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In the framework of black hole perturbation theory, this work investigates the standing wave solutions in
Reissner-Nordtsröm (RN) anti–de Sitter (AdS) spacetimes with a naked singularity. These solutions can be
viewed as a specific class of quasinormal modes exhibiting distinct characteristics. The imaginary parts of
their frequencies are numerically vanishing, allowing them to persist over an extended period. Besides,
these modes are predominantly stationary in terms of the evolution of spacetime waveforms. The numerical
calculations are carried out employing the finite difference method, and the quasinormal frequencies
extracted by the Prony method are shown to be consistent with those obtained using the matrix method. The
obtained waveforms and quasinormal frequencies are shown to be drastically different from those of an
extreme RN-AdS black hole. As the quasinormal modes are primarily dissipative, the nondissipative
standing waves are attributed to the nature that the singularity can neither be a sink nor a source of the
gravitational system.
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I. INTRODUCTION

The revolutionary advent of gravitational wave (GW)
detection, made possible by the direct measurement of the
waveforms [1–4], has heralded a new era of observational
astronomy. This pioneering field of research seeks to probe
the strong-field regime of gravity, a pursuit that has seen
rapid advancements in recent years. In particular, the
ongoing space-borne laser interferometer projects [5–7]
have promoted much efforts aiming at unprecidented
detector sensitivity [8–12].
Theoretical perspectives have led to essential estimations

on the viability of black hole spectroscopy [13–18]. In
particular, for real-world scenarios, the gravitational radi-
ation sources, such as black holes or neutron stars, are not
isolated but interact with surrounding matter. In other
words, there is inevitably a deviation of spacetime from
an ideally symmetric metric, causing the emitted GWs to
differ substantially from those of a pristine, isolated,
compact object. This phenomenon has steered investiga-
tions towards the study of “dirty” black holes [19–22],
opening new avenues in black hole perturbation theory.

In this regard, researchers have focused on modeling
realistic systems composed of compact astrophysical
objects, such as black holes or neutron star binaries. A
key focus has been the study of black hole quasinormal
modes (QNMs) [23–25], which are integral to the ringdown
stage of the merger process. These dissipative oscillations,
embodying the inherent properties of the underlying black
hole spacetime, are governed by several no-hair theorems
[26,27]. Leung et al. pioneered the study of scalar QNMs of
dirty black holes for nonrotating metrics, assessing the
deviations in quasinormal frequencies using the generalized
logarithmic perturbation theory. Subsequently, Barausse
et al. performed a comprehensive analysis concerning per-
turbations around a central Schwarzschild black hole [22].
Their observations confirmed that the resultant QNMs
could significantly deviate from those of an isolated black
hole. However, they also concluded that the astrophysical
environment would not significantly affect black hole
spectroscopy if an appropriate waveform template was
utilized. Of the various scenarios explored in [22], the
thin shell model emerged as the one providing the most
substantial modification to the QNM spectrum. The con-
cept of black hole pseudospectrum, pioneered by Nollert
and Price [28,29], is closely connected with the consid-
erations discussed above. They demonstrated that minor
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perturbations, expressed as step functions, significantly
impact high-overtone modes in the QNM spectrum. This
demonstrated an unexpected instability of the QNM spec-
trum against “ultraviolet” perturbations, challenging the
assumption that a reasonable approximation of the effective
potential ensures minimal deviation in the resulting QNMs.
In [30], we argued that even in the presence of disconti-
nuity, the asymptotic behavior of the QNM spectrum would
be nonperturbatively modified. Specifically, high-overtone
modes would shift along the real axis instead of ascending
the imaginary frequency axis [31,32]. We found that this
phenomenon persisted regardless of the discontinuity’s
distance from the horizon or its significance. Employing
the concept of structural stability, Jaramillo et al. [33–35]
analyzed the problem in the context of randomized per-
turbations to the metric. Their analysis, in conjunction
with Chebyshev’s spectral method in hyperboloidal coor-
dinates [36], revealed that the boundary of the pseudospec-
trum moves toward the real frequency axis. These results
reinforce the universal instability of high-overtone modes
triggered by ultraviolet perturbations. More recent obser-
vations by Cheung et al. [37] indicate that even the
fundamental mode can be destabilized under generic
perturbations.
A naked singularity poses a challenge due to its impact

