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We investigate quadratic quasinormal mode coupling in black hole spacetime through numerical
experiments of single perturbed black holes using both numerical relativity and second-order black hole
perturbation theory. Focusing on the dominant l ¼ jmj ¼ 2 quadrupolar modes, we find good agreement
(within ∼10%) between these approaches, with discrepancies attributed to truncation error and
uncertainties from mode fitting. Our results align with earlier studies extracting the coupling coefficients
from select binary black hole merger simulations, showing consistency for the same remnant spins.
Notably, the coupling coefficient is insensitive to a diverse range of initial data, including configurations
that led to a significant (up to 5%) increase in the remnant black hole mass. These findings present
opportunities for testing the nonlinear dynamics of general relativity with ground-based gravitational wave
observatories. Lastly, we provide evidence of a bifurcation in coupling coefficients between counterrotating
and corotating quasinormal modes as black hole spin increases.
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I. INTRODUCTION

According to the theory of general relativity, themerger of
two black holes results in a highly distorted remnant that
quickly rings down to a stationaryKerr black hole [1–3]. The
gravitational wave signal during ringdown has been shown
to be well described by black hole perturbation theory
[3–10]. To linear order, black hole perturbation theory is
governed by the spin-�2 Teukolsky equation, which is a
separable partial differential equation governing a single
complex scalar field representing the two gravitational wave
polarizations [1,11]. The ringdown is expected to be
dominated by quasinormal modes (QNMs): damped sinus-
oids that are eigensolutions of the Teukolsky operator
[12–14]. The complex frequencies of these QNMs are
determined by the mass and spin of the remnant black hole,

thereby offering a uniquewindow to probe its properties and
test the (linearized) dynamics of general relativity [15–20].
It has also been shown that to second order in perturba-

tion theory, the dynamics of a Kerr black hole is governed
by the same Teukolsky operator T , but now with a source
term Sð1Þ quadratic in the linear order curvature perturba-

tion ψ ð1Þ
4 [21]:

T ψ ð2Þ
4 ¼ Sð1Þ ∼ ðψ ð1Þ

4 Þ2; ð1Þ

whereψ ð2Þ
4 gives the second order correction to the curvature

perturbation. When the linear perturbation contains QNMs,
the equation above predicts quadratic quasinormal modes
(QQNMs) [22–30]. These QQNMs represent particular
solutions of the sourced Teukolsky equation, with complex
frequencies as the sum of those from the driving modes.*hengrui.zhu@princeton.edu

PHYSICAL REVIEW D 109, 104050 (2024)

2470-0010=2024=109(10)=104050(9) 104050-1 © 2024 American Physical Society

https://orcid.org/0000-0001-9027-4184
https://orcid.org/0000-0001-7192-0021
https://orcid.org/0000-0003-0276-3856
https://orcid.org/0000-0002-5075-5116
https://orcid.org/0000-0002-8664-9702
https://orcid.org/0000-0003-4557-4115
https://orcid.org/0000-0001-5392-7342
https://orcid.org/0000-0003-2426-8768
https://orcid.org/0000-0001-9288-519X
https://orcid.org/0000-0001-5059-4378
https://orcid.org/0000-0002-5767-3949
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.104050&domain=pdf&date_stamp=2024-05-16
https://doi.org/10.1103/PhysRevD.109.104050
https://doi.org/10.1103/PhysRevD.109.104050
https://doi.org/10.1103/PhysRevD.109.104050
https://doi.org/10.1103/PhysRevD.109.104050


Additionally, their amplitudes exhibit a quadratic depend-
ence on those of the driving modes.
We now introduce our QNM conventions for clarity. As

in Ref. [20], we label the complex frequency and amplitude
of a QNM by ωplmn and Aplmn, where l and m are the
quantum numbers associated with the QNM angular
eigenfunctions (spin-weighted spheroidal harmonics), n
is the overtone index associated with the QNM radial
eigenfunctions, and p∈ f�g indexes the prograde (þ) and
retrograde (−) modes. For prograde modes, the phase front
rotates in the same angular direction as the horizon, while
the phase front of retrograde modes counterrotates.
We further write the frequency and amplitude for a

