass flux” that
sets the time derivative of ρ. Moreover, from Eq. (77b) we
see the fact that (in general) p ≠ q only contributes further
to the asymmetry of the 3-stress. We also remark that these
equations introduce further mutual algebraic coupling
between μi and θij, with Eqs. (77d) and (77e) resembling
each other closely.
Importantly, in working to 1.5PN order we have not only

reproduced Cosserat elasticity at lowest order, we have also
shown that torsion produces modifications to Cosserat
theory when the continuum becomes weakly relativistic.
In particular, we have derived a gravitational torque

−ðμi∂jV − μj∂iVÞ=c ð79Þ

in Eq. (77d), as well as augmenting Eq. (77b)’s gravita-
tional force by

−μj∂j∂iV=c: ð80Þ

These new terms, especially the force, constitute hypoth-
eses that could in principle be tested experimentally. At
present such tests would presumably be very hard, but if
they could ever be performed then they might provide
a useful counterpoint to experiments based on gravita-
tional waves.

VI. DISCUSSION

We have shown that it is possible to reduce the equations
of EC theory to those of classical continuum mechanics
with spin, or “Cosserat elasticity.” We achieved this by
assuming an empirically reasonable scaling for the non-
classical degrees of freedom μi, pi, qi, and πij, and then
considering the weak-field limit of EC theory. This pro-
cedure was helped by the fact that weak-field EC theory
reduces to weak-field EGR but with an extra equation
representing spin conservation. In addition to the equations
of Cosserat theory, our linearization procedure produced a
classical-looking equation for the evolution of the mass-
moment density.
We also argued that the 1.5PN equations could be

derived without much extra effort (as long as one has
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computer algebra software handy) and saw from those
equations how spin and energy-momentum start to couple
together at low PN order. Those equations also drew a clear
distinction between the external force and torque due to
gravity: a gravitational force appears in the equation for
linear-momentum conservation at 1PN order, while such a
torque only enters the equation for spin conservation
at 1.5PN.
The 1.5PN equations contain spin-related terms that are

not present in the equations of “pure” Cosserat elasticity. If
extremely precise measurements of such a medium’s motion
were carried out, then in principle one could test for the
presence of torsion.
The chosen c-scalings for the nonclassical fields are in

some sense a postulate of this paper. One may derive weak-
field equations of motion where all the nonclassical fields
are “bumped up” by one power of c, so that (for slowly
moving matter) T0j ¼ cðρvj þ qjÞ for instance. We did this
at first but found that those equations mixed classical and
nonclassical fields in a way that seemed unphysical. We
certainly did not find the equations of Cosserat elasticity.
Therefore, we proceeded on the assumption that nonclass-
ical fields should not enter the continuum theory.
Incidentally, it is not clear that one may consistently

import standard linearized EGR techniques using those
different scalings. This is because the spin-conservation
equation would involve the metric via the Christoffel
symbols, so it is not obvious (at least to us) that the
linearized EC theory would split into a problem of linear-
ized EGR and an extra equation. Hence, one would
probably need to work harder to gauge-fix properly [32].
Perhaps a proper gauge-fixing in this manner would lead to
the equations of Cosserat theory even with the different
scalings? If it does, we have not worked out how. Hence, we
postulate that the nonclassical fields should scale with c as
they do.
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APPENDIX A: SOLUTION OF THE
WEAK-FIELD EQUATIONS

Here we solve Eqs. (61), and (62). First we reduce the
modified EFEs (61) to a suggestive weak-field form,
following the approach of Poisson and Will [20]
(Sec. V.5.4) (although our notation is that of Carroll [29],
Sec. VII.2). Then we choose a convenient gauge and solve
the field equations for the necessary components of the

metric and connection. Finally, we use those results to write
down the weak-field equations.