on the causal structure of the underlying spacetime mani-
fold. Specifically, due to its presence, the spacetime in
question mostly does not contain a complete Cauchy
surface. From a physical perspective, it is intriguing that
the requirement for geodesic completeness [38] can be
replaced by global hyperbolicity [39,40]. The difficulty
caused by singularity is somewhat mitigated by shifting the
focus from the classical point particles to the fields [41–47],
as the wave might propagate through the would-be singu-
larity in a well-defined fashion. Nonetheless, in a non-
globally hyperbolic spacetime, the uniqueness of solutions
of a wave equation is lost. As a result, an initial value
problem is ill-defined when the time evolution of the field is
not uniquely determined in the entire spacetime domain.
A possible solution is introducing additional boundary
condition(s) so that the wave propagation is uniquely
defined [42,44,46,48]. Alternatively, in terms of spectral
theorem [49], the problem can be viewed as the self-
adjointness of the positive and symmetric Hamiltonian
operator comprised of spatial operation in the master
equation. To be specific, by suitably prescribing its domain
[42,44], such as Friedrich’s extension [49], the operator in
question can be shown to be positive symmetric self-adjoint
under moderate assumptions. Subsequently, the self-adjoint
extension acts as a time translation operator that uniquely
determines the system’s time evolution. Effectively, any
undesirable singular mode not contained in the domain
of the initial data will not appear after the scattering
process, so the arbitrariness in time evolution is removed.

Subsequently, by specifying the dynamics using such a
recipe, one can characterize the system by a set of quasi-
normal modes.
The present study is motivated to explore the properties

of the QNMs in spacetime with a naked singularity. We
report the occurrence of a specific class of quasinormal
frequencies, which demonstrate themselves as standing
wave solutions in the Reissner-Nordtsröm (RN) anti–de
Sitter (AdS) spacetimes. Regarding the evolution of space-
time waveforms, these modes are primarily stationary.
Their characteristics are distinct from the QNMs of extreme
RN-AdS black holes, even though the underlying space-
time metrics are closely related. Specifically, the causal
one-way membrane turns into an antinode of the resulting
standing wave. We explore the spatial-temporal evolution
of the perturbations and derive the specific values of the
corresponding frequencies.
The remainder of the paper is organized as follows. The

following section gives an account of the master equation
of the axial oscillations in the RN-AdS spacetime with a
naked singularity. In Sec. III, the spatial-temporal evolu-
tions are evaluated numerically using the finite difference
method. The corresponding quasinormal frequencies are
extracted using the Prony method and compared to those
obtained using the matrix method. By comparing the
QNMs of the corresponding extreme black holes, in
Sec. IV, we elaborate on the difference between the two
scenarios. Further discussions and the concluding remarks
are given in Sec. V.

II. THE MASTER EQUATION IN THE REISSNER-
NORDTSRÖM ANTI–DE SITTER SPACETIME

WITH A NAKED SINGULARITY

By solving the Einstein field equation in the presence of
a cosmological constant Λ

Gμν þ Λgμν ¼ 0; ð2:1Þ

the metric of a charged (anti–)de Sitter black hole is found
to be [50]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2
�
dθ2 þ sin2 θdφ2

