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We study the shadows cast by rotating hairy black holes with two nontrivial time-periodic scalar fields
having a nonflat Gaussian curvature of the target space spanned by the scalar fields. Such black holes are a
viable alternative to the Kerr black hole, having a much more complicated geodesic structure and resulting
shadows. We investigate how a nontrivial Gauss curvature alters the pictures for different amounts of
scalar hair around the black holes, quantified by a normalized charge. Our results show that for high values
of this charge, close to a boson star limit, chaotic shadows are observed with multiple small disconnected
components for all considered Gaussian curvatures. For moderately large amounts of scalar hair and
corresponding normalized charge, although the shadows still exhibit chaotic behavior, a dominant shadow
component emerges, the size and shape of which are substantially influenced by the Gaussian curvature.
For instance, highly chaotic shadows for flat target space, start developing a large central shadow region
with the increase of the Gauss curvature even for black holes with substantially heavy scalar hair. For lower
values of the normalized charge, the shadows resemble qualitatively the Kerr black hole while the Gaussian
curvature has a small impact on their properties.
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I. INTRODUCTION

Very recently the Event Horizon Telescope (EHT)
Collaboration has opened up the gate to new tests of the
strong field regime of gravity through observations of black
hole shadows. In 2019, the EHT Collaboration captured the
image of the central supermassive black hole (SMBH) in
the M87 galaxy [1]. Three years later in 2022, the EHT
Collaboration also produced an image of SgrA�, the central
supermassive black hole in the Milky Way [2]. This success
motivated the proposition of a next generation EHT that
will be able to take black hole snapshots with a much
higher accuracy. The advance in observations pushed the
theoretical development with the idea of challenging the
Kerr hypothesis. Building upon the black hole images
obtained by the EHT, numerous alternative models to

the Kerr black hole have been proposed and examined.
These include horizonless compact objects such as naked
singularities and wormholes [3–7], rotating regular black
holes [8,9], as well as beyond-Kerr black holes arising from
modified theories of gravity [10–16]. While a diverse range
of Kerr black hole mimickers exists, certain configurations
exhibit distinct features in their shadows, leading to multi-
connected or highly distorted images. Examples of such
scenarios comprise black holes with scalar or Proca hair
[17–19], black holes in binary systems [20–22], and black
holes interacting with external matter distributions [23–25].
In the present paper, we will consider further examples of
scalarized black holes interacting with multiple scalar
fields. These solutions can be classified according to the
Gaussian curvature of the target space spanned by the scalar
fields and may manifest diverse behaviors depending on
its value.
Stationary asymptotically flat black hole solutions pre-

dicted by vacuum GR are hairless and completely deter-
mined by their mass and angular momentum. This also
applies to the case when the Einstein equations are coupled
to a single real scalar field—it is a classical result that the
black hole cannot support a single scalar field hair [26–28].
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However, the scenario changes when multiple scalar fields
are considered. In the case of a complex time-dependent
scalar field, or equivalently, two real scalar fields forming a
flat 2-dimensional manifold (target space), it was initially
discovered that black holes with hair can emerge within
the perturbative regime [29–32]. Shortly after that, the
self-consistent nonlinear solutions were generated numeri-
cally [17,18]. The scalar fields in this scenario do not
inherit the stationary and axisymmetric properties of the
spacetime but instead have a harmonic dependence on
the t and ϕ coordinates. Even though the scalar field is
time-dependent, the generalized Einstein equations, as
well as the spacetime metric, are stationary. The regularity
at the black hole horizon requires, though, synchronizing
the angular velocity at the black hole horizon with the
scalar field oscillation frequency. That is why these
solutions were dubbed black holes with synchronized
scalar hair.
The black hole solutions discussed in [17,18] indeed

involve two scalar fields whose target space is flat, as
previously mentioned. However, this represents just the
simplest choice, and the geometry of the target space can
be substantially more intricate [33–35]. In fact, nonlinear
rotating black hole solutions with synchronized hair,
comprising two real scalar fields forming a nonflat mani-
fold (nonflat target space) that is maximally symmetric,
were constructed in [36]. It was demonstrated that the
curvature of the target space can significantly alter the
domain of existence and the properties of the hairy black
holes.
Kerr black holes with synchronized scalar hair are

ones of the very few astrophysically relevant candidates
that can produce deviations from GR not only for stellar
black holes but also for supermassive ones (for another
interesting very recent example see [37]). This motivated
the study of their shadows that was performed in the case
of a flat target space [38,39]. The purpose of the present
paper is to extend these studies to a nonflat target
space, more precisely for a maximally symmetric space
with curvature κ. We will systematically examine the
influence of nonzero κ on the black hole shadow and
eventually explore the inverse problem—what the back
hole shadow can tell us about the target space formed by the
scalar fields.
The paper is organized as follows. In the next section, we

present the scalarized black holes which we consider,
describing their basic properties. In Sec. III we outline
the theoretical background necessary for obtaining the
shadow images. Then, in Sec. IV we construct explicitly
the shadows cast by selected solutions with positive,
negative, and zero curvature of the target space. The
shadow images are compared and analyzed according to
the influence of the normalized charge of the solutions and
the Gaussian curvature of the target space. In the last
section, we present our conclusions.

II. KERR BLACK HOLES WITH SYNCHRONIZED
SCALAR HAIR—NONFLAT TARGET SPACE

GEOMETRY

In the present paper, we focus on multiple dynamical
scalar fields φa minimally coupled to the Einstein gravity.
The scalar fields φa can be considered as generalized
coordinates on an abstract N-dimensional Riemmanian
space ðEN; γabðφÞÞ, the so-called target space. The target
space metric γabðφÞ should be positively defined on EN .
The general action of the theory is then given by

S ¼ 1

4πG

Z ffiffiffiffiffiffi
−g

p �
R
4
−
1

2
gμνγabðφÞ∂μφa

∂νφ
b − VðφÞ

�
d4x;

ð1Þ

where VðφÞ is the scalar field potential. This action can
be also interpreted as the vacuum action of the tensor-
multiscalar-theories of gravity ([33,34]). Varying it with
respect to the spacetime metric and the scalar fields, we get
the following field equations

Rμν ¼ 2γabðφÞ∂μφa
∂νφ

b þ 2VðφÞgμν; ð2Þ

□φa ¼ −γabcðφÞgμν∂μφb
∂νφ

c þ γabðφÞ ∂VðφÞ
∂φb ; ð3Þ

where □ is the d’Alembert operator associated with the
spacetime metric and γabcðφÞ are the Christoffel symbols
with respect to the target space metric.
From now on, we shall focus on two scalar fields

(effectively modeling the complex scalar field originally
considered in [17]), possessing maximally symmetric target
spaces ðE2; γabðφÞÞ. In this case we have globally defined
coordinates, the so-called isothermal coordinates, in which
the target space metric can be written in the conformally
flat form

γabðφÞ ¼ Ω2ðφÞδab: ð4Þ

Here δab is the usual Kronecker Delta and the conformal
factor ΩðφÞ is given by

Ω2ðφÞ ¼ 1�
1þ κ

4
ψ2

�
2
; ð5Þ

with ψ2 ¼ δabφ
aφb and κ being the Gaussian curvature of

the target space.
For the scalar fields potential VðφÞ we assume the

simplest standard massive potential given by

VðψÞ ¼ 1

2
μ2ψ2 ð6Þ

where μ is the scalar field mass.
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Since we are interested in rotating black holes, the ansatz
for the stationary and axisymmetric line element is chosen
to be

ds2 ¼ −N e2F0dt2 þ e2F1

�
dr2

N
þ r2dθ2

�

þ e2F2r2sin2θ

�
dϕ −

ω

r
dt

�
2

; ð7Þ

whereN ¼ 1 − rH
r (rH is the location of the horizon in these

coordinates), while F0, F1, F2, and ω are functions of r and
θ only. The interested reader can consult the Appendix
of [18] for an isometry between the line element in Eq. (7)
and the Kerr line element in Boyer-Lindquist coordinates.
In the present paper, we will be interested in scalar field

endowed black holes. In order to violate the no-scalar-hair
theorems it is not enough to consider multiple scalar fields.
Additionally, one should let the fields be time-dependent
[28]. Thus, an ansatz for these fields, which is also consistent
with the circularity of the metric (7), is the following

φ1 ¼ ψðr; θÞ cosðωstþmϕÞ;
φ2 ¼ ψðr; θÞ sinðωstþmϕÞ; ð8Þ

where ωs is a real parameter and m is an integer. One can
easily check that although φ1 and φ2 are time-dependent, the
resulting field equations (2) and (3) are stationary. More
details can be found in [36].
Assuming these forms of the scalar field and metric

ansatze, plus the appropriate boundary conditions that are
regularity at the event horizon and the axes, and asymptotic
flatness at infinity, one is able to find stationary black hole
solutions with nontrivial scalar hair. It is interesting to note
that the regularity at the horizon leads to the condition

ωjr¼rH ¼ −
rHωs

m
; ð9Þ

which also ensures that there is no scalar flux into the black
hole. Therefore, the angular velocity at the black hole
horizon ΩH ¼ ωH=rH should be equal to ωs. Thus the
scalar field is synchronized with the black hole rotation.
Additionally, at infinity

lim
r→∞

ψ ∝
1

r
exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

s

q
r
�
; ð10Þ

thereby bounding ωs via ω2
s ≤ μ2.