QQNM, driven quadratically by two linear QNMs (primed
and unprimed), as follows:

ωplmn×p0l0m0n0 ¼ ωplmn þ ωp0l0m0n0 and ð2Þ

Aplmn×p0l0m0n0 ¼ Rplmn×p0l0m0n0AplmnAp0l0m0n0 ; ð3Þ

where Rplmn×p0l0m0n0 is a proportionality constant that is
determined by the second order dynamics of general
relativity. We refer to Rplmn×p0l0m0n0 as the quadratic
coupling coefficient, which is the main focus of this paper.
For black hole remnants formed from binary coales-

cence, one expects the quadrupolar l ¼ jmj ¼ 2 modes to
be maximally excited in nonprecessing, quasicircular black
hole binaries with close-to-unity mass ratio [3,7,9,31].
Therefore, the quadratic coupling of the prograde l ¼
jmj ¼ 2 fundamental mode is of great interest, as an
astrophysical measurement of the QQNM would directly
probe the nonlinear dynamics of Kerr black holes as
predicted by general relativity.
Recent works have identified QQNMs from the ring-

down signal in numerical relativity simulations of binary
black hole mergers [29,32–36]. In particular, Refs. [33,34]
found that the quadratic coupling coefficient for the
prograde l ¼ m ¼ 2 fundamental mode was between
0.14 and 0.19 for the black hole remnants with dimension-
less spin ranging from χ ¼ 0.5–0.7, formed from non-
precessing, quasicircular binaries with mass ratio ranging
from 1 to 8. Semi-analytical results using the WKB
approximation for a Schwarzschild black hole, and calcu-
lations using the Kerr/CFT correspondence also produce
numbers in this range [37,38]. Finally, an ongoing semi-
analytical work without these approximations also finds a
coupling coefficient consistent with these numbers [39].
A natural question then arises: Can we use QQNMs to

test nonlinear dynamics of GR? We take a first step in
addressing this question by assessing the spin and initial
data dependence of the quadratic coefficient. In this paper,
we present results from a series of numerical experiments
for a single perturbed black hole, both by solving the fully
nonlinear Einstein equations (through numerical relativity)
and the second order Teukolsky equation, in an effort to

gain a better understanding of the spin and initial data
dependence of quadratic mode coupling.1 In brief, we
find that:
(1) The quadratic coefficient measured from full

numerical relativity simulations is insensitive to a
wide class of initial conditions within fitting/trun-
cation error, even when the backreaction to the
background is substantial.

(2) The quadratic coefficients measured using second
order perturbation theory are within 10% of those
obtained from numerical relativity simulations, for
all black hole spins we considered. This discrepancy
is within the estimated uncertainties for high spin,
but outside of it at low spin.2

(3) The quadratic coefficient monotonically decreases
with spin up to χ ¼ 0.99, but not to zero.

(4) The quadratic coupling coefficient for the retrograde
mode bifurcates from that for the prograde as the
spin of the black hole increases.

This paper is organized as follows: in Sec. II we describe
our numerical setup for simulating a perturbed black hole
with both numerical relativity and second order perturba-
tion theory, and in Sec. III we present our procedure for
extracting the quadratic coefficient. In Sec. IV we show our
results regarding the spin and initial data dependence of the
quadratic mode coupling, and the coupling between retro-
grade QNMs. Lastly, we conclude in Sec. V. In the
Supplemental Material [41], we discuss the impact of
tetrad convention on the quadratic coefficient in Sec. I,
and numerical convergence in Sec. II. In Sec. III we assess
the impact of wave extraction method. Lastly we present
additional evidence regarding the coupling between retro-
grade modes in Sec. IV.