�
; ð2:2Þ

where

fðrÞ ¼ 1 −
2M
r

þQ2

r2
−
Λ
3
r2; ð2:3Þ

where M and Q are the mass and electric charge of the
solution.
For the present study, we are interested in the AdS

spacetime Λ < 0. It is readily verified when
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M <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Q2Λ

pq
6

ffiffiffiffi
Λ

p �
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Q2Λ

p �
; ð2:4Þ

the metric function fðrÞ does not have any positive root
and, subsequently, r ¼ 0 becomes a naked singularity.
The master equation for perturbations in the above

spacetime is found to have the form,

∂
2Ψ
∂r2�

−
∂
2Ψ
∂t2

− VðrÞΨ ¼ 0; ð2:5Þ

where r� ¼
R
dr=f is the tortoise coordinate. If one choose

r0� ≡ r�ðr ¼ 0Þ ¼ 0, then r∞� ≡ r�ðr → ∞Þ is manifestly
finite. The effective potential VðrÞ in Eq. (2.5) for the
spherically symmetric axial gravitational and Maxwell
perturbations are given by [51]

V�
axial ¼

fðrÞ
r3

�
2ðna þ 1Þr − p∓

a

�
1þ p�

a

2nar

��
; ð2:6Þ

where

p�
a ¼ 3M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 þ 8naQ2

q
;

na ¼
ðL − 1ÞðLþ 2Þ

2
: ð2:7Þ

It is noted that in an RN spacetime, the perturbed
electromagnetic field is related to the perturbed compo-
nents of the Ricci tensor. In the spherically symmetric axial
case, there are only two independent degrees of freedom,
and they can be decoupled, giving rise to the effective
potential given by Eq. (2.6). Without loss of generosity, we
will use the parametersΛ ¼ −3 and L ¼ 3 in the remainder
of the paper. For the case of naked singularity, we mainly
adopt M ¼ 3 and Q ¼ ffiffiffi

5
p

.
In Fig. 1, we illustrate the effective potentials VðrÞ for

the axial perturbations and the metric function fðrÞ.
Observing Eqs. (2.6), both effective potentials possess
the limits

FIG. 1. The metric function fðrÞ (top-left), tortoise coordinate r�ðrÞ (top-right) and the effective potentials V�
axial for the RN-AdS

spacetime with a naked singularity shown in radial (bottom-left) and tortoise coordinates (bottom-right). The effective potential V−
axial

features a local minimum that is less than the potential at spatial infinity. In the calculations, we have used the parameters M ¼ 3,
Q ¼ ffiffiffi

5
p

, Λ ¼ −3, and L ¼ 3, which is primarily adopted by the remainder of the paper in the case of a naked singularity.
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lim
x→0

V�
axialðxÞ ¼ þ∞;

lim
x→þ∞

V�
axialðxÞ ¼ LðLþ 1Þ: ð2:8Þ

Also, it is noted that the effective potential V ¼ V−
axial

features a local minimum forming a potential well, whose
value is less than that at spatial infinity. This allows for
standing wave solutions elaborated below. In what follows,
we will primarily focus on the axial degree of freedom
Ψ ¼ Ψ−

axial related to the effective potential V ¼ V−
axial.

Owing to the singularity at r ¼ 0, the initial value
problem is ill-defined as the spacetime is not globally
hyperbolic. To proceed, we follow the recipe and argu-
ments elaborated in [48] by choosing a physically relevant
boundary condition at the singularity. Subsequently,
Green’s function can be constructed using the solutions of
the corresponding homogeneous equation [23]. Therefore,
the system’s resulting QNMs are governed by the poles
of the Green’s function, which, in turn, can be obtained
using most standard approaches. To this end, we first
analyze the asymptotic behavior of the waveforms in the
vicinity of the origin.

Ψðr → 0Þ → C1r4 þ
C2

r
; ð2:9Þ

where C1 and C2 are two constants of integration. It is a
natural choice to demand that the flow at the origin
vanishes, namely,

jrðr→ 0Þ ¼ ½Ψðr; tÞ∂rΨ�ðr; tÞ−Ψ�ðr; tÞ∂rΨðr; tÞ�jr→0 ¼ 0:

ð2:10Þ

This demands that the singularity is neither a source nor a
sink for the field, and subsequently, the Smatrix of the field
is a unitary operator. Furthermore, we adopt the boundary
condition C2 ¼ 0, namely,