1. Decomposing the stress-energy field equations

Let us write hμν using the irreducible decomposition

h00 ¼ −2Φ; ðA1Þ

h0i ¼ wi; ðA2Þ

hij ¼ 2sij − 2Ψδij; ðA3Þ

where we have defined

Ψ ¼ −
1

6
δijhij; ðA4Þ

and the spatially traceless tensor

sij ¼
1

2

�
hij −

1

3
hδij

�
: ðA5Þ

This decomposition leads to the following representation of
the metric part of the Einstein tensor (Carroll’s Eq. 7.29):

Ĝ00 ¼ ∂i∂jsij þ 2∇2Ψ; ðA6Þ

Ĝ0i ¼ −
1

2
∇2wi þ

1

2
∂i∂jwj þ ∂0∂jsij þ 2∂0∂iΨ; ðA7Þ

Ĝij ¼ −
1

2
∂0ð∂iwj þ ∂jwi − 2δij∂kwkÞ

þ ∂i∂ksjk þ ∂j∂ksik − δij∂k∂mskm −□sij

þ 2∂20Ψδij − ð∂i∂j − δij∇2ÞðΦ −ΨÞ: ðA8Þ

As Refs. [20,29] subsequently discuss, one may further
decompose the vector-field wi and the trace-free tensor-
field sij. We write wi as

wi ¼ ∂iλþ wi⊥; ðA9Þ

where the transverse part wi⊥ has vanishing three-
divergence. Similarly, we have the decomposition

sij ¼ sij⊥ þ sijS þ sijk ; ðA10Þ

where sij⊥ is a divergence-free transverse part,

∂js
ij
⊥ ¼ 0; ðA11Þ

sSij denotes the solenoidal part

sSij ¼
1

2
ð∂iζj þ ∂jζiÞ; ∂iζ

i ¼ 0; ðA12Þ
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and skij denotes the longitudinal part

skij ¼
�
∂i∂j −

1

3
δij∇2

�
θ: ðA13Þ

It is useful to define

Ψ̃ ¼ Ψþ 1

3
∇2θ; ðA14Þ

Φ̃ ¼ Φþ ∂0λ − ∂
2
0θ; ðA15Þ

w̃⊥ ¼ w⊥ − ∂0ζ; ðA16Þ

in terms of which Ĝμν will take a particularly simple form.
Using these decompositions, the effective EFE (43) can

be arranged as

2∇2Ψ̃ ¼ κΘ00; ðA17aÞ

2∇2ðΦ̃ − Ψ̃Þ þ 6∂20Ψ̃ ¼ κΘi
i; ðA17bÞ

2∂0∂iΨ̃ −
1

2
∇2w̃⊥

i ¼ κΘ0i: ðA17cÞ

The full spatial part

2δij∂
2
0Ψ̃ −

1

2
∂0ð∂iw̃⊥

j þ ∂jw̃⊥
i Þ

− ð∂i∂j − δij∇2ÞðΦ̃ − Ψ̃Þ −□sij⊥ ¼ κΘij ðA18Þ

describes gravitational radiation, and is therefore unneces-
sary for our purposes.
Finally, we note that Eq. (A17c)’s left-hand side con-

stitutes a Helmholtz decomposition into the curl-free term
2∂0∂iΨ̃ and the divergence-free term − 1

2
∇2w̃⊥

i . Moreover,
the timelike component of the linearized conservation
equation is ∂0Θ00 ¼ ∂iΘ0i, wherein we have neglected
Christoffel terms at leading order; this may be substituted
into the divergence of Eq. (A17c) to give

2∇2
∂0Ψ̃ ¼ κ∂0Θ00; ðA19Þ

which holds trivially due to Eq. (A17a). We therefore drop
Eq. (A17c)’s curl-free part, and define Θ⊥

0i to be Θ0i’s
divergence-free part. This leaves our minimal subset
decomposed EFEs as

∇2Ψ̃ ¼ 1

2
κΘ00; ðA20aÞ

∇2ðΦ̃ − Ψ̃Þ ¼ 1

2
κΘi

i − 3∂20Ψ̃; ðA20bÞ

∇2w̃⊥
i ¼ −2κΘ⊥

0i; ðA20cÞ
with Θ⊥

0i the transverse part of Θ0i.