II. NUMERICAL SETUP

A. Evolution in full numerical relativity

To extract the quadratic coupling coefficient from the
fully nonlinear Einstein equations, we numerically simulate
a single perturbed Kerr black hole with the Spectral
Einstein Code (SpEC), using the generalized harmonic
formulation [42–44]. To assess the initial data dependence,
we use three different configurations for the initial pertur-
bation, representing an ingoing pulse from large distance,
an outgoing pulse from the vicinity of the black hole
horizon, or a pulse corotating with the black hole horizon.
We perform the simulations in spherical Kerr-Schild (SKS)
coordinates [45], where the coordinate shape of the
horizons are round spheres regardless of the black hole
spin, simplifying the excision procedure.

1Similar approaches have been used in, e.g., Ref. [40], to
investigate mode coupling using numerical relativity.

2We cannot rule out an as-of-yet unidentified error, or
unaccounted for systematic in the rather vast pipeline going
from multiple aspects of theory to mode extraction.
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The angular sector of the metric perturbation is chosen to
be a pure-spin tensor spherical harmonic. Following the
convention in Ref. [46] for the angular components, we
have

hijðr; θ;ϕÞ ¼ RðrÞYlm
ij ðθ;ϕÞ; ð4Þ

where RðrÞ is the radial profile of the gravitational
perturbation, and we set the radial tensorial components
to zero, that is Ylm

ri ¼ 0 for i∈ fr; θ;ϕg. The time deriv-
atives differ for the three class of initial conditions:
(1) ingoing (þ) and outgoing (−) pulse initial data:

∂thijðr; θ;ϕÞ ¼ � dRðrÞ
dr

Ylm
ij ; ð5Þ

(2) rotating pulse initial data:

∂thijðr; θ;ϕÞ ¼ −ΩRðrÞ∂ϕYlm
ij ; ð6Þ

where Ω is the angular frequency of the pulse, and we
restrict RðrÞ to be a Gaussian of the form:

Rðr; w; r0Þ ¼ exp

�
−
ðr − r0Þ2

w2

�
: ð7Þ

We choose r0 ¼ 30M for the ingoing pulse (scattering)
initial condition, and r0 ¼ 3M otherwise. For the rotating
pulse, we set Ω ¼ ℜfωþ220g so that the pulse corotates
with the horizon; we refer to this initial condition as the
prograde pulse for the remainder of the paper.
For the angular sector, in this work we restrict our

attention to initial data that only contains a perturbation
with l ¼ m ¼ 2 at linear order. Quadratic coupling between
other angular modes can also be investigated based on the
formalism outlined here.
The approximate spatial metric and its derivative on the

Cauchy slice, to first order in the perturbation amplitude A
is then given by

gijðr; θ;ϕÞ ≈ gSKSij ðr; θ;ϕÞ þ Ahijðr; θ;ϕÞ; ð8aÞ

∂tgijðr; θ;ϕÞ ≈ A∂thijðr; θ;ϕÞ: ð8bÞ

To ensure that our initial data satisfies the Hamiltonian and
momentum constraint equations, we set Eq. (8) to be the
conformal metric and its time derivative, and solve for the
shift and the conformal factor using the conformal-thin-
sandwich solver implemented in SpEC, according to the
procedure outlined in Ref. [47].
For a given simulation, we calculate the waveform at

future null infinity using the Cauchy-characteristic evolu-
tion (CCE) module implemented in SpECTRE [48–54].
Then, we perform a BMS transformation to transform
the resulting waveform to the superrest frame of the

remnant black hole, using the procedure outlined in
Refs. [55,56] and the code SCRI [57,58].

B. Evolution with second order perturbation theory

To extract the quadratic coupling coefficient from the
second order black hole perturbation theory, we use the
code developed in Refs. [24,59] to solve the second order
Teukolsky equation [cf. Eq. (1)]. The code adapts a
hyperboloidal coordinate, which connect the black hole
horizon to future null infinity in a single smooth slice
[60,61]. We use the waveform at the future null infinity to
be fully consistency with numerical relativity.
The choice of initial conditions for the second order code