Ψð0; tÞ ¼ 0: ð2:11Þ

One may argue that it is a relevant choice. On the one
hand, it implies Eq. (2.10). On the other hand, it can be
shown [42,48] that such a boundary condition corresponds
to Friedrich’s extension of a symmetric operator when
singularity is produced by “cutting out holes”. We note that
such a choice of boundary condition is not unique and can
be replaced by another physically meaningful recipe. For
the standing wave solution, the boundary condition at
infinity is taken to be

Ψðþ∞; tÞ ¼ 0: ð2:12Þ

Now, Green’s function can be written down by using the
two solutions of the homogeneous equation that satisfy the
boundary conditions at r ¼ 0 and þ∞ [23], namely,

G̃ðx; y;ωÞ ¼ 1

WðωÞΨ0ðx<;ωÞΨinfðx>;ωÞ; ð2:13Þ

where x< ≡minðx; yÞ, x> ≡maxðx; yÞ, and

WðωÞ≡WðΨinf ;Ψ0Þ ¼ ΨinfΨ0
0 − Ψ0Ψ0

inf ð2:14Þ

is the Wronskian, where Ψ0 and Ψinf are the two linearly
independent solutions of the corresponding homogeneous
equation satisfying the boundary conditions Eqs. (2.11)
and (2.12) at the horizon and infinity. Therefore, the above
procedure uniquely defines Green’s function, whose poles
give rise to the quasinormal modes. In what follows,
Eq. (2.5) and boundary conditions Eqs. (2.11) and (2.12)
will be employed to calculate the spatial-temporal evolu-
tions of the perturbations using the finite difference
method. The corresponding quasinormal frequencies will
also be evaluated using the matrix method. For the latter,
we introduce the transformationΨ ¼ e−iωtΨðrÞ, where ω is
the waveform frequency.

III. SPATIAL-TEMPORAL EVOLUTIONS
OF THE PERTURBATIONS AND THE STANDING

WAVE SOLUTIONS

In this section, we investigate the spatial-temporal
evolution of the gravitational perturbations and explore
the underlying quasinormal frequencies. We employ the
finite difference method to evaluate the spatial-temporal
dependence of the waveforms, and the matrix method is
utilized to study both the waveforms and the resonance
frequencies more specifically. Also, the Prony method is
used to extract the frequencies from the temporal profiles,
and the obtained results are compared with those obtained
by the matrix method. We further elaborate on a possible
transition between two nondissipative fundamental modes
in the extreme RN-AdS black hole metric and that with a
naked singularity, whose metric forms are essentially
identical outside the “horizon”.
The finite difference method [52–56] serves as an

effective tool for studying the complex field of gravitational
waveforms. This method offers a more general description
of the dynamical evolution for given initial perturbations.
The inherent flexibility of the finite difference method
allows it to accommodate diverse scenarios and boundary
conditions, making it particularly useful in studying the
propagation and interaction of gravitational waves.
The resultant spatial-temporal evolutions of the initial

perturbations are presented in Figs. 2–4. For illustration
purposes, the radial coordinates in both scenarios are trans-
formed into the interval (0, 1). For the extreme RN-AdS
black hole metric, it is defined as x ¼ 1 − 1=r, while for the
metric with a naked singularity, we adopt y ¼ r�=r�inf .
In Fig. 2, we show the spatial-temporal evolutions of the

axial perturbations of a Gaussian wave package in the
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FIG. 2. The space-temporal evolution of the initial axial perturbations of a Gaussian form in an RN-AdS black hole metric (left) and
that with a naked singularity (right).

