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A general formalism to find the density profile of a slowly rotating stellar object in modified Einstein
gravity is presented. We derive a general form of the modified Lane-Emden equation in the presence of
rotation and a general form of its possible solutions under the slow rotation approximation for a wide class
of modified Einstein gravity theories.
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I. INTRODUCTION

A polytropic equation of state (EOS) turns out to be a
useful approximation to describe matter properties in
substellar and stellar objects, as well as neutron stars. It
has a simple form

P ¼ Kρ1þ1
n; ð1:1Þ

relating stellar density ρ to the pressure P, where K and n
are polytropic parameters or functions, taking different
expressions and values being dependent upon the class of
stellar objects we are considering. Because of that, it allows
one to analyze, often analytically, a given astrophysical
object in modified Einstein gravity theories [1–4] before
applying a more complex approach, with more realistic
microphysics. However, even with such a simple form,
many sophisticated processes can be hidden in this EOS.
The most important one is the electron degeneracy, crucial
in modeling some layers of the Sun [5,6] and other main
sequence stars [7,8], low-mass stars [9–11], brown dwarfs,
and giant exoplanets [12] as well as white dwarfs [13–18].
Another improvement, which can also be incorporated into
microphysics modeling and then rewritten in the polytropic
form, is strongly coupled plasma [19], finite gas temper-
atures with phase transition points between metallic hydro-
gen and the molecular state [20]. Moreover, a merger of the
third-order finite strain Birch-Murgnagham equation of
state [21] with the Thomas-Fermi-Dirac one [22–26] turns
out to be also approximated by the polytropic EOS [27],
which is suitable to describe matter behavior in cold low-
mass spheres such as terrestrial planets.

The set of following equations: polytropic EOS (1.1),
Poisson equation (G is the Newton’s gravitational constant,
with U being the gravitational potential)

∇2U ¼ −4πGρ; ð1:2Þ

together with the equation of hydrostatic equilibrium in
Newtonian gravity, both considered in the spherical-sym-
metric spacetime

1

r2
d
dr

�
r2
dU
dr

�
¼ −4πGρ ð1:3Þ

dP
dr

¼ ρ
dU
dr

ð1:4Þ

can be rewritten into the Lane-Emden equation (LEE)

1

ξ2
d
dξ

�
ξ2

dθ
dξ

�
¼ −θn; ð1:5Þ

where θ is a function of ξ, satisfying the boundary
conditions θð0Þ ¼ 1, θ0ð0Þ ¼ 0, with 0 denoting derivative
with respect to ξ. To do so, one needs to introduce the
dimensionless variables θ and ξ, such that

ρ ¼ ρcθ
n; r ¼ rcξ with r2c ¼

Kðnþ 1Þρð1n−1Þc

4πG
; ð1:6Þ

where ρc denotes the central density. The solution of the
LEE with a particular value of the polytropic index n and
polytropic constant K provides the total stellar mass M,
stellar radius R, and the density profile (1.6), pressure (1.1),
temperature T as well as the core quantities ρc and Tc:

M ¼ 4πr3cρcωn; R ¼ γn

�
K
G

� n
3−n
M

1−n
n−3; ð1:7Þ
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ρc ¼ δn

�
3M
4πR3

�
; T ¼ Tcθ ¼ K

mHμ

kB
ρ

1
n
cθ; ð1:8Þ

where kB is Boltzmann’s constant, mH is the mass of
Hydrogen atom, and μ being the mean molecular weight
while

ωn ¼ −ξ21
dθ
dξ

����
ξ¼ξ1

; ð1:9Þ

γn ¼ ð4πÞ 1
n−3ðnþ 1Þ n

3−nω
n−1
3−n
n ξ1; ð1:10Þ

δn ¼ −
ξ1

3 dθ
dξ jξ¼ξ1

: ð1:11Þ

For more properties, see [28].
On the other hand, modified Einstein gravity, which we

will refer to as modified gravity (MG) later in the text,
often introduces additional terms to the Poisson equation
[11,29–32], which we can write in a generic form as

1

r2
d
dr

�
r2

dU
dr

�
¼ −4πGρþ LVmod0ðrÞ; ð1:12Þ

where the modification term LVmod0ðrÞ is a general
function that is different for different classes of modified
gravity theories. As an example, we can have a look at
three of the most popular and working models of modified
gravity theories, in which the corresponding Poisson
equation takes the following forms:

(i) In generalized beyond-Horndeski theories [33–35]
the Poisson equation takes the form (because of the
partial breaking of Vainshtein mechanism [36–38])
[11,16]:

∇2V ∼ −
κ

2

�
ρþϒ

4
∇2ðr2ρÞ

�
ð1:13Þ

where ϒ is the modified gravity parameter for the
beyond-Horndeski class of theories.

(ii) In Palatini fðRÞ gravity, the Poisson equation
reads [31]

∇2V ∼ −
κ

2
ðρþ 2β∇2ρÞ ð1:14Þ

where κ ¼ 8πG and β is a constant1 associated to the
OðR2Þ term of the function fðRÞ, with R being the
Palatini-Ricci scalar. The constant β thus parametr-
izes this particular class of modified gravity theories.

(iii) In Eddington-inspired Born-Infeld (EiBI) gravity,
the Poisson equation reads [29,39–41]

∇2V ∼ −
κ

2

�
ρþ ϵ

2
∇2ρ

�
ð1:15Þ

where ϵ ¼ 1=MBI, with MBI being the Born-Infeld
mass. ϵ is the modified gravity parameter for this
class of theories.

We will discuss the significance of such forms of the
Poisson equation in MG theories, in the further part of the
article.
As in the preceding case of Newtonian gravity, intro-

ducing to the generic Poisson equation (1.12) in MG
theories, the polytropic EOS (1.1), the pressure balance
equation (1.4) along with the dimensionless quantities (1.6),
we can write down the modified Lane-Emden equation
(MLEE)

1

ξ2
d
dξ

�
ξ2

dθ
dξ

�
¼ −θn þ gmod0ðξÞ ð1:16Þ

where the extra term appearing in the above

gmod0 ¼
LVmod0

4πGρc
ð1:17Þ

is a dimensionless term induced by a given MG. The
boundary condition for θ remains the same as for Eq. (1.5).
So far, most of the stellar and substellar objects have

been studied in MG with some form of polytropic EOS,
however, in the spherical-symmetric spacetime (for review,
see [30,42,43]). In order to obtain limiting masses, such as,
for instance, the Chandrasekhar mass limit of white dwarfs
[16,44–52], the minimum main sequence mass [53–56],
minimum mass for deuterium burning [57], Jeans [58] and
opacity mass [59], the authors were using the considered
EOS. To constrain models of gravity with the use of
seismic data from stars [5,6] and rocky planets [60–63], the
polytropic EOS was also applied to describe at least some of
the object’s layers. In a similar manner, to obtain light
elements’ abundances [64], the polytrope was also adopted,
the same as in the evolutionary phases of various astro-
physical objects [65–75].
Although the astrophysical objects rotate, rotating poly-

tropes [76–84] (for the second order approximation,
see [85]) have not been studied widely in the nonrelativistic
framework of MG. Several studies of stellar rotation in MG
in the relativistic framework are found in the literature.
Rotating neutron stars have been studied in the context of
various MG theories using the polytropic equation of state
such as scalar-tensor theories [86], dilatonic Einstein-Gauss-
Bonnet theory [87], and Rastall’s gravity [88]. In the
relativistic context [89,90] one usually uses the numerical
approach, which is even more inevitable in the case of

