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The ultralight boson is one of the potential candidates for dark matter. If it exists, it can be generated by a
rapidly rotating black hole via superradiance, extracting the energy and angular momentum of the black
hole and forming a boson cloud. The boson cloud can be affected by the presence of a companion star,
generating rich dynamical effects and producing characteristic gravitational wave signals. During the
inspiral of two black holes, the cloud carried with these black holes will redistribute among them and form
the so-called black hole molecule. With the framework developed in this work, we analyze the evolution of
this black hole molecule and found that bosons occupying the growing modes of the primary black hole can
jump to the decaying modes of the companion black hole, resulting in cloud depletion. This mechanism of
cloud depletion is different from that induced by the tidal perturbation from the companion.
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I. INTRODUCTION

The detection of gravitational waves by current ground-
based gravitational wave detectors (LIGO [1], Virgo [2],
KAGRA [3], etc.) opens up a new avenue to explore
astrophysical processes that involve a strong gravitational
field. Future space-borne gravitational wave detectors
(LISA [4], TQ [5], Taiji [6], etc.) extend the detection
frequency range and allow for exploration of supermassive
black holes. One of the interesting target sources for
gravitational wave detectors is the ultralight boson, includ-
ing axion and pseudoscalar axionlike particles. The axion
provides a solution to the strong CP problem [7–9] and
has the potential to demystify the baryon asymmetry of
the Universe, while more general axionlike particles are
predicted by symmetry breaking in string theory [10].
These ultralight bosons are also potential candidates for
dark matter [11–15]. The ultralight boson, if it exists, can
be produced by a rapidly rotating black hole (BH) through
superradiance instabilities [16–24], carrying away the mass
and angular momentum of the black hole and forming a
boson cloud/condensate [25].
Since the presence of ultralight bosons reduces the mass

and spin of the black hole, the precision measurement of
black hole mass and spin via gravitational wave detectors
provides a powerful constraint on the properties of
bosons [26–33]. In addition, the boson cloud can radiate

continuous gravitational waves due to its asymmetric
distribution and self-annihilation [25,34], and thus can
be detected by future gravitational wave detectors.
If a companion star is present, the boson cloud around a

black hole is distorted by a time-dependent tidal field.
Under certain conditions, the time-dependent tidal field
can induce transitions between the boson’s various energy
levels, in particular, between the growing modes and the
decaying modes [35]. This would generate rich dynamical
effects. The transition of the boson can transfer energy and
angular momentum from the boson cloud to the companion
star, modifying its orbital evolution [36]. In the extreme
case, the energy loss of the companion star due to the
emission of gravitational waves is balanced by the energy
gain from the boson cloud, thus forming the so called
“floating orbit” [37]. The modification to the orbital
evolution of the binary system can be detected by pulsar
timing if the companion star is a pulsar [38,39]. When the
boson occupies the decaying mode, it may decay into the
black hole, resulting in the depletion of the boson cloud
[35,40,41]. In some cases, the boson cloud could be
completely cleaned up by the companion star. The bosons
that are absorbed by the black hole increase the mass of the
black hole while reducing its spin. The reduction of the black
hole spin can turn some of the growing modes into decaying
modes and then accelerate the cloud depletion [42]. The
companion star can also induce transitions between bound
and unbound orbits of the boson, and thus ionize it [43].
These dynamical processes of the boson cloud produce
characteristic gravitational wave signals and consequently
can be detected by current and future gravitational wave
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detectors [44]. This provides a way to infer the presence of
the ultralight boson and constrain its properties.
When the black hole and its companion is sufficiently

close, the boson can escape to the companion, resulting
in a redistribution of the mass of the boson cloud. A
gravitational “molecule”, an analog to the hydrogen mol-
ecule, can be formed under certain conditions [45,46]. If the
companion is also a rotating black hole, then the escaped
boson may occupy the decaying modes of the companion
black hole and may decay into it. If this happens, then this
provides a new channel for boson cloud depletion. In this
work, we develop a framework to study the mass transfer
between two black holes in a binary system, assuming that
the two black holes have the same mass and spin, and their
spin orientation is parallel. We make analogy with the
hydrogen molecule ion and calculate the wave functions of
the molecular orbits and the corresponding energy eigen-
values using the variational method. We then obtain the
probability for the boson jumping to the decaying mode of
the companion black hole, and show that this leads to a
strong cloud depletion which almost completely cleans up
the boson cloud.
This paper is organized as follows. In Sec. II, we briefly

review the boson cloud around a black hole and its
depletion into the black hole due to the time-dependent
tidal field produced by the companion. In Sec. III, by
making analogy with the hydrogen molecule ion, we use
the variational method to derive the wave functions and
energy eigenvalues of the boson in the binary black hole
system. In Sec. IV, we use the adiabatic approximation to
study the time evolution of the wave function of the boson,
evaluate the probability of jumping to the decaying mode of
the companion black hole, and calculate the time evolution
of the cloud mass due to the decay into the companion
black hole. We finally conclude in Sec. V. We will use
natural units ℏ ¼ G ¼ c ¼ 1 throughout the paper.

II. BOSON CLOUD AROUND A BLACK HOLE

A. Gravitational atom

A rapidly rotating black hole can radiate ultralight
bosons via superradiance instabilities. These bosons con-
densate in some of their orbits, forming a boson cloud
around the black hole. When the mass of the boson is
small, the size of the cloud can be much larger than the
gravitational radius of the rotating black hole. In this limit,
the Newtonian approximation is sufficient to describe the
dynamics of the boson cloud. The orbit of the boson is
determined by a Schrödinger-like equation, similar to that
of an electron in a hydrogen atom. The eigenstates of the
boson are denoted as jφnlmi or φnlm, and the eigenfre-
quencies are given by [47]

ωnlm ≈ μ

�
1 −

α2

2n2

�
; ð1Þ

where μ is the mass of the boson, α≡Mμ is the
dimensionless “fine-structure constant”. The radial profile
of the wave function peaks at

rc;n ≈
�
n2

α2

�
rg ¼ n2rb; ð2Þ

where rg is defined as the gravitational radius of the black
hole, rg ≡M, and rb ¼ rg=α2 is defined as the Bohr radius.
However, there is a crucial difference between the

electron in the hydrogen atom and the boson around a
black hole: the orbits of the electron are stable while the
orbits of the boson are not stable due to the presence of the
black hole horizon. This is characterized by the imaginary
part of the eigenfrequency, ωnlm → ωnlm þ iΓnlm. In the
limit α ≪ 1, Γnlm can be approximated as [47]

Γnlm ¼ 2rþ
M

CnlmðαÞðmΩH − ωnlmÞα4lþ5; ð3Þ

where CnlmðαÞ is positive and given by

CnlmðαÞ ¼
24lþ1ðnþ lÞ!

n2lþ4ðn − l − 1Þ!
�

l!
ð2lÞ!ð2lþ 1Þ!

�
2

×
Yl
j¼1

½j2ð1 − ã2Þ þ ðãm − 2r̃þαÞ2�; ð4Þ

with ã ¼ a=M and r̃þ ¼ rþ=M. Here rþ is the size of the
event horizon, a is the spin and ΩH is the angular velocity
of the rotating black hole. The orbits with positive Γnlm are
growing modes, for which the number of boson grows
exponentially; while the orbits with negative Γnlm are
decaying modes, for which the number of boson decays
exponentially. Starting from a rapidly rotating black hole,
bosons are radiated due to the superradiance instabilities
and then occupy the growing modes. The radiated bosons
carry away angular momentum, slowing down the rotation
of the black hole. At an equilibrium point the black hole
rotates slow enough such that no bosons can be further
radiated, and a quasi-stationary boson cloud forms around
the black hole.