FIG. 3. Standing wave solutions of the axial perturbations in the RN-AdS metric with a singularity for overtones n ¼ 0 (upper-left),
n ¼ 1 (upper-right), n ¼ 2 (bottom-left), and n ¼ 3 (bottom-right), where M ¼ 3, Q ¼ ffiffiffi

5
p

, Λ ¼ −3, and L ¼ 3.
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extreme RN-AdS black hole metric and in that with a naked
singularity. The case for RN-AdS black hole is shown in the
left panel, where one assumes M ¼ 27=16, Q ¼ ffiffiffiffiffiffiffiffiffiffi

11=8
p

,
Λ ¼ −3, L ¼ 3, and thus the outer horizon rh ¼ 1. The
initial perturbation is given by Ψðt ¼ 0Þ ¼ e−100ðr�þ1Þ2 and
∂tΨðt ¼ 0Þ ¼ 0, and we choose Δx ¼ 2Δt ¼ 0.01 in the
finite difference method. The case for naked singularity is
given in the right panel, where one takesM ¼ 3, jQj ¼ ffiffiffi

5
p

,
Λ ¼ −3, and L ¼ 3. The initial perturbation is given by
Ψðt ¼ 0Þ ¼ e−1250ðr�−1

2
Þ2 and ∂tΨðt ¼ 0Þ ¼ 0, and we adopt

Δr� ¼ 2Δt ¼ r∞�
Nr�

in the finite difference method. The total

grid points in r� and t coordinates are Nr� ¼ 103 and
Nt ¼ 104, respectively. Distinct features are observed in the
spatial-temporal evolutions of the two scenarios. The
waveform is primarily dissipative while nonoscillative
for the black hole quasinormal modes shown in the left
panel. This is because the waveform is constituted mainly
by the underlying quasinormal modes that are purely
imaginary. A half-wave loss occurs when the waveform
is reflected at x ¼ 1 as the amplitude flips its sign. This is a
direct consequence of the asymptotical divergence of the
effective potential at the spatial infinity. On the other hand,
the perturbations never reach the horizon at x ¼ 0 due to
the infinite redshift. The initial perturbations bounce off the
spatial infinity only once for the above reason. The right
panel of Fig. 2 shows the scenario of a naked singularity,
and it is observed that the waveforms do not diminish in
time. In the chosen spatial coordinate, the waveform travels
essentially at constant velocity as it is repeatedly reflected
between the boundaries, namely, the singularity x ¼ 0 and
spatial infinity x ¼ 1. Again, the half-wave loss is observed
at both boundaries, which can be attributed to the asymp-
totical properties of the effective potential shown in Fig. 1.
The waveforms shown in the right panel of Fig. 2 can be

decomposed as a summation of standing waves, shown in
Fig. 3. In the latter, we present the profiles of the first few
overtones of standing waves. The finite difference method

is carried out using Δr� ¼ 2Δt ¼ r∞�
Nr�

and the total grid

points in r� and t axes are Nr� ¼ 103 and Nt ¼ 104,
respectively. As standing waves, the perturbations oscillate
in time for a given spatial point. Meanwhile, a given phase,
roughly a given color fragment, is localized as it only
stretches along the spatial direction. For these waveforms,
it is observed that the boundaries always correspond to
the nodes, while modes with different overtones can be
identified by the number of antinodes.
We further explore the spatial waveform and the qua-

sinormal frequencies pertaining to the standing wave
solutions obtained in the section by employing the matrix
and Prony methods. The matrix method [57–64] is an
approach for reformulating QNM problems into matrix
equations for complex frequencies. The method, akin to
the continued fraction method, mainly differs in the choice
of grid points for the waveform expansion [57] and can
be viewed as a further generalization of the method
proposed in [65]. It offers versatility, addressing spherically
symmetric cases [58], extending to metrics with axial sym-
metry [59], and accommodating various boundary con-
ditions [60]. Its competence extends to systems with
coupled degrees of freedom [66] or coupled master equa-
tion sectors [59]. Furthermore, it has been adapted for
dynamic black hole spacetimes [61] and recently general-
ized [62] for handling effective potentials with disconti-
nuity. The Prony method [67] is a powerful tool in data
analysis and signal processing. The method is implemented
by turning a nonlinear minimization problem into that of
linear least squares in matrix form, which is particularly
useful for extracting complex frequencies from a regularly
spaced time series. For the results presented below, the
convergence of the numerical values has been confirmed by
using different grid sizes.
In Fig. 4, the corresponding spatial profiles of the first