1β is of dimension ½L�2, where [L] corresponds to length
dimension.
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modifications introduced to the Tolman-Oppenheimer-
Volkoff equation by MG (for review, see [30] and references
therein). Because of this poorly studied branch, we are going
to look for an analytic density profile given for a wide class
of MG in the nonrelativistic regime. Interestingly, MG’s
effects in the stellar interior are prominent even in the
nonrelativistic limit. However, let us comment that since the
slow-rotation approximation resembles anisotropic fluid in
the nonrotating case [91–94], such a fluid in MG could
possibly also mimic a slowly rotating object in the frame-
work of a given theory of gravity [52,95–100].
The paper is organized as follows. In Sec. II, we provide a

general form of the modified Lane-Emden equation for a
rotating polytrope together with its solution. Those are given
for a wide class of modified gravity theories, which satisfies
three specific conditions as demonstrated in the further part
of the section. Section III is devoted to specific examples of
MG, which allows us to put forward a corollary on the
conditions to be satisfied by the Poisson equation in such
theories, such that the presented formalism is valid. We
draw our conclusions in Sec. IV. Appendix A deals with an
insightful derivation, explicitly highlighting the dependence
of the internal potential on the modified gravity, in the
presence of rotation. In Appendix B we leave a few
comments on the form of the external potential assumed
in the main body of this paper. Appendix C elaborates the
homogeneity of a particular differential equation governing
the rotation induced component of the solution to theMLEE
for a rotating polytrope.

II. ANALYTIC DERIVATION FOR THE DENSITY
PROFILE OF A SLOWLY ROTATING STELLAR
OBJECT IN MODIFIED GRAVITY THEORIES

In this section, we present the analytical formalism to
incorporate slow rotation in any modified gravity theories
in general. We would be specifically following the approach
of [76]. Therefore, wewill consider the rotation of the object
to be along the z axis of the 3D Cartesian coordinate system,
with the uniform angular speed denoted by ω. In polar
coordinates fr; μ;ϕg, where r is the radial coordinate, and
μð¼ cosϑÞ, ϕ is the angular coordinates, the equations of
mechanical equilibrium are as follows:

∂P
∂r

¼ ρ
∂V
∂r

þ ρω2rð1 − μ2Þ; ð2:1Þ

∂P
∂μ

¼ ρ
∂V
∂μ

− ρω2r2μ ð2:2Þ

with ϕ being neglected on account of axial symmetry and
abiding by the convention of [76], V is chosen to be the
negative of the gravitational potential energy. Although no
additional terms due to modified gravity theories appear
explicitly in Eqs. (2.1) and (2.2), the potential V inherently
captures the effect of MG. However, in modified gravity

theories, the Poisson equation gets modified, as can be seen,
for example, from [29,101,102]

∇2V ¼ −4πGρþ LVmodðr; μÞ: ð2:3Þ

In the above Eq. (2.3), we refer to the modification term
LVmodðr; μÞ as a general function, without mentioning its
actual form; the form is going to be different for different
classes of modified gravity theories. The μ dependence in
the modification term is induced by the rotation; i.e., in the
absence of rotation the modification term will solely depend
upon the radial coordinate r,2 leading to Eq. (1.12).
Therefore, regarding the matter description, we take the
total pressure P inside a rotating stellar object to be related
to its density ρ ¼ ρðr; μÞ by means of a polytropic relation:

Pðr; μÞ ¼ Kρ1þ1
n: ð2:4Þ

We emphasize the fact that the pressure and density are
functions of both the radial as well as the angular
coordinate in the presence of rotation-induced asymmetry.
Analogously to the nonrotating case, we can introduce the
dimensionless variables Θ and ξ, such that

ρ¼ ρcΘn; r¼ rcξ with r2c ¼
Kðnþ 1Þρð1n−1Þc

4πG
ð2:5Þ

where Θ is a function of both ξ and μ. It should be noted
that Eq. (2.5) is similar to Eq. (1.6), other than θðξÞ being
replaced by Θðξ; μÞ.
To go further, let us propose the following.
Proposition. Let θ ¼ θðξÞ be a solution of the modified

Lane-Emden equation (1.16) of the nonrotating polytrope
(1.1) and Θ ¼ Θðξ; μÞ of the rotating one (2.4) in the polar
coordinates. Then, the Lane-Emden equation for a rotating
polytrope with the uniform angular speed ω in modified
gravity is given by

1

ξ2
∂

∂ξ

�
ξ2

∂Θ
∂ξ

�
þ 1

ξ2
∂

∂μ

�
ð1 − μ2Þ ∂Θ

∂μ

�

¼ vþ gmodðξ; μÞ − Θn ð2:6Þ

with Θð0Þ ¼ 1 and Θ0ð0Þ ¼ 0 as boundary conditions;
v ¼ ω2=2πGρc is a dimensionless parameter, which is a
measure of the outward centrifugal force compared to the
self-gravity of the rotating polytrope, while gmodðξ; μÞ ¼
LVmod=4πGρc is the dimensionless modification term
depending on a given theory of gravity in general.

2For example in beyond Horndeski, the density perturbation to
the Friedmann-Robertson-Walker (FRW) metric is in general
spherically symmetric in the absence of rotation.
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Proof. The Poisson equation (2.3) in polar coordinates
takes the form

1

r2
∂

∂r

�
r2
∂V
∂r

�
þ 1

r2
∂

∂μ

�
ð1 − μ2Þ ∂V

∂μ

�

¼ −4πGρþ LVmodðr; μÞ: ð2:7Þ
Using the mechanical equilibrium equations (2.1) and (2.2),
along with the polytropic EOS (2.4) and Eq. (2.5), the
Poisson equation (2.7) reduces to the modified Lane-
Emden equation

1

ξ2
∂

∂ξ

�
ξ2

∂Θ
∂ξ

�
þ 1

ξ2
∂

∂μ

�
ð1 − μ2Þ ∂Θ

∂μ

�

¼ vþ gmodðξ; μÞ − Θn:

Therefore, we have demonstrated the general form of the
MLEE for the rotating polytrope (2.6). The boundary
conditions Θð0Þ ¼ 1, Θ0ð0Þ ¼ 0 follow from the physical-
ity of the density and pressure profiles at the center; i.e.,
they will fall from their central maximum value to zero at
the surface. ▪
Note that for a given central density, the parameter v,

being the measure of the strength of rotation, will be the
expansion parameter for certain functions and solutions in
the sequel. Hereafter, such an exact form of the modified
Lane-Emden equation in the case of rotation allows us to
study rotating objects. Usually, one solves this equation
numerically. However, we may also try to get an analytic
handle on the solution—this is particularly useful because
one can track the effects of modified gravity and easily
compare it with the Newtonian case [76]. Moreover, it
allows us to distinguish the modifications introduced by a
given theory of gravity from the other effects, like the ones
coming from, e.g., microphysics or other processes which
happen in the stellar and substellar interiors. Therefore, let
us propose the following theorem:
Theorem. If gmodðξ; μÞ can be expanded in terms of the

Legendre functions PlðμÞ’s as

gmodðξ; μÞ ¼ gmod0ðξÞ þ v
�
¯̃gmodðξÞ þ

X∞
j¼1

¯̃̄gmodjðξÞPjðμÞ
�
;

ð2:8Þ
where gmod0ðξÞ is the nonrotating part, with ¯̃gmodðξÞ, and
¯̃̄gmodjðξÞ being the rotation induced ones, then the solution
Θ of the modified Lane-Emden equation in the presence of
slow rotation is

Θðξ; μÞ ¼ θðξÞ þ v½ψ0ðξÞ þ A2ψ2ðξÞP2ðμÞ�; ð2:9Þ
where ψ0 and ψ2 satisfy the following equations:

1

ξ2
d
dξ

�
ξ2

dψ0

dξ

�
¼ −nθn−1ψ0 þ 1þ ¯̃gmodðξÞ; ð2:10Þ

1

ξ2
d
dξ

�
ξ2

dψ2

dξ

�
¼

�
6

ξ2
− nθn−1

�
ψ2 þ

¯̃̄gmod2ðξÞ
A2

; ð2:11Þ

with ψ0ð0Þ ¼ 0 ¼ ψ 0
0ð0Þ and ψ2ð0Þ ¼ 0 ¼ ψ 0

2ð0Þ being the
respective boundary conditions, and

A2 ¼ −
5

6

ξ21
½3ψ2ðξ1Þ þ ξ1ψ

0
2ðξ1Þ�

; ð2:12Þ

with ξ1 being the first zero of θðξÞ while 0 denotes
derivative with respect to ξ.
Proof. Let us make the following choice for the

modification term gmod:

gmodðξ; μÞ ¼ gmod0ðξÞ þ vg̃modðξ; μÞ; ð2:13Þ

where gmod0ðξÞ is the standard modification term coming
from modified gravity theories in the nonrotating scenario
Eq. (1.16), while g̃modðξ; μÞ is the correction term appearing
in the modified gravity theories when rotation is taken into
consideration. The above expansion will enable us to extract
out terms in orders of v, in the subsequent calculations, as
we will see shortly.
In order to find a solution to Eq. (2.6), we assume the

following form for Θ:

Θðξ; μÞ ¼ θðξÞ þ vΨðξ; μÞ þ v2Φðξ; μÞ ð2:14Þ

where θ is the nonrotating solution, with Ψ andΦ being the
rotation induced correction terms. We are considering slow
rotation where the effects arising from ω4 can be neglected.
Therefore, we consistently work only up to the first order in
v. Putting Eq. (2.14) in Eq. (2.6), the Oðv0Þ gives back
Eq. (1.16) as expected, while OðvÞ gives the following
equation:

1

ξ2
∂

∂ξ

�
ξ2

∂Ψ
∂ξ

�
þ 1

ξ2
∂

∂μ

�
ð1 − μ2Þ ∂Ψ

∂μ

�

¼ −nθn−1Ψþ 1þ g̃modðξ; μÞ: ð2:15Þ

Now, for a given stellar object (i.e., fixing n) and a theory of
modified gravity in the nonrotating scenario [i.e., knowing
the form of gmod0ðξÞ], we know the solution θðξÞ from
Eq. (1.16). Therefore, all we need to find is the solution
Ψðξ; μÞ from Eq. (2.15), in order to obtain the complete
solution Θ. For that, we assume the following form for Ψ:

Ψðξ; μÞ ¼ ψ0ðξÞ þ
X∞
j¼1

Ajψ jðξÞPjðμÞ ð2:16Þ

where Aj’s are normalizing constants and PjðμÞ corre-
sponds to the Legendre function of index j, satisfying the
Legendre differential equation
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∂

∂μ

�
ð1 − μ2Þ ∂Pj

∂μ

�
þ jðjþ 1ÞPj ¼ 0: ð2:17Þ

At this point it is crucial to highlight the importance of
explicitly introducing the normalizing constants only with
ψ j’s and not with ψ0 and θ [see Eq. (2.14)]. As we will
shortly come across the differential equations governing the
functions ψ0, and ψ j’s, in the later part of this section, it
will be evident that for the given boundary conditions, the
solution ψ0 will be determined uniquely, while each ψ j

remains undetermined by an arbitrary multiplicative con-
stant. The arbitrary constants are labeled as normalizing
constants for a reason as will be justified shortly. Similarly,
from Eq. (1.16) we see the solution θ is also unique; thus,
we do not introduce any normalizing constant with it.
Substituting Eq. (2.16) in Eq. (2.15) and using Eq. (2.17)

we get

0¼
�
1

ξ2
d
dξ

�
ξ2
dψ0

dξ

�
þnθn−1ψ0−1

�
− g̃modðξ;μÞ

þ
X∞
j¼1

Aj

�
1

ξ2
d
dξ

�
ξ2
dψ j

dξ

�
−
�
jðjþ1Þ

ξ2
−nθn−1

�
ψ j

�
PjðμÞ:

ð2:18Þ

From the above equation, it is clearly seen that the
modification term g̃mod couples to the independent terms
associated with the linearly independent Legendre func-
tions, and thus forbids their complete extraction and
equating them to zero. One possible way of averting the
situation is by having g̃mod of this particular form:

g̃modðξ; μÞ ¼ ¯̃gmodðξÞ þ
X∞
j¼1

¯̃̄gmodjðξÞPjðμÞ: ð2:19Þ

Upon using Eq. (2.19) in Eq. (2.18) and equating coef-
ficients of the linearly independent Legendre functions, we
get

1

ξ2
d
dξ

�
ξ2

dψ0

dξ

�
¼ −nθn−1ψ0 þ 1þ ¯̃gmodðξÞ ð2:20Þ

1

ξ2
d
dξ

�
ξ2

dψ j

dξ

�
¼

�
jðjþ 1Þ

ξ2
− nθn−1

�
ψ j þ

¯̃̄gmodjðξÞ
Aj

:

ð2:21Þ

The functions ψ0 and ψ j’s satisfy the following boundary
conditions:

ψ0ð0Þ¼0; ψ 0
0ð0Þ¼0; ψ jð0Þ¼0; ψ 0

jð0Þ¼0: ð2:22Þ

Now, for a given theory of modified gravity, upon knowing
the explicit forms of ¯̃gmodðξÞ and ¯̃̄gmodjðξÞ, one can solve for

ψ0 and ψ j from the above, Eqs. (2.20) and (2.21). We see
that while the solution ψ0 is unique, ψ j’s remain unde-
termined by a multiplicative constant, i.e., if ψ j is a solution
then Ajψ j is also a solution, which, however, is not the case
for ψ0. While this observation is apparent in standard
Newtonian gravity, it needs some elaboration for the wide
class of modified gravity theories we considered here (see
Appendix C). However, these constants are not completely
arbitrary as it seems; each Aj’s unique expression, for a
given solution ψ j, can be predicted by exploiting the
condition of continuity of the potential and its derivative
at the stellar surface. Therefore, the correct solution stands
out to be Ajψ j, and it is in this spirit Aj’s are called
normalizing constants. At this point, it is important to note
that solving Eq. (2.21) for ψ j seems improbable due to the
existence of Aj, which is not known beforehand. However,
in a broad class of modified gravity theories the modifi-
cation term ¯̃̄gmodjðξÞ depends upon the density and thus on
Θ in such a way that it inherently carries a factor of Aj, and
thus cancels out the Aj in the denominator; one can then
solve for ψ j. In sequel, we will show with examples that it
does happen for certain classes of modified gravity
theories.
Assuming for the time being that there exist modified

gravity theories for which one can solve for ψ0 and ψ j’s
using the above set of equations (2.20) and (2.21), we are
still left with determining the unknown normalizing con-
stants Aj’s. For that we will first determine V in terms of
Aj’s using the hydrostatic equilibrium condition and the
polytropic equation of state, following the approach of [78].
Now, at the stellar surface, this V must correspond to a
physically viable generic form of the potential exterior (say,
Vext) to the object. This necessitates equating V with Vext as
well as the radial derivative of V with that of Vext. Upon
doing this, we will obtain the coefficients Aj’s in terms of
the known solutions. We explicitly develop the formalism
as follows.
The hydrostatic equilibrium condition for a rotating fluid

in presence of gravity can be represented as

∇V þ ∇
�
1

2
jω⃗ × r⃗j2

�
¼ 1

ρ
∇P: ð2:23Þ

Now, using the polytropic EOS and taking the scalar
product of the above equation with dr⃗ we integrate from
the pole to any point ðr; μÞ within the stellar object.