B. Hyperfine and Bohr resonance

When the black hole with a boson cloud is part of a
binary system, the gravitational field of the companion star
distorts the cloud, resulting in transition of bosons between
growing modes and decaying modes. The bosons that
jump to decaying modes can return to the black hole,
reducing the total mass of the cloud and transferring
angular momentum to the companion star. Therefore, the
existence of boson cloud would affect the orbital evolution
of the companion star and the gravitational waveforms from
the binary system.
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The companion star induces a time-dependent perturba-
tion to the Kerr metric, which then introduces a time-
dependent shift of gravitational potential to the Schrödinger
equation that dominates the dynamics of bosons. Under
certain conditions, the time-dependent perturbation can
induce resonant transitions between growing modes and
decaying modes [35]. There are two types of resonances,
the hyperfine (or Rabi) resonance and the Bohr resonance.
The resonance occurs at a specific orbital separation.
In general, the orbital separation of the hyperfine resonance
is much larger than that of the Bohr resonance. This is
because the hyperfine energy gap is much narrower than
the Bohr energy gap, which implies that the companion
star has to be closer to the black hole in order to excite the
Bohr resonance.

III. BOSON ORBITS IN A BINARY
BLACK HOLE SYSTEM

We are concerned with the dynamics of the boson cloud
when a black hole and its companion are sufficiently close
so that mass transfer between them cannot be ignored.
It has been shown by using effective field theory techniques
[45] and numerical calculation [46] that a gravitational
molecule can form in a binary black hole system. Here, we
use a simple model to describe the mass transfer and the
time evolution of a BH-cloud-companion system. The
model is based on the analogy between the hydrogen
molecule ion Hþ

2 and the BH-cloud-companion system.
A similar method is used to study the short-time evolution
of the boson cloud in a BH-cloud-pulsar system [48].
Our objective in this work is to describe the full-time
evolution of the BH-cloud-companion system, capture
the main characteristics of mass transfer and the boson
cloud depletion.
For simplicity, we assume: (1) the companion is also a

black hole, therefore forming a binary black hole system;
(2) two black holes have the same mass and spin; (3) their
spin orientation is parallel and perpendicular to the orbital
plane. The schematic of the configuration is shown in
Fig. 1. These assumptions allow us to focus on the effect of
mass transfer, and they can be relaxed to incorporate more
complicated effects. Under these assumptions, the orbits of
the boson in the BH-cloud-BH system is analogous to that
of the electron in the hydrogen molecule ion Hþ

2 , except
that the two black holes rotate with each other and that the
existence of a horizon results in boson absorption.

A. Orbits of hydrogen molecule ion

The hydrogen molecule ion Hþ
2 consists of two protons

and a single electron. The electron moves in the potential
produced by the two protons with a fixed distance.
The potential is time independent so the electron wave
functions can be derived by solving the stationary
Schrödinger equation. The approximate energy eigenvalues

and eigenfunctions can be solved using the variational
method. The energy eigenvalues are the stationary points of
the expectation value of the Hamiltonian. To approximate
the energy eigenvalue, one starts from a trial wave function
and then vary the parameters in the trial wave function to
find the stationary point of the Hamiltonian.
For the hydrogen molecule ion, the initial trial wave

functions can be selected by using the symmetric properties
of the system. For example, one can choose a linear
superposition of the two ground-state wave functions as
a trial function to find the ground state of the hydrogen
molecule ion. The excited states can also be found in a
similar way.
To maintain the symmetric properties of the system, it is

essential to select suitable trial functions in the variational
method. Firstly, we employ wave functions φnpx

, φnpy
, and

φnpz
instead of the usual wave functions φnlm, because the

former possess symmetric properties that are suitable for
constructing molecular orbits. Secondly, for the lowest-
order approximation, we linearly superpose wave functions
of two isolated hydrogen atoms with the same principal
quantum number n. Therefore, corresponding excited-state
molecular orbits can be constructed for each quantum
number n.
In this paper, our main focus is the excited states with

n ¼ 2. This is because a significant fraction of bosons
emitted by an isolated rotating black hole through super-
radiance occupy the n ¼ 2;l ¼ 1, andm ¼ 1 orbits. When
a companion black hole is sufficiently close to a primary
black hole surrounded by a boson cloud, it is anticipated

FIG. 1. Configuration of the BH-cloud-BH system and the
coordinate system used to describe the boson. The origin of
the coordinate system is located at the primary black hole, and the
z-axis is parallel to the spin of the primary black hole and the
x-axis is pointing towards the companion black hole. The spherical
coordinates ðr1; θ1;φ1Þ are used to represent the position of the
boson relative to the primary black hole, and ðr2; θ2;φ2Þ are used
to denote the position of the boson relative to the companion black
hole. Here a1 and a2 represent the spin of the primary and
companion black holes, respectively, and R denotes the orbital
separation.
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that most bosons would occupy the molecular excited states
with n ¼ 2. Other molecular states with a different princi-
pal quantum number, e.g., n ¼ 1, may also be occupied by
bosons; however, the contribution from these molecular
orbits is expected to be small, and we neglect them in
this paper.
It can be shown that there exists two molecular σ orbits

obtained from the atomic orbit 2px [49] (see Appendix B
for details),

jσi¼ 1ffiffiffi
2

p
N1

ðjφ1
2px

i− jφ2
2px

iÞ

¼ 1

2N1

ðjφ1
2;1;1iþjφ1

2;1;−1i− jφ2
2;1;1i− jφ2

2;1;−1iÞ;

jσ�i¼ 1ffiffiffi
2

p
N2

ðjφ1
2px

iþjφ2
2px

iÞ

¼ 1

2N2

ðjφ1
2;1;1iþjφ1

2;1;−1iþjφ2
2;1;1iþjφ2

2;1;−1iÞ; ð5Þ

and another two molecular π orbits obtained from the
atomic orbit 2py,

jπi¼ 1ffiffiffi
2

p
N3

ðjφ1
2py

iþjφ2
2py

iÞ

¼ 1

2iN3

ðjφ1
2;1;1i− jφ1

2;1;−1iþjφ2
2;1;1i− jφ2

2;1;−1iÞ;

jπ�i¼ 1ffiffiffi
2

p
N4

ðjφ1
2py

i− jφ2
2py

iÞ

¼ 1

2iN4

ðjφ1
2;1;1i− jφ1

2;1;−1i− jφ2
2;1;1iþjφ2

2;1;−1iÞ; ð6Þ

where N1, N2, N3, and N4 are introduced to normalize
these states,

N1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−hφ1

2px
jφ2

2px
i

q
; N2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þhφ1

2px
jφ2

2px
i

q
;

N3¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þhφ1

2py
jφ2

2py
i

q
; N4¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−hφ1

2py
jφ2

2py
i

q
: ð7Þ

It is evident that Ni depends on the distance between
two protons. In the following, we will use the notation
i ¼ 1; 2; 3; 4 to denote the four molecular orbits σ; σ�; π,
and π�, respectively.