few overtones for the axial perturbations are depicted, and
the corresponding frequencies are also indicated. Because
the system is not dissipative, the obtained frequencies
are real numbers. These results are manifestly consistent
when compared against those obtained using the Prony
method to extract the oscillation frequencies from the
waveform obtained earlier. The comparison is presented
in Table I. The frequencies obtained using two independent
approaches reasonably agree with each other up to a
discrepancy of less than 1%.

IV. A COMPARISON BETWEEN THE
QUASINORMAL OSCILLATIONS

AND STANDING WAVES

In this section, we delve into the discussions about the
difference between the quasinormal oscillations and stand-
ing wave solutions established in the previous section. In
particular, we compare two scenarios: an extreme RN-AdS

FIG. 4. Spatial profiles of the standing wave solutions of the
axial perturbations with overtones n ¼ 0, 1, 2, and 3.
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black hole and a spacetime where a naked singularity is
marginally formed.
The metric with a naked singularity falls back to that of a

charged black hole in the asymptotically AdS spacetime
when the condition Eq. (2.4) is not satisfied. For an
RN-AdS black hole, the spacetime is known to be dissipative
and stable [68], where the initial perturbations are expected
to disperse and eventually be absorbed by the charged black
hole. In what follows, we consider the scenario where, on the
one hand, the black hole is extreme; on the other hand, a
naked singularity is marginally formed. Indeed, for RN-AdS
black hole spacetimes, while the metrics are stable against
perturbations, strong cosmic censorship [69] might be
broken for near extreme black holes [70–74]. In this
context, it is arguable whether one might turn an extreme
black hole into a naked singularity by injecting a test
particle into the black hole [75–78]. Therefore, under such a
circumstance, the physical properties of the gravitational
system, inclusively the quasinormal modes, have been an
intriguing topic explored in the literature [68,76,77,79–84].
For an extreme black hole, we choose M ¼ 3, Q ¼ 2,

Λ ¼ −3 and L ¼ 3, so that two horizons become degen-
erated and are given by

rc ¼ r� ¼ 1 ð4:1Þ

is a one-way membrane from the outside. In the vicinity of
such an extreme black hole, one may consider the marginal
metrics with and without the horizon. At first glimpse,
the metric should be identical for r > rc. However, it turns
out not to be the case and subsequently leads to a drastic
change between the two fundamental modes, potentially
reflecting the distinction in the physical natures of the two
scenarios.
Specifically, for a black hole, the flux of the waveform

must be ingoing at the horizon. Nonetheless, as the black
hole approaches an extreme one, it was numerically
indicated that the obtained quasinormal frequency has a
vanishing imaginary part [68], different from those for
asymptotically flat spacetimes [82–84]. In the literature, it
has been argued [70,73,74] that the magnitude of the
imaginary part of the quasinormal frequencies implies that
the corresponding relaxation rate of the collapsed charged
fields is slow enough to lead to significant mass inflation.
The latter, in turn, destabilizes the dynamically formed
inner Cauchy horizon and breaks the strong cosmic censor-
ship [71,79]. For the present case, the original one-way
membrane located at the coordinate rc turns out to be a
node of the standing waves, whose waveform is stable
against axial metric perturbations.
Our results are presented in Figs. 5–8. The metric

function and effective potential of extreme RN-AdS black
hole metric are shown in Fig. 5. The corresponding space-
temporal evolutions of an arbitrary initial Gaussian wave
package and the fundamental mode of an extreme black
hole are shown in Fig. 6. The initial perturbations in the
extreme black hole are given by Ψðt ¼ 0Þ ¼ e−100ðr�þ2Þ2

and Ψ0ðt ¼ 0Þ ¼ 0, while the frequency of the fundamental
modes is ωaxial ¼ −0.570299i. For the finite difference
method, we adopt Δx ¼ 2Δt ¼ 0.01215, and the total grid
points 100 and 3600 in the spatial and temporal axes. In the