The ADM mass and angular momentum can be calcu-
lated from by the metric asymptotics

M ¼ 1

2
lim
r→∞

r2∂rF0; J ¼ 1

2
lim
r→∞

r2ω: ð11Þ

They have varying contributions from the black hole bare
mass and the hair. To specify the hairiness, the normalized

charge q is introduced, defined as q ¼ mQ
J , where Q is the

conserved Noether charge. It is commonly used to char-
acterize Kerr black holes with synchronized scalar
hair [17] and is thus useful also for comparison reasons.
Interestingly, the angular momentum of the scalar field is
quantized in terms of the Noether chargeQ, i.e., Jψ ¼ mQ,

so we simply have q ¼ Jψ
J . This quantization is similar to

the rotating boson stars [40]. The q ≈ 0 solutions are the
limit of scalar clouds nonbackreacting the metric, whereas
q ≈ 1 solutions are the boson star limit (potentially with
nonflat target space metric [35,41]).
In the present paper we will utilize the numerical

solutions obtained in [36] for Gaussian curvatures
κ∈ f−5; 0; 5g and fixed m ¼ 1. The domains of existence
of hairy black holes are presented in a M − ωs plane in
Fig. 1 for different κ. The black line marks the extremal
Kerr limit, with a ¼ M, and thus Kerr black holes exist
only below it in the gray-shaded region. The yellow region
is the domain of existence of hairy Kerr black hole
solutions having the following boundaries—the red line
is the solitonic (boson star) limit with q ¼ 1 and rH ¼ 0,
extremal hairy black holes are denoted with a green line
(again rH ¼ 0 but q ≠ 0), while blue lines are used to
depict the cloud solutions (q ¼ 0).1 A general trend is that
with the decrease of κ the domain of existence of hairy
black holes becomes more deformed. Dashed lines mark
sequences of solutions with constant horizon radii while
red dots on these lines are the particular black hole
solutions we used for building shadows.
From the point of view of rH, black holes with smaller

values of rH have a larger domain of existence in ωs: They
move closer to the pure solitonic (q ¼ 1) and extermal
black hole limit, both of which have a vanishing horizon
radius. Tracks denoted with an extremely small value of rH
start and stop at the cloud line. More generally, however,
each fixed track of rH starts at the Minkowski limit with
ωs=μ ¼ 1 and stops at the cloud line.

III. CALCULATING THE BLACK HOLE SHADOW

A. Photon equations of motion and initial conditions

To generate the black hole’s shadow through backward
ray tracing, we numerically integrate photon geodesics
until they either fall into the black hole or intersect the
celestial sphere. The paths of these geodesics are governed
by the geodesic equations, which are obtained from
Hamilton’s equations:

ẋμ ¼ ∂H
∂pμ

; ṗμ ¼ −
∂H
∂xμ

; ð12Þ

1The fact that some of these lines look incomplete is due to
numerical difficulties in constructing the solutions that in general
become worse for more negative κ.
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where the overdot implies differentiation with respect to
an affine parameter. The Hamiltonian is defined in terms
of the contravariant components of the metric tensor, gμν.
Assuming minimal coupling between the null particles with
4-momentum pμ components and the spacetime geometry,
it satisfies that

H≡ 1

2
gμνpμpν ¼ 0: ð13Þ

Due to stationarity and axisymmetry,H does not depend on
t and ϕ, and both pt and pϕ are conserved quantities of the

geodesic motion. Assuming the asymptotically flatness of
the spacetime, we can then define the integrals of motion E
and L, which are interpreted as the energy and azimuthal
angular momentum of the photon as measured by an
asymptotic static observer:

E ¼ −pt ¼ −gttṫ − gtϕϕ̇; L ¼ pϕ ¼ gtϕṫþ gϕϕϕ̇:

ð14Þ

Therefore, by decoupling the variables, we obtain

FIG. 1. Tracks for fixed rH in the M − ωs plane, taken from [36] for κ ¼ f0;−5; 5g. The solutions are obtained by solving a coupled
set of partial differential equations found by varying the Einstein-Hilbert action coupled to two scalar fields. The black line and below
holds Kerr solutions, whereas new exotic solutions are held in the yellow bubble. It is bounded by three classes of solutions, solitonic,
extremal hairy black hole, and cloud solutions, depending on the value of rH and normalized charge q ¼ mQ

J , as explained in the text. The
positions of selected solutions are indicated by red and blue dots, which, for a given rH and various κ, share the same q. Each
configuration is identified byXu

v, where the symbolX represents the configuration number, superscript u represents κ, and the subscript
v denotes rH . The physical characteristics of these selected solutions are given in Table I of the Appendix.
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ṫ ¼ gϕϕEþ gtϕL

g2tϕ − gttgϕϕ
; ϕ̇ ¼ −

gtϕEþ gttL

g2tϕ − gttgϕϕ
: ð15Þ

Taking into account that for the photon motion H ¼ 0 is a
conserved quantity along the trajectory, we can represent
the Hamiltonian in the form:

H ¼ p2
rgrr þ p2

θg
θθ þ Veffðr; θÞ ¼ 0; ð16Þ

where the quantity T ≡ p2
rgrr þ p2

θg
θθ ≥ 0 related to the

kinetic energy is positive definite. Here, the effective
potential Veffðr; θÞ ≤ 0 is negative definite and reveals
the allowed region ðr; θÞ of the photon’s motion. It is
given by

Veffðr; θÞ ¼
E2gϕϕ þ 2ELgtϕ þ L2gtt

gttgϕϕ − g2tϕ

¼ E2gtt
ðgttgϕϕ − g2tϕÞ

ðη − hþÞðη − h−Þ; ð17Þ

where η ¼ L=E is the impact parameter. The functions
h�ðr; θÞ are the photon’s effective potentials defined as:

h� ¼
−gtϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tϕ − gttgϕϕ

q
gtt

: ð18Þ

The discriminant D ¼ g2tϕ − gttgϕϕ is positive outside the
black hole horizon, while gtt is positive inside (negative
outside) the ergoregion.
To begin ray tracing, we require information about a

photon’s initial conditions, namely t, r, θ, ϕ, E, L, pr and
pθ. These are obtained by constructing a local orthonormal
basis fêðtÞ; êðrÞ; êðθÞ; êðϕÞg at the position of the observer,
generally placed at (r̃obs ¼ 15M and θobs ¼ π

2
) throughout

this work. Here r̃ is the circumferential radius of a point at
the equatorial plane and is given by:

r̃ ¼ 1

2π

Z
2π

0

dϕ
ffiffiffiffiffiffiffi
gϕϕ

p ¼ reF2ðrÞ; ð19Þ

where r is the coordinate radius. To establish the initial
conditions for the photon’s 4-momentum, we adhere to the
formalism discussed in [39,42]. For convenience, we
introduce two angles, α and β, to parameterize the impact
parameters of a photon at the observer’s location, as
illustrated in Fig. 2:

x ¼ −r̃obs tan β; y ¼ r̃obs sin α: ð20Þ

At a chosen observer’s circumferential distance r̃obsðrobsÞ,
first, we calculate the coordinate position robs, according to
Eq. (19). Positioned at the point ðr̃obs; θobsÞ, the observer
views a two-dimensional flat screen, ðx; yÞ, passing through

the center of the black hole and perpendicular to the axis
between the observer and the origin. In this scenario, the
observer aligns radially with the black hole, meaning that
êðrÞ ¼ êz, while the basis vectors that span the image plane
are determined by the connections êðθÞ ¼ −êy and
êðϕÞ ¼ êx. Additionally, the magnitude of the 4-momentum
of the photon in the observer’s frame of reference satisfies
the Hamiltonian constraint

P2 ¼ −ðPðtÞÞ2 þ ðPðrÞÞ2 þ ðPðθÞÞ2 þ ðPðϕÞÞ2 ¼ 0: ð21Þ

Then, the components of the spatial momentum P⃗ in terms
of the angles ðα; βÞ are given by,