2. A convenient choice of gauge

For our present purposes, it is convenient to choose a
gauge within which ∇2Φ ¼ 4πGρ=c2. To that end, we
impose the following conditions:

∇4θ ¼ 0; ðA21aÞ

∇2
∂0λ ¼

1

2
κΘi

i − 3∂20Ψ; ðA21bÞ

∇2
∂0ζi ¼ 2κΘ⊥

0i: ðA21cÞ

These lead to the following gauged equations:

∇2Ψ ¼ 4πG
c2

ρ; ðA22aÞ

∇2ðΦ − ΨÞ ¼ 0; ðA22bÞ

∇2w⊥
i ¼ 0: ðA22cÞ

Equation (A21a) sets Eq. (A22a), as well as causing θ to
vanish. Then through Eq. (A21b) we obtain Eq. (A22b),
thus enforcing strict equality of Φ and Ψ. Equation (A21c)
is chosen because it leads to Eq. (A22c) causing w⊥

i to
vanish.

3. Solution for metric and connection

Φ is the only component of the metric itself that we will
need within Sec. IV C. Also, the only component of the
connection required within Sec. IV C is the Christoffel
symbol Γ̂i

00, which is given by

Γ̂i
00 ¼ ∂iΦþ ∂0w⊥

i þ ∂i∂0λ; ðA23Þ

to leading order. Given that w⊥
i vanishes, we must now find

Φ and λ.
To find Φ, we recall that Eq. (A22b) sets Ψ ¼ Φ, so

∇2Φ ¼ 4πG
c2

ρ: ðA24Þ

This shows that Φ has PN order

Φ ∼Oðc−2Þ: ðA25Þ

Next, to deal with λ we note that the order ofΦ andΘi
i lead

to Eq. (A21b) having a right-hand side of order c−4. It
follows that

∂0λ ∼Oðc−4Þ: ðA26Þ

As stated earlier, we only require Γ̂i
00 accurate toOðc−2Þ, so

we may neglect λ. Since w⊥
i vanishes, we conclude that
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Γ̂i
00 ¼ ∂iΦ: ðA27Þ

4. Conservation of Θμν

To obtain the 1-PN equation of conservation of Θμν, we
rewrite Eq. (60) explicitly as

∂0Θμ0 þ ∂kΘμk þ Γ̂μ
νρΘρν þ Γ̂ν

νρΘμρ ¼ 0: ðA28Þ

Recall that Θμν ∼Oðc2Þ and Γ̂σ
μν ∼Oðc−2Þ; this means that

the ΓΘ cross terms in the energy–momentum equation are
at most Oðc0Þ. Equation (A28)’s timelike component’s
leading order terms are at OðcÞ. The connection therefore
plays no role and we find

∂tρþ ∂jðρvjÞ ¼ 0: ðA29Þ

As for Eq. (A28)’s spacelike components, the leading
balance is atOðc0Þ, so the only ΓΘ term that can contribute
is Γ̂i

00Θ00. From Eq. (A27) this leads to

∂t

�
ρvi −

1

2
∂kθ

ki

�
þ ∂jð∂kΛkðijÞ − ΣðijÞÞ ¼ −ρ∂iV; ðA30Þ

where we have defined

V ¼ Φc2: ðA31Þ

Equations (A29) and (A30) are as adapted from [20] in the
main text.