B. Born-Oppenheimer approximation

We now turn to the problem of solving the orbits of the
boson in a binary black hole system with the two black
holes have the same mass and spin. This system is
analogous to the hydrogen molecule ion Hþ

2 except that
the two black holes rotate with each other and their
separation shrinks due to the emission of gravitational

waves. The bosons experience a time-dependent field rather
than a static one. An important question is how to take into
account the effects of rotation and orbital shrinking.
In Ref. [35], the rotation of the companion star relative to

the primary black hole produces a time-dependent pertur-
bation to the primary black hole, which then induces
hyperfine and Bohr mixing of growing and decaying
modes, resulting in boson cloud depletion. Whilst we
are concerned with the transfer of bosons between the
two black holes, the framework developed in Ref. [35] does
not apply here. As a first approximation, we neglect the
effects of rotation and orbital shrinking, and treat the two
black holes as stationary with a fixed orbital separation.
This is known as the Born-Oppenheimer approximation, in
which the binary black hole system with a boson cloud is
analogous to the hydrogen molecule ion at any given time.
Before performing the detailed calculation, we compare
various timescales to validate the use of Born-Oppenheimer
approximation.
The velocity of a boson can be estimated using the Virial

theorem and the uncertainty principle. The boson’s velocity
va satisfies,

1

2
μv2a ∼

Mμ

rc
; μva ∼

1

rc
; ð8Þ

where rc is the typical length scale of the radial profile of
the boson cloud. This implies

va ∼Mμ ∼ α: ð9Þ

The relaxation timescale for the boson can be approxi-
mated by

τr ∼
R
va

∼
R
α
: ð10Þ

The time τr characterizes the timescale for the boson
moving from one black hole to the other. The period of the
binary black holes is simply given by

T ¼ 2π

Ω
¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3

Mð1þ qÞ

s
: ð11Þ

Therefore the ratio between τr and T is

τr
T
∼

ffiffiffiffiffiffiffiffiffiffiffi
1þ q

p
2π

ffiffiffiffiffiffiffiffi
M
α2R

r
∼

ffiffiffiffiffiffiffiffiffiffiffi
1þ q

p
2π

ffiffiffiffiffi
rb
R

r
: ð12Þ

For q ¼ 1 and R ¼ 32rb, τr=T ∼ 1=8π ∼ 0.04. As we will
see in the following discussion, the mass transfer occurs
when R≳ 50rb. This shows that for an intermediate
orbital separation, the relaxation time of the boson is
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much shorter than the period of the binary. Therefore,
the two black holes can be treated as quasistatic
when considering the transfer of bosons and the Born-
Oppenheimer approximation applies.
The orbit of the binary black holes shrinks due to the

emission of gravitational waves [50],

RðtÞ ¼
�
Mð1þ qÞ

Ω2
0

�
1=3

�
−

t
τ0

�
1=4

; ð13Þ

where we set t ¼ 0 as the moment of merger, and τ0
is the time to merger for an initial orbital frequency Ω0.
The initial time τ0 and initial orbital frequency Ω0 are
related via

τ0
Mð1þ qÞ ¼

5

256

ð1þ qÞ2
q

�
1

Mð1þ qÞΩ0

�
8=3

: ð14Þ

The characteristic timescale for coalescence can be esti-
mated via

τp ¼
����
�
dR
dt

�
−1
����R ≈

5

64

R4

M3

1

qð1þ qÞ : ð15Þ

This timescale is evidently much longer than the period of
the binary T, and it is thus also much longer than the boson
relaxation timescale τr,

τr
τp

∼
32

5
α5
�
rb
R

�
3

qð1þ qÞ: ð16Þ

When the orbital separation of the two black holes is
sufficiently large and q is not so large, these two ratios are
both much smaller than one, so the Born-Oppenheimer
approximation is sound.

C. Eigenfunctions and energy eigenvalues

To find the exact eigenfunctions and eigenfrequencies,
one in principle needs to solve the Klein-Gordon equation
of the boson in the background spacetime of the binary
black hole system, which is quite a challenging task. When
the mass of the boson is small, the boson cloud is far away
from the black hole and Newtonian approximation can be
used to derive the eigenfunctions [35]. To the order of 1=r,
the wave function of the boson around a single rotating
black hole satisfies,

iℏ
∂

∂t
ψðt; rÞ ¼

�
−

1

2μ
∇2 −

α

r

�
ψðt; rÞ; ð17Þ

which is exactly in the same form as the Schrödinger
equation for the electron in a hydrogen atom. When the two
black holes are not so close to each other and the boson
lingers around a regime far away from both black holes,
then the Newtonian approximation applies. To the order
of 1=r, the wave function of the boson in the binary black
hole system satisfies,

iℏ
∂

∂t
ψðt; rÞ ¼

�
−

1

2μ
∇2 −

α

r1
−

α

r2

�
ψðt; rÞ; ð18Þ

where r1 is the distance between the boson and the primary
black hole, and r2 is the distance between the boson and the
companion black hole. Equation (18) is exactly in the same
form as the Schrödinger equation for the electron in the
hydrogen molecule ion, without including the interaction
between two protons.
In the Born-Oppenheimer approximation, the eigen-

functions of the boson at any given time can be derived
straightforwardly. They are exactly in the same form as
those given by Eqs. (5) and (6), with jφnlmi the eigen-
functions of the boson in a single isolated rotating black
hole. Furthermore, the normalization constants Ni depend
on the configuration of the BH-cloud-BH system. For the
case that we consider here, the normalization constants
have no analytic expressions and are needed to be evaluated
numerically.
Once the eigenfunctions are known, the energy eigen-

values can be calculated straightforwardly, which are
simply the expectation values of the Hamiltonian. From
Eq. (18) it is evident that the Hamiltonian of the boson in
the Newtonian limit is

Ĥ ¼ −
1

2μ
∇2 −

α

r1
−

α

r2
: ð19Þ

To simplify the calculation, we divide the Hamiltonian Ĥ
into two parts; the Hamiltonian of the boson in the primary
black hole and the potential produced by the companion
black hole, namely, Ĥ ¼ Ĥ1 − α

r2
with Ĥ1 ¼ − 1

2μ∇2 − α
r1
.

The Hamiltonian can also be expressed as Ĥ ¼ Ĥ2 − α
r1

with Ĥ2 ¼ − 1
2μ∇2 − α

r2
. Since the two black holes have

equal mass, the energy eigenvalues and eigenfunctions for
Ĥ1 and Ĥ2 are the identical. We will leverage this
symmetry to further simplify the calculation of the energy
eigenvalues of the Hamiltonian Ĥ, which are given by
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E1 ¼ hσjĤjσi ¼ 1

N2
1

�
−
1

8
μα2ð1 − hφ1

2px
jφ2

2px
iÞ − hφ1

2px
j α
r2
jφ1

2px
i þ hφ1

2px
j α
r2
jφ2

2px
i
�
;

E2 ¼ hσ�jĤjσ�i ¼ 1

N2
2

�
−
1

8
μα2ð1þ hφ1

2px
jφ2

2px
iÞ − hφ1

2px
j α
r2
jφ1

2px
i − hφ1

2px
j α
r2
jφ2

2px
i
�
;

E3 ¼ hπjĤjπi ¼ 1

N2
3

�
−
1

8
μα2ð1þ hφ1

2py
jφ2

2py
iÞ − hφ1

2py
j α
r2
jφ1

2py
i − hφ1

2py
j α
r2
jφ2

2py
i
�
;

E4 ¼ hπ�jĤjπ�i ¼ 1

N2
4

�
−
1

8
μα2ð1 − hφ1

2py
jφ2

2py
iÞ − hφ1

2py
j α
r2
jφ1

2py
i þ hφ1

2py
j α
r2

jφ2
2py

i
�
: ð20Þ

For the case that we consider here, there exists no
analytic expressions for Ei, so they have to be evaluated
numerically. Note that in deriving the eigenfunctions and
energy eigenvalues, we have ignored the higher-order
corrections to the Hamiltonian. This results in degeneracy
of all four energy levels when the two black holes are
infinitely far away.