is limited, as constraint-satisfying initial data on the same
Cauchy slice T ¼ T0 for the first-order perturbation is not
yet available. Instead, as in Ref. [24], we set up a radially
ingoing pulse with compact support. Similar to the non-
linear setup, we specify the angular sector of the perturba-
tion to be the l ¼ m ¼ 2 spin-weighted spherical
harmonics for the first-order perturbation. To the causal
future of the trailing edge for this pulse, reconstructing the
first order metric needed for the second order source
function does not require solving a Cauchy constraint
problem. Consequently, integration of the second order
Teukolsky equation starts at T ¼ T1 > T0, where T1 is
entirely within the region where a constraint-satisfying
source function is known. This means from the perspective
of the full perturbation up to second order, the effective
initial data is at T ¼ T1, with that for the first order
perturbation differing from the functional forms we specify
at T ¼ T0 by forward propagation with the Teukolsky
operator to T ¼ T1.
With that said, regardless of the spin of the background

black hole, at T ¼ T0 we choose pulse widths of 1.8, 2.8,
and 3.8 M, with the inner edge of each pulse fixed at 2.2 M.
We refer readers to Ref. [24] for further details regarding
the initial conditions.

III. ANALYSIS

We perform a linear least-squares fit to the resulting
waveforms in terms of the Weyl scalar ψ4 at future null
infinity with linear sums of damped sinusoids, for both the
nonlinear and second order code. For the nonlinear sim-
ulations, the mass of the black hole may change, so we
rescale the waveform time and normalize the waveform by
the remnant mass:

t → t=Mrem; ð9aÞ

ψ4 → rψ4Mrem: ð9bÞ

In previous studies regarding binary black holes, the
rescaling is done using the initial Christodoulou mass of
the binary Minit, as in Refs. [33,34], which results in a bias
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in the measured quadratic coefficient (in strain) by a factor
of Mrem=Minit. This factor is typically 0.95 for near equal-
mass binaries. Therefore, we multiplied numbers quoted in
Refs. [33,34] by 0.95.
Furthermore, as we discuss in the Supplemental Material

[41], different tetrad conventions can lead to different
numerical values of the quadratic coefficient. Here, we
normalize the waveform quantities based on the tetrad and
coordinates conventions adopted in the SpEC code [62].
Lastly, while we fit ψ4 to obtain the amplitudes for the
QNMs, we convert the ψ4 amplitudes to that of the
gravitational strain for comparing with previous results.
We use that ψ4 ¼ −ḧ at the future null infinity, so for
QNMs with the form in Eq. (10), the amplitude in strain is
given by Ah

plmn ¼ Aψ4

plmn=ω
2
plmn.

For the m ¼ 2 modes (or the linear sector), we use the
ansatz:

ψ4;lmðtÞ
¼

X
l;m;n;p∈ f�g

Aplmn

X
l0
cpll0mn expf−iωpl0mntg; ð10Þ

where cpll0mn is the spherical-spheroidal mixing coefficient,
ωpl0mn is the frequency of the linear quasinormal modes
(calculated using the QNM package [63]), and Aplmn is the
amplitude for the QNM.
Form ¼ 2, we simultaneously fit for the l ¼ 2 and l ¼ 3

modes, each with the prograde and retrograde fundamental
modes and two overtones, taking into account the angular
eigenfunction [see Eq. (7) of Ref. [64]]. For m ¼ 4, we
simultaneously fit l ¼ 4 and l ¼ 5 modes, each with the
prograde and retrograde fundamental modes and the first
overtones. In addition, we add the quadratically driven
prograde and retrograde modes to our fit, with frequencies
ωþ220×þ220 ¼ 2ωþ220 and ω−220×−220 ¼ 2ω−220, respec-
tively. We calculate the spherical-spheroidal mixing coef-
ficients for these QQNMs with frequency 2ωþ220 and
2ω−220 using the QNM package [63], solving for the
spheroidal harmonics with oblateness parameter aω.
We do not find that including the quadratically

driven mode with frequency ωþ220×−220 ¼ ωþ220 þ ω−220
improves the fit, and thereby leave this QQNM out of our
fitting. This mode arises from the coupling between the
prograde and retrograde fundamental modes, and its
amplitude is likely suppressed due to the small overlap
between the radial eigenfunctions. Further analytical inves-
tigation may shed light on the coupling coefficients
between these modes [39].
We perform our fitting procedure with a range of start