Z
pole

ðr;μÞ
dV þ

Z
pole

ðr;μÞ
d

�
1

2
jω⃗ × r⃗j2

�

¼ Kðnþ 1Þ
n

Z
pole

ðr;μÞ
ρ

1
n−1dρ: ð2:24Þ

After a little bit of algebra, we then obtain
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V ¼ R

�
Θ −

1

6
vðξ2 − P2ðμÞξ2Þ

�
þ const; ð2:25Þ

where R ≔ ðnþ 1ÞKρ
1
n
c and the “const” above represents

the potential at the pole (see Appendix A for an alternative
derivation of the potential). The normalizing constants Aj’s
contained within Θ are still unknown. The Aj’s now get
determined by implementing the condition of continuity of
V as well as its radial derivative at the stellar surface. For
that we assume a particular form of the gravitational
potential exterior to the stellar surface

Vext ¼ R

�
C0

ξ
þ v

X∞
j¼1

Cj

ξjþ1
PjðμÞ

�
þ const; ð2:26Þ

where Ci; i ¼ f0; 1;…g are arbitrary constants. At this
point we would like to comment on the validity of such a
form, before delving further. We know that in many
modified gravity theories, the gravitational potential exterior
to a stellar object contains a Yukawa type correction term,
which is responsible for the fifth force. Interestingly, such a
correction term is not present in the above form for the
external potential. The reason being the screening mecha-
nisms associated to such modified gravity theories, which
screens the fifth force at small scales, thereby recovering
Einstein’s general relativity (see Appendix B for a dis-
cussion on this). Now, as a next step we match the interior
and exterior potentials and their derivatives at the stellar
surface. However, since a rotating stellar object is oblate, it
does not have a single well-defined radius defining the
stellar surface. On the other hand, analytic values of the
stellar radii, corresponding to different angular coordinates
(let us call them angular stellar radii), can only be obtained if
one has the complete solution Θ. Unfortunately, without
knowing Aj’s one cannot obtain Θ and thus the angular
stellar radii. Thus with the spirit of analytic formalism, we
choose the first zero ξ1 of the Emden’s function corre-
sponding to the nonrotating modified gravity scenario as the
point where we enforce the continuity of the potential and
its radial derivative in the rotating scenario i.e.,

Vjξ1 ¼ Vextjξ1 ;
∂V
∂ξ

����
ξ1

¼ ∂Vext

∂ξ

����
ξ1

: ð2:27Þ

Since we are considering slow rotation, where the degree
of oblateness is not high, this approximation is well
justified. Now, implementing the aforementioned condi-
tion Eq. (2.27) we get

Aj ¼ 0 ¼ Cj ∀ j ≠ 2;

A2 ¼ −
5

6

ξ21
½3ψ2ðξ1Þ þ ξ1ψ

0
2ðξ1Þ�

; ð2:28Þ

where A2 is obtained after eliminating nonzero C2. Again,
the form of A2 is the same as in the standard Newtonian
gravity, although the effects of modified gravity theory are
encoded in ξ1 and ψ2 implicitly. We note here, that had we
considered the normalized ψ j’s from the first place,
without introducing the Aj’s explicitly, then we would
have obtained conditions on the ψ j’s by the similar
approach as described above. To be specific we would
have arrived at the following condition for the only
nonzero ψ2:

ξ1ψ
0
2ðξ1Þ þ 3ψ2ðξ1Þ þ

5

6
ξ21 ¼ 0: ð2:29Þ

A careful inspection tells us that this is exactly what one
would have arrived at by putting A2 in Eq. (2.28) as unity.
This is completely justified because considering a nor-
malized ψ2 amounts to A2 ¼ 1.
Having obtained the Aj’s, we now write the general form

of the complete solution of the MLEE in the presence of
slow rotation,

Θðξ; μÞ ¼ θðξÞ þ v

�
ψ0ðξÞ −

5

6

ξ21
½3ψ2ðξ1Þ þ ξ1ψ

0
2ðξ1Þ�

× ψ2ðξÞP2ðμÞ
�

where ψ0 and ψ2 are solutions to the following equations,
obtained from Eqs. (2.20) and (2.21), respectively,

1

ξ2
d
dξ

�
ξ2

dψ0

dξ

�
¼ −nθn−1ψ0 þ 1þ ¯̃gmodðξÞ

1

ξ2
d
dξ

�
ξ2

dψ2

dξ

�
¼

�
6

ξ2
− nθn−1

�
ψ2 þ

¯̃̄gmod2ðξÞ
A2

: ð2:30Þ

▪
Recalling the discussion after Eq. (2.21), we see from

Eq. (2.30) that in order to solve for ψ2 one needs to know
A2, which itself depends upon the solution ψ2. Therefore,
unless the term ¯̃̄gmod2ðξÞ depends upon density in such a
way that it inherently carries a factor of A2, which cancels
the one in the denominator, one cannot solve for the
complete solution in this analytic formalism. We, therefore,
enlist the three conditions, which the generic correction
term gmod due to modified gravity theories should satisfy, in
order to obtain the complete solution in this particular
analytic formalism3:

3We note that in case this third property does not get satisfied
for a certain class of modified gravity theories, one can employ a
self-iterating numerical scheme to obtain a solution for such
coupled equations. Developing such a scheme is nevertheless a
daunting task, and we are not aware of such an attempt till now.
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(1) gmod can be expanded as in Eq. (2.13) to the first
order in v.

(2) TheOðvÞ correction term g̃mod can be expanded as in
Eq. (2.19) in terms of Legendre functions.

(3) The ¯̃̄gmodj term should be proportional to Aj.
In Sec. III we show that the aforementioned three

conditions are indeed satisfied for a wide class of modified
gravity theories.

III. ON THE GENERIC gmod TERM

In this section, we show that one can carry out the above
analytical formalism in several modified gravity theories in
the literature. For that, we revisit the Poisson equation in the
different classes of modified gravity theories given by
(1.13)–(1.15) in the Introduction. From these forms of
the Poisson equation, one realizes that we can write the
modification term in general as

LVmodðr; μÞ ¼ k1∇2ðᾱðrÞρÞ ð3:1Þ

where k1 represents the overall constant comprising of
fundamental constant G, numerical factors and the asso-
ciated modified gravity parameter. The term ᾱðrÞ is, in
general, a radial function, which, for example, takes up the
constant value 1 for the Palatini fðRÞ and EiBI, while it is
r2 for generalized beyond Horndeski. Converting the above
equation into its nondimensional form and multiplying it
with a factor of 1=4πGρc, we obtain

k̃1∇2
ξðαðξÞΘnÞ ð3:2Þ

where ∇2
ξ is the dimensionless Laplacian, and k̃1 is the

overall constant appearing upfront, which, in general,
depends on rc, and the modified gravity parameter. The
function αðξÞ is the nondimensional version of ᾱðrÞ. To put
things into perspective, let us mention that Eq. (3.1)
corresponds to the LVmod term in Eq. (2.3), while
Eq. (3.2) represents the gmod term in Eq. (2.6). Thus, we
will investigate whether this generic gmod term satisfies the
three conditions mentioned in the Sec. II, which are required
for our analytic formalism to go through.
Expressing Eq. (3.2) explicitly we have