APPENDIX B: 1.5PN

Expanding Eq. (58), we find after tedious, computer-
assisted algebra that

Θ00 ¼ c2ρ − c∂iμi þOðc0Þ; ðB1Þ

Θ0j ¼ c

�
ρvj þ 1

2
∂kθ

jk

�
þ 1

2
c0½ðpj þ qjÞ þ ∂kΠkj

þ ∂tμ
j − 2∂kμ

½kvj�� þOðc−1Þ; ðB2Þ

Θij ¼ ð∂kΛkðijÞ − ΣijÞ þ c−1½ðpþ qÞðivjÞ − ∂tΠðijÞ

þ ∂kðΠkðivjÞ − vkΠðijÞÞ þ ΓΘ
ij� þOðc−2Þ; ðB3Þ

with

ΓΘij ¼ μði∂jÞV: ðB4Þ

Now we expand Eq. (45) to give

− ∂tðμi þ θijvj=cÞ þ ∂jðΠij − Λkijvk=cÞ þ ΓM
i=c

¼ qi − pi þ 2Σ½ij�vj=cþOðc−2Þ ðB5Þ

þ ∂tðθij þ 2μ½ivj�=cÞ − ∂kðΛijk − 2v½iΠj�k=cÞ þ ΓM
ij=c

¼ −2Σ½ij� þ 2ðp − qÞ½ivj�=cþOðc−2Þ; ðB6Þ

where the terms

ΓM
i ¼ −θij∂jV; ðB7Þ

ΓMij ¼ −2μ½j∂i�V; ðB8Þ

arise from the terms in Eq. (45) involving (metric)
Christoffel symbols.
We need to compute various derivatives of Θ to expand

Eq. (44). We go sequentially, making judicious use of the
evolution equations for μi and θij. First, we note that

∂tΘ00 ¼ c2∂tρ − c∂ið∂jΠij þ pi − qiÞ þOðc0Þ; ðB9Þ

on account of Eq. (B5). Equation (B5) also implies that

Θ0j ¼ c

�
ρvj þ 1

2
∂kθ

jk

�
þ c0½pj þ ∂kΠðjkÞ

− ∂kðμ½kvj�Þ� þOðc−1Þ: ðB10Þ

We now have enough to state conservation of mass.
Taking account of various terms’ (anti)symmetry, we find
that Eq. (44)’s zero component is

∇̂νΘ0ν ¼ c−1∂tΘ00 þ ∂jΘ0j þOðc−2Þ
¼ ∂tρþ ∂jðρvj þ qj=cÞ þOðc−2Þ ¼ 0: ðB11Þ

At this order, the Christoffel symbols do not contribute.
To write down conservation of momentum, we must

manipulate ∂jΘij suitably. To that end, we note that

∂j∂kΛkðijÞ ¼ −
1

2
∂j∂kΛijk; ðB12Þ

due to C’s (anti)symmetries. This allows us to substitute
Eq. (B6) into the three-divergence of Eq. (B3), which after
some tedious algebra gives

∂jΘij ¼ −
1

2
∂j∂tθ

ij − ∂jΣij þ c−1∂j

�
pivj þ qjvi

þ
�
ΓΘ

ij −
1

2
ΓM

ij

�
− ∂tðv½jμi�Þ − ∂tΠðijÞ

�
þOðc−2Þ: ðB13Þ

In getting here it is crucial that the vΠ cross terms cancel;
this happens because
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∂j∂kðΠkðivjÞ − vkΠij − v½iΠj�kÞ
¼ ∂j∂kðv½jΠk�i − Πi½jvk� − viΠ½jk�Þ ¼ 0: ðB14Þ

Using Eq. (B10) we find, after many cancellations, that

∂tðρvi þ pi=cÞ − ∂j½Σij − ðpivj þ qjviÞ=c�

þ ∂j

�
ΓΘ

ij −
1

2
ΓM

ij

�
=cþ ½Γ̂Θ�i ¼ Oðc−2Þ: ðB15Þ

Here the Christoffel terms from the EFE do contribute:

½Γ̂Θ�i ¼ ðρ − ∂kμ
k=cÞ∂iV: ðB16Þ

It also happens that

�
ΓΘ

ij −
1

2
ΓM

ij

�
¼ μj∂iV; ðB17Þ

whereupon we find that

∂tðρvi þ pi=cÞ − ∂j½Σi
j − ðpivj þ viqjÞ=c�

¼ −ρ∂iV − μj∂j∂iV=cþOðc−2Þ: ðB18Þ

This is the 1.5PN statement of 3-momentum conservation.
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la relativité généralisée (Première partie), Ann. Sci. de
l’Ecole Normale Supérieure 40, 325 (1923).

[2] E. Cartan, Sur les variétés à connexion affine et la théorie de
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