IV. CLOUD DEPLETION

Assume that the primary black hole has a boson cloud
surrounding it while the companion black hole does not.
When the two black holes are very far away from each
other, the bosons move around the primary black hole and
cannot escape to the companion. When the two black holes
become closer to each other, the boson orbits that belong to
the primary black hole and that belong to the companion
have more overlap, forming boson orbits that are analogous
to the molecular orbits of the hydrogen molecule ion.
Therefore, the boson around the primary black hole may
jump to the companion. This can have two consequences;
first, the bosons redistribute in the binary black hole
system, changing its quadrupole and thus modifying the
gravitational waveform, and second, the bosons may jump
to the decaying modes of the companion, and therefore
could be absorbed by the companion black hole. To
estimate the importance of the above two consequences,
one needs to model the process of boson transfer from the
primary black hole to its companion.
The binary black hole system emits gravitational waves

so its orbit shrinks, namely, the orbital separation between
the two black holes shrinks due to the radiation of energy.
The orbital separation, denoted as RðtÞ, is thus time
dependent. This implies that the eigenfunctions and eigen-
frequencies are also time dependent because they are
solved at a given time assuming the orbital separation is
fixed. These solutions are meaningful only in the case
where the timescale of the orbital shrinking is much larger
than that of the boson relaxation. This is exactly the case as
we have discussed in Sec. III B. In order to know the
evolution of the boson cloud in the binary black hole
system, one needs to solve a time-dependent Schrödinger
equation, in which the Hamiltonian varies slowly. This sort
of problem can be solved using the adiabatic approximation

if the energy levels are not degenerate and the energy gap is
sufficiently large.

A. Adiabatic approximation

We numerically calculate the energy eigenvalues given
by Eq. (20) and plot them in Figs. 2 and 3. It can be seen
from Fig. 2 that the four energy levels split and the energy
gap is larger when the two black holes are closer. The gap

FIG. 2. Energy eigenvalues of the boson molecular orbits for
small orbital separation. Here we choose q ¼ 1 and α ¼ 0.1 as an
example.

FIG. 3. Energy eigenvalues of the boson molecular orbits for
large orbital separation. Here we choose q ¼ 1 and α ¼ 0.1 as an
example.
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decreases as the orbital separation increases, which is
consistent with the fact that the four energy levels are
degenerate when R → ∞. Figure 3 shows that the energy
gaps between orbits σ and σ�, and orbits π and π� decrease
much faster than that between σ’s and π’s orbits. Because
the energy gaps between orbits σ and σ�, and orbits π
and π� are very close, a question arises as to whether the
adiabatic approximation is still valid.
In the adiabatic approximation, the eigenfunctions and

energy eigenvalues vary slowly with time, but the boson
remains in the initial energy level during the subsequent
evolution, namely, no transition from one energy level to
others. In order to see whether the adiabatic approximation
is valid for the problem we consider here, we need to check
whether the transition between orbits σ and σ�, and orbits π
and π� is negligible.
Consider an arbitrary quantum state,

jψðtÞi ¼
X
n

cnðtÞjψnðtÞi; ð21Þ

where jψnðtÞi and cnðtÞ are the time-dependent energy
eigenstates and their corresponding coefficients, respecti-
vely. In the adiabatic approximation, we have jcnðtþdtÞj¼
jcnðtÞj, namely, there is no transition between different
energy levels. To estimate the accuracy of the adiabatic
approximation, one can check the amplitude of the time
derivative of the coefficient cnðtÞ. It can be shown that (see
Appendix C for details),

dck
dt

¼ −
X
n≠k

cn
1

En − Ek
hψkj

∂Ĥ
∂t

jψni − ickEk; ð22Þ

where the summation characterizes the transition from
the initial energy level to other energy levels, and the last
term represents the free evolution in the initial energy level.
Now consider the set of state fjψkig as the four orbits
jσi; jσ�i; jπi and jπ�i. Due to the symmetry of the system, it
can be shown (see Appendix C for details) that

hψkj
∂Ĥ
∂t

jψni ¼ 0; ð23Þ

for n ≠ k. This implies that the adiabatic approximation is a
good approximation to the time evolution of the boson.
Under the adiabatic approximation, the time derivative of
the coefficient ck is given by ċk ¼ −ickEk. Therefore, the

solution of the coefficient ck is ckðtÞ ¼ ckðt0Þe−i
R

t

t0
EkðτÞdτ

and the state jψðtÞi evolves as

jψðtÞi ¼
X
n

cnðt0Þe−i
R

t

t0
EnðτÞdτjψnðtÞi; ð24Þ

where t0 is the initial time.

Taking into account the emission of gravitational waves
and the orbital shrinking, the energy eigenvalues and
eigenstates are all time dependent, denoted as EiðtÞ,
jσðtÞi; jσ�ðtÞi; jπðtÞi and jπ�ðtÞi, respectively. When the
two black holes are infinitely far away, namely, t → −∞
and R → ∞, the normalization constants defined in Eq. (7)
are the same and equal to one. This implies that the initial
state of the boson can be written as

jΦð−∞Þi≡ jφ1
2;1;1i

¼ 1

2
½jσð−∞Þi þ jσ�ð−∞Þi

þ ijπð−∞Þi þ ijπ�ð−∞Þi�: ð25Þ

From Eq. (24) the subsequent evolution of the state is

jΦðtÞi ¼ 1

2

h
e−i

R
t

−∞
E1ðτÞdτjσi þ e−i

R
t

−∞
E2ðτÞdτjσ�i

þ ie−i
R

t

−∞
E3ðτÞdτjπi þ ie−i

R
t

−∞
E4ðτÞdτjπ�i

i
; ð26Þ

We now substitute Eqs. (5) and (6) into Eq. (26) and obtain
an expansion of jΦðtÞi in terms of the isolated orbits
jφ1

2;1;�1i and jφ2
2;1;�1i. The coefficient of the state jφ2

2;1;−1i
is given by

C−ðtÞ ¼ −
1

4N1

e−i
R

t

−∞
E1ðτÞdτ þ 1

4N2

e−i
R

t

−∞
E2ðτÞdτ

−
1

4N3

e−i
R

t

−∞
E3ðτÞdτ þ 1

4N4

e−i
R

t

−∞
E4ðτÞdτ: ð27Þ

The nonzero overlap between the isolated orbit jφ2
2;1;−1i

and jΦðtÞi implies that bosons can jump to the orbits of the
companion black hole during their evolution. The modular
square of C−ðtÞ,

jC−ðtÞj2¼
X
i

1

16N2
i

þ
X
i<j

ð−1Þiþj 1

8NiNj
cos

�Z
t

−∞
ðEiðτÞ−EjðτÞÞdτ

�
;

ð28Þ

represents the probability of jumping to the isolated orbit
hφ2

2;1;−1i. If we only consider the effect of gravitational
wave emission and neglect other effects like back reaction
of the boson cloud onto the orbital evolution, then we
can use the relation defined in Eq. (13) to express the
coefficient as a function of R, namely, C−ðRÞ, and the time
integration in Eq. (28) can be replaced by an integration
over the orbital separation R.
When R is sufficiently large, the energy levels of orbits σ

and σ� are almost degenerate (E1 ≈ E2), as well as that of
orbits π and π� (E3 ≈ E4), as can be seen from Fig. 3.
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In addition, the normalization factors satisfy N1ðRÞ ≈
N2ðRÞ and N3ðRÞ ≈ N4ðRÞ. This implies that the coeffi-
cient C−ðRÞ approaches to zero when the two black holes
are sufficiently far away from each other, which is con-
sistent with the fact that the boson cannot escape to a
companion that is very far away. When the two black holes
are closer, the energy levels of orbits σ and σ� become
nondegenerate (E1 ≠ E2), as well as those of orbits π
and π�. The coefficient C−ðRÞ gradually becomes nonzero,
indicating that the boson can transfer to the companion
black hole. From Eq. (28) we can see that the probability
jC−ðRÞj2 is the sum of six oscillating terms having
frequencies jEi − Ejj, with i; j ¼ fσ; σ�; π; π�g. The
frequencies jEi − Ejj with i∈ fσ; σ�g and j∈ fπ; π�g, or
j∈ fσ; σ�g and i∈ fπ; π�g, are much higher than that when
i; j∈ fσ; σ�g or i; j∈ fπ; π�g.
Figure 4 shows the occupation probability jC−ðRÞj2 of