PðrÞ ¼ jP⃗j cos α cos β; PðθÞ ¼ jP⃗j sin α;
PðϕÞ ¼ jP⃗j cos α sin β; ð22Þ

and the photon has PðtÞ ¼ jP⃗j. Since jP⃗j only determines
the photon’s frequency and does not alter the trajectory, it is
set to unity, implying that PðtÞ ¼ 1 as well.
We must now relate the components of the 4-momentum

in generally curved coordinates to the quantities PðtÞ, PðrÞ,
PðθÞ, and PðϕÞ. This requires an understanding of how the
coordinate basis f∂t; ∂r; ∂θ; ∂ϕg appear in the local ortho-
normal basis. The chosen basis takes the following form

FIG. 2. Geometric representation of the spatial momentum of

the photon P⃗ measured in the orthonormal basis of the observer.
The observer’s screen is located at a circumferential distance r̃obs
from the black hole, whose event horizon is represented by a
black sphere in the diagram. The photon impact parameters ðx; yÞ
are related to the angles α and β, where α is the angle between P⃗
and its projection in the xz-plane, and β is the angle between
this projection and the optical axis indicated in blue. The observer
is oriented in such a way relative to the black hole that the
radial directions coincide, i.e., êðrÞ ¼ êz, while the basis vectors
that span the image plane obey the connections êðθÞ ¼ −êy
and êðϕÞ ¼ êx.
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êðθÞ ¼ Aθ
∂θ; êðϕÞ ¼ Aϕ

∂ϕ;

êðtÞ ¼ ζ∂t þ γ∂ϕ; êðrÞ ¼ Ar
∂r: ð23Þ

Now imposing the conditions êðrÞ · êðrÞ ¼ 1, êðθÞ · êðθÞ ¼ 1,
êðϕÞ · êðϕÞ ¼ 1, êðtÞ · êðtÞ ¼ −1 and êðtÞ · êðϕÞ ¼ 0, we
arrive at

Ar ¼ 1ffiffiffiffiffiffi
grr

p ; Aθ ¼ 1ffiffiffiffiffiffi
gθθ

p ; Aϕ ¼ 1ffiffiffiffiffiffiffigϕϕ
p ;

γ ¼ −ζ
gtϕ
gϕϕ

; ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gϕϕ
g2tϕ − gttgϕϕ

s
: ð24Þ

The final form of the four basis vectors describing a
Minkowski frame is as follows,

êðtÞ ¼ ζ

�
∂t −

gtϕ
gϕϕ

∂ϕ

�
; êðrÞ ¼

1ffiffiffiffiffiffi
grr

p ∂r;

êðθÞ ¼
1ffiffiffiffiffiffi
gθθ

p ∂θ; êðϕÞ ¼
1ffiffiffiffiffiffiffigϕϕ

p ∂ϕ: ð25Þ

Using this information, we project the components of the
4-momentum into this basis as follows,

PðtÞ ¼ −êμðtÞpμ ¼ −ðζpt þ γpϕÞ ¼ ζ

�
Eþ gtϕ

gϕϕ
L

�
; ð26Þ

PðrÞ ¼ êμðrÞpμ ¼
1ffiffiffiffiffiffi
grr

p pr; ð27Þ

PðθÞ ¼ êμðθÞpμ ¼
1ffiffiffiffiffiffi
gθθ

p pθ; ð28Þ

PðϕÞ ¼ êμðϕÞpμ ¼
1ffiffiffiffiffiffiffigϕϕ

p L; ð29Þ

where the identification of the conserved quantities
E ¼ −pt and L ¼ pϕ was used wherever they appear.
Given the earlier presentation of the equations of motion, it
is more desirable to obtain starting conditions for E, L, pr
and pθ. Explicitly, inverting the above expressions yields,

E ¼ 1þ γ
ffiffiffiffiffiffiffigϕϕ

p sin β cos α

ζ
; pr ¼

ffiffiffiffiffiffi
grr

p
cos β cos α;

ð30Þ

L ¼ ffiffiffiffiffiffiffi
gϕϕ

p
sin β cos α; pθ ¼

ffiffiffiffiffiffi
gθθ

p
sin α: ð31Þ

After positioning the observer on the equatorial plane
ðθ ¼ π=2Þ at a circumferential radius r̃obs ¼ 15M, the
angles α and β determine the impact parameters ðx; yÞ
and initial momenta using the local orthonormal basis. With
these initial conditions, photons evolve backward in time

until they encounter the celestial sphere, situated at a
circumferential distance r̃cel ¼ 30M or they hit the black
hole horizon rH. To interpret the resulting gravitational
lensing patterns, we divide the celestial sphere into four
quadrants, each assigned a distinct color based on the
angular distribution between the polar angle θcel and the
azimuthal angle ϕcel as demonstrated on Fig. 3. Further-
more, to visualize the deformation of the characteristic
patterns in the images, we introduce a grid of thin black
meridian and parallel lines spaced 10° apart in each quadrant.

B. Light rings and ergoregions

In this subsection, we will consider the properties of the
light rings and ergoregions for the chosen configurations
shown in Fig. 1. As we will see, some of the studied
configurations have stable light rings that, placed in their
ergoregions, become light beam attractors, which can lead
to the appearance of chaotic patterns in the black hole
shadows.
The light rings are circular null geodesics considered

in the equatorial plane of symmetry, θ ¼ π=2, that satisfy

FIG. 3. The diagram depicts the celestial sphere with half a
quadrant removed, illustrating the optical elements of the
gravitational system. Positioned along the blue optical axis are
the observer and the black hole, the latter represented by a black
sphere. The observer’s screen, perpendicular to the optical axis,
intersects with the black hole. A red thick line traces a specific
light trajectory, characterized by impact parameters ðx; yÞ, origi-
nating from Earth and terminating at a color-specified quadrant of
the celestial sphere. In this geometry, the gravitational lens effect
causes the observer to perceive an image I with the corresponding
color on the image plane. This image appears aligned with the
tangent line to the light trajectory at the observer’s position. The
celestial sphere is divided into four quadrants, each with a distinct
color designation. In the top hemisphere (0 < θcel < π=2): the
green quadrant if 0 < ϕcel < π, and the red quadrant if π <
ϕcel < 2π. In the bottom hemisphere (π=2 < θcel < π): the blue
quadrant if 0< ϕcel < π, and the yellow quadrant if π < ϕcel < 2π.
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the conditions pθ ¼ 0 and pr ¼ ṗr ¼ 0, from which it
follows that

Veff ¼ 0; ∂rVeff ¼ 0; ð32Þ
at the location of the orbit. Following Eq. (17), these
conditions can be reduced to the next system of two
algebraic equations that must be satisfied simultaneously

gϕϕ þ 2ηgtϕ þ gttη2 ¼ 0; ð33Þ

∂rgϕϕ þ 2η∂rgtϕ þ η2∂rgtt ¼ 0: ð34Þ

Solving the first of these equations for the impact parameter
η ¼ L=E and substituting in the second, we obtain the light
ring equation, which predicts the existence of a photon
circular orbit with a radius rLR

∂rgϕϕ þ 2h�∂rgtϕ þ h2�∂rgtt ¼ 0; ð35Þ

where the functions h� are defined via Eq. (18). Moreover,
the radial condition for the existence of stable (unstable)
light rings imposes ∂

2Veff > 0, (∂2Veff < 0), which is
reduced to the restriction

∂
2
rgϕϕ þ 2h�∂2rgtϕ þ h2�∂

2
rgtt

	
<0; if light ring is stable:

>0; otherwise:

ð36Þ

Besides, taking into account that η ¼ h� on the circular
orbit and hþ ≠ h− outside the horizon, after straightforward
calculations, one can show that the conditions for the
effective potential (32) are reduced to an analogical light
ring equation

∂rh� ¼ 0: ð37Þ

The solutions to that equation predict stable (unstable) light
rings if the radial condition �∂

2
rh� > 0, (�∂

2
rh� < 0) is

satisfied. Moreover, the normalized timelike Killing vector
field at infinity, denoted as ∂t, becomes null over the surface
gtt ¼ 0, defining the ergoregions [43]. In that special
case, in the limit gtt → 0, one of the functions h� diverges,
and the other converges to −gϕϕ=2gtϕ. Generally, outside
the ergoregions gtt < 0, while passing within the ergore-
gions gtt > 0.
Light rings can also be classified in terms of their

direction of rotation. Taking into account Eqs. (15), as
well as that Eq. (33) is satisfied on the light ring, one can
show that the angular velocity, Ω ¼ dϕ=dt, of the photons
moving on circular orbits is connected to the impact
parameter via the relation

Ω ¼ 1

η
: ð38Þ

Hence, it follows that the light ring’s rotational direction is
given by the sign of the impact parameter η for a static
observer at spatial infinity. In general, the orbital angular
frequency of rotating photons at the light rings is given by

Ω� ¼
−∂rgtϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂rg2tϕ − ∂rgtt∂rgϕϕ

q
∂rgϕϕ

; ð39Þ

where the above expressions are evaluated at the location
of the light ring. In the above equation Ωþ is the angular
frequency of corotating photons, and Ω− is the angular
frequency of the counterrotating photons.

C. Numerical ray tracing methods

To compute the cast shadows of rotating tensor-
multiscalar black holes with scalar hair, a program code
was developed using the Wolfram Language Mathematica.
The code uses built-in interpolation and differential solver
routines to integrate the Hamiltonian equations of motion
numerically. For the numerical implementation of the
equations, the metric functions F0, F1, F2, and ω were
interpolated using a two-dimensional cubic spline inter-
polation concerning the variables r and θ, which was set as
the default interpolation procedure in the programming
language. In the Hamiltonian equations, the interpolated
functions were substituted into the analytical expressions
for the metric functions and their derivatives concerning r
and θ. For the numerical solution of the system of differ-
ential equations, we utilize time integration methods
inherent to Mathematica, such as the Adams/BDF multi-
step method with automatic step size control.
Additional information is required to generate the

shadows’ image on the observer’s screen. This includes
the observer’s position, the two-dimensional width of the
field of view, the image resolution, and the radius of the
celestial sphere where the rays, scattered by the black hole,
will complete their trajectory.
In this context, without loss of generality, we choose the

observer to be located on the equatorial plane at a specific
circumferential distance from the black hole, such that
ðtobs; robs; θobs;ϕobsÞ ¼ ð0; robsðr̃obsÞ; π=2; 0Þ. By selecting
the circumferential distance as r̃obs ¼ 15M, we use Eq. (19)
to numerically determine the radial coordinate of the
observer, robs. Simultaneously, we set the circumferential
distance r̃cel ¼ 30M as the second boundary condition for
any geodesic reaching the celestial sphere. After perform-
ing the ray tracing procedure, we apply an equiangular
projection that directly maps the angles θcel and ϕcel,
labeling the photon scattered by the black hole onto the
celestial sphere with the observed angles ðβ; αÞ onto the
coordinate axes ðx; yÞ. To implement the projection, we
establish the desired field of view, which specifies the
angles between the optical axis and the image boundaries.
Subsequently, by determining the desired image resolution,
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corresponding to 1024 × 1024 photon trajectories, we
found the required step size for uniform grid formation
across the entire field of view.
Increasing the geodesic flux density is crucial to gen-

erating a high-resolution image of the shadow, revealing
more precisely the complexity of the chaotic patterns. To
significantly diminish the integration time for the entire
field of view, we first take advantage of the reflection
symmetry inherent in the shadow image as perceived by an
equatorial observer. This involves integrating only half of
the shadow—specifically, the geodesics either above or
below the equatorial plane of symmetry. Subsequently,
exploiting the reflection symmetry of the examined sol-
ution enables us to reconstruct the complete shadow image,
filled with its intrinsic colors denoting the geodesics
scattered to different parts of the celestial sphere.
On the other hand, since modern workstations contain

multiple computing cores, we utilize the built-in Finest-
Grained method to break down the overall computation into
the minor possible subunits, whose evaluations take differ-
ent amounts of time. Employing this approach facilitates
the optimization of the integration time, a notably time-
consuming process for scalarized solutions with stable light
rings. The geometry of these solutions contributes to the
chaotic behavior of geodesics near the event horizon. This
is illustrated by the shadow image and the heat map of
the time delay function in Fig. 5. This function is defined as
the variation of the time required for a photon geodesic to
travel from a particular pixel on the observer’s screen to a
corresponding point on the celestial sphere, measured in
units of μ−1. The heat map provides valuable information
about the distribution of time-delay function values on the
observer’s screen. It is particularly useful in diagnosing
the light ring system since photon trajectories that come
close to the light rings take a significant amount of time to
return to spatial infinity. For a more detailed discussion of
the time delay heat map in various scenarios, such as
rotating boson stars and hairy black hole solutions, please
refer to [44].

IV. RESULTS

In this section, we will examine the shadow images for
seven groups of selected configurations, I–VII, all high-
lighted in Fig. 1. Each configuration is identified by Xu

v,
where the symbol X represents the configuration number,
superscript u represents the value of the Gaussian curvature
κ, and the subscript v denotes the value of the black hole
horizon rH. Each group contains three configurations for a
unique normalized charge, certain black hole horizon, and
various Gaussian curvatures κ∈ f−5; 0; 5g. Generally, the
higher values of κ reduce the chaotic patterns in the
shadows of black holes with different horizons, affecting
the radii and rotational direction of the light rings (LR) and
the equatorial radii of the ergoregions (ER). Henceforth,

in the paper, we will utilize the dimensionless compactified
radial coordinate R∈ ½0; 1� defined as follows:

R ¼ R̃

1þ R̃
; with R̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2H

q
: ð40Þ

In the following subsection, we explore a particular
configuration, VII−50.05, which allows us to observe not only
a complex structure of ergoregions and a system of multiple
light rings but also a variety of nonsimply connected
shadow images, accompanied by the chaotic behavior of
scattered photons.

A. Photon potential, ergoregions and light rings

In this section, we will focus on a specific configuration
distinguished by one of the most intricate shadows. Beyond
the appearance of numerous nonsimply connected shadows
with various shapes and regions highly saturated with
chaotically scattered orbits, there lies a complex structure
of light rings and multiple ergoregions. A notable aspect of
this particular solution is the presence of a stable light ring
characterized by torus topology situated within one of the
ergoregions. To explore the mechanisms behind the for-
mation of these unusual shadows, in this subsection, we
will present the contour plots of the hþ and h− photon
potentials, the shadow image, and the photon’s time delay
heat map for the configuration VII−50.05, with Gaussian
curvature κ ¼ −5, a black hole horizon of rH ¼ 0.05 and a
normalized charge q ≃ 0.996.
Figure 4 exhibits the effective potentials hþ and h− for

the spacetime configuration VII−50.05, and Table I in the
Appendix presents the corresponding physical quantities of
the selected solution. The contour lines of the function hþ
reveal a singular behavior of the potential at the boundary
of two detached ergoregions, the first located near the
black hole’s event horizon (RH ¼ 0) in the equatorial
domain RER ∈ ½0; 0.036�. The second ergoregion extending
in the interval RER ∈ ½0.154; 0.484�, possesses toroidal
topology and contains a global minimum corresponding
to the existence of an equatorial stable light ring for
RLR ≃ 0.307, rotating in the same direction as the black
hole. The presence of two saddle points reveals the
existence of two equatorial unstable light rings, the first
located between the two ergoregions for RLR ≃ 0.070
and the second formed beyond the ergotorus for
RLR ≃ 0.733. Both rings correspond to photons, circling
the black hole in the opposite spinning direction as the
black hole.
Figure 4, bottom panel, exhibits h− contour lines, which

demonstrate the existence of a saddle point, corresponding
to an equatorial unstable light ring situated at RLR ≃ 0.041
outside the inner ergoregion. The sign of η indicates that the
photons in the light ring are circling the black hole in the
same spinning direction as the black hole.
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FIG. 4. Contour plots of the two effective potentials hþ (left) and h− (right) for configurations VII−50.01 at Gaussian curvature κ ¼ −5.
The configuration contains two disconnected ergoregions pointed out with red contours on the upper panel, the first among which is
located near the horizon. Each of the potentials hþ and hþ possess a saddle point between both ergoregions, allowing two unstable,
closely spaced light rings to form. In the center of the second ergoregion, the potential hþ possesses a local minimum, corresponding to a
third stable light ring. Beyond the second ergoregion, the function hþ has a second saddle point, which causes the formation of a fourth
outermost unstable light ring. The orange dots indicate the locations of the four light rings.

The sign of η, dϕ=dt and gtt as well as the corresponding values of the dimensionless coordinate R, pointing the positions
of the light rings and the equatorial domain of existence of the ergoregions are organized in the following table.

Configuration Fig. Ergoregions RER LR RLR Stability η gtt dφ=dt Chaos

VII−50.05 5 h− 0.041 Unstable þ − þ Yes
1 ER [0, 0.036] hþ 0.070 Unstable − − −
2 ER [0.154, 0.484] hþ 0.307 Stable þ þ þ

hþ 0.733 Unstable − − −

A correlation has been observed between the chaotic
patterns found in the shadow’s image and the character-
istics of the corresponding geodesic motion [44]. In Fig. 5,
on the right, you can see the black hole shadow alongside
the time delay heat function, which is depicted in units
of the reciprocal values of the scalar field mass, μ−1. The
photon’s variation in the coordinate time, t, illustrates the
expected sensitivity in mapping between the photon’s
coordinates ðx; yÞ in the image plane and the corresponding
arrival point on the celestial sphere or the black hole
horizon. The heat map in this case is very informative, as it
reveals a strong correlation between the shape of the
regions with bright pixels with a significant time delay
and the chaotic patterns created by the scattered photons on
the shadow image. This direct relationship indicates that
some photon bundle are sensitive to the subset of their
impact parameters, in which photons are propagated near
the light rings.
This sensitivity arises due to the effective potential hþ,

which permits the existence of quasibound orbits for

specific impact parameters η. Some of these orbits are
situated in a pocket with a narrow throat containing an
unstable light ring (LR4), enabling photons to enter the
pocket. Subsequently, the photons traverse the ergotorus,
housing the stable light ring (LR3), near which the orbits
undergo multiple radial turning points before leaving the
pocket and reaching the celestial sphere. Since the number
of radial turning points depends on the frequency of
changes in the sign of ṗr during the photon’s motion
along the light ray’s trajectory, this can be interpreted as a
deviation from Kerr spacetime, where null geodesics
possess at most one turning point. All trajectories of this
class, semi-trapped in a pocket, take significantly longer to
escape, resulting in a more significant time delay. These
light beams are depicted as bright dots on the time delay
heat map shown in Fig. 5 on the right.
On the contrary, for specific values of the impact

parameter η, the analysis of the effective potential hþ
reveals the possible appearance of a second inner throat
in the pocket. This configuration allows photons to
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approach the unstable light ring LR2. Due to the radial
instability of this light ring, for some impact parameters,
photons may either retrace their path back into the pocket or
proceed toward the fourth unstable light ring, LR1, located
near the inner ergoregion, as the potential h− shows.
Ultimately, these photons may fall into the black hole,
especially with small perturbations in the impact para-
meter. The configuration of two throats in the effective
potential may give rise to the formation of multiple
disconnected shadows resembling black hole shadows
reported in [38].

B. Black hole shadows and influence
of the Gaussian curvature

To illustrate the impact of different Gaussian curvatures
on the light ring’s formation, the ergoregions of the rotating
solutions, and the visual features of their shadows in the
following figures, we expose the shadows of the selected
configurations, emphasizing the influence of this parameter
on the observed phenomena. We have limited ourselves to
the solutions already generated in [36], which constitute
sequences of black holes with fixed horizon radii. That is
why the solutions are grouped with respect to rH while
the normalized charge q is also kept as similar in value as
possible in each group.
Given the significant variation in the shape, size, and

characteristic pattern of the shadow within the domain of
existence of hairy Kerr black holes, as depicted in Fig. 1,
we will perform a detailed survey of the 18 most interesting
cases. The physical characteristics of these cases are
listed in detail in Table I of the Appendix. Our focus will
predominantly be on models close to the limiting red curve

in that figure, marking the boson star limit. These cases
exhibit the most peculiar characteristics and the appearance
of chaotic regions in the shadow image. Below, the
discussion is grouped according to the horizon radius
and normalized charge of the explored solutions, which,
roughly speaking, indicates how far away the black hole
solutions are from the boson star limit.

1. Model I, rH = 0.01, q ≃ 0.999: Black hole image
domited by chaotic regions

To study the impact of the normalized charge, q, on
shadow formation, ergoregions, and the system of light
rings, we focus on configurations Iκ0.01, with κ∈ f−5; 0; 5g
(highlighted in Fig. 1). All these configurations exhibit
relatively higher values of the normalized charge, approx-
imately q ≃ 0.999. The corresponding physical para-
meters for these configurations are detailed in Table I in
Appendix A.
Similar to the solution VII−50.05, the selected configura-

tions feature a system of four light rings, two ergoregions,
and distinct shadow images saturated with multiple chaotic
patterns. Among these light rings, there is always one that
remains stable, contributing to the observation of numerous
chaotic regions in shadow images. The peculiarity of these
configurations lies in their ability to generate multiple
miniature, highly elongated, simply connected shadows.
Furthermore, even though shadows exist for negative κ, the
size of the shadow is marginal, while this size increases
with increasing κ.
The distinctive features of the ergoregions and light

rings for the analyzed configurations are presented in the
following table.

FIG. 5. Zoom time delay heat map associated with the scattering orbits (right panel) and lensed image (left panel) for configuration
VII−50.05, with κ ¼ −5, rH ¼ 0.05, ωs=μ ¼ 0.648538,Mμ ¼ 0.915671 and q ¼ 0.996185. The regions corresponding to shadow points
are shown in black. To clarify the interpretation of the color image, a color legend is presented in Fig. 3, and a grid is introduced to
emphasize the deformation of the images. Detailed physical quantities of the solution are provided in Table I in Appendix A.
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Configuration Fig. Ergoregions RER LR RLR Stability η gtt dφ=dt Chaos

I−50.01 6 1 ER [0, 0.004] h− 0.010 Unstable þ − þ Yes
hþ 0.012 Unstable − − −

2 ER [0.045, 0.474] hþ 0.186 Stable þ þ þ
hþ 0.727 Unstable − − −

I00.01 6 1 ER [0, 0.003] h− 0.010 Unstable þ − þ Yes
hþ 0.012 Unstable − − −

2 ER [0.063, 0.462] hþ 0.196 Stable þ þ þ
hþ 0.722 Unstable − − −

I50.01 6 1 ER [0, 0.005] h− 0.009 Unstable þ − þ Yes
hþ 0.013 Unstable − − −

2 ER [0.043, 0.445] hþ 0.155 Stable þ þ þ
hþ 0.718 Unstable − − −

In all three geometries, there exists an inner ergoregion
extending from the horizon (RH ¼ 0) to a distance RER,
which slightly depends on the Gaussian curvature. A
notable distinction is observed when the curvature of the
target space is zero; the equatorial extension of the inner
ergoregion is minimal, RER ∈ ½0; 0.003�, in contrast to the
extensions, RER ∈ ½0; 0.004� and RER ∈ ½0; 0.005�, for neg-
ative and positive curvatures, respectively. No light ring is
placed in any of these inner ergoregions.
All three configurations feature an ergotorus, corre-

sponding to zero Gaussian curvature with the minor
equatorial section, RLR ∈ ½0.063; 0.462�. In the other two
cases, the ergotorus possesses a slightly larger width:
RER ∈ ½0.045; 0.474� for negative curvature and RER ∈
½0.043; 0.445� for positive curvature. Each ergotorus houses
a stable light ring that co-rotates with the black hole,
irrespective of the Gaussian curvature of the target space.
Regardless of the magnitude of the Gaussian curvature,

each configuration has two inner unstable light rings

located near each other, positioned between the two
ergoregions. The innermost of these rings corotates with
the black hole, while the second larger ring rotates in the
opposite direction. A distinctive feature is observed in the
ergotorus of the solution with zero Gaussian curvature,
where the stable light ring has the largest radius,
RLR ≃ 0.196, in contrast to the smaller-radius stable rings,
RLR ≃ 0.155, for positive curvature, and RLR ≃ 0.186, for
negative curvature. Outside the ergotorus is positioned the
outermost fourth unstable light ring, which rotates in the
opposite direction to the black hole.
The shadows of the considered solutions are depicted in

Fig. 6. Under negative Gaussian curvature, the shadow is
densely filled with chaotic patterns that exhibit slight
changes in both structure and location at zero and positive
curvature. A significant feature at this nearly extreme value
of the normalized charge in scalar hair black hole configu-
rations is the emergence of multiple highly elongated
shadows. Specifically, under negative Gaussian curvature,

FIG. 6. Examples of shadows which illustrate the transition between shadows for different Gaussian curvatures κ∈ f−5; 0; 5g and
black hole horizon rH ¼ 0.01. The left panel corresponds to configuration I−50.01 with κ ¼ −5, ωs=μ ¼ 0.607387, Mμ ¼ 0.890489 and
q ¼ 0.999866, the center panel corresponds to configuration I00.01 with κ ¼ 0, ωs=μ ¼ 0.679241, Mμ ¼ 0.881991 and q ¼ 0.999875,
while the right panel corresponds to configuration I50.01 with κ ¼ 5, ωs=μ ¼ 0.731639, Mμ ¼ 0.883209 and q ¼ 0.999733. To clarify
the interpretation of the color components in the images and their deformation, a color legend and a grid are provided in Fig. 3. Detailed
physical quantities of the solution are provided in Table I in Appendix A.
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the shadow displays 11 distinguishable simply connected
miniature dark regions. This number decreases to 7 shadow
regions at zero and positive curvature. During this tran-
sition, four dark regions merge into two slightly more
extensive regions, while two other dark regions disappear.
This change results in a noticeable, albeit small, reduction
in chaotic patterns. Furthermore, the increase in curvature
convincingly demonstrated an enlargement in the width and
overall size of the multiple dark areas formed, contributing
to the entire shadow image.

2. Model II, rH = 0.01, q ≃ 0.997: Shadows with large
chaotic regions

Analyzing the influence of the normalized charge, q, on
shadow formation, ergoregions, and the system of light
rings, we move through the M − ωs space, shown in
Fig. 1, to the right while maintaining a constant horizon
radius, rH ¼ 0.01. We select configurations IIκ0.01, with
κ∈ f−5; 0; 5g, all with slightly smaller values of the
normalized charge, roughly q ≃ 0.997. The corresponding
physical parameters for these configurations are provided
in Table I in Appendix A.
Each configuration with a different Gaussian curvature

has one ergoregion and four light rings. Among these light

rings, there is always one that remains stable, contributing
to the observation of chaotic regions in shadow images. The
peculiarity of these configurations is their ability to form
multiple nonsimply connected images, which shows sig-
nificant chaotic behavior in trajectories of light orbits near
the black hole horizon.
The ergoregion of the II−50.01 configuration has the most

spacious equatorial cross section, extending from the black
hole’s event horizon (RH ¼ 0) to RER ≃ 0.410. The outer-
most light ring at RLR ≃ 0.674, is unstable and rotates
opposite to the black hole. Moving toward the event
horizon, we pass through the ergosurface (gtt ¼ 0) and
discover a system of three equatorial light rings relatively
close to the horizon. The outermost of these rings, at
RLR ≃ 0.071, is stable and rotates in the direction of the
black hole’s rotation. The next inner ring, at RLR ≃ 0.014, is
unstable and rotates oppositely to the black hole’s rotation.
The innermost light ring, closest to the horizon, is also
unstable, rotates in the direction of the black hole’s rotation,
and has a radius corresponding to coordinate RLR ≃ 0.009.
The positions of the light rings and the equatorial
domain of ergoregion existence, expressed in terms of
the dimensionless parameter R, are summarized in the
following table.

Configuration Fig. Ergoregions RER LR RLR Stability η gtt dφ=dt Chaos

II−50.01 7 1 ER [0, 0.410] h− 0.009 Unstable þ þ þ Yes
hþ 0.014 Unstable − þ −
hþ 0.071 Stable þ þ þ
hþ 0.674 Unstable − − −

II00.01 7 1 ER [0, 0.387] h− 0.008 Unstable þ þ þ Yes
hþ 0.016 Unstable − þ −
hþ 0.069 Stable þ þ þ
hþ 0.657 Unstable − − −

II50.01 7 1 ER [0, 0.397] h− 0.007 Unstable þ þ þ Yes
hþ 0.020 Unstable − þ −
hþ 0.063 Stable þ þ þ
hþ 0.680 Unstable − − −

Referring to Fig. 7, we observe that an increase in the
Gaussian curvature results in a noticeable expansion of the
visible area of black hole shadows, maintaining the same
normalized charge. For the most substantial negative value
of the Gaussian curvature, k ¼ −5, multiple nested ovals
and nonsimply connected images are observed, indicating a
significant chaotic behavior in the trajectories of light
orbits. As the Gaussian curvature increases to k ¼ 0,
chaotic patterns diminish in size, forming distinguishable
multiple-shadow images of the black hole. In the case of the
minor event horizon, rH ¼ 0.01, one reason for the
reduction in chaotic patterns within the shadow images
is the shrinking of the radius of stable light rings with

increasing Gaussian curvature. Simultaneously, in the
considered configurations, the outermost unstable light
rings move away from the event horizon, and their radius
further expands with the increasing curvature of the target
space. This phenomenon is an essential condition for
increasing the capture cross section of the black holes,
ultimately resulting in the formation of a larger shadow.

3. Model III, rH = 0.05, q ≃ 0.994: Larger size black hole
shadows harboring chaotic regions

Increasing the size of the event horizon to rH ¼ 0.05,
we consider configurations IIIκ0.05, with κ∈ f−5; 0; 5g,

GALIN N. GYULCHEV et al. PHYS. REV. D 109, 104051 (2024)

104051-12



highlighted in Fig. 1. In this scenario, the selected configurations feature a normalized charge of q ≃ 0.994. The physical
quantities of these solutions are detailed in Table I in Appendix A, showcasing variations for different Gaussian curvatures
of the target space. As in configurations I and VII, in configuration III, we observe the appearance of the same structure
of four light rings and two ergoregions. The table below presents the technical characteristics of the geometric structures
under consideration.

Configuration Fig. Ergoregions RER LR RLR Stability η gtt dφ=dt Chaos

III−50.05 8 1 ER [0, 0.057] h− 0.040 Unstable þ þ þ Yes
hþ 0.073 Unstable − − −

2 ER [0.095, 0.476] hþ 0.274 Stable þ þ þ
hþ 0.727 Unstable − − −

III00.05 8 1 ER [0, 0.047] h− 0.037 Unstable þ þ þ Yes
hþ 0.080 Unstable − − −

2 ER [0.157, 0.471] hþ 0.297 Stable þ þ þ
hþ 0.739 Unstable − − −

III50.05 8 1 ER [0, 0.045] h− 0.036 Unstable þ þ þ Yes
hþ 0.087 Unstable − − −

2 ER [0.238, 0.444] hþ 0.333 Stable þ þ þ
hþ 0.757 Unstable − − −

FIG. 7. Examples of shadows which illustrate the transition between shadows for different Gaussian curvatures κ∈ f−5; 0; 5g and
black hole horizon rH ¼ 0.01. The left panel corresponds to configuration II−50.01 with κ ¼ −5, ωs=μ ¼ 0.739809,Mμ ¼ 0.690217 and
q ¼ 0.997229, the center panel corresponds to configuration II00.01 with κ ¼ 0, ωs=μ ¼ 0.835272,Mμ ¼ 0.648229 and q ¼ 0.997293,
while the right panel corresponds to configuration II50.01 with κ ¼ 5, ωs=μ ¼ 0.821927,Mμ ¼ 0.742514 and q ¼ 0.997069. To clarify
the interpretation of the color components in the images and their deformation, a color legend and a grid are provided in Fig. 3. Detailed
physical quantities of the solution are provided in Table I in Appendix A.

In configuration III, similar to configurations I and
VII, we note the presence of the same structure, featuring
four light rings and two ergoregions. However, in contrast
to configurations I and VII, where both four light rings
and two ergoregions coexist, configuration III exhibits a
different arrangement—the innermost unstable ring is
located within the inner ergoregion. Transitioning into
the zone between the two ergoregions, a single unstable
light ring is found. Similar to solutions I and VII, the
ergoregion also hosts a stable light ring. Extending beyond
the ergoregion, we establish the existence of the fourth
outermost unstable light ring.

Analyzing the dynamics of the light rings, we observe
that, moving from the innermost to the outermost ring, the
first co-rotates with the black hole, while subsequent rings
alternate in spin direction. As a result, the fourth and final
light ring counter-rotates with the black hole. When increas-
ing the Gaussian curvature of the target space, we note a
corresponding growth in the radius of light rings of the same
type. Consequently, the system of light rings for positive
Gaussian curvature exhibits the most extensive spatial
distribution. At the same time, the equatorial region of both
inner ergoregions and ergotoruses decreases with an increase
in the Gaussian curvature across different configurations.
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At these values of the horizon and the normalized charge,
we observe a significant change in the shape and size of the
shadow when transitioning from negative to positive
Gaussian curvature. At these values of the horizon and
the normalized charge, we observe a significant change in
the shape and size of the shadow when transitioning
from negative to positive Gaussian curvature. Black hole
shadows for configurations IIIκ0.05, with κ∈ f−5; 0; 5g are
exposed in Fig. 8. In instances of negative curvature,
configuration III−50.05 not only features a series of simply
connected dark regions but simultaneously exhibits
chaotic patterns. At zero curvature of the target space,
the individual simply connected regions merge into a larger
shadow that continues to show signs of randomness. In
contrast to these cases, with positive curvature, the image of
the shadow is fully connected, relatively more compact,
and exhibits chaoticity of the scattered photon orbits
outside the dark region of the shadow.

4. Model IV, rH = 0.1, q ≃ 0.96: Black hole shadows
with decreasing chaotic regions

Let us consider the configurations IVκ
0.1, with

κ∈ f−5; 0; 5g, highlighted in Fig. 1, with an event horizon
set at rH ¼ 0.1. In these instances, the normalized charge of
the selected solutions varies around q ≃ 0.96. A notable
feature of these configurations is that, for every value of the
Gaussian curvature, a system of four light rings and one
ergoregion exists. The positions of the light rings, the
equatorial domain of the existence of the ergoregions, and
additional information about their characteristics are pre-
sented in the following table.

The equatorial domain of ergoregion existence is defined
from the event horizon (RH ¼ 0) to a distance RER, which
decreases significantly as the Gaussian curvature of the
target space increases. Therefore, at negative κ ¼ −5, the
relatively large width of the ergoregion, RER ∈ ½0; 0.439�,
encloses three of the inner light rings with radii
RLR ¼ 0.061, RLR ¼ 0.199, and RLR ¼ 0.331. The inner-
most and middle of these rings are unstable, while the third
is stable, and all rotate in the direction of the black hole’s
rotation. In contrast, the outermost fourth light ring is
located outside the ergoregion at RLR ¼ 0.724. Moreover,
it is unstable and rotates contrary to the black hole. In the
absence of Gaussian curvature, the equatorial domain of the
ergoregion is bounded by RER ∈ ½0; 0.147�, signifying a
shift of the outer boundary toward the event horizon.
Additionally, the ergoregion hosts only one unstable light
ring at RLR ¼ 0.057, rotating in the direction of the black
hole. Consequently, the other three light rings, situated at
RLR ¼ 0.238, RLR ¼ 0.395, and RLR ¼ 0.742, respec-
tively, remain external to the ergoregion, each exhibiting
retrograde rotation concerning the black hole. This pattern
persists even in the presence of positive Gaussian curvature.
The ergoregion contracts, narrowing to RER ∈ ½0; 0.133�,
housing only one unstable light ring at RLR ¼ 0.055, which
rotates prograde to the black hole. All remaining light rings
are located outside the ergoregion, with radii corresponding
to RLR ¼ 0.251, RLR ¼ 0.501, and RLR ¼ 0.759, respec-
tively, and exhibit retrograde rotation about the black hole.
Generally, the third light ring from the inside out is con-
sistently stable for any Gaussian curvature. Furthermore, as
the Gaussian curvature increases, the innermost ring moves
closer to the black hole, while the other three move away.

FIG. 8. Examples of shadows which illustrate the transition between shadows for different Gaussian curvatures κ∈ f−5; 0; 5g and
black hole horizon rH ¼ 0.05. The left panel corresponds to configuration III−50.05 with κ ¼ −5, ωs=μ ¼ 0.653743, Mμ ¼ 0.886503
and q ¼ 0.994449, the center panel corresponds to configuration III00.05 with κ ¼ 0, ωs=μ ¼ 0.706437, Mμ ¼ 0.908153 and
q ¼ 0.994490, while the right panel corresponds to configuration III50.05 with κ ¼ 5, ωs=μ ¼ 0.702254, Mμ ¼ 1.100262 and
q ¼ 0.994709. To clarify the interpretation of the color components in the images and their deformation, a color legend and a grid are
provided in Fig. 3. Detailed physical quantities of the solution are provided in Table I in Appendix A.
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Configuration Fig. Ergoregions RER LR RLR Stability η gtt dφ=dt Chaos

IV−5
0.1 9 1 ER [0, 0.439] h− 0.061 Unstable þ þ þ Yes

hþ 0.199 Unstable þ þ þ
hþ 0.331 Stable þ þ þ
hþ 0.724 Unstable − − −

IV0
0.1 9 1 ER [0, 0.147] h− 0.057 Unstable þ þ þ Yes

hþ 0.238 Unstable − − −
hþ 0.395 Stable − − −
hþ 0.742 Unstable − − −

IV5
0.1 9 1 ER [0, 0.133] h− 0.055 Unstable þ þ þ Yes

hþ 0.251 unstable − − −
hþ 0.501 Stable − − −
hþ 0.759 Unstable − − −

While stable light rings persist in the geometry of the
considered configurations IVκ

0.1, with κ∈ f−5; 0; 5g, for
the given value of the normalized charge, chaotic patterns in
the shadow images (as shown in Fig. 9) are notably lacking.
One distinctive feature in the formed shadows is the
emergence of toothlike regions around the polar parts of
the shadow contour. With an increase in Gaussian curva-
ture, these regions gradually diminish, causing the images
of the chaotically scattered orbits to shift from the inner
part of the shadow toward its boundary. Accordingly, the
chaotic patterns manifest at positive curvature in a thin,
crescent-shaped region outside the shadow boundary. It is
worth noting that the situation with configuration III50.05
is analogous. This observation emphasizes that solutions

with positive Gaussian curvatures result in shadows with
considerably smaller areas and fewer chaotic patterns
compared to those with zero or negative curvature of the
target space.

5. Model V, rH = 0.2, q ≃ 0.85: Single ergoregion
models with deformed quasicircular shadows

Last but not least, the table below provides data on the
characteristics of the ergoregions and the light ring system
for configurations Vκ

0.2, where κ∈ f−5; 0; 5g (as indicated
in Fig. 1). These configurations correspond to an event
horizon of rH ¼ 0.2, and a normalized charge q ≃ 0.845.
Corresponding shadow images are depicted in Fig. 10.

FIG. 9. Examples of shadows which illustrate the transition between shadows for different Gaussian curvatures κ∈ f−5; 0; 5g and
black hole horizon rH ¼ 0.1. The left panel corresponds to configuration IV−5

0.1 with κ ¼ −5, ωs=μ ¼ 0.713790, Mμ ¼ 0.873847 and
q ¼ 0.965279, the center panel corresponds to configuration IV0

0.1 with κ ¼ 0, ωs=μ ¼ 0.738499, Mμ ¼ 1.00043 and q ¼ 0.964477,
while the right panel corresponds to configuration IV5

0.1 with κ ¼ 5, ωs=μ ¼ 0.748666, Mμ ¼ 1.16102 and q ¼ 0.968930. To clarify
the interpretation of the color components in the images and their deformation, a color legend and a grid are provided in Fig. 3. Detailed
physical quantities of the solution are provided in Table I in Appendix A.
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Configuration Fig. Ergoregions RER LR RLR Stability η gtt dφ=dt Chaos

V−5
0.2 10 1 ER [0, 0.248] h− 0.095 Unstable þ þ þ No

hþ 0.471 Unstable − − −

V0
0.2 10 1 ER [0, 0.252] h− 0.094 Unstable þ þ þ No

hþ 0.478 Unstable − − −

V5
0.2 10 1 ER [0, 0.258] h− 0.093 Unstable þ þ þ No

hþ 0.488 Unstable − − −

The considered configurations stand out from those
previously studied in this paper due to the presence of a
single ergoregion. Interestingly, these configurations
exhibit a unique feature—a system with two unstable light
rings for all Gaussian curvatures of the target space. This
distinctive characteristic draws comparisons with Kerr’s
rotating black hole, known for having one ergoregion and a
system of two counter-rotating unstable light rings.
A notable feature of the examined configurations is

that, as the Gaussian curvature increases, the equatorial
domain of the ergoregions negligibly expands from
RER ∈ ½0; 0.248� for negative κ, through RER ∈ ½0; 0.252�
for zero κ, to RER ∈ ½0; 0.258� for positive κ. Each region
hosts only one unstable light ring, prograde rotating
regarding the black hole’s rotation. Beyond the ergore-
gions, each configuration allows for a second, outer
unstable light ring retrograde rotating concerning the
black hole.
Interestingly, with an increase in Gaussian curvature,

the inner rings move slightly closer to the horizon,
acquiring radii RLR ¼ 0.095, RLR ¼ 0.094, and RLR ¼
0.093 for negative, zero, and positive κ, respectively.
Simultaneously, the outer rings move away from the black

hole as photons adopt orbits with radii RLR ¼ 0.471,
RLR ¼ 0.478, and RLR ¼ 0.488, correspondingly for neg-
ative, zero, and positive κ.
The distinctive behavior of unstable prograde and

retrograde light rings results in a shift in the equatorial
portions of the shadows from west to east with increasing
Gaussian curvature. Notably, this effect occurs when
adjusting the curvature of the target space while keeping
a constant the normalized charge q for each solution. On
the contrary, the phenomenon intensifies with an increase
in the frequency ωs=μ, or equivalently, with a rise in the
angular velocity of the horizon as the scalar field is
synchronized with the rotation of the black hole.
Furthermore, as depicted in Fig. 10, negative Gaussian
curvature of the target space leads to forming a shadow
with a larger area than the case without curvature.
Conversely, with positive Gaussian curvature, the shadow
area decreases. The reduction in shadow size appears as an
outcome of the proportionally smaller fraction of the
horizon mass to the ADM mass. Nevertheless, despite
the varied Gaussian curvature, the shadows maintain a
D-like shape, a distinctive feature resembling a rotating
Kerr black hole as observed from the equatorial plane.

FIG. 10. Examples of shadows which illustrate the transition between shadows for different Gaussian curvatures κ∈ f−5; 0; 5g and
black hole horizon rH ¼ 0.2. The left panel corresponds to configuration V−5

0.2 with κ ¼ −5, ωs=μ ¼ 0.883526, Mμ ¼ 0.847374 and
q ¼ 0.848888, the center panel corresponds to configuration V0

0.2 with κ ¼ 0, ωs=μ ¼ 0.895538, Mμ ¼ 0.878726 and q ¼ 0.850778,
while the right panel corresponds to configuration V5

0.2 with κ ¼ 5, ωs=μ ¼ 0.907762, Mμ ¼ 0.884665 and q ¼ 0.843196. To clarify
the interpretation of the color components in the images and their deformation, a color legend and a grid are provided in Fig. 3. Detailed
physical quantities of the solution are provided in Table I in Appendix A.
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6. Model VI, rH = 0.3, q ≃ 0.65: Single ergoregion models with quasicircular shadows

Finally, to study the structure of the system of light rings and ergoregions for an event horizon rH ¼ 0.3, we choose
configurations VIκ0.3, where κ∈ f−5; 0; 5g (as indicated in Fig. 1). These configurations are characterized by a normalized
charge q ≃ 0.647. The corresponding characteristics of the light rings are presented in the table below, and shadow images
are exposed in Fig. 11.

Configuration Fig. Ergoregions RER LR RLR Stability η gtt dφ=dt Chaos

−5.6 11 1 ER [0, 0.1968] h− 0.1599 Unstable þ þ þ No
hþ 0.4306 Unstable − − −

0.6 11 1 ER [0, 0.1972] h− 0.1598 Unstable þ þ þ No
hþ 0.4310 Unstable − − −

5.6 11 1 ER [0, 0.1976] h− 0.1597 Unstable þ þ þ No
hþ 0.4314 Unstable − − −

Similar to solutionsV with an event horizon of rH ¼ 0.2,
configurations VI also possess a system of two unstable
light rings and one ergoregion for each of the Gaussian
curvatures of the target space κ. The main distinguishing
feature here is that the Gaussian curvature has a negligible
effect on the radii of the two light rings and the equatorial
domain of the ergoregion. Specifically, the ergoregions
extend from the event horizon and reach distances, RER ∈
½0; 0.1968�, RER ∈ ½0; 0.1972�, and RER ∈ ½0; 0.1976�, cor-
responding to negative, zero, and positive κ, respectively.
Additionally, within the ergoregions, a prograde rotating
light ring exists. With an increase in the curvature of the
target space, the radii of those light rings decrease insig-
nificantly, estimated as RLR ¼ 0.1599, RLR ¼ 0.1598, and
REL ¼ 0.1597, for negative, zero, and positive κ, respec-
tively. Moreover, the outer light rings, situated beyond the
ergoregions, rotate retrograde relative to the black hole
rotation and expand with increasing Gaussian curvature:

RLR ¼ 0.4306, RLR ¼ 0.4310, and RLR ¼ 0.4314, for neg-
ative, zero, and positive κ, respectively. Concurrently, as
exposed in Fig. 11, despite the different Gaussian curva-
ture, the shadows exhibit an O-like shape, and due to the
almost constant fraction of the horizon mass to the ADM
mass, their area appears the same to an observer from the
equatorial plane.

V. CONCLUSION

In this work we consider the shadow cast by rotating
hairy black holes coupled to two nontrivial time-periodic
scalar fields. The scalar fields may be viewed as coordi-
nates in a nonphysical Riemannian space possessing a
constant curvature. Thus, the black hole solutions can be
divided into three classes according to the sign of its
Gaussian curvature. Each class encompasses a wide range
of solutions with different phenomenology depending

FIG. 11. Examples of shadows which illustrate the transition between shadows for different Gaussian curvatures κ∈ f−5; 0; 5g and
black hole horizon rH ¼ 0.3. The left panel corresponds to configuration VI−50.3 with κ ¼ −5, ωs=μ ¼ 0.988000, Mμ ¼ 0.319008 and
q ¼ 0.646883, the center panel corresponds to configuration VI00.3 with κ ¼ 0, ωs=μ ¼ 0.988000, Mμ ¼ 0.320010 and q ¼ 0.647791,
while the right panel corresponds to configuration VI50.3 with κ ¼ 5, ωs=μ ¼ 0.988000, Mμ ¼ 0.321013 and q ¼ 0.648605. The color
setup and grid notation are explained in Fig. 3, while detailed physical quantities are listed in Table I in Appendix A.
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on the amount of scalar hair, which can be measured by a
normalized charge q∈ ð1; 0Þ, representing the ratio
between the scalar field Noether charge and the black hole
spin. Solutions with high values of the normalized scalar
charge approaching q ¼ 1 possess similar properties as the
solitonlike solutions of the Einstein-scalar field equations
representing boson stars. On the other hand, for small q ≈ 0
the backreaction of the scalar fields on the spacetime
geometry vanishes and the solutions reduce to scalar
clouds. Near this limit, the hairy black holes interact
weakly with the scalar fields and resemble in their proper-
ties the Kerr black hole.
In our analysis, we examine the influence of the

Gaussian curvature and the normalized charge q on the
properties of the hairy black hole shadow. For that purpose,
we consider configurations with several representative
values of q and study the corresponding solutions for
positive, negative and zero curvature of the target space.
The shadows of the selected solutions are constructed
numerically using a ray-tracing procedure. We observe
the following systematical behavior. The shadows for
extremely high values of the normalized charge
(q > 0.997 for the presented models) exhibit large regions
of chaotically scattering geodesics for all considered
Gaussian curvatures. This leads to the formation of multiple
disconnected shadow images. Increasing the Gaussian
curvature, the chaotic behavior becomes milder producing
more coherent shadow images. The chaotic behavior
further reduces if we consider lower normalized charges.
The shadows for charges in the range q ∼ 0.96–0.994
become more compact possessing fewer disconnected
components and a clearly defined dominant component.
Positive Gaussian curvatures lead again to more regular
shadow images compared to negative ones, as well as a
larger size of the central dark region. Conversely, for
negative Gaussian curvatures, the shadow size decreases
substantially and the chaotic region dominates. Finally,
for values of the normalized charge around q ¼ 0.85 the
chaotic behavior of the scattering geodesics becomes
negligible for all the Gaussian curvatures. For lower q
the shadow of the hairy black holes is represented by a
single oval component and resembles qualitatively the Kerr
black hole while its size is influenced relatively weakly by
the Gaussian curvature.

The presence of chaotic regions and the shadow shape
significantly influence the optical appearance of accretion
disks around hairy black holes. Exploring this problem is
ongoing work, but we can offer some qualitative insights.
What matters most when calculating the actual image
produced by a given accretion disk around the black hole
is the presence of a central compact shadow. Having
extensive chaotic regions, like those observed very close
to the boson star limit with q approaching 1, would likely
not produce significant or any dark region of the image,
which practically contradicts present observations. Thus,
models with very large q, or models with hefty scalar hair,
can be excluded by the Event Horizon Telescope obser-
vations. Large positive Gaussian curvature can potentially
relieve this problem because it increases the size of the
central dark shadow and decreases the chaotic regions close
to the boson star limit. In the present paper, we have
considered only moderately high curvatures since the
models calculated in [36] were taken as a background. It
will be interesting to investigate whether this pattern
remains with a further increase in Gaussian curvature
and whether one can extend the dark region of the shadow,
as supported by current observations, even close to the
boson star limit (q ¼ 1).
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APPENDIX: PHYSICAL QUANTITIES
OF SELECTED SOLUTIONS

Below we present in detail the characteristics of the
solutions used to produce the black hole images. They
are taken from [36] where sequences of constant
horizon radii were constructed for various Gaussian cur-
vatures κ.
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