times, from 10M before to 80 M after the measured peak of
jψ4j for the l ¼ m ¼ 2 angular mode, where M is the mass
of the remnant. We extract the complex amplitude of both
the driving QNM Aþ220 and driven QQNM Aþ220×þ220

when their amplitudes are most stable with respect to the

fitting start time; specifically, we search for a window of
20 M within the range of the fitting start times where the
standard deviation relative to the mean of the fitted
amplitude is the smallest [64,65]. We take the mean of
the amplitude across this 20 M window as the fitted
amplitude, and the corresponding standard deviation as
the uncertainty in the fit. We then calculate the quadratic
coefficient as Aþ220×þ220

A2
þ220

, propagating the uncertainties from

the fitted amplitudes. The same procedure is used for the
retrograde modes, and the above set of steps is carried out
independently for each individual simulation.

IV. RESULTS

A. Spin dependence

We show the measured amplitude and phase of the
prograde quadratic coefficient as a function of spin for a
wide range of initial conditions in Fig. 1, from both the
second order code (black) and numerical relativity (colored).
Both the amplitude and phase of the quadratic coefficients
show agreement across all spin to within ∼10%, with larger
deviations occurring at low and high spin.
At high spin, the resolution from numerical relativity is

only marginally sufficient to resolve the nonlinear sourcing
of the driven mode.3 For the outgoing and prograde initial
conditions, the retrograde modes are excited with signifi-
cant amplitudes, and thereby the relative fitting error of the
retrograde modes dominates, causing larger uncertainties
for the prograde modes. This large excitation (as seen by a
distant observer) is because the effective radial potential
barrier for the counterrotating perturbation is shallower
than that for the corotating one [66], so the retrograde
component of the perturbation near the black hole horizon
can escape to distant observers more easily. For the
prograde initial conditions, the retrograde modes are likely
introduced from the corrections to the metric arising from
solving the constraint equations.
At low spin, our measurement of the quadratic coupling

constant from numerical relativity and the second order
code disagree by a margin of 3 times the fitting errors,
while the semianalytical calculation in Ref. [39] seems to
be in better agreement with the numerical relativity result,
sitting at only 1.5σ away. Here, we give a few possible
explanations for the disagreement. First, the quadratic
coefficient may depend mildly on the initial data, and as
explained above we are not at present able to set the same
initial data for the second order perturbation and numerical
relativity codes.4 Second, the stability of our quasinormal

3We present numerical convergence in the Supplemental
Material [41].

4In Fig. 3, we show results from changing the pulse width in
the numerical relativity code. This suggests variations of ∼10% in
the quadratic coefficient with width are possible, however the
estimated uncertainties here are of similar magnitude.
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mode fits with respect to the fitting start time is likely a
necessary but not sufficient criteria for extracting the
amplitude of a QNM, so the uncertainties we use could
underestimate the true uncertainty of the measured QNM
amplitudes [67]. We cannot rule out the possibility that
there is a source of systematic error, from various aspects of
theory to numerical evolution codes. We leave this 10%
disagreement between the second order perturbation theory
and numerical relativity results as an open question for
future investigation.
Intriguingly, we find that the quadratic coefficient

decreases monotonically with black hole spin up to
χ¼0.99, in general agreement with findings of Ref. [68].
For near-extremal black holes, onemight naively expect that
the nonlinear effects are amplified due to the presence of
“zero-damped”modes,which decay very slowly as the black
hole spin approaches extremality [69–72]. This being said,
the precise analytical form of the quadratic coupling
between QNMs is yet to be understood for Kerr black holes.
We additionally caution that one should not extrapolate this
decrease toward the extremal limit. At exact extremality, the
frequency of the QQNM coincides with the prograde l ¼
m ¼ 4 QNMs, which are now zero-damped with frequen-
cies approaching the onset of superradiance [73–75].
Therefore, one could expect potential nonlinear resonances,
and the quadratic coupling coefficient could change dras-
tically toward χ ¼ 1. Additionally, Ref. [70] proposed that a

different re-summation is required to study turbulence at
near extremal spin, where standard perturbation theory
methods may fail. We defer a detailed analysis of near-
extremal black hole perturbations to future work.

B. Initial data dependence

In astrophysical mergers we expect the initial pertur-
bation to the remnant black hole to strongly depend on the
progenitor binary properties [31,76–78]. Without ab initio
calculations of the spectrum of linear modes excited for a
given progenitor, null tests of the second order dynamics
of Kerr black holes as predicted by general relativity could
still be carried if the quadratic coupling coefficients do not
or depend only weakly on initial data. In this section, to
help assess whether this is the case, we study additional
initial data dependence of the quadratic coefficient.
Beyond the three classes of initial conditions with the
range of spin presented in Fig. 1, we explore the
dependence on the perturbation amplitude (or equiva-
lently higher-order effects) and pulse width for the ingoing
pulse initial condition, using the full numerical relativ-
ity code.
Dependence on perturbation amplitude— For moderate

to equal mass ratio mergers, the remnant black hole mass
and spin could change considerably during ringdown due to
the back-reaction of the relatively large amount of

FIG. 1. Amplitude (left) and phase (right) of the quadratic coupling coefficient for the prograde l ¼ m ¼ 2 fundamental mode as a
function of black hole spin from the second order perturbation theory (black) and full numerical relativity (colored) codes. Results from
numerical relativity are color-coded by the class of initial condition [Eqs. (5) and (6)]; the width of each pulse is fixed to be w ¼ 2M
[Eq. (7)], with an amplitude such that the change in black hole mass and spin is less than 0.1%. The multiple black dots at the same spin
represent initial conditions with the three different pulse widths used in the second order code (see Sec. II B). Previous numerical results
are shown as boxes with the reported range of spin and uncertainties, where Mitman et al. refers to [33], and Cheung et al. refers to [34];
and Ma et al., an ongoing semianalytical calculation [39], is shown as the red star. The deviation at low spin is unexpected—see the text
for a discussion.
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gravitational energy emitted. A pertinent question then is
how this may affect the quadratic coupling coefficients.
In Fig. 2, we show the quadratic coefficients measured

from scattering ingoing pulses of different amplitudes off a
Schwarzschild black hole. The largest amplitude results in a
change in the black hole mass of roughly 5%, consistent
with what one would expect in an equal mass merger. The
measured values all agree within the fitting error, across a
large range of perturbation amplitude (by a factor of ∼50 in
the energy of the perturbation). Note that this does not
imply that there are no measurable higher order effects
present, as we are only fitting for the QQNM, which filters
out third and higher order effects that would possess
different characteristic frequencies. Furthermore, higher
order effects would decay faster than the quadratic ones;
since our fitting is performed at rather late times (roughly
20 M after the peak) these higher order effects would have
already decayed significantly, e.g., absorption-induced
mode excitation [79].
Dependence on radial width— Astrophysically, the

characteristic radial scale of the initial perturbation to
the remnant black hole is not well-understood and likely
also depends significantly on parameters of the progenitor
binary, such as the mass ratio and the spin configurations.
In Fig. 3, we investigate the dependence of the quadratic

coefficient on the width of the ingoing gravitational wave

pulse. We set the width w to range from a quarter to four
times the Schwarzschild radius of the background ADM
spacetime mass. We find that for both Schwarzschild and
χ ¼ 0.7Kerr black holes, the quadratic coupling coefficient
is rather insensitive to the pulse width, within fitting errors.
For the narrower pulse, this error arises from the larger
truncation error due to limited resolution. For the wider
pulses, the error comes from the longer-lasting transient
and significant presence of the retrograde modes, affecting
the mode extraction. Nevertheless, the variation is suffi-
ciently small to suggest that the quadratic coupling coef-
ficients could be governed by properties intrinsic to the
Kerr background, rather than being functions of the initial
data, consistent with arguments from the analytical findings
in Refs. [37,39]. This opens up further possibilities for
testing nonlinear dynamics of GR with black hole ring-
down spectroscopy.