the orbit jψ2
2;1;−1i, which is one of the decaying modes of

the companion black hole. In the numerical calculation, we
use a sufficiently large distance R ¼ 80rb as a replacement
for the infinitely large distance (t ¼ −∞) in the lower limit
of the integration in Eq. (28), which introduces a negligible
error. The blue curve takes into account the full expression
of jC−ðRÞj2 and includes highly oscillating terms, as shown
by Fig. 5. If we remove the highly oscillating terms and
only keep two terms with oscillating frequencies jEπ − Eπ� j
and jEσ − Eσ� j, we obtain the profile of the probability
jC−ðRÞj2, which is the orange curve shown in Fig. 4.
The profile captures the change of the probability that the
boson occupies the decaying mode of the companion black
hole during the evolution of the binary black holes. When
R > 63rb, the probability is almost zero. It gradually
increases as R decreases and reaches its first maximum
aroundR ¼ 55.5rb. The first maximum of the probability is
about 0.3, showing that a significant amount of boson

transfers to the companion black hole and occupies the
decaying mode jψ2

2;1;−1i. As the orbital separation R further
decreases, the profile of the probability oscillates with a
higher and higher frequency. Note that the orbital separa-
tion corresponding to the first maximum is larger than the
Roche limit, which is about 10rb for q ¼ 1.
We now consider the scenario where the companion

black hole also possesses a boson cloud. Since initially the
two black holes are very far away, the process of super-
radiance in each black hole is independent and uncorre-
lated. The state of a boson is therefore an incoherent
mixture of the state jφ1

2;1;1iwith probability p1 and the state
jφ2

2;1;1i with probability p2, namely, the state of a boson is
described by an ensemble fjφ1

2;1;1i; p1; jφ2
2;1;1i; p2g. The

probability p1 and p2 can be determined by the initial mass
of the boson clouds surrounding the two black holes. In this
paper, we neglect the interaction between boson clouds so
the boson evolves only under the influence of the other
black hole. Therefore, the evolution of the state of the
boson in the companion black hole can be derived in a
similar way. The initial state of the boson can be written as

jΨð−∞Þi≡ jφ2
2;1;1i

¼ 1

2
½jσ�ð−∞Þi − jσð−∞Þi

þ ijπð−∞Þi − ijπ�ð−∞Þi�: ð29Þ

According to the adiabatic approximation, the subsequent
evolution of the state is

jΨðtÞi ¼ 1

2

h
−e−i

R
t

−∞
E1ðτÞdτjσi þ e−i

R
t

−∞
E2ðτÞdτjσ�i

þ ie−i
R

t

−∞
E3ðτÞdτjπi − ie−i

R
t

−∞
E4ðτÞdτjπ�

i
; ð30Þ

We now substitute Eqs. (5) and (6) into Eq. (30) and obtain
an expansion of jΨðtÞi in terms of the isolated orbits

FIG. 4. Probability for a boson jumping to the decaying mode
jψ2

2;1;−1i of the companion black hole. Here we choose q ¼ 1 and
α ¼ 0.1. The blue curve includes both the rapidly oscillating and
slowly oscillating terms, while the orange curve includes only the
slowly oscillating terms.

FIG. 5. High-frequency oscillations of the probability for a
boson transitioning to the decaying mode jψ2

2;1;−1i of the
companion black hole. We have chosen orbital separations
around R ¼ 56rb.

GUO, ZHONG, MA, and SU PHYS. REV. D 109, 104046 (2024)

104046-8



jφ1
2;1;�1i and jφ2

2;1;�1i. It is straightforward to show that
the coefficient of the state jφ1

2;1;−1i is the same as C−ðtÞ
given by Eq. (27). This is expected due to the symmetry of
the system.
The boson occupying the decaying mode may decay into

the black hole, resulting in the depletion of the boson cloud.
The boson that transfers to the decaying mode of the
companion therefore may decay into the companion
black hole. This is another channel other than the hyperfine
mixing and Bohr mixing that could result in cloud
depletion. Assuming that the backreaction is small and
the decay rate of the black hole is not affected by the
presence of another black hole, the time evolution of the
cloud mass can be described as

dMc

dt
¼ 2

X2
i¼1

Γ2;1;−1jCi
2;1;−1j2Mc; ð31Þ

where Mc is the mass of the boson cloud and Γ2;1;−1,
defined by Eq. (3), is the decay rate of the decaying mode
jψ2;1;−1i. Here jC1

2;1;−1j2 is the occupation probability of the
decaying mode jψ1

2;1;−1i of the primary black hole and
jC2

2;1;−1j2 is the occupation probability of the decaying
mode jψ2

2;1;−1i of the companion black hole, namely,
jC2

2;1;−1j2 ¼ jC−ðRÞj2. The summation takes into account
the decay of the boson into both the primary and
companion black holes.
To see the effect of mass transfer onto the cloud

depletion, we calculate the time evolution of the cloud
mass under the assumption that the bosons only decay into
the companion black hole. Suppose the total mass of the
cloud right before the boson escapes to the companion, e.g.,
R ¼ 80rb, is Mc;0. We further assume that the spin of the
two black holes are both χ ¼ 4α

1þ4α2
, which is the critical spin

for jφ2;1;1i to be saturated [21,25,51], and the companion
black hole has no bosons around it (otherwise, we have to
modify the initial state of the cloud, which can also be
handled in our framework). Backreaction of the boson
cloud onto the black holes are neglected. The result is
shown as the blue dashed curve in Fig. 6. We can see that
the boson cloud quickly decays around R ¼ 60rb and
finally almost all bosons are absorbed by the companion
black hole. To be more specific, the cloud remains
unchanged when R≳ 67rb and almost completely disap-
pears when R≲ 57rb. This means all bosons decay into the
companion black hole when the probability jC−ðRÞj2 is
approaching to its first maximum. At first glance this seems
impossible because the maximal probability is about 0.3,
which is smaller than one. From the physical perspective
this is reasonable. Each boson moves between the primary
and companion black holes. It may be absorbed by the
companion black hole when it occupies the orbit jφ2;1;−1i of
the companion. Though the probability of being absorbed

within one round trip is quite small, the boson can travel
many round trips when the orbital separation decreases
from 67rb to 57rb. Therefore, with a very high probability,
the boson has been absorbed by the companion black hole
when R < 57rb. This is also the key difference from the
depletion mechanism due to the hyperfine resonance. It is
true that at the resonance point, nearly all bosons jump to
the decaying mode, however, the bosons stay in the
decaying mode only for a short time, so the total mass
that absorbed by the black hole may not be large, as
demonstrated in Ref. [35].
We can also include the cloud depletion due to the

hyperfine mixing. Instead of directly calculating the coef-
ficients of the orbits jφ1

2;1;�1i from Eq. (26), we use the
method developed in Ref. [35] to calculate the probability
that the boson jumps to the decaying mode of the primary
black hole due to the perturbation of the companion black
hole. Firstly, the effect of rotation is not included in
Eq. (26). Secondly, according to the adiabatic theorem,
the slow orbital shrinking cannot induce a direct transition
from the growing mode jφ1