gmodðξ; μÞ ¼ k̃1∇2
ξðαðξÞΘnÞ

¼ k̃1

�
1

ξ2
∂

∂ξ

�
ξ2

∂ðαΘnÞ
∂ξ

�

þ 1

ξ2
∂

∂μ

�
ð1 − μ2Þ ∂ðαΘ

nÞ
∂μ

��
: ð3:3Þ

Then, using Θn ¼ θn þ vnθn−1Ψ [to the first order in v
from Eq. (2.14)] along with Eq. (2.16) in Eq. (3.3), we
obtain

gmodðξ; μÞ ¼ gmod0ðξÞ þ v

�
¯̃gmodðξÞ þ

X∞
j¼1

¯̃̄gmodjðξÞPjðμÞ
�

ð3:4Þ
where

gmod0ðξÞ ¼
k̃1
ξ
θn−2

�
nðn − 1Þξαθ02 þ θ2ð2α0 þ ξα00Þ

þnθð2ðαþ ξα0Þθ0 þ ξαθ00Þ
�

ð3:5Þ

¯̃gmodðξÞ ¼
k̃1
ξ
nθn−3

�
ðn− 2Þðn− 1Þξαψ0θ

02

þðn− 1Þθð2θ0ðξψ0α
0 þαðψ0þ ξψ0

0ÞÞþ ξαψ0θ
00Þ

þ θ2ð2ðαþ ξα0Þψ0
0 þψ0ð2α0 þ ξα00Þþ ξαψ 00

0Þ
�

ð3:6Þ
¯̃̄gmodjðξÞ ¼

k̃1
ξ
Aj

�
nθn−3

�
ðn− 2Þðn− 1Þξαψ jθ

02

þðn− 1Þθð2θ0ðξψ jα
0 þ αðψ j þ ξψ 0

jÞÞþ ξαψ jθ
00Þ

þ θ2ð2ðαþ ξα0Þψ 0
jþψ jð2α0 þ ξα00Þ þ ξαψ 00

j Þ
�

−
1

ξ
jðjþ 1Þnαθn−1ψ j

�
ð3:7Þ

where 0 denotes first-order derivative with respect to ξ and
00 denotes second-order one. From Eq. (3.7) we see that
¯̃̄gmodj ∝ Aj and is homogeneous of degree one in ψ j.
Therefore, we see that all the three conditions enlisted in
the previous section get satisfied for these broad classes of
modified gravity theories and hence one can use our
analytical formalism in these theories.
At this stage, it is convenient to propose our hypothesis:
Corollary. In general, our analytical formalism can be

used in any modified gravity theories, where the correction
term of the corresponding Poisson equation contains
density, its higher order radial derivatives, or its Laplacian.

IV. CONCLUSION

In this work, we have presented a general formalism to
find the density profile of a slowly rotating stellar object in
the presence of modified gravity. By adapting the formalism
given in [76], we demonstrated a generic approach to
incorporate modified gravity effects. We have shown three
conditions that the additional modified gravity term arising
in the Poisson equation needs to satisfy in order to abide by
our formalism. First, the modified term is required to be
expanded into a summation between nonrotating and
rotating counterparts. Second, the rotating part should be
further expanded in series involving Legendre functions.
Finally, the coefficients appearing with the Legendre
functions need to explicitly involve density, its derivative
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terms, or its Laplacian. We have undertaken three well
known theories of modified gravity, i.e., scalar-tensor
theories beyond Horndeski, Palatini fðRÞ gravity, and
Eddington-inspired Born-Infeld gravity, which are shown
to satisfy all these three conditions.
An interesting aspect to note from our results is that in

the presence of rotation, only the j ¼ 0, 2 Legendre
components of LVmod (or gmod) contribute to the Poisson
equation, although there have been no a priori restrictions
on such a modification term. Physically it can be justified as
follows. We expect the rotating polytrope to take up the
shape of an oblate spheroid. Therefore, only the monopole
and quadrupole terms should contribute to the solution Θ,
the potential V, and thus to the modification term gmod as
well. This is usually the case in the Newtonian limit of
Einstein’s general relativity, so it is but natural to expect the
same in the modified gravity theories as well, which for no
reason should violate the axial symmetry.
As already mentioned, this work is focused on slow

rotation, which is necessary to set the matching conditions,
Eq. (2.27), at the first zero of a spherically symmetric
nonrotating configuration θ. While it is valid for a slowly
rotating polytrope, it prevents one from finding a solution
for fast rotation. To overcome this limitation, one must
follow a semianalytic approach, where fast rotation is
achieved using multiple small increments of stellar rotation.
The matching condition is reused iteratively at the first zero
of the last updated rotating Emden’s functionΘ. To this end,
we draw the reader’s attention to the fact that the parameter
v, being a measure of the ratio of outward centrifugal force
and self-gravity, can incorporate fast rotation for higher
central density and yet be small enough to neglect Oðv2Þ
corrections. Let us also emphasize that the central density
can increase when a theory parameter increases in the
modification term—then, in modified gravity theories, the
same v can correspond to larger rotation ω due to an
increase in ρc. It is so because the parameter v we expand
the solution Θ about includes the central density ρ−1c ,
lowering its value. Because of that fact, this approximation
breaks down for a specific large value of v in Newtonian
physics, while in modified gravity one can still consider
more rapidly rotating objects.
To summarize, this work enables us to analytically obtain

the density profile of a slowly rotating star by elegantly
utilizing its axial symmetry. This is a stepping stone for
further studies in modeling of rotating stellar and planetary
objects in the presence of modified gravity. The provided
formalism will allow us to find a complete solution of a
further specified modified Lane-Emden equation. We will
present the results on the overall rotating density profile in
future work.
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APPENDIX A: EFFECT OF MODIFIED GRAVITY
ON THE POTENTIAL

In this appendix we derive the form of the interior
potential V following the approach of [76]. This approach
helps us explicitly identify the effects of the modified
gravity on the potential. In contrast to the derivation in
Sec. II, here we use the Poisson equation and equations of
mechanical equilibrium as follows.
The Poisson equation (2.7) in ξ, μ variables takes the

form (to the first order in v)

1

ξ2
∂

∂ξ

�
ξ2

∂V
∂ξ

�
þ 1

ξ2
∂

∂μ

�
ð1 − μ2Þ ∂V

∂μ

�

¼ −ðnþ 1ÞKρ
1
n
c

�
θn þ nθn−1v

�
ψ0 þ

X∞
j¼1

Ajψ jðξÞPjðμÞ
�

− gmodðξ; μÞ
�
: ðA1Þ

In order to solve for V in the above equation, we develop V
in the form (to the first order in v)

V ¼ UðξÞ þ v

�
V0ðξÞ þ

X∞
j¼1

VjðξÞPjðμÞ
�
; ðA2Þ

whereU is the modified gravity potential of the nonrotating
configuration. Upon using Eq. (A2) in Eq. (A1), and then
equating the Oðv0Þ component and coefficients of PjðμÞ in
the OðvÞ component, we get

1

ξ2
d
dξ

�
ξ2

dU
dξ

�
¼ −Rfθn − gmod0ðξÞg ðA3Þ

1

ξ2
d
dξ

�
ξ2

dV0

dξ

�
¼ −Rfnθn−1ψ0 − ¯̃gmodðξÞg ðA4Þ

1

ξ2
d
dξ

�
ξ2
dVj

dξ

�
−
jðjþ1Þ

ξ2
Vj¼−Rfnθn−1Ajψ j− ¯̃̄gmodjðξÞg:

ðA5Þ

In the above set of equations, we now explicitly see how the
modified gravity affects the component functions—U, V0,
and Vj of the gravitational potential V. We get the analytic
forms of these component functions, after a little bit of
algebra.
Using Eq. (1.16) in Eq. (A3) we obtain

1

ξ2
d
dξ

�
ξ2

dU
dξ

�
¼ R

ξ2
d
dξ

�
ξ2

dθ
dξ

�
ðA6Þ
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whereby we deduce

U ¼ Rθ þ const ðA7Þ

Although this analytic form looks exactly the same in the
case of standard Newtonian gravity (see [76]), the differ-
ence lies in the fact that here θ, being the solution to
Eq. (1.16), is implicitly carrying the information of the
modified gravity theory under consideration. Such infor-
mation is also included in R, as it depends on ρc, which is
given by (1.8) and (1.11).
Using Eq. (2.20) in Eqs. (A4) and (2.21) in Eq. (A5) we

obtain

1

ξ2
d
dξ

�
ξ2

dV0

dξ

�
¼ R

�
1

ξ2
d
dξ

�
ξ2

dψ0

dξ

�
− 1

�
; ðA8Þ

1

ξ2
d
dξ

�
ξ2

dVj

dξ

�
−
jðjþ 1Þ

ξ2
Vj

¼ RAj

�
1

ξ2
d
dξ

�
ξ2

dψ j

dξ

�
−
jðjþ 1Þ

ξ2
ψ j

�
; ðA9Þ

whereby we deduce

V0 ¼ R

�
ψ0 −

1

6
ξ2
�
þ const; ðA10Þ

Vj ¼ RðAjψ j þ Bjξ
jÞ þ const; ðA11Þ

where Bj’s are arbitrary constants appearing from the
regular solution of Eq. (A9). After rearranging terms we get

V ¼ R

�
Θþ v

�X∞
j¼1

Bjξ
jPjðμÞ −

1

6
ξ2
��

; ðA12Þ

where once again we mention that although this analytic
form looks exactly the same in the case of standard
Newtonian gravity (see [76]), the information of modified
gravity theory is carried implicitly by the solution Θ, as
pointed out above.
After converting the first relation of Eq. (2.2) into its

dimensionless form [by using Eqs.(2.4) and (2.5)], we
substitute Eq. (A12) for V in the same. Equating coef-
ficients of PjðμÞ we obtain

Bj ¼ 0 ∀ j ≠ 2; B2 ¼
1

6
: ðA13Þ

Thus we have

V ¼ R

�
Θ −

1

6
vðξ2 − P2ðμÞξ2Þ

�
þ const: ðA14Þ

APPENDIX B: COMMENTS ABOUT THE FORM
OF Vext ASSUMED IN OUR PAPER

In many of the modified gravity theories, the gravita-
tional potential outside the stellar object has a Yukawa-type
modification term, which leads to the fifth force. However,
one does not see the effects of the fifth force in table-top
experiments because they are screened at small scales due to
the screening mechanism associated with the theory, thereby
recovering Einstein’s general relativity. However, the modi-
fication in the gravitational interaction is present at large
scales. Such screening is important, for example, in the solar
system scales where the observations conform with the
Einstein’s general relativistic predictions while allowing for
the modifications to explain accelerated expansion at large
scales. There are several screening mechanisms, like sym-
metron screening and the Vainshtein screening mechanisms,
to name a few. The form of the Vext thus chosen is valid in
the region where the screening is effective, while an
appropriate modification term needs to be incorporated
beyond a certain length scale where the screening fails.
However, the radius beyond which the screening fails turns
out to be extremely large compared to the radius of the stellar
object; thus the correction terms to Vext become subleading
and negligibly small; so the form Eq. (2.26) we have chosen
is well justified. As an example, in modified gravity theory
equipped with the Vainshtein mechanism, the characteristic
radius beyond which the modifications are present and
inside which the modifications are screened turns out to
be 100 pc for a solar mass star, which is 108 times larger
compared to the solar radius.

APPENDIX C: EQUIVALENCE BETWEEN
THE SOLUTIONS ψ j AND Ajψ j

In this appendix we elaborate on the equivalence
between the solutions ψ j and Ajψ j, as mentioned in
relation to Eq. (2.21)

1

ξ2
d
dξ

�
ξ2
dψ j

dξ

�
¼
�
jðjþ1Þ

ξ2
−nθn−1

�
ψ jþ

¯̃̄gmodjðξÞ
Aj

: ðC1Þ

To begin with, let us mention that in the standard Newtonian
gravity the absence of the last term on the right-hand side of
the above equation makes it apparent that if ψ j is a solution
then Ajψ j will also be a solution to the same equation.
However, it is not obvious in the case of modified gravity
unless we decode the dependence of the modification term
¯̃̄gmodjðξÞ on the components of the solution Θ.
For the wide class of modified gravity theories consid-

ered in this paper, ¯̃̄gmodj ∝ Aj and is homogeneous of
degree one in ψ j (see Sec. III). Therefore Eq. (C1) is
actually a second-order homogeneous linear differential
equation in ψ j. Thus if ψ j is a solution to Eq. (C1), then so
must be Ajψ j.
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[39] J. Beltrán Jiménez, L. Heisenberg, G. J. Olmo, and D.

Rubiera-Garcia, Phys. Rep. 727, 1 (2018).
[40] P. Banerjee, D. Garain, S. Paul, R. Shaikh, and T. Sarkar,

Astrophys. J. 924, 20 (2022).
[41] E. Mattanzi and A. Sulaksono, AIP Conf. Proc. 2234,

040016 (2020).
[42] E. N. Saridakis, R. Lazkoz, V. Salzano, P. V. Moniz, S.

Capozziello, J. Beltrán Jiménez, M. De Laurentis, and G. J.
Olmo,Modified Gravity and Cosmology: An Update by the
CANTATA Network (Springer International Publishing,
Switzerland, 2021).

[43] A. Wojnar, Lect. Notes Phys. 1017, 363 (2023).
[44] S. Chandrasekhar, Mon. Not. R. Astron. Soc. 95, 207

(1935).
[45] R. K. Jain, C. Kouvaris, and N. G. Nielsen, Phys. Rev. Lett.

116, 151103 (2016).
[46] S. Banerjee, S. Shankar, and T. P. Singh, J. Cosmol.

Astropart. Phys. 10 (2017) 004.
[47] A. Wojnar, Int. J. Geom. Methods Mod. Phys. 18, 2140006

(2021).
[48] I. H. Belfaqih, H. Maulana, and A. Sulaksono, Int. J. Mod.

Phys. D 30, 2150064 (2021).
[49] L. Sarmah, S. Kalita, and A. Wojnar, Phys. Rev. D 105,

024028 (2022).
[50] S. Kalita and L. Sarmah, Phys. Lett. B 827, 136942 (2022).
[51] S. Kalita and B. Mukhopadhyay, Astrophys. J. 909, 65

(2021).
[52] S. Chowdhury and T. Sarkar, Astrophys. J. 884, 95 (2019).
[53] J. Sakstein, Phys. Rev. Lett. 115, 201101 (2015).
[54] J. Sakstein, Phys. Rev. D 92, 124045 (2015).
[55] M. Crisostomi, M. Lewandowski, and F. Vernizzi, Phys.

Rev. D 100, 024025 (2019).
[56] G. J. Olmo, D. Rubiera-Garcia, and A. Wojnar, Phys. Rev.

D 100, 044020 (2019).
[57] A. S. Rosyadi, A. Sulaksono, H. A. Kassim, and N. Yusof,

Eur. Phys. J. C 79, 1030 (2019).
[58] S. Capozziello, M. de Laurentis, I. de Martino, M.