TABLE I. The obtained frequencies ω using the matrix and
Prony methods. The calculations are carried out using the
parameters M ¼ 3, Q ¼ ffiffiffi

5
p

, Λ ¼ −3, and L ¼ 3. The matrix
method is employed by using N ¼ 25 grid points. The finite
difference method uses the resolution Δr� ¼ 0.015 and
Δt ¼ 0.0074. Subsequently, the Prony method is used to extract
the frequencies by applying to the time interval [0, 7.44].

n Matrix method Prony method

0 2.82459þ 0.00000i 2.82523 − 0.000182105i
1 4.80679þ 0.00000i 4.81311 − 0.0120591i
2 6.82717þ 0.00000i 6.82831 − 0.0000433076i
3 8.88166þ 0.00000i 8.88486þ 0.000215095i

FIG. 5. The metric function fðrÞ (left) and the effective potentials Vaxial (right) for the extreme RN-AdS spacetime.
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left panel of Fig. 6, we see that the evolution of an arbitrary
initial perturbation is qualitatively similar to that shown in
the left panel of Fig. 2, it is reflected at infinity while
dissipates and absorbed by the horizon. However, the
fundamental mode shown on the right panel of Fig. 6 is
suppressed in time without any temporal oscillations. It
possesses a nontrivial spatial distribution explicitly shown
in the left panel of Fig. 7, which remains unchanged
in time.
As a comparison, in Fig. 8, we show the spatial-temporal

evolutions in the metric when a naked singularity is margin-
ally formed. The initial perturbations in the black hole are
given by Ψðt ¼ 0Þ ¼ 6e−100ðr�−10Þ2 and Ψ0ðt ¼ 0Þ ¼ 0.
The frequency for the fundamental mode is ωaxial ¼ 2.82.
We adopt Δr� ¼ 2Δt ¼ r∞�

100
for the finite difference method.

The total grid points in the spatial and temporal axes are
100 and 3600, respectively. For the two cases, we note that
the effective potential possesses the same limit at spatial
infinity,

lim
r→∞

lim
r�→rc�0

VðrÞ ¼ lim
r�→rc�0

lim
r→∞

VðrÞ ¼ LðLþ 1Þ: ð4:2Þ

By comparing Figs. 6 and 8, although the initial evolutions
of a Gaussian waveform are similar, they are distinct. For an
extreme black hole, the system is dissipative. The funda-
mental mode’s waveform is finite at both boundaries with a
finite flux. When a naked singularity is marginally formed,
the waveform is stationary, where the fundamental mode
vanishes at the boundaries.

FIG. 6. The space-temporal evolution in the extreme RN-AdS black hole metric of the initial axial perturbations of a Gaussian form
(left) and that of the fundamental quasinormal mode (right). The calculations are carried out using the parameters M ¼ 3, Q ¼ 2,
Λ ¼ −3, and L ¼ 3.

FIG. 7. The spatial profile of the fundamental modes in the extreme black hole metric shown in Fig. 6 (left) and that when a naked
singularity marginally formed (right) shown in Fig. 8.
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V. CONCLUDING REMARKS

To summarize, this work delves into the presence of
standing wave solutions in the RN-AdS spacetime with a
naked singularity. We identify these solutions as a unique
subset of quasinormal modes bearing peculiar attributes.
They are characterized by the frequencies with vanishing
imaginary parts, contributing to their persistence over
extensive timeframes. Additionally, regarding the space-
time waveform evolution, these modes primarily exhibit
stationary behavior. We corroborate the existence of such
modes via numerical calculations using the finite difference
method. The Prony method is employed to extract the
frequencies and compare the obtained results against those
inferred through the matrix method. These QNMs are
shown to be drastically different from those of an extreme
RN-AdS black hole. We believe our study offers some
insights for the studies regarding metric perturbations.
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