2;1;1i to the decaying mode
jφ1

2;1;−1i of the primary black hole. A boson may jump to
the decaying mode jφ1

2;1;−1i by first moving to the
companion black and then back to the primary black hole.
However, this is a second order effect and the probability is
at the order of jC−ðRÞj4, which therefore can be neglected.
For the parameters that we consider in this paper,

the hyperfine resonance occurs at the orbital separation
R ≈ 660rb, which is much larger than the orbital separation
where the mass transfer occurs. It is therefore expected that
the cloud depletion due to the hyperfine mixing is slower
than that due to the mass transfer in the regime R < 80rb,
which is confirmed by Fig. 6. The reason is that the
probability for a boson jumping to the decaying mode of

FIG. 6. Evolution of the boson cloud mass for α ¼ 0.1. The
blue dashed curve denotes the cloud depletion due to the mass
transfer to the decaying mode of the companion black hole, the
orange curve denotes the cloud depletion due to the hyperfine
mixing of the boson in the primary black hole and the purple
dashed-dotted curve denotes the total cloud depletion.
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the primary black hole is very small in this regime.
Combining the effects of the mass transfer and hyperfine
mixing together, we obtain the total cloud depletion, which
is shown in Fig. 6. When R≳ 67rb, the depletion is mostly
contributed by the hyperfine mixing and when R≲ 67rb,
the depletion is mostly contributed by the mass transfer to
the companion black hole and the decay into it. At about
R ∼ 57rb, the cloud has completely decayed into the two
black holes, which is much earlier than the prediction of
hyperfine mixing alone.
In the above discussion we assume that a boson cloud

exists when the orbital separation is about R ¼ 80rb. This
could happen in several cases. The boson cloud may form
when the two black holes are close enough, in particular,
when the orbital separation is much smaller than the orbit
separation when the hyperfine resonance occurs. In this
case the cloud depletes very slowly due to the hyperfine
mixing and a significant amount of bosons may still remain
when the mass transfer starts to contribute to the depletion.
The boson cloud may also form when the two black holes
are very far away, in particular, when the orbital separation
is larger than the orbit separation when the hyperfine
resonance occurs. There are two possibilities in this case.
If the companion black hole and the cloud are counter-
rotating, then the hyperfine resonance never occurs. The
hyperfine and Bohr mixing are both weak so the cloud
depletes very slowly, as shown in Fig. 7, and therefore a
substantial amount of cloud may still remain. If the
companion black hole and the cloud are corotating, then
the hyperfine resonance occurs. The hyperfine resonance
may cause a strong depletion of the cloud so that only a
small amount of cloud is left when the mass transfer starts
to contribute to the depletion. If this is the case, then the
effect of mass transfer does not play an important role in the
cloud depletion.
As an example, we consider the case where the

companion black hole and the cloud are corotating, and
the cloud forms after the hyperfine resonance occurs.

The cloud has a life time τc that determined only by its
own gravitational radiation, which is given by [26,35,52]

τc ∼ 107
�

M
3M⊙

��
0.07
α

�
15

years; ð32Þ

where M is the mass of the primary black hole. We set the
initial time of the cloud evolution as the half-lifetime of
the cloud. The results are shown in Fig. 7, where we have
included the contribution from the hyperfine mixing, Bohr
mixing, mass transfer, and gravitational radiation by the
cloud itself. For a fixed value of α, the cloud depletion due
to the hyperfine mixing, Bohr mixing and gravitational
radiation dominates at large orbital separation, which
proceeds very slowly. When the two black holes are close
enough and the mass transfer occurs, the cloud quickly
depletes and almost all remaining bosons are absorbed by
the companion black hole. For a smaller value of α, the
cloud depletes slower during the stage of hyperfine mixing
and the mass transfer occurs earlier, i.e., at a larger orbital
separation. This implies that a larger fraction of boson
depletes due to the mass transfer and is absorbed by the
companion black hole.

B. Modification to gravitational radiation

The mass transfer and cloud depletion change the mass
distribution of the BH-cloud-BH system, consequently
affecting the radiated gravitational waves. The power of
gravitational radiation emitted by a system is related to the
third time derivative of its quadrupole moment via

dEGW

dt
¼ 1

5

X3
i;j¼1

⃛Qij
⃛Qij; ð33Þ

where the quadrupole moment Qij is defined as

Qij ¼
Z

d3xρðxÞ
�
xixj −

1

3
x2δij

�
; ð34Þ

with ρðxÞ the mass density distribution. In a binary black
hole system without a boson cloud, the two black holes can
be approximated as two point masses if their gravitational
radii are much smaller than their orbital separation. In this
approximation, it is straightforward to show that the
average radiation power is given by

P0 ¼
32

5

�
M1M2

M1 þM2

�
2

R4Ω6; ð35Þ

whereM1 andM2 represent the black hole masses, R is the
orbital separation and Ω is the orbital (assuming circular
orbit) frequency.
When a boson cloud forms around the primary black

hole, it introduces a mass distribution ρðxÞ smeared over a
FIG. 7. Evolution of the boson cloud mass for different α and
initial cloud mass Mc;0 ¼ αM [26].
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region with a characteristic size of about rb, and cannot be
approximated as a point mass. When the bosons transfer
from the primary black hole to the companion black hole
and the cloud consequently depletes, the mass distribution
is changed. This leads to a change in the quadrupole
moment and thus alters the gravitational wave signal.
To illustrate the effects of mass transfer and cloud

depletion, we calculate the difference in average radiation
power, denoted as ΔP, between the binary black hole
system with a boson cloud and the system without a
boson cloud. In the BH-cloud-BH system, we assume that
before the mass transfer occurs, the two black holes have
the same mass M, and the mass of the boson cloud is
Mc;0 ¼ αM. For a fair comparison, in the binary black
hole system without a boson cloud, we assume that
the primary black hole has mass ð1þ αÞM and the
companion black hole has mass M. In the parameter
regime we consider, it is reasonable to assume that mass
transfer occurs at an orbital separation smaller than
R ¼ 80rb. Furthermore, we assume that the BH-cloud-
BH system has the same orbital frequency as the binary
black hole system without a boson cloud at the same
orbital separation, which leads to a negligible error due to
the angular momentum transfer.
Figure 8 shows the ratio between ΔP and P0 for α ¼ 0.1

and α ¼ 0.05. Before the mass transfer occurs, the power
radiated by the BH-cloud-BH system is slightly higher.
This is because the extended mass distribution of the boson
cloud leads to a larger quadrupole moment and conse-
quently a larger third time derivative, contributing to a
slightly higher radiated power. During the mass transfer and
cloud depletion, the ratio ΔP=P0 decreases gradually due
to the redistribution of mass. After the bosons have been
completely absorbed, the ratio tends to be a constant. This
is because in the final stage, the binary black hole system
consists of two black holes with different masses and is
devoid of bosons.

V. CONCLUSIONS

We develop a framework to study the transfer of bosons
between two black holes in a binary black hole system.
The framework is formulated by an analogy between the
BH-cloud-BH system and the hydrogen molecule ion
system in which an electron moves in the potential
generated by two protons. When two black holes are
sufficiently close, the bosons initially confined around
the primary black hole can escape to the companion. In
the language of quantummechanics, molecular orbits of the
boson form and the boson moves back and forth between
two black holes. This results in cloud mass redistribution
in the binary black hole system. Furthermore, the boson
which escapes to the companion may occupy the decaying
mode and therefore may decay into the companion black
hole. We find that the boson cloud existing right before the
mass transfer completely disappears. This introduces a new
mechanism of cloud depletion in a binary black system
distinct from the hyperfine and Bohr mixings. During the
evolution of the binary black hole system, the companion
first excites the hyperfine mixing, which leads to transitions
of bosons between growing and decaying modes, ulti-
mately resulting in depletion to the primary black hole. The
cloud depletion progresses slowly until the mass transfer
occurs; however, a significant fraction of bosons may have
already been absorbed by the primary black hole. The
remaining bosons then depletes via mass transfer to the
companion black hole.
In this work, we have exclusively focused on scalar

bosons without interactions with themselves or other
fields. The developed framework can also be applied to
bosonic fields with higher spins, e.g., spin-1 [34,53] and
spin-2 [31–33] bosonic fields. For vector bosonic fields, the
fastest growing mode is the ground state (n ¼ 1), rather
than the mode n ¼ 2; l ¼ m ¼ 1, and the growing/
decaying rates can be orders of magnitude higher than
those of the scalar bosonic fields [53]. This implies that
molecular orbits formed by linearly combining two ground
states need to be considered, and the vector boson cloud
would deplete much more rapidly. If self-interactions exist
[25], the bosons can occupy other growing modes with
n > 2 and reach a quasiequilibrium configuration [54].
Therefore, molecular orbits with n > 2 have to be consid-
ered, leading to earlier mass transfer and cloud depletion
through additional decaying channels. If interactions with
other fields exist, e.g., axion-photon coupling [55], the
transferring bosons can generate or modify visible fields
around the companion black hole, potentially producing
observable effects.
Our framework is used to study the simplest model

where the two black holes have the same mass and spin,
and their spin orientation is parallel. It can be straightfor-
wardly generalized to explore more realistic models, for
example, the two black holes may have unequal mass and
spin, or their spin orientation may be different. This would

FIG. 8. Ratio between the difference of radiation power, ΔP,
and the radiation power from a binary black hole system without
a boson cloud, P0. The blue dished line and yellow thick line
represent bosons with α ¼ 0.1 and 0.05, respectively.
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require a modification to the variational method used to
calculate the molecular orbits and the energy eigenvalues.
Another interesting case is that the companion may not be a
black hole but a compact star [48]. Then there is only
cloud mass redistribution but no cloud depletion due to the
decay into the companion. However, this could also have
important consequences to the evolution of the binary
system and their gravitational waveforms. The boson cloud
depletion due to the mass transfer to a companion black
hole and that due to the tidal perturbation from the
companion [35,56–58] is crucial to understand the dynam-
ics of the boson cloud and to constraint the properties of the
ultralight boson.
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APPENDIX A: CHOICE OF COORDINATES

To describe the orbits of the boson in the binary black
hole system, we need to set up an appropriate coordinate
system, which is schematically shown in Fig. 1. The origin
of the coordinate system is located at the primary black
hole, and the z-axis is parallel to the spin of the primary
black hole and the x-axis is pointing towards the
companion black hole. We use spherical coordinates
ðr1; θ1;φ1Þ to represent the position of the boson relative
to the primary black hole, and ðr2; θ2;φ2Þ to denote the
position of the boson relative to the companion black hole.
Whilst one set of coordinates is sufficient, we introduce
the coordinates ðr2; θ2;φ2Þ only for convenience since the
isolated wave functions of the boson belonging to the
companion black hole can be conveniently expressed using
the coordinates ðr2; θ2;φ2Þ. The coordinates ðr2; θ2;φ2Þ
can be written in terms of the coordinates ðr1; θ1;φ1Þ,

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ R2 − 2r1R sin θ1 cosφ1

q
;

cos θ2 ¼
r1 cos θ1

r2
;

sin θ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðcos θ2Þ2

q
;

cosφ2 ¼
r1 sin θ1 cosφ1 − R

r2 sin θ2
;

sinφ2 ¼
r1 sin θ1 sinφ1

r2 sin θ2
: ðA1Þ

By using these relations we can carry out all the calculation
using only one set of coordinates, namely, the coordi-
nates ðr1; θ1;φ1Þ.

APPENDIX B: WAVE FUNCTIONS AND
OVERLAP INTEGRALS

The wave functions for the n ¼ 2;l ¼ 1 boson around
an isolated black hole are given by

φ2;1;1ðrÞ ¼
1

8

ffiffiffi
1

π

r
r−5=2b re−r=2rb sin θeiφ;

φ2;1;−1ðrÞ ¼
1

8

ffiffiffi
1

π

r
r−5=2b re−r=2rb sin θe−iφ;

φ2;1;0ðrÞ ¼
1

8

ffiffiffi
2

π

r
r−5=2b re−r=2rb cos θ; ðB1Þ

where r ¼ ðr; θ;φÞ and rb is the Bohr radius of the boson. It
is convenient to define φ2px

;φ2py
, and φ2pz

states by
linearly combining the φ21m states,

φ2px
ðrÞ ¼ 1ffiffiffi

2
p ½φ2;1;1ðrÞ þ φ2;1;−1ðrÞ�

¼ 1

8

ffiffiffi
2

π

r
r−5=2b re−r=2rb sin θ cosφ

¼ 1

8

ffiffiffi
2

π

r
r−5=2b e−r=2rbx;

φ2py
ðrÞ ¼ 1ffiffiffi

2
p

i
½φ2;1;1ðrÞ − φ2;1;−1ðrÞ�

¼ 1

8

ffiffiffi
2

π

r
r−5=2b re−r=2rb sin θ sinφ;

¼ 1

8

ffiffiffi
2

π

r
r−5=2b e−r=2rby;

φ2pz
ðrÞ ¼ 1

8

ffiffiffi
2

π

r
r−5=2b re−r=2rb cos θ

¼ 1

8

ffiffiffi
2

π

r
r−5=2b e−r=2rbz:

It is evident that the wave functions φ2px
;φ2py

and φ2pz
are

real, and they are invariant under the rotation along the x-
axis, y-axis and z-axis, respectively. These symmetric
properties are important for the construction of molecular
orbits using the variational method.
The wave functions for the molecular orbits of the boson

in the binary black hole system are given by
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φσðrÞ ¼
1

8N1

ffiffiffi
1

π

r �
r−5=2b1 r1e−r1=2rb1 sin θ1 cosφ1 − r−5=2b2 r2e−r2=2rb2 sin θ2 cosφ2

	
;

φσ� ðrÞ ¼
1

8N2

ffiffiffi
1

π

r �
r−5=2b1 r1e−r1=2rb1 sin θ1 cosφ1 þ r−5=2b2 r2e−r2=2rb2 sin θ2 cosφ2

	
;

φπðrÞ ¼
1

8N3

ffiffiffi
1

π

r �
r−5=2b1 r1e−r1=2rb1 sin θ1 sinφ1 þ r−5=2b2 r2e−r2=2rb2 sin θ2 sinφ2

	
;