Formisano, and S. D. Odintsov, Phys. Rev. D 85,
044022 (2012).

[59] A. Wojnar, Phys. Rev. D 104, 104058 (2021).
[60] A. Kozak and A. Wojnar, Phys. Rev. D 104, 084097

(2021).
[61] A. Kozak and A. Wojnar, Int. J. Geom. Methods Mod.

Phys. 19, 2250157 (2022).

CHOWDHURY, BANERJEE, and WOJNAR PHYS. REV. D 109, 104049 (2024)

104049-10

https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.04.001
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1103/PhysRevLett.123.091103
https://doi.org/10.1103/PhysRevLett.123.091103
https://doi.org/10.1051/0004-6361/202244176
https://doi.org/10.1051/0004-6361/202244176
https://doi.org/10.1103/PhysRevD.85.123006
https://doi.org/10.1103/PhysRevD.85.123006
https://doi.org/10.1103/PhysRevD.88.124013
https://doi.org/10.1086/304151
https://doi.org/10.1086/305457
https://doi.org/10.1086/305457
https://doi.org/10.1103/PhysRevD.91.124066
https://doi.org/10.1103/PhysRevD.91.124066
https://doi.org/10.1103/RevModPhys.65.301
https://doi.org/10.1103/RevModPhys.65.301
https://doi.org/10.1088/1475-7516/2015/05/045
https://doi.org/10.1088/1475-7516/2015/05/045
https://doi.org/10.1103/PhysRevD.93.104046
https://doi.org/10.1103/PhysRevD.93.104046
https://doi.org/10.1088/1475-7516/2018/05/028
https://doi.org/10.1088/1475-7516/2018/05/028
https://doi.org/10.1103/PhysRevD.106.124010
https://doi.org/10.3390/sym15061141
https://doi.org/10.1146/annurev.aa.29.090191.001115
https://doi.org/10.1146/annurev.aa.29.090191.001115
https://doi.org/10.1155/2016/5743272
https://doi.org/10.1155/2016/5743272
https://doi.org/10.1103/PhysRev.71.809
https://doi.org/10.1017/S0305004100011683
https://doi.org/10.1017/S0305004100011683
https://doi.org/10.1007/BF01351576
https://doi.org/10.1017/S0305004100016108
https://doi.org/10.1017/S0305004100016108
https://doi.org/10.1103/PhysRev.75.1561
https://doi.org/10.1103/PhysRev.75.1561
https://doi.org/10.1103/PhysRev.158.876
https://doi.org/10.1103/PhysRev.158.876
https://doi.org/10.1086/521346
https://doi.org/10.1103/PhysRevLett.105.011101
https://doi.org/10.1103/PhysRevLett.105.011101
https://doi.org/10.1016/j.physrep.2020.07.001
https://doi.org/10.1016/j.physrep.2020.07.001
https://doi.org/10.1103/PhysRevD.101.064050
https://doi.org/10.1103/PhysRevD.101.064050
https://doi.org/10.1103/PhysRevD.104.024045
https://doi.org/10.1103/PhysRevD.104.024045
https://doi.org/10.1007/BF01807638
https://doi.org/10.1103/PhysRevLett.114.211101
https://doi.org/10.1103/PhysRevLett.114.211101
https://doi.org/10.1088/1475-7516/2015/02/018
https://doi.org/10.1088/1475-7516/2015/02/018
https://doi.org/10.1016/0370-2693(72)90147-5
https://doi.org/10.1103/PhysRevD.91.064013
https://doi.org/10.1103/PhysRevD.91.064013
https://doi.org/10.1103/PhysRevD.97.021301
https://doi.org/10.1103/PhysRevD.97.021301
https://doi.org/10.1016/j.physrep.2017.11.001
https://doi.org/10.3847/1538-4357/ac324f
https://doi.org/10.1063/5.0008134
https://doi.org/10.1063/5.0008134
https://doi.org/10.1007/978-3-031-31520-6
https://doi.org/10.1093/mnras/95.3.207
https://doi.org/10.1093/mnras/95.3.207
https://doi.org/10.1103/PhysRevLett.116.151103
https://doi.org/10.1103/PhysRevLett.116.151103
https://doi.org/10.1088/1475-7516/2017/10/004
https://doi.org/10.1088/1475-7516/2017/10/004
https://doi.org/10.1142/S0219887821400065
https://doi.org/10.1142/S0219887821400065
https://doi.org/10.1142/S0218271821500644
https://doi.org/10.1142/S0218271821500644
https://doi.org/10.1103/PhysRevD.105.024028
https://doi.org/10.1103/PhysRevD.105.024028
https://doi.org/10.1016/j.physletb.2022.136942
https://doi.org/10.3847/1538-4357/abddb8
https://doi.org/10.3847/1538-4357/abddb8
https://doi.org/10.3847/1538-4357/ab3c25
https://doi.org/10.1103/PhysRevLett.115.201101
https://doi.org/10.1103/PhysRevD.92.124045
https://doi.org/10.1103/PhysRevD.100.024025
https://doi.org/10.1103/PhysRevD.100.024025
https://doi.org/10.1103/PhysRevD.100.044020
https://doi.org/10.1103/PhysRevD.100.044020
https://doi.org/10.1140/epjc/s10052-019-7560-3
https://doi.org/10.1103/PhysRevD.85.044022
https://doi.org/10.1103/PhysRevD.85.044022
https://doi.org/10.1103/PhysRevD.104.104058
https://doi.org/10.1103/PhysRevD.104.084097
https://doi.org/10.1103/PhysRevD.104.084097
https://doi.org/10.1142/S0219887822501572
https://doi.org/10.1142/S0219887822501572


[62] A. Kozak and A. Wojnar, Universe 8, 3 (2021).
[63] A. Kozak and A. Wojnar, Phys. Rev. D 108, 044055

(2023).
[64] A. Wojnar, Phys. Rev. D 103, 044037 (2021).
[65] A. Wojnar, Phys. Rev. D 102, 124045 (2020).
[66] S. Chowdhury and T. Sarkar, J. Cosmol. Astropart. Phys.

05 (2021) 040.
[67] M. Guerrero, D. Rubiera-Garcia, and A. Wojnar, Eur. Phys.

J. C 82, 707 (2022).
[68] M. C. Straight, J. Sakstein, and E. J. Baxter, Phys. Rev. D

102, 124018 (2020).
[69] D. A. Gomes and A. Wojnar, Eur. Phys. J. C 83, 492

(2023).
[70] S. Chowdhury and T. Sarkar, Mon. Not. R. Astron. Soc.

523, 518 (2023).
[71] M. Benito and A. Wojnar, Phys. Rev. D 103, 064032

(2021).
[72] A. Kozak, K. Soieva, and A. Wojnar, Phys. Rev. D 108,

024016 (2023).
[73] S. Kalita, L. Sarmah, and A. Wojnar, Universe 8, 647

(2022).
[74] A. Wojnar, Phys. Rev. D 105, 124053 (2022).
[75] S. Kalita, L. Sarmah, and A. Wojnar, Phys. Rev. D 107,

044072 (2023).
[76] S. Chandrasekhar and E. A. Milne, Mon. Not. R. Astron.

Soc. 93, 390 (1933).
[77] J. J. Monaghan and I. W. Roxburgh, Mon. Not. R. Astron.

Soc. 131, 13 (1965).
[78] A. Kovetz, Astrophys. J. 154, 999 (1968).
[79] G. B. Cook, S. L. Shapiro, and S. A. Teukolsky, Astrophys.