C. Retrograde mode coupling

Thus far in the literature, only the coupling between
the prograde QNMs has been demonstrated [29,32–35].
A natural question of theoretical interest is whether the
retrograde modes couple with the same strength as the
prograde modes. In Fig. 4, we show the quadratic coupling
coefficients among the prograde and retrograde l ¼ m ¼ 2
fundamental modes. The two coupling coefficients agree
for Schwarzschild and bifurcate as the black hole spin

FIG. 2. Quadratic coupling coefficient of the prograde l¼m¼2
fundamental mode for Schwarzschild vs the fractional change in
black hole Christodoulou mass, calculated from numerical
relativity with the ingoing initial condition, with r0 ¼ 30M
and w ¼ 2M. The red dashed line is the average of the measured
values weighted by the uncertainties, and the black dashed line
shows the semianalytical calculation in Ref. [39].

FIG. 3. Quadratic coupling coefficient of the prograde l¼m¼2
fundamental mode for Schwarzschild and χ ¼ 0.7 Kerr black
holes as a function of pulse width w, calculated from numerical
relativity with the ingoing initial condition, with r0 ¼ 30M and
the width given by the x axis. The blue points are shifted slightly
to the right to better show the error bars.
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increases. This is expected as the frequencies and the radial
eigenfunctions of the prograde and retrograde modes
diverge as the black hole spin increases. The prograde
modes are more efficiently trapped within the black hole’s
light ring, leading to lower decay rate toward higher spin.
On the other hand, the retrograde modes are more effi-
ciently absorbed at higher spin, therefore leading to a larger
decay rate [74]. Further analytical investigations may shed
light on the physical origin of this bifurcating behavior.

V. CONCLUSION

We investigated quadratic coupling of the l ¼ m ¼ 2
QNMs during black hole ringdown by simulating a single
perturbed black hole. Using both numerical relativity and
second order perturbation theory, we explored the quadratic
coupling coefficient as a function of black hole spin up to
χ ¼ 0.95 and 0.99 respectively. Regardless of the initial
condition, we find close alignment between second-order
perturbation theory predictions and numerical relativity

results, with a discrepancy of less than 10%. At moderate to
high spins, this difference was within estimated uncertain-
ties, but not so in the limit χ ¼ 0. This particular anomaly
awaits further exploration in future investigations.
Furthermore, we found that the quadratic coupling

coefficient for the fundamental l ¼ m ¼ 2modes decreases
with increasing spin, by a factor of almost 2 going from
χ ¼ 0 to χ ¼ 0.99. Earlier studies of this coefficient from
binary black hole merger simulations that led to remnants
with spins χ ∈ 0.5–0.7 are consistent with our results in this
range, supporting the conclusion that there is at most mild
dependence on initial conditions. This implies that quad-
ratic coupling coefficients encode properties more intrinsic
to the remnant Kerr black hole than details of the pertur-
bation, and hence could be used to test the nonlinear
dynamics of Kerr black holes as predicted by general
relativity.
We also performed a preliminary study of the coupling

from retrograde QNMs, finding they decrease more rapidly
with spin compared to their prograde counterparts.
Understanding this in more detail, as well as an inves-
tigation of quadratic coupling beyond the dominant quad-
rupolar modes, is left to future works.
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FIG. 4. Quadratic coupling coefficient for the prograde and
retrograde l ¼ m ¼ 2 fundamental modes as a function of spin.
Both are measured with the ingoing initial condition using
numerical relativity. The prograde mode is measured with a
pulse width w ¼ 2M whereas the retrograde mode with w ¼ 8M,
as wider pulse preferentially excites the retrograde modes (see the
Supplemental Material [41]) [80]. The red dots are shifted
slightly to the right to better show their error bars. We cannot
get a stable estimate of the retrograde coupling coefficient from
the second order code because the 1=r compactification under-
resolves the far-field region, therefore fails to resolve a wide pulse
traveling inward away from the black hole horizon.
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