φπ� ðrÞ ¼
1

8N4

ffiffiffi
1

π

r �
r−5=2b1 r1e−r1=2rb1 sin θ1 sinφ1 − r−5=2b2 r2e−r2=2rb2 sin θ2 sinφ2

	
; ðB2Þ

where rb1 and rb2 are the Bohr radius for the boson in primary and companion black holes, respectively. The overlap
integrals are given by

hφ1
2px

jφ2
2px

i ¼ 1

32π
r
−5
2

b1r
−5
2

b2

Z
r31r2e

− r1
2rb1

− r2
2rb2sin2θ1 sin θ2 cosφ1 cosφ2dr1dθ1dφ1;

hφ1
2px

j α
r2

jφ2
2px

i ¼ α

32π
r
−5
2

b1r
−5
2

b2

Z
r31e

− r1
2rb1

− r2
2rb2sin2θ1 sin θ2 cosφ1 cosφ2dr1dθ1dφ1;

hφ1
2px

j α
r2

jφ1
2px

i ¼ α

32π
r−5b1

Z
r41
r2
e−

r1
rb1sin3θ1cos2φ1dr1dθ1dφ1;

hφ1
2py

jφ2
2py

i ¼ 1

32π
r
−5
2

b1r
−5
2

b2

Z
r31r2e

− r1
2rb1

− r2
2rb2sin2θ1 sin θ2 sinφ1 sinφ2dr1dθ1dφ1;

hφ1
2py

j α
r2

jφ2
2py

i ¼ α

32π
r
−5
2

b1r
−5
2

b2

Z
r31e

− r1
2rb1

− r2
2rb2sin2θ1 sin θ2 sinφ1 sinφ2dr1dθ1dφ1;

hφ1
2py

j α
r2

jφ1
2py

i ¼ α

32π
r−5b1

Z
r41
r2
e−

r1
rb1sin3θ1sin2φ1dr1dθ1dφ1: ðB3Þ

APPENDIX C: QUANTUM ADIABATIC
THEOREM

In this appendix, we show that the adiabatic approxi-
mation can be applied in our case. Since the potential
generated by the two black holes changes very slowly, we
assume that the energy eigenvalues also evolve slowly and
continuously with time and they satisfy the equation,

ĤðtÞjψnðtÞi ¼ EnðtÞjψnðtÞi: ðC1Þ
We assume that the energy levels are not degenerate. An
arbitrary state at a given time can be written as

jψðtÞi ¼
X
n

cnðtÞjψnðtÞi; ðC2Þ

and satisfies the Schrödinger equation

i
∂

∂t
jψðtÞi ¼ ĤðtÞjψðtÞi; ðC3Þ

By substituting Eq. (C2) into Eq. (C3), and multiplying
both sides from the left by hψkj, we have

i
∂ck
∂t

þ i
X
n

cnhψkj
∂ψn

∂t
i ¼ ckEk: ðC4Þ

Now we are going to derive the expression for hψkj ∂ψn
∂t i.

We start with a time derivation of Eq. (C1),

∂Ĥ
∂t

jψni þ Ĥ

���� ∂ψn

∂t



¼ ∂En

∂t
jψni þ En

���� ∂ψn

∂t



: ðC5Þ

For k ≠ n, we multiply both sides from the left by hψkj
and obtain,

hψkj
∂ψn

∂t
i ¼ 1

En − Ek
hψkj

∂Ĥ
∂t

jψni: ðC6Þ

We also need to consider the case when k ¼ n, namely,
the expression for hψkj ∂ψk

∂t i. Taking time derivative of the
normalization condition,

hψkjψki ¼ 1; ðC7Þ

we have

hψkj
∂ψk

∂t
i þ h∂ψk

∂t
jψki ¼ 0: ðC8Þ
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It is evident that hψkj ∂ψk
∂t i is purely imaginary, which in

principle can be canceled by appropriately adding a
phase. Therefore, the time derivative of the coefficient
cn is given by

dck
dt

¼ −
X
n≠k

cn
1

En − Ek
hψkj

∂Ĥ
∂t

jψni − ickEk: ðC9Þ

We now show that hψkj ∂Ĥ∂t jψni ¼ 0 when n ≠ k, which
is the equality given by Eq. (23). Since n; k∈ fσ; σ�; π; π�g,
so there are six off-diagonal elements for ∂Ĥ

∂t . Let us first

consider hσj ∂Ĥ
∂t jσ�i and hπj ∂Ĥ

∂t jπ�i.

hσj∂Ĥ
∂t

jσ�i¼hφ1
2px

j∂Ĥ
∂t

jφ1
2px

i−hφ2
2px

j∂Ĥ
∂t

jφ2
2px

i

þhφ1
2px

j∂Ĥ
∂t

jφ2
2px

i−hφ2
2px

j∂Ĥ
∂t

jφ1
2px

i: ðC10Þ

In our simple model we assume that two black holes
have exactly the same parameters, so the isolated orbits of
the boson are the same for the primary and companion
black holes. Due to the symmetry of the configuration
of the BH-cloud-BH system, we have hφ1

2px
j ∂Ĥ
∂t jφ1

2px
i ¼

hφ2
2px

j ∂Ĥ
∂t jφ2

2px
i. The wave functions φi

2px
are real and the

time derivative of the Hamiltonian is Hermitian, so we have
hφ1

2px
j ∂Ĥ
∂t jφ2

2px
i ¼ hφ2

2px
j ∂Ĥ
∂t jφ1

2px
i. Therefore, we find that

hσj ∂Ĥ
∂t jσ�i ¼ 0. By using similar arguments we also

have hπj ∂Ĥ
∂t jπ�i ¼ 0.

To calculate other elements of ∂Ĥ
∂t , we need to know its

explicit expression, which is given by

∂Ĥ
∂t

¼ ∂Ĥ
∂r2

∂r2
∂R

∂R
∂t

¼ α

r22

∂r2
∂R

∂R
∂t

¼ −
64

5
αqð1þ qÞM

3

R3

R − r1 sin θ1 cosφ1

r32
: ðC11Þ

By using the explicit expressions of the orbits given by
Eqs. (5) and (6), we find that other elements of ∂Ĥ

∂t can be

expanded using hφi
2px

j ∂Ĥ
∂t jφj

2py
i, with i; j∈ f1; 2g. We now

show that hφi
2px

j ∂Ĥ
∂t jφj

2py
i ¼ 0 for all choices of i, j.

Neglecting the constant factor that is independent of
ðr1; θ1;φ1Þ we find,

hφ1
2px

j ∂Ĥ
∂t

jφ1
2py

i

∼
Z

dV
R − r1 sin θ1 cosφ1

r32
r21e

−r1=rbsin2θ1 sinφ1 cosφ1

∼
Z

dxdydz
xðR − xÞy

ðr21 þ R2 − 2RxÞ3=2 e
−r1=rb ; ðC12Þ

where we have used the Cartesian coordinates ðx; y; zÞ,

x¼ r1 sinθ1cosφ1; y¼ r1 sinθ1 sinφ1; z¼ r1cosθ1:

It is evident that the integrand is an odd function of y, so the
integral is zero,

hφ1
2px

j ∂Ĥ
∂t

jφ2
2py

i

∼
Z

dV
R − r1 sin θ1 cosφ1

r32
e−ðr1þr2Þ=2rbr1 sin θ1 cosφ1

× r2 sin θ2 sinφ2

∼
Z

dxdydz
xðR − xÞy

ðr21 þ R2 − 2RxÞ3=2 e
−ðr1þr2Þ=2rb ; ðC13Þ

where r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ R2 − 2Rx

p
, and we have used the equal-

ity y ¼ r1 sin θ1 cosφ1 ¼ r2 sin θ2 cosϕ2. It is evident that
the integrand is also an odd function of y, so the integral
is zero.
By using the symmetry of the BH-cloud-BH system,

we have

hφ2
2px

j ∂Ĥ
∂t

jφ1
2py

i ¼ −hφ1
2px

j ∂Ĥ
∂t

jφ2
2py

i ¼ 0;

hφ2
2px

j ∂Ĥ
∂t

jφ2
2py

i ¼ −hφ1
2px

j ∂Ĥ
∂t

jφ1
2py

i ¼ 0: ðC14Þ

Therefore, We have hφi
2px

j ∂Ĥ
∂t jφj

2py
i ¼ 0 for all choices

of i, j. As a result, all other elements of ∂Ĥ
∂t are zero. In

summary, we have

hψkj
∂Ĥ
∂t

jψni ¼ 0 ðC15Þ

for n ≠ k.
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