J. 422, 227 (1994).
[80] D. Kong, K. Zhang, and G. Schubert, Mon. Not. R. Astron.

Soc. 448, 456 (2015).
[81] S. Chowdhury, P. Banerjee, D. Garain, and T. Sarkar,

Astrophys. J. 929, 117 (2022).
[82] J. Ballot, F. Lignières, D. R. Reese, and M. Rieutord,

arXiv:0912.1679.

[83] S. Yoshida, Res. Notes Am. Astron. Soc. 6, 227
(2022).

[84] B. Reina, Mon. Not. R. Astron. Soc. 455, 4512 (2016).
[85] F. Occhionero, Mem. Soc. Astron. Ital. 38, 331 (1967),

https://ui.adsabs.harvard.edu/abs/1967MmSAI..38..331O/
abstract.

[86] D. D. Doneva, S. S. Yazadjiev, N. Stergioulas, and K. D.
Kokkotas, Phys. Rev. D 88, 084060 (2013).

[87] B. Kleihaus, J. Kunz, S. Mojica, and M. Zagermann, Phys.
Rev. D 93, 064077 (2016).

[88] F. M. da Silva, L. C. N. Santos, and C. C. Barros, Classical
Quantum Gravity 38, 165011 (2021).

[89] H. Komatsu, Y. Eriguchi, and I. Hachisu, Mon. Not. R.
Astron. Soc. 237, 355 (1989).

[90] V. Paschalidis and N. Stergioulas, Living Rev. Relativity
20, 7 (2017).

[91] L. Herrera and N. O. Santos, Phys. Rep. 286, 53 (1997).
[92] L. Herrera and W. Barreto, Phys. Rev. D 88, 084022

(2013).
[93] L. Herrera and W. Barreto, Phys. Rev. D 87, 087303

(2013).
[94] G. Abellán, E. Fuenmayor, and L. Herrera, Phys. Dark

Universe 28, 100549 (2020).
[95] V. Folomeev, Phys. Rev. D 97, 124009 (2018).
[96] D. Deb, S. Ghosh, S. K. Maurya, M. Khlopov, and S. Ray,

arXiv:1811.11797.
[97] M. F. Shamir and S. Zia, Eur. Phys. J. C 77, 448 (2017).
[98] M. Farasat Shamir and M. Ahmad, Eur. Phys. J. C 77, 674

(2017).
[99] Ö. Sert, F. Çeliktaş, and M. Adak, Eur. Phys. J. C 78, 824

(2018).
[100] H. O. Silva, C. F. B. Macedo, E. Berti, and L. C. B.

Crispino, Classical Quantum Gravity 32, 145008 (2015).
[101] D. C. Rodrigues,, A. Hernandez-Arboleda, and A. Wojnar,

Phys. Dark Universe 41, 101230 (2023).
[102] P. Banerjee, D. Garain, S. Paul, R. Shaikh, and T. Sarkar,

Astrophys. J. 910, 23 (2021).

EQUILIBRIUM OF SLOWLY ROTATING POLYTROPES IN … PHYS. REV. D 109, 104049 (2024)

104049-11

https://doi.org/10.3390/universe8010003
https://doi.org/10.1103/PhysRevD.108.044055
https://doi.org/10.1103/PhysRevD.108.044055
https://doi.org/10.1103/PhysRevD.103.044037
https://doi.org/10.1103/PhysRevD.102.124045
https://doi.org/10.1088/1475-7516/2021/05/040
https://doi.org/10.1088/1475-7516/2021/05/040
https://doi.org/10.1140/epjc/s10052-022-10624-2
https://doi.org/10.1140/epjc/s10052-022-10624-2
https://doi.org/10.1103/PhysRevD.102.124018
https://doi.org/10.1103/PhysRevD.102.124018
https://doi.org/10.1140/epjc/s10052-023-11659-9
https://doi.org/10.1140/epjc/s10052-023-11659-9
https://doi.org/10.1093/mnras/stad1331
https://doi.org/10.1093/mnras/stad1331
https://doi.org/10.1103/PhysRevD.103.064032
https://doi.org/10.1103/PhysRevD.103.064032
https://doi.org/10.1103/PhysRevD.108.024016
https://doi.org/10.1103/PhysRevD.108.024016
https://doi.org/10.3390/universe8120647
https://doi.org/10.3390/universe8120647
https://doi.org/10.1103/PhysRevD.105.124053
https://doi.org/10.1103/PhysRevD.107.044072
https://doi.org/10.1103/PhysRevD.107.044072
https://doi.org/10.1093/mnras/93.5.390
https://doi.org/10.1093/mnras/93.5.390
https://doi.org/10.1093/mnras/131.1.13
https://doi.org/10.1093/mnras/131.1.13
https://doi.org/10.1086/149820
https://doi.org/10.1086/173721
https://doi.org/10.1086/173721
https://doi.org/10.1093/mnras/stu2759
https://doi.org/10.1093/mnras/stu2759
https://doi.org/10.3847/1538-4357/ac5abb
https://arXiv.org/abs/0912.1679
https://doi.org/10.3847/2515-5172/ac9d9d
https://doi.org/10.3847/2515-5172/ac9d9d
https://doi.org/10.1093/mnras/stv2599
https://ui.adsabs.harvard.edu/abs/1967MmSAI..38..331O/abstract
https://ui.adsabs.harvard.edu/abs/1967MmSAI..38..331O/abstract
https://ui.adsabs.harvard.edu/abs/1967MmSAI..38..331O/abstract
https://ui.adsabs.harvard.edu/abs/1967MmSAI..38..331O/abstract
https://ui.adsabs.harvard.edu/abs/1967MmSAI..38..331O/abstract
https://ui.adsabs.harvard.edu/abs/1967MmSAI..38..331O/abstract
https://ui.adsabs.harvard.edu/abs/1967MmSAI..38..331O/abstract
https://ui.adsabs.harvard.edu/abs/1967MmSAI..38..331O/abstract
https://ui.adsabs.harvard.edu/abs/1967MmSAI..38..331O/abstract
https://doi.org/10.1103/PhysRevD.88.084060
https://doi.org/10.1103/PhysRevD.93.064077
https://doi.org/10.1103/PhysRevD.93.064077
https://doi.org/10.1088/1361-6382/ac129d
https://doi.org/10.1088/1361-6382/ac129d
https://doi.org/10.1093/mnras/237.2.355
https://doi.org/10.1093/mnras/237.2.355
https://doi.org/10.1007/s41114-017-0008-x
https://doi.org/10.1007/s41114-017-0008-x
https://doi.org/10.1016/S0370-1573(96)00042-7
https://doi.org/10.1103/PhysRevD.88.084022
https://doi.org/10.1103/PhysRevD.88.084022
https://doi.org/10.1103/PhysRevD.87.087303
https://doi.org/10.1103/PhysRevD.87.087303
https://doi.org/10.1016/j.dark.2020.100549
https://doi.org/10.1016/j.dark.2020.100549
https://doi.org/10.1103/PhysRevD.97.124009
https://arXiv.org/abs/1811.11797
https://doi.org/10.1140/epjc/s10052-017-5010-7
https://doi.org/10.1140/epjc/s10052-017-5239-1
https://doi.org/10.1140/epjc/s10052-017-5239-1
https://doi.org/10.1140/epjc/s10052-018-6302-2
https://doi.org/10.1140/epjc/s10052-018-6302-2
https://doi.org/10.1088/0264-9381/32/14/145008
https://doi.org/10.1016/j.dark.2023.101230
https://doi.org/10.3847/1538-4357